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ABSTRACT 

The behavior of concrete structures subjected to shear forces is a challenging topic for the scientific 

community. It involves the contribution of several shear force transfer mechanisms, such as aggregate 

interlock, dowel action, residual concrete tension, and uncracked concrete zone. The contribution and 

interaction between these mechanisms are dependent on the shape and kinematics of the critical shear 

crack. Such crack characteristics are influenced by the structural system and materials that compose the 

element. The prediction models have not considered all the mechanisms and have been mostly applied 

in reinforced concrete structures with steel bars. Therefore, this paper presents a multiaction model in 

which the referred mechanisms of shear force are also considered in the equilibrium of forces and 

moments, with the kinematics of the critical shear crack obtained from an optimization process using 

the GRG method. Numerical results of crack opening-slip, contribution of the transfer mechanisms, and 

values of critical rotation and neutral axis depth in the failure stage of the beam are presented. 
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INTRODUCTION 

 

The shear behavior of a concrete beam is a complex and challenging subject, as it is influenced by the 

interaction of several shear force transfer mechanisms that develop and contribute to the ultimate 

resistance. The shear force transfer occurs through the aggregate interlock, the residual tensile strength 

of concrete, the dowel action at longitudinal reinforcement, and the uncracked concrete zone. In a 

comprehensive model, the presence of normal stresses due to bending must also be considered. 

 

In the context, several studies (Baumann & Rusch, 1970; Fenwick & Paulay, 1968; H.P.J. Taylor, 1974; 

T. Paulay & P.J. Loeber, 1974; Walraven, 1980) conducted since the 1960s have aimed to identify the 

contributing actions at the shear failure. These studies have defined influential parameters and 

consistent models to individually assess the transfer mechanisms with reasonable accuracy. However, 

the impact of each mechanism is strongly influenced by the shape and the kinematics of the shear crack 

(Cavagnis, 2017) and, therefore, they should be computed using models which are in agreement with 

the shape in the critical stage. 

 

Due to the difficulty in monitoring shear crack formation and evolution, the main design guidelines 

provide shear capacity predictions based on empirical formulations that do not consider the kinematics 

in the critical stage. Furthermore, the design expressions depend on the test conditions for which they 

were developed. The tests are usually aimed at the evaluation of traditional reinforced concrete beams 

with steel bars.  

 

In recent years, the scientific community's focus has been on studying shear behavior from the 

perspective of closely monitoring the relative shear displacements (opening and sliding) occurring 

within the crack with greater precision. This has been made possible by the advancement of monitoring 

techniques, such as Digital Image Correlation (DIC), which have enabled more comprehensive and 
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detailed experimental research on the shear crack in its most critical stage (Cavagnis, 2017; Gomes et 

al., 2023; Resende, 2020).  

 

From the use of more reliable data available in the literature, comprehensive predictive models can be 

formulated and rigorously validated. For this purpose, the models should be able to adequately represent 

the shape and kinematics of the shear crack. Furthermore, it is desirable for these predictive models to 

be independent of empirical parameters, capturing the behavior of beams made from new materials, 

such as Fiber Reinforced Concrete (FRC) and Fiber Reinforced Polymer (FRP) bars. 

 

In this regard, mechanics-based models have attracted the interest of researchers as these may be used 

to address the aforementioned issues and simplified when necessary to obtain practical design 

expressions. Among the models proposed through the years, noteworthy examples include the models 

of Reineck (1991), the  Critical Shear Crack Theory (CSCT) by Muttoni et al. (Campana et al., 2013; 

Fernández Ruiz & Muttoni, 2008; Muttoni & Fernández Ruiz, 2008; Muttoni & Schwartz, 1991) and, 

more recently, the model based on the Shear Crack Propagation Theory (SCPT) proposed by Classen 

(2020).  

 

The Reineck mechanical model (1991) is based on the truss analogy and assumes a linear shape for the 

shear crack, neglecting the sliding between crack surfaces. Furthermore, the Reineck model (1991) only 

considers two shear force transfer mechanisms: the dowel action and the aggregate interlock. On the 

other hand, the mechanical model proposed by Muttoni et al. (Campana et al., 2013; Fernández Ruiz & 

Muttoni, 2008; Muttoni & Fernández Ruiz, 2008; Muttoni & Schwartz, 1991), based on CSCT, has 

achieved great visibility in the scientific community. It employs a bilinear crack shape that accounts for 

the crack kinematics by considering the crack opening measured at a critical depth. Thus, this model 

incorporates the evaluation of aggregate interlock using the model proposed by Walraven (1980), as 

well as the contribution by dowel action. Lastly, the mechanical model proposed by Classen (2020) 

considers the contribution of resistant forces and moments, addressing various shear force transfer 

mechanisms and crack propagation as the loading evolves. Although this model is comprehensive and 

mechanically consistent, it approximates the shape of the shear crack as bilinear.  

