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A B S T R A C T   

Landscape ecological risk assessments have played a critical role in measuring and predicting the quality and 
dynamic evolution of the ecological environment. In this study, a typical artificial oasis in the Alar reclamation 
area of Northwest China was selected as the research area. We acquired Landsat images from the past 30 years for 
the study area. Based on these remote sensing images, continuous long-term series and multi-temporal syntheses 
were combined to classify and construct a landscape ecological risk index. Our results showed a clear downward 
trend in the overall ecological risk in the Alar reclamation area between 1990 and 2019. Through scenario 
simulation, we found that the ecological risk of the research area is predicted to decrease in 2025 and 2030 under 
the two scenarios of natural growth and strict government control. Compared to the natural growth scenario, the 
increased area of construction and cultivated land is predicted to be less under the government control scenario, 
which contributes to the decrease in the overall ecological risk. Therefore, when formulating the overall plan for 
land use, the government should strictly control the increase in construction and cultivated land and prohibit 
illegal cultivation and blind reclamation of cultivated land. We used a classification method that is more suitable 
for the local study area, thereby increasing classification accuracy, and in turn, simulating and evaluating future 
landscape patterns more accurately. Our study provides a good reference for similar studies to be conducted in 
arid regions of northwest China and around the world.   

1. Introduction 

In recent decades, the ecological environment has deteriorated 
considerably in many regions due to human activity (Xu et al., 2019; 
Zhang et al., 2020; Hu et al., 2020a, 2022). Thus, ecological risk 
assessment is extremely important for the maintenance and protection 
of regional ecological security and has attracted widespread attention 
worldwide (Xu and Kang, 2017; Hou et al., 2020). Most recent studies 
have used remote sensing images from individual dates when analysing 
ecological risk (Ning et al., 2006; Yu et al., 2010; Li et al., 2018; He et al., 
2019; Kabisch et al., 2019). In this study, we combined multi-temporal 
remote sensing images to assess the ecological risk profile of the Alar 
reclamation area and synthesised all available images from the same 

year to determine the maxima NDVI values. The synthesised images not 
only avoid errors that are caused by different plant growth conditions in 
different growth stages but can also eliminate the influence of cloud 
cover on the images. This could greatly improve the classification ac-
curacy and provide more refined landscape pattern parameters for the 
construction of the landscape ecological risk. 

In addition, the scale and pattern of the future ecological space 
directly affect the ecological security of the national space (Wang et al., 
2020a). Therefore, it is of great theoretical and practical significance to 
construct a scientific and reasonable model that can simulate and predict 
the ecological space, thereby facilitating the protection of the ecological 
environment and optimal control of the national space (Jin et al., 2019; 
Fu et al., 2020). Changes in landscape patterns can be analysed and 
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simulated using various models, of which the Cellular Automata (CA) 
model is widely used (Wang et al., 2020b; Mokarram et al., 2021; H. 
Wang et al., 2021). The CA–Markov model combines the ability of the 
CA model to simulate spatial changes of complex systems and the ad-
vantages of the Markov model for long-term prediction, which not only 
improves the prediction accuracy of land use type transformation but 
also effectively simulates the spatial changes in land use patterns 
(Rahman and Ferdous, 2021; Zhang et al., 2021a). The CA–Markov 
model is scientifically and practically sound and overcomes the short-
comings of traditional land evolution simulation models (Zhang et al., 
2021b). 

The study area is a typical artificial oasis. Artificial oases can assist 
humans to effectively prevent the extrusion and erosion of arid climate 
environments and maintain the stability and development of oasis sys-
tems (T.Y. Wang et al., 2021; Zheng et al., 2022). Currently, artificial 
oases are an important ecological haven for humans to avoid the nega-
tive effects of an arid climate. Thus, it is important to predict the po-
tential ecological risks of the area in the future. However, as land use 
change is a continuous process, a lot of critical information may be 
missed in typical time-transect data. Furthermore, there are various crop 
types in the study area, with different phenological periods. For 
example, wheat is usually harvested in May and June, after which the 
farmland that was previously planted with wheat can be wrongly clas-
sified as bare land. Therefore, we used the maximum composite value of 
the multi-phase normalised difference vegetation index (NDVI) for 
classification based on images from different years, which could reduce 
the rate of misclassification. Although this method has been used in 
many areas, it has not been reported in the artificial oasis areas of 
Northwest China. The vegetation in the study area changes rapidly in all 
seasons of the year. Consequently, the maximum multi-phase NDVI 
composite value is highly suitable for application in the study area. 

It can greatly improve the prediction accuracy in the area, as other 
methods are not suitable for this research area. To this end, we collected 
all the Landsat images that covered the study area over the past 30 years. 
Our study generated new data to address the research gap when 
compared to studies that use typical time-lapse as the basic data. 
Moreover, the combination of continuous long-term time series and 
multi-temporal NDVI maxima improved the accuracy of landscape 
classification, thereby rendering our landscape pattern information and 
prediction more accurate. Subsequently, we predicted future ecological 
risks and revealed the characteristics of the spatio-temporal changes in 
the ecological risks in the study area. Our results have significant im-
plications for efforts pertaining to the protection of the stability and 
health of the ecosystem in the study area. 

2. Materials and methods 

2.1. Study area 

The survey region in this study was located in the Alar reclamation 
area in the arid area of Northwest China, with a total area of 4105.92 
km2 (40◦ 22′ 0′′–40◦ 57′0′′ N, 80◦ 30′ 0′′–81◦ 58′ 0′′ E; Fig. 1a). It is 
adjacent to the Taklamakan Desert and belongs to the Tarim Basin, with 
the Tianshan Mountains to the north and the Kunlun Mountains to the 
south, creating a spatial pattern of mountains surrounding the basin and 
a desert surrounding the oasis. The study area is a typical arid area of an 
artificial oasis and features low rainfall, serious soil salinisation, and a 
lack of water resources. The Alar reclamation area was an inaccessible 
wasteland for an extended period of time. Since the 1950s more than 
80,000 ha have been reclaimed as agricultural land. In 2019, the GDP 
and total agricultural output of the Alar reclamation area were 30.95 
and 27.186 billion yuan, respectively (Peng et al., 2019; Cao et al., 2022; 

Fig. 1. (a) Location of the study area and (b) ecological risk assessment units on a simple map of the Alar reclamation area.  
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Lv et al., 2022; Wang et al., 2022; Zhang et al., 2022). 

2.2. Data acquisition and pre-processing 

2.2.1. Data acquisition 
The remote sensing data were downloaded from the website htt 

ps://earthexplorer.usgs.gov/. The downloaded images had orbital 
numbers of 146–32 and a spatial resolution of 30 m, with cloud cover of 
less than 40% (multi-temporal image synthesis can eliminate the influ-
ence of cloud cover). Since the Landsat series of the sensors had been 
continuously updated over the past 30 years, the following sensors were 
selected for the remote sensing images in this study: Landsat 5 from 
1990 to 1998, Landsat 7 from 1999 to 2012, and Landsat 8 from 2013 to 
2019. We collected the past 30 years’ worth of Landsat Thematic 
Mapper remote sensing images, which cover the study area. The cloud 
coverage of each scene and the number of images in each year are shown 
in Fig. 2. 

2.2.2. Normalised difference vegetation index synthesis of remote sensing 
images and landscape classification 

A pre-process was employed for the Landsat images from 1990 to 
2019 using the ENVI software. This included radiometric calibration, 
atmospheric correction, geometric correction, cropping, image 
enhancement, and band calculation. The NDVI was then calculated for 
each view image. Afterwards, we synthesised the maximum value of all 
the NDVIs in the same year to obtain a map showcasing the maximum 
NDVI composite for each year. We used the eCognition software for 
object-oriented classification of the landscape. The landscapes were 
divided into six types: cultivated land, forest and grassland, garden land, 
water body, construction land, and unused land. The processing flow of 
the remote sensing images is presented in Fig. 3. 

2.3. Landscape ecological risk index 

2.3.1. Dividing the area into ecological risk zones 
Considering the spatial heterogeneity, patch size, area of the survey 

region, and sampling density (Ni et al., 2019; Yuan et al., 2019), a 1 km 
× 1 km square grid was constructed and used to conduct evenly spaced 
sampling fishing nets in the Alar reclamation area using ArcGIS soft-
ware. The Alar reclamation area was divided into 4337 ecological risk 
communities, as shown in Fig. 1b. 

2.3.2. Construction of the landscape ecological risk index 
The landscape ecological risk index (ERI) can provide relevant in-

formation on landscape patterns and can be used to evaluate the 

regional ecological risk (Liang et al., 2019). The survey region in this 
study is a typical artificial oasis area; thus, the landscape is strongly 
affected by human activities, and this makes the ecosystem more fragile. 
The landscape fragmentation index (Ci), landscape separation index (Si), 
and landscape dominance index (Di) were selected and combined to 
construct the landscape disturbance index (LDIi) model (Ma et al., 2019). 
Meanwhile, using the LDIi and landscape fragility index (LFIi) were used 
to construct the landscape ERI. The correlation between cultivated land 
and human activity in the artificial oasis area was the largest, and the 
fragility and sensitivity coefficients were the highest (Wang et al., 
2020a; Zhang et al., 2020). Thus, in this study, the fragility coefficients 
of unused and cultivated land were assigned values of 5 and 6, respec-
tively. The specific calculation formulas are shown in Table 1, through 
which we could link the landscape index and landscape ecological risk to 
determine the change in the landscape ecological risk in the study area. 