 

In this context, this present study proposes a multiaction mechanical model that incorporates the 

aforementioned contributing actions based on models specifically designed to represent each action 

individually. The model defines the shear capacity of statically determinate concrete beams using an 

arbitrary shape for the critical crack. The main advantage of the proposed model is the prediction of the 

critical crack kinematics, which is determined by parameters such as the neutral axis depth and the 

critical rotation that lead a beam to shear failure. Additionally, the model can quantify the corresponding 

contribution of each mechanism at the failure.  

 

The proposed mechanical model is developed using the Object-Oriented Programming (OOP) paradigm 

in the MATLAB (MATrix LABoratory) development environment. Once the model is formulated, an 

optimization algorithm based on the Generalized Reduced Gradient (GRG) method is employed using 

the package available in the Microsoft Excel solver. The results obtained are presented through an 

application to a reinforced concrete beam with FRP bars. 

 

 

Shear force transfer mechanisms 

 

The proposed prediction model incorporates the transfer mechanisms given from individual models 

available in the literature. The adopted models have been validated and tested in previous work (Gomes 

et al., 2023), showing suitability for the purpose of this study. 

 

Aggregate interlock 

 

The stress transfer through aggregate interlock has been represented from several empirical-based 

models, such as those proposed by Bazant & Gambarova (1980) and Walraven & Reinhardt (1981), 
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and semi-empirical-based models, highlighting the two-phase ones, proposed by Walraven (1980), and 

the contact density model, proposed by Li et al. (1989). 

 

The Li et al. (1989) model considers that stress transfer between crack surfaces occurs through contact 

units (dAθ). The contact unit represents a unit area on the surface, which has a slope θ. The model 

formulation involves a function, called the contact density function Ω(θ), which represents the 

probabilistic distribution of the contact inclination angles θ of the rough surface in the crack plane.  

 

Based on experimental data, Li et al. (1989) fitted a function Ω(θ) = 0.5cos(θ) and defined a valid model 

for concretes below 50 MPa, given by the following expressions: 

 

𝜎 = 𝑚 [
𝜋

2
− 𝑐𝑜𝑡−1𝜑 −

𝜑

1+𝜑2
]       Eq. 1 

 

𝜏 = 𝑚 (
𝜑2

1+𝜑2
)         Eq. 2 

 

where φ = δ/w, m = 3,83fc
1/3, with fc being the concrete compressive strength. 

 

Therefore, in this study, Li et al. (1989) model will be adopted to represent the aggregate interlock 

according to the expressions presented. 

 

Dowel action 

 

Among the several models available in the literature to represent the dowel action (Baumann & Rusch, 

1970; Resende, 2020; Vintzēleou & Tassios, 1986), the one developed by Cavagnis et al. (2018b, 

2018a) will be adopted in this study. In this model, the contribution of the dowel force Vd is dependent 

on the specific strain of the bar εr at the location of the reinforcement layer, which is related to 

parameters regarding the splitting crack formation. Thus, the variables associated with the splitting 

crack are: effective width bef on which the effective tensile stresses  fct,ef relative to each bar act, and the 

effective length lef, which corresponds to the section where the pullout force is transferred to the 

concrete. 

 

𝑉𝑑 = 𝑛𝑓𝑐𝑡,𝑒𝑓𝑏𝑒𝑓𝑙𝑒𝑓        Eq. 3 

 

where 

 

𝑓𝑐𝑡,𝑒𝑓 = 𝑘𝑏𝑓𝑐𝑡         Eq. 4 

 

𝑏𝑒𝑓 = 𝑚𝑖𝑛 {(
𝑏

𝑛
−𝜙𝑏) ; 4𝑐; 6𝜙𝑏}      Eq. 5 

 

𝑙𝑒𝑓 = 2𝜙𝑏         Eq. 6 

 

where n is the number of bars; fct is the tensile strength of concrete; b is the section width; ϕb is the bar 

diameter; c is the reinforcement cover; and kb is a reduction factor that depends on the bar strain εr and 

should always be lower than or equal to 1. 