2.4. Spatial-temporal analysis method of landscape ecological risk 

The geostatistical method has been widely used to monitor, model, 
and estimate the spatial correlation and spatial patterns of target vari-
ables (Webster and Oliver, 2008; Zhang et al., 2016; Shi et al., 2019; Xia 
et al., 2019; Hu et al., 2020b). The experimental variogram is used to 
explore the spatial structure of the variables (Webster and Oliver, 2008; 
Xia et al., 2020). Its calculation formula is as follows: 

γ(h)=
1

2n(h)

∑n(h)

i=1
[Z(xi + h) − Z(xi)]

2  

where γ(h) is the variogram; n(h) is the number of the pairs of sample 
points with a distance of h; Z is the random variable of a certain system 
attribute; Z(xi) and Z(xi +h) are the values taken at the points of the 
variables xi and (xi + h), respectively. 

The geostatistics software GS+ was used to achieve optimal fitting of 
the experimental semi-variogram model, based on which the ordinary 
kriging interpolation was employed (Hu et al., 2020a; Li et al., 2020a) in 
the ArcGIS software. The natural breakpoint method was used to classify 
the study area into five classes (extremely low-risk, low-risk, 
medium-risk, high-risk, and extremely high-risk) based on the ecological 
risk map of each year. Subsequently, we used a spatial overlay analysis 
for quantitatively assessing the transformed direction and area of re-
gions with different ecological risk levels. 

2.5. Spatial autocorrelation analysis 

Spatial autocorrelation analysis examines whether the values of the 

Fig. 2. Remote sensing data. (a) The percentage of cloud cover in each view image; (b) the number of images per year.  
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target variable at the spatial location are correlated with neighbouring 
points, and it is divided into global spatial autocorrelation and local 
spatial autocorrelation (Hu et al., 2017, 2019; Cui et al., 2018). In this 
study, Moran’s I index values were calculated using GeoDa software to 
assess the degree of spatial autocorrelation of the target variables. Using 
the Moran’s I index, we could detect whether there were statistically 
significant relationships in the ecological risks in local areas (Shi et al., 

2018; Hu et al., 2020b). The hot spots indicate regions with high-value 
ecological risk clusters, whereas the cold spots represent regions with 
low-value ecological risk clusters. 

Fig. 3. Framework of this study.  

Table 1 
Formulas for calculating the ecological risk index.  

Landscape Ecological meaning Formula Formula description 

Landscape 
fragmentation 
index 

The degree of patch fragmentation in 
each landscape type 

Ci = ni/Ai 
ni is the patch number of landscape i; Ai is the total area of landscape i (Peng 
et al., 2014; Xie et al., 2020) 

Landscape 
separation index 

The degree of patch separation in each 
landscape type 

Si = A/2Ai
⋅

̅̅̅̅̅̅̅̅̅̅
ni/A

√ A is the total area of the entire landscape 

Landscape 
dominance index 

The degree of patch importance in each 
landscape type 

Di = 0.25
( ni

N
+

mi

M

)
+

0.5
( Ai

2A

)

N is the total number of patches; mi is the sample number of patch i; M is the 
total number of samples 

Landscape 
disturbance index 

The degree of external interference in 
different landscape types 

LDIi = aCi + bSi + cDi a, b, and c are weights of indices Ci, Si, and Di, respectively. a = 0.5, b = 0.3, c =
0.2 

Landscape fragility 
index 

The resistance ability of the external 
interference in different landscape 
types 

LFIi obtained by artificial 
assignment and normalization 

Modified in this study according to the specific research area status based on 
the value presented in previous studies (Jin et al., 2019; Li et al., 2020). 
Cultivated land = 6, Unused land = 5, Forest and grassland = 4, Water body =
3, Garden land = 2, and Construction land = 1 

Ecological risk index The relative sizes of integrated 
ecological losses in a specifically 
selected sample 

ERI =
∑N

i

Ski

Sk
⋅LDIi⋅LFIi 

N is the number of landscape types in the sample areas; Ski is the area of 
landscape type i in the sample k; Sk is the area of sample k  
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2.6. Prediction of the ecological risk based on the Cellular 
Automata–Markov model 

The CA model is a discontinuous spatiotemporal dynamic model, 
which is characterised by discrete temporal and spatial states (Rahnama, 
2020; Sww et al., 2020). The Markov method is a special stochastic 
process based on the stochastic process theory that was proposed by the 
mathematician Markoff. By calculating the initial probability of 
different states and the relationship between the transition probabilities, 
the changing trend in the landscape pattern over time was determined 
and the change in the landscape pattern was predicted. In the raster map 
of the landscape type, each pixel is a cell, and the landscape type of each 
cell is the state of the cell. The transition of the cell state is determined 
using the conversion area matrix and the conditional probability image 
for simulating the changes in the landscape patterns (Ghosh et al., 2017; 
Ama and Hw, 2020). 

We forecasted the future ecological risks to reveal the spatio- 
temporal variation and related drivers of ecological risks in the study 
area, which is expected to provide implications for the construction of 
ecological civilization and achieving sustainable development in the 
study area. In the plan issued by the Xinjiang Province, the aim is to 
build a demonstration area of ecological civilization in arid areas by the 
year 2025. Meanwhile, in the National Land Planning Outline issued by 
the Chinese government, several critical goals are set, such as realizing a 
safe and harmonious ecological environment protection pattern and 
strengthening natural ecological protection, especially in ecologically 
fragile areas like Xinjiang Province (http://www.gov.cn/gongbao/con 
tent/2017/content_5171326.htm). To serve these strategic objectives, 
we predicted the ecological risk in the study area in 2025 and 2030 
(http://www.xinjiang.gov.cn/xinjiang/fgwjx/202202/81d6eb805 
6104b2c992f3fbcda67ac58.shtml). Information on the landscape types 
in the study area was extracted for 30 periods from 1990 to 2019 and the 
CA–Markov model was used to simulate and predict the direction of 

landscape pattern development in 2025 and 2030 under the natural 
growth and government control scenarios in the Alar reclamation area. 

To improve the prediction accuracy of the ecological risk, we 
collected information on 15 potential influencing factors including 
elevation, slope, aspect, distance from highways, railways, highways 
and water systems, temperature, precipitation, population, gross do-
mestic product, social fixed asset investment, primary industry, gross 
agricultural production and cotton prices, and landscape classification 
data. We used the CA–Markov model in the IDRISI software to simulate 
the future landscape pattern of the study area. Thereafter, we first pre-
dicted the ecological risk of the study area in 2019 based on the 21 
periods of the landscape classification data from 1990 to 2010 and the 
15 potential influencing factors. Then, the prediction result for 2019 was 
compared with the real ecological risk of 2019, which was used to 
validate the performance of our CA–Markov model. Finally, we pre-
dicted the ecological risk of the survey region in 2025 and 2030 using 
the CA–Markov model that we developed. 

3. Results 

3.1. Changes in the ecological risk index of the landscape 

Our results show that from 1990 to 2019, the landscape fragmen-
tation indices (Ci) of cultivated land and construction land were rela-
tively high with a decreasing trend. Meanwhile, the Ci values of the 
water body and unused land were close to 0, which indicates that their 
spatial distributions are very concentrated (Fig. 4). The landscape sep-
aration indices (Si) of construction land and cultivated land exhibited a 
decreasing trend and the spatial distribution characteristics changed 
from random distribution to concentrated distribution. The landscape 
dominance index (Di) of unused land showed a downward trend, and the 
degree of interference gradually increased. Additionally, the Di value of 
cultivated land showed an upward trend. Due to the increase in demand 

Fig. 4. Landscape pattern metrics from 1990 to 2019.  
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for cultivated land, large areas of wasteland have been reclaimed, 
increasing the Di value of the cultivated land. As shown in Fig. 4 (d), the 
ERI of the Alar reclamation area decreased from 0.1791 in 1990 to 
0.1286 in 2019, indicating that the ecological risk of the study area has 
decreased over the past 30 years. 

The transformation matrix of land use types in the Alar reclamation 
area from 1990 to 2019 is presented in Table 2. From 1990 to 2019, the 
cultivated land area increased by 1516.19 km2 with the transformation 
predominantly from unused land. Forest and grassland areas decreased 
by 39.63 km2. The extent of the developed area increased by 37.82 km2 

with the transformation being predominant in cultivated land (see 
Table 2). 