 

𝑘𝑏 = 0.063 (
1

𝜀𝑟
)
0.25

        Eq. 7 

 

The strain εr can be estimated by Eq. 8, where Δh is the bar horizontal deformation, due to the opening 

of the shear crack, and the value of lb (tributary length), at which contributing cracks develop to the 

critical shear crack (Eq. 9), is defined according to experimental observations (Cavagnis et al., 2018b). 
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𝜀𝑟 = 
𝛥ℎ

𝑙𝑏
         Eq. 8 

 

𝑙𝑏 = |𝑑 − 𝑑𝑁𝐴|         Eq. 9 

 

In the previous equation, d is the section effective depth and dNA is the neutral axis depth. 

 

Concrete residual tensile strength 

 

The residual tensile stresses in concrete can be represented from tensile stress-crack opening law 

(Hillerborg, A.; Modeer, 1976; Hillerborg, 1980). This type of law represents the stress transfer that 

occurs in a crack by means of the aggregate bridge mechanism. A crack consists of the Fracture 

Processing Zone (FPZ), located near the crack tip and which is also responsible for the crack mouth 

opening displacements. In fiber-reinforced concrete, in the crack also occurs the stress transfer via fiber 

bridge mechanism (Hillerborg, 1980). 

 

Thus, the characteristic behavior of stress-crack opening can be obtained through direct tensile tests or 

indirect tests, such as four-point bending, with the aid of an inverse analysis to determine the parameters 

of the fracture law.  

 

In this work, in the absence of characterization tests, the bilinear model suggested by the Model Code 

2010 (FIB, 2014) was used, according to equation (10). 

 

σct(w) =

{
 
 

 
 𝑓ct (1 − 0,8

w

w1
) ,  w ≤ w1

𝑓ct (0,25 − 0,05
w

w1
) ,  w1 < w ≤ wmax

0,  w ≥ wmax

    Eq. 10 

 

where w1 = Gf/fct and α1 = 0,2; Gf is the fracture energy of concrete and wmax is the maximum crack 

width, both obtained as suggested. 

 

Shear transferred through the uncracked concrete zone 

 

The uncracked concrete zone has its shear force transfer capacity dependent on the location of the 

critical shear crack, being represented by the section above this crack. Consequently, the shear force 

can be obtained by the integration of shear stresses along this zone, as proposed by Mörsch (1909), 

considering linear elastic concrete and disregarding the tensile in concrete. Besides that, more recently, 

a model proposed by Lopez et al. (2021) and Cavagnis et al. (2018a) has been satisfactorily employed 

(Gomes et al., 2023). In this work, this proposal will be adopted to represent the shear contribution 

given by the uncracked concrete zone. 

 

According to Lopez et al. (2021), the stress distribution in the compressed concrete is considered linear 

elastic. In addition, the hypothesis that the uncracked concrete zone coincides with the neutral axis 

depth dNA is adopted. Therefore, the tensile stresses in the uncracked concrete are neglected. Thus, by 

obtaining the compressive normal force Nuncr in the section, the shear portion Vuncr can be obtained from 

the inclination α of the compressive strut (Gomes et al., 2023), as shown in the following equation and 

Figure 1. 

 

𝑉𝑢𝑛𝑐𝑟 = 𝑁𝑢𝑛𝑐𝑟 tan(𝛼) =  𝜎𝑐𝑐𝑚2𝑏 (
ℎ𝑡

3
−
𝑐𝑚2

2
)
1

𝑟𝑡
     Eq. 11 

 

In Figure 1, the parameters cm2, ht and rt are identified. In Lopez et al. (2021), the values of σc and cm2 

are adopted as the compressive strength of concrete and the effective depth of the stress block, i.e., 

0.8dNA. 
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Figure 1: model idealization by Lopez et al. (2021). 

 

Normal transferred by concrete and by FRP reinforcement 

 

In order to make the proposed model consistent and comprehensive, the equilibrium conditions should 

also consider the normal compressive and tensile forces in the concrete, as well as the tensile force in 

the longitudinal reinforcement of the beam. For these contributions, the Hognestad classical model 

(1955) is adopted for the compressive concrete, while a linear elastic behavior is assumed for the tensile 

concrete and the tensile FRP longitudinal reinforcement. Moreover, the contribution of the tension-

stiffening effect is incorporated in the reinforcement contribution from the model presented by Costa & 

Cardoso (2023). 