3.2. Spatio-temporal variation in the landscape ecological risk 

3.2.1. Semi-variogram analysis 
We determined the change in ecological risk during 30 periods from 

1990 to 2019. However, to be concise, we only present the changes in 
the landscape ecological risk for four typical time intervals in 1990, 
2000, 2010, and 2019. The optimal fitting of the theoretical model of the 
variance function was performed using the sampling data of 4337 
ecological risk communities for each year and the relevant variance 
functions and parameters are presented in Table 3. In 1990 and 2019, 
the exponential model was fitted, while in 2000 and 2010, the spherical 
model was more suitable. 

The sill value decreased from 0.0027 in 1990 to 0.0014 in 2000 and 
then increased to 0.0024 in 2019, indicating that the uneven spatial 
distribution of the landscape ecological risk intensity decreased first and 
then increased between 1990 and 2019. The range value increased from 
6900 m in 1990 to 27,600 m in 2019, indicating that the relevant range 
of the ERI is gradually expanding. The nugget/sill value of the ERI 
decreased first and then increased, ranging from 0.641 to 0.846. This 
indicates that the spatial correlation of the ecological risk value 
decreased first and then increased. 

3.2.2. Spatial characteristics of the landscape ecological risk 
The spatial distribution of the landscape ERI and the proportions of 

each risk level in the Alar reclamation area in 1990, 2000, 2010, and 
2019 are shown in Fig. 5. As shown in Fig. 5, in 1990 the ecological risk 
was high in most areas of the survey area, while areas with a low value 
were mainly distributed along the Tarim River. The main landscape type 
in 1990 was unused land and the ecological environment was very 
fragile; therefore, the ecological risk level was high. In 2000, the area 
that was occupied by low-risk areas expanded, while the areas with high 
ecological risk decreased. A large reservoir is present in the south-
western corner of the study area. It is evident from the remote sensing 
images that a large area of wasteland in the southwestern corner was 
transformed into wetlands in 1999, where vegetation was planted to 
maintain the ecological balance around the reservoir. This led to local-
ised changes in ecological risks. Then, in 2010, the ecological risk in the 
northwestern part of the Alar reclamation area changed from a high 
level to a medium level. This could mainly be attributed to the fact that 
this region was reclaimed and expanded, which led to increased planting 

density, ecosystem stability, and reduced ecological risks. By 2019, the 
proportion of areas with very low ecological risk and low ecological risk 
had increased. Most parts of the survey region had low or medium 
ecological risks. Areas with high ecological risk were mainly located in 
the southeastern and northeastern parts of the study area. 

3.2.3. Spatial characteristics of the dynamic changes in the landscape 
ecological risk 

As presented in Fig. 6, the areas of reduced ecological risk levels 
between 1990 and 2000 were concentrated along the Tarim River. Re-
gions with an increased ecological risk level were mainly distributed in 
the northern and southern parts of the Alar reclamation area. From 2000 
to 2010, the change in the ecological risk was more complex and 
irregular in the Alar reclamation area. Notably, large areas in the eastern 
part of the survey region showed a decreased ecological risk level. This 
was due to extensive reclamation of unused land in this region. Also, an 
increase in the cultivated land reduced the ecological risk. From 2010 to 
2019, the areas of reduced ecological risk were mainly located along the 
Tarim River. The expansion of the arable area showed a tendency to 
spread outwards from the Tarim River. 

Overall, the ecological risk level showed a decreasing trend in the 
survey region between 1990 and 2019. The areas with altered ecological 
risk levels were mainly located along the Tarim River and in the 
northwestern part of the Alar reclamation area. This is because these 
areas are close to the water source and conducive to agriculture. With 
the development of agriculture, the planting structure in this area has 
become more diversified and the ecosystem is more stable, which in-
creases the ability of the area to resist external interference. Therefore, 
the degree of dominance increased, reducing the ecological risk level. 
However, most of the unused land around the reclamation area is 
abandoned land with a high degree of salinisation. The ecological 
structure is fragile and easily affected by anthropogenic actions. Thus, 
the ecological risk of the central part of the reclamation area was lower 
than that of the unused land around the reclamation area. 

3.3. Spatial autocorrelation analysis 

3.3.1. Global spatial autocorrelation 
As shown in Fig. 7, the global Moran’s I values of the ERI in 1990, 

2000, 2010, and 2019 were 0.317, 0.625, 0.716, and 0.692, respec-
tively. All four values are positive and show an increasing trend, indi-
cating a clear positive spatial correlation for the ERI in the Alar 
reclamation area. Thus, the spatial relevance of the ecological risks 
within the study area was strengthened. 

3.3.2. Local spatial autocorrelation 
The spatial autocorrelation is not only used for the clustering of land 

uses but is also used for the analysis of regional management and 
landscape patterns (Peng et al., 2020a, 2020b). The global spatial 
autocorrelation can only reveal the spatial autocorrelation in the whole 
study area. Therefore, in this study, the local Moran’s I index was also 
calculated to analyse the local spatial clustering of areas with high or 
low ecological risks. Maps of local autocorrelation of the ecological risks 

Table 2 
Transformation matrix (km2) of land use types in the Alar reclamation area from 1990 to 2019.  

2019 Total   

Cultivated land Forest and grassland Garden land Water body Construction land Unused land 

1990 Cultivated land – 0.38 349.64 2.86 16.11 0.00 368.99 
Forest and Grassland 14.09 – 8.81 6.77 8.60 1.36 39.63 
Garden land 832.59 0.36 – 15.84 11.59 0.00 860.38 
Water body 4.94 0.58 15.69 – 0.04 0.00 21.25 
Construction land 0.00 0.00 0.00 0.00 – 1.28 1.28 
Unused land 664.57 4.64 1160.44 103.36 1.48 – 1934.48 

Total  1516.19 5.96 1534.58 128.83 37.82 2.64   
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in the study area in 1990, 2000, 2010, and 2019 are provided in Fig. 8. 
The areas with high-high clusters of ecological risk significantly 
decreased between 1990 and 2019. The regions with clusters of 
high-high ecological risk showed a shrinking spatial trend from the 
outside to the inside of the survey region. The main landscape type in the 
regions with clusters of high-high ecological risk was unused land with 
low vegetation coverage and a single vegetation structure. Thus, the 
ecological environment is fragile in these areas. In contrast, areas with 
clusters of low-low ecological risk expanded in the areas in the central 
part of the survey region when compared to the outside. These regions 
featured a low ecological risk. The main landscape types in these regions 
were cultivated land, garden land, and construction land with relatively 
stable ecosystems. 

3.4. Forecasting future changes in the ecological risks 

The success of the CA-Markov model for simulating landscape pat-
terns lies in the determination of land suitability and the land use 
transfer probability matrix. This study used the CA module to generate 
an atlas of land use suitability. Then, we integrated the land use transfer 
probability matrix that was generated by using the Markov model, in-
formation on the 15 influencing factors, and landscape classification 
maps from 1990 to 2010 to simulate the landscape patterns of the 
reclamation area in the study area in 2019. Thereafter, we evaluated the 
ecological risk based on the simulated results and compared it to the 
actual ecological risks in the study area to assess its accuracy. 

The accuracy of the 2019 post-simulation results was further eval-
uated by using the confusion matrix (Table 4). As shown in Table 4, the 

deviations in the simulation accuracy were mainly induced by the new 
industrial parks that were built under the urban planning policy in 2005, 
which increased the area of construction land, resulting in lower accu-
racy for parkland and construction land. However, the overall classifi-
cation accuracy of the Alar reclamation was 90.27% and the Kappa 
coefficient was 0.8693, indicating that the CA–Markov model can be 
used to simulate land use changes in the Alar reclamation area, develop 
scenario simulations, and forecast ecological risks for 2025 and 2030. 

Next, the land use layout map for 1990 in the Alar reclamation area 
was used as the initial bench map, and the CA–Markov module in the 
IDRISI software was used to input the suitability atlas of each class and 
combined with the land use change transfer probability matrix. The 
number of simulation cycles was set at 7. Fig. 9 shows the distribution of 
the landscape patterns in the study area for 1990, 2000, 2010, 2019, 
2025, and 2030. Using the same methods, projections for the short-term 
periods for 2025 and 2030 were achieved using the landscape classifi-
cation data from 1990 to 2019. 

The ecological risk was simulated and predicted for 2025 and 2030 
under natural growth and government control, respectively (Fig. 10). 
The scenario of natural growth assumes maintenance of the existing 
vegetation, whereas the scenario of strict government control assumes 
that the government takes strict measures to reduce the conversion rate 
of construction land and removes the permanent basic farmland 
boundary. Under the scenario of strict government control, the con-
version rate of cultivated land decreased from 50 to 30%. 

As revealed by the simulation results, in 2025, the overall ecological 
risk of the study area under the government control scenario (Fig. 10a) is 
predicted to be lower than that under the natural growth scenario 

Table 3 
Parameters of the theoretical model of the variogram.  