 

 

PROPOSED MODEL 

 

The actual kinematics of the critical shear crack leads to a more accurate prediction of the shear force 

transfer mechanisms, resulting in a reliable shear strength response and helping to understand the 

isolated impact of these mechanisms on the beam global behavior. In recent years, models available in 

the literature have assumed simplified formats, such as linear or bilinear, to represent the shear crack 

(Classen, 2020; Marí et al., 2015; Muttoni & Fernández Ruiz, 2008). These simpler formats can result 

in an unrealistic kinematics, leading to inaccurate responses. Accordingly, in order to determine the 

shear strength and the contribution of actions in reinforced concrete beams, the proposed model presents 

a strategy to determine the shear crack critical kinematics. This is possible by adopting a nonlinear 

function f(x) to represent the shape of the crack. 

 

A priori, a statically determinate structural system is defined, and then a relationship between bending 

moment and shear is established. This relationship is necessary to address the equilibrium requirements 

of the model. In this study, the adopted structural system corresponds to a beam subject to a concentrated 

loading (Figure 2). In Figure 2a, an arbitrary function f(x) is presented for contextualization purposes. 

Note that the chosen function should approximately fit to the shape of the inclined shear crack, since in 

this proposed model, the splitting crack is not considered. The crack real shape presented in Figure 2b 

was obtained from test results in literature (Resende, 2020). Figure 2a also shows the critical section of 

analysis, defined based on the shear span a. Moreover, L is the total length of the beam, while b and d 

are its base and effective depth, respectively.  
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Figure 2: (a) structural system adopted; (b) experimental critical crack – adapted (Resende, 2020). 

 

For the adopted structural system, the moment-shear relationship is given by Eq. 12, with λ equals a/d. 

 

𝑀𝑟 = 𝑉𝑟𝜆𝑑         Eq. 12 

  

 

Critical kinematics 

 

From an established crack function, a critical kinematics (w and δ) for this crack must be obtained to 

evaluate the contributing actions and determine the resistant capacity of the section. The kinematics can 

be obtained from the solution of a nonlinear equations system, which will be presented later.  

 

This equations system is solved based on an optimization algorithm to obtain the optimum values of θ 

and dNA corresponding to the defined shape. These obtained values lead to the equilibrium of normal 

forces N on the section and satisfy the relationship between the resistant moment Mr and the resistant 

shear Vr on the section (Eq. 12). Hence, the critical kinematics is obtained, resulting in the resistant 

capacity of the section (Vr, Mr). 

 

The shear crack critical kinematics represents how much the formed crack faces will open (wi) and slide 

(δi) according to rotation θ given at the crack tip. Each integration point i, whose coordinates are xi, yi, 

moves assuming a new position after rotation, with the new coordinates being x’i, y’i. The points 

coordinates, before and after of the rotation, determine the upper and lower faces of the crack, 

respectively (Figure 3). The new coordinates are obtained from the following equations, where xcr and 

ycr are the coordinates of the crack tip.  

 

𝑥′𝑖 = (𝑥𝑖 − 𝑥𝑐𝑟)𝑐𝑜𝑠𝜃 − (𝑦𝑖 − 𝑦𝑐𝑟)𝑠𝑒𝑛𝜃 + 𝑥𝑐𝑟     Eq. 13 

 

𝑦′𝑖 = (𝑥𝑖 − 𝑥𝑐𝑟)𝑠𝑒𝑛𝜃 + (𝑦𝑖 − 𝑦𝑐𝑟)𝑐𝑜𝑠𝜃 + 𝑦𝑐𝑟     Eq. 14 

 

Based on the coordinates of the upper and lower crack contours, the opening and slip are obtained 

geometrically. 

 

 

arbitrary function f(x)
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L
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d
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Figure 3: discretized section and crack with the identification of the upper and lower crack contours, 

as well as the cracked and uncracked sections. 

 

Evaluating of the mechanisms 

 

From the determined function f(x) and the location of the crack tip (Figure 3), the transfer actions can 

be evaluated at each integration point i. The integration points are given by the discretized concrete 

layers (ic) and the reinforcement layers (ir). 