Year Model Nugget Sill Range (m) Nugget/Sill R2 RSS (× 10− 10) 

1990 Exponential 0.000416 0.002702 6900 0.846 0.635 2608 
2000 Spherical 0.000522 0.001454 15,000 0.641 0.753 1664 
2010 Spherical 0.000484 0.001538 17,800 0.685 0.931 596.6 
2019 Exponential 0.00066 0.002380 27,600 0.723 0.943 1184  

Fig. 5. Spatial pattern and proportion of the area in each ecological risk index class in 1990, 2000, 2010, and 2019.  
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Fig. 6. Spatial distribution of the change in the ecological risk classes and change in the proportion of the area in each class in the Alar reclamation area during (a) 
1990–2000, (b) 2000–2010, (c) 2010–2019, and (d) 1990–2019. Classifications: I, zone of extreme ecological improvement; II, zone of ecological improvement; III, 
zone of ecological stability; IV, zone of ecological deterioration; and V, zone of extreme ecological deterioration. 

Fig. 7. Global Moran’s I scatter figures of the landscape ecological risk index (ERI) in the Alar reclamation area for (a) 1990, (b) 2000, (c) 2010, and (d) 2019. HL, 
High - Low; HH, High - High; LL, Low - Low; LH, Low - High. 
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Fig. 8. Local spatial autocorrelation of the landscape ecological risks in (a) 1990, (b) 2000, (c) 2010, and (d) 2019 in the Alar reclamation area.  

Table 4 
Accuracy evaluation of the land use simulation in the Alar reclamation area in 2019.  

Predicted class Total UA (%)   

Cultivated land Forest and grassland Garden land Water body Construction land Unused land 

Real class Cultivated land 80,470 3721 951 581 438 7008 93,169 86.37 
Forest and Grassland 762 91,120 237 2617 67 2943 97,746 93.22 
Garden land 10,452 2241 29,986 628 57 5435 48,799 61.45 
Water body 0 2003 54 78,852 0 2698 83,607 94.31 
Construction land 0 0 33 5 9656 633 10,327 93.50 
Unused land 0 10,378 0 75 0 210,814 221,267 95.28 

Total  91,684 109,463 31,261 82,758 10,218 229,531   
PA (%)  87.77 83.24 95.92 95.28 94.50 91.85 OA% 90.27 

Diagonal values in bold are the number of correctly classified pixels for each category; vertical bold values are the user accuracy (UA) for each category; horizontal bold 
values are the cartographic accuracy (PA) for each category. OA, overall accuracy. 

Fig. 9. Distribution of the landscape patterns in (a) 1990, (b) 2000, (c) 2010, (d) 2019, (e) 2025 under natural growth, (f) 2025 under government control, (g) 2030 
under natural growth, and (h) 2030 under government control in the Alar reclamation area. 
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(Fig. 10b); in particular, the proportion of high ecological risk areas is 
predicted to decrease by 0.4%, and the proportion of low ecological risk 
areas is predicted to increase by 1.68%. By 2030, the overall ecological 
risk of the study area under the government control scenario (Fig. 10c) is 
still predicted to be lower than the natural growth scenario (Fig. 10d) 
and the proportion of high ecological risk areas is predicted to decrease 
by 1.61%, while the proportion of low ecological risk areas is predicted 
to increase by 0.6%. Under the government control scenario, the gov-
ernment strictly controls the growth of construction and cultivated land. 

Thus, the area of construction and cultivated land is reduced and blind 
reclamation is prevented, all of which contribute to the decrease in the 
overall ecological risk in the study area. 

From 1990 to 2019, the expansion of the cultivated land was mainly 
achieved through the reclamation of unused land, thereby enhancing the 
protection of the ecological environment and reducing the ecological 
risk of the study area. By 2030, as the population will continue to grow, 
land will continue to be reclaimed in this way to meet the demands of 
the human population. Thus, the ecological risk will continue to 

Fig. 10. Spatial patterns and proportional area of the ERI classes in 2025 and 2030 under the natural growth and government control scenarios.  

Fig. 11. The percentage change in the area of different ecological risks for different land use types from 1990 to 2019. The line graph indicates the cumulative 
percentage of areas less than or equal to the mean values of the medium ecological risk. 
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decrease. However, to prevent blind reclamation of cultivated land, the 
government should also introduce strict policies to control the expan-
sion of cultivated land. 

4. Discussion 

4.1. Effects of land use change on ecological risks 

Many researchers have confirmed that land use change is closely 
related to ecological risk (Xue et al., 2018, 2019). Land use change is 
considered one of the most important factors affecting ecosystems (Peng 
et al., 2014). The ecological impacts of different land use patterns and 
intensities have regional and cumulative characteristics, which can be 
directly reflected in the structure and composition of ecosystems (Wu 
et al., 2018). As shown in Fig. 11, regions with high ecological risk in the 
cultivated land, garden land, and construction land in man-made land-
scapes showed a decreasing trend. The annual statistics show that the 
population of the Alar reclamation area continued to increase during the 
30 years when the ecological risk was measured (from 183,400 in 1990 
to 372,100 in 2019). Therefore, larger proportions of cultivated land, 
garden land, and construction land are needed to meet the increasing 
demands of the human population. With the increasing demand for 
agricultural production, the originally ecologically fragile desert area 
became an artificial oasis area with a stable ecosystem, due to the use of 
more suitable technologies. This has reduced the ecological risk in these 
regions. In natural landscapes, areas of land with high ecological risk in 
forests, grasslands, and unused areas increased. The unused land is 
continuously reclaimed, thereby subjecting the remaining land to 
greater ecological risk. Usually, the unused land itself has a simple 
structure with low vegetation coverage, which makes the ecosystem 
vulnerable. 

4.2. Suggestions for future policy 

Due to economic development in the Alar reclamation area, the 
population continues to grow and the conflict between people and land 
is increasing. A series of exploitation problems such as the expansion of 
cultivated land and the continued degradation of natural forests and 
grasslands have been highlighted (Fu et al., 2020). Since damaged 
landscape ecosystems are difficult to restore (Wu et al., 2021), the 
pursuit of socio-economic development should not be accompanied by 
the neglect of ecological and environmental problems. Thus, the pro-
tection of forest land and grassland should be strengthened and blind 
and uncontrolled exploitation of cultivated land should be avoided. To 
control the blind reclamation of cultivated land, the government should 
strictly control the increase in the proportion of cultivated land. This is 
particularly important given that grasslands provide the functions of 
water conservation, soil conservation, greening, and landscaping, and 
play an important role in farming and animal husbandry in the reservoir 
area. 

By forecasting the ecological risk in the study area under the natural 
growth scenario and the government control scenario, we were able to 
determine whether the ecological risk can be reduced under the natural 
growth scenario. These findings can provide important implications for 
implementing efficient measures and policies to restore the ecological 
environment and achieve sustainable development of the eco- 
environment. The process of converting land to construction land is 
almost irreversible; thus, the government should strictly control the 
increase in construction land when formulating the overall plan for land 
use. In addition, to prevent the unrestricted increase in cultivated land 
and to protect and improve the ecological environment in the recla-
mation area, the government should also strictly implement the policy of 
returning farmland to forest, prohibit illegal cultivation, and prevent 
blind reclamation of cultivated land. Moreover, the government should 
pay more attention to the protection of water quality. 

5. Conclusion 

In this study, we collected data from 259 Landsat images covering 
the Alar reclamation area and then used methods based on landscape 
ecology theory and spatial statistical analysis to construct a landscape 
ERI and assess the ecological risk of the Alar reclamation area. Addi-
tionally, we forecasted the ecological risk in 2025 and 2030 in the sur-
vey region. The main conclusions of this study are as follows:  

(1) From 1990 to 2019, the area of cultivated land increased in the 
Alar reclamation area. When the degree of fragmentation 
decreased, the degree of dominance increased. Decrease of the 
areas of unused land leads to a decrease of the dominance of 
unused land, which indicating that the increase of external dis-
turbances on the study area. Also, the ecological risk in the study 
area showed a decreasing trend, with an increase in agricultural 
production being the main influencing factor in the reduction of 
the ecological risk in the Alar reclamation area.  

(2) From 1990 to 2019, the ecological risk level decreased and the 
areas with decreased ecological risk levels were mainly situated 
in the coastal area of the Tarim River and the northwestern region 
of the reclamation area. 

(3) Compared to 2019, the ecological risk in the study area is pre-
dicted to decrease in 2025 under the scenarios of natural growth 
and strict government control and the proportion of high 
ecological risk areas is predicted to decrease by 2 and 2.4%, 
respectively. In 2030, the proportion of high ecological risk areas 
is predicted to decrease by 5.4 and 7.01% under the scenarios of 
natural growth and strict government control, respectively. 

Compared to the natural growth scenario, the area of construction 
and cultivated land is predicted to reduce under the government control 
scenario, which can prevent the blind reclamation of cultivated land and 
decrease the overall ecological risk in the study area. Therefore, 
ecological and environmental issues cannot be ignored when pursuing 
social and economic development. The government should formulate a 
reasonable comprehensive land use plan. Furthermore, to ensure 
ecological balance, stricter control policies, prohibition of illegal con-
struction activities, and prevention of blind reclamation of cultivated 
land are also necessary to protect forests, grasslands, and water quality. 
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