 

For the points outside the crack, the strains εi in the materials are calculated at each point, with distance 

di from the section top to the analysis point i. The values of εi are obtained from Eq. 15, which depend 

on the θ and dNA. From this, the normal forces (Ni) and tangential forces (Vi) at each point pertaining to 

the uncracked zone are determined from the models presented previously. Meanwhile, for the points 

inside the crack, the forces Ni and Vi are calculated from the mechanisms acting in the crack, which 

depend on the kinematics obtained. 

 

εi =
2θ(dNA−di)

a
         Eq. 15 

 

Force equilibrium equations and problem constraints 

 

The equilibrium conditions must be satisfied considering the resistant forces described previously. In 

the following table, a summary of the normal and tangential forces obtained from the numerical 

integration of stresses along the section and the critical crack is presented. In the table, the indices 

“uncr”, “ai”, “rt”, “r”, and “da” refer to the resultant forces due to the uncracked concrete zone, the 

aggregate interlock, the residual concrete tension, the reinforcement and the dowel action, respectively. 

Figure 4 presents these forces acting on the section and the crack, with their respective lever arms z, as 

well as to the external forces Ne, Ve and moment Me, with Ne = 0. The lever arms are necessary for the 

equilibrium of moments in the reinforcement and are obtained geometrically, since the points 

coordinates are known. 

 

Table 1: resistant resultant forces  

Resistant resultant forces 

Concrete normal (Nunc) 

Concrete shear (Vuncr) 

Aggregate interlock normal (Nai) 

Aggregate interlock shear (Vai) 

Residual tensile concrete normal (Nrt) 

Residual tensile concrete shear (Vrt) 

Reinforcement tensile (Nr) 

Dowel action shear (Vda) 
 

 

 Figure 4: resultant forces and lever arms 

 

Thus, the equilibrium equations for normal, shear and moment are presented below, being possible to 

obtain the resistant shear Vr from Eq. 17. 

 
∑H = 0 ∴ Nr − Nuncr − Nai + Nrt − Ne = 0     Eq. 16 

 
∑V = 0 ∴ Vai + Vda + Vrt + Vuncr − Ve = 0     Eq. 17 

 

∑M= 0 ∴ NuncrzNuncr + VuncrzVuncr − NrtzNrt 

NrtVai

Nai

Nr

Vda

Me
Ve

Ne

Nuncr

Vuncr

z u
n

cr

zVuncr

d

Vrt

z N
ai

zVai

z N
rt

zVrt
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+VrtzVrt + NaizNai + VaizVai −Mext = 0   Eq. 18 

 

The expression of Vr, obtained from Eq. 17, can be replaced in Eq. 12, defining the Eq. 19. Thus, this 

equation must be satisfied since the moment is obtained in Eq. 18. 

 

𝑀𝑟 = (Vai + Vda + Vrt + Vuncr)𝜆𝑑      Eq. 19 

 

GRG method and the nonlinear equations system solution 

 

The definition of the critical kinematics is given by obtaining the values of the critical rotation θcr and 

the neutral axis depth dNA, determined by an optimization algorithm. Once the mechanical problem 

presented above has been formulated, an optimization process is used to determine the solution of the 

nonlinear equations system formed by equations 16 and 19, as shown below: 

 

{
𝑅1(𝑑𝑁𝐴, 𝜃) =  𝑁𝑟 −𝑁𝑢𝑛𝑐𝑟 −𝑁𝑎𝑖 +𝑁𝑟𝑡 = 0                   

𝑅2(𝑑𝑁𝐴, 𝜃) =  𝑀𝑟 − (𝑉𝑎𝑖 + 𝑉𝑑𝑎 + 𝑉𝑟𝑡 + 𝑉𝑢𝑛𝑐𝑟)𝜆𝑑 = 0
    Eq. 20 

 

The solution of the system (Eq. 20) is given by minimizing the objective function 𝐹 given by Eq. 21, 

where dNA and θ are the design variables. 

 

𝐹(𝑑𝑁𝐴, 𝜃) = R1
2 + R2

2        Eq. 21 

 

Obtaining the optimal variables for the objective function (Eq. 21) was possible from an optimization 

algorithm based on the Generalized Reduced Gradient (GRG) method. This method, proposed by 

Abadie and Carpentier (1965), was reformulated and implemented by Lasdon et al. (1974;1978) and it 

is known for presenting efficient results for several types of nonlinear problems (Sacoman, 2021).  

 

The GRG method unifies the reduced gradient method and the method of Lagrange multipliers. The 

method incorporates equality constraints into the objective function of the problem by means of 

Lagrange multipliers, which act as weights, leading to a penalized objective function. The gradient is 

calculated in a simplified form from the reduced gradient method. In cases formed by inequality 

constraints, the method incorporates the projected gradient method. The solution is conducted by 

adjusting the Lagrange multipliers and the design variables at each iteration until the optimal solution 

is obtained. 

 

This method was adopted in this work due to the nonlinear nature of the objective function. In addition, 

the exposed problem has nonlinear inequality constraints (θ > 0). Thus, with the objective function in 

Eq. 21 and the constraint function formulated, the GRG implemented in the Microsoft Excel 

optimization package can be employed, leading to the answers presented in the application of the next 

section.  

 

 

APPLICATIONS AND VALIDATIONS 

 

An application problem is described below based on the tests performed by Gomes et al. (2023), a 

reinforced concrete beam with Glass Fiber Reinforced Polymers (GFRP) bars, according to the 

structural system presented in Figure 5a. In Figure 5b, it is possible to observe the crack shape adopted 

in this study. 
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Figure 5: beam setup (Gomes et al., 2023) and established format by a quadratic bezier. 

 

The established shape was given by a quadratic bezier, with control points P0 (102, 30); P1 (240, 10); 

and P2 (490, 238). The quadratic bezier was chosen because it is a parametric representation curve, 

with useful properties for this application, such as maintaining its shape even after rotations are applied. 

Parametric representations of curves are interesting because they can efficiently deal with complex 

shapes, like implicit representations, and can be described with low computational cost, like explicit 

representations. 

 

The concrete adopted in this study had a compressive strength fck = 40.8 MPa, tensile strength fct = 2.25 

MPa, and modulus of elasticity Ec = 36.7 GPa. Furthermore, the GFRP bars used had a tensile strength 

ff = 809 MPa and modulus of elasticity Ef = 50 GPa (Gomes et al., 2023). 

 

With the data incorporated into the proposed model, the GRG method obtained a critical rotation equal 

to 2.619e-3 rad and a neutral axis depth  equal to 20.85 mm. The value of the objective function F 

evaluated at the optimal points was 3.232e-8. The evaluation on equations R1 and R2, led to a residual 

of 1.08e-4 and 1.4e-4, respectively. 

 

The crack kinematics given from the obtained values of the critical rotation and the neutral axis depth 

is presented in Figure 6, and the crack opening-slip relationship obtained for the critical crack stage is 

shown in Figure 7. 

 

  
         Figure 6: critical kinematics     Figure 7: crack width-slip at rupture 

 

The graphs in Figures 8 and 9 present the quantification of the transfer mechanisms in the shear strength 

and the flexural strength. 
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Figure 8: resistant shear at rupture     Figure 9: resistant moment at rupture 

 

From Figure 8, it can be seen that the shear force resisted by the parcels of the uncracked concrete, the 

residual tension, the aggregate interlock, and the dowel action are 1.44 kN, 1.54 kN, 20.05 kN, and 1.54 

kN, respectively, resulting in the shear capacity equal to 24.46 kN. For the moment strength (Figure 9), 

6.39 kN.m is given by the uncracked concrete, 0.33 kN.m by the residual tensile stress in the concrete, 

and 7.21 kN.m is given by the aggregate interlock, resulting a moment strength of 13.94 kN.m. 

 

 

CONCLUSIONS 

 

The proposed model obtains the critical kinematics of the shear crack and, individually accounting the 

transfer mechanisms that contributes to the resistant capacity of the beam. The kinematics is obtained 

from the determination of the critical rotation and the depth of the neutral axis that leads to the 

equilibrium forces and moments in the section.  

 

Based on the results, it was possible to observe that the proposed methodology was satisfactory since 

the algorithm adequately minimized the objective function, reaching reasonable values of rotation and 

depth of neutral axis for the physical problem. With the rotation value, the critical kinematics can be 

established and the actions evaluated.  

 

The model was applied to reinforced concrete beams with GFRP bars and it was possible to quantify 

the contribution of each transfer mechanism in the failure. The results obtained showed that, for this 

application, the aggregate interlock was the dominant mechanism in failure. 
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