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Abstract. Federated Echo State Networks represent an efficient method-
ology for learning in pervasive environments with private temporal data
due to the low computational cost required by the learning phase. In this
paper, we propose Partial Federated Ridge Regression (pFedRR), an ap-
proximate, communication-efficient version of the exact method for learn-
ing the readout in a federated setting. Each client compresses the local
statistics to be exchanged with the server via an importance-based method,
which selects the most relevant neurons with respect to the local distri-
bution. We evaluate the methodology on two Human State Monitoring
benchmarks, and results show that the importance-based selection of the
information significantly reduces the communication cost, while acting as
a regularization method to improve the generalization capabilities.

1 Introduction

In pervasive computing environments, human-centric cyber-physical systems
generate vast amounts of temporal data, and are characterized by issues such
as privacy, security, and communication bandwidth limitations. This has led to
the emergence of federated learning, a decentralized approach where models are
trained on data distributed across multiple devices without the need to trans-
fer the data to a central server. In such setting, Federated Echo State Networks
(ESNs) were proven to be effective thanks to their capability to efficiently handle
temporal data, as well as for the low computational cost of the learning algo-
rithms [1, 2]. In this work, we aim to further improve FedRR [1], an algorithm
that performs an exact computation of the global readout in a federated setting,
towards communication efficiency.

To do so, we propose Partial Federated Ridge Regression (pFedRR), where
each client applies a policy to select a subset of parameters to be exchanged with
the server with negligible computational overhead. Additionally, we propose an
importance-based policy that selects the neurons which are most relevant with
respect to the local distribution. We evaluate the algorithm with the proposed
policy on two Human State Monitoring benchmarks by comparing it with two
baselines: (1) FedRR; (2) pFedRR with a random policy. We show that, depending
on the availability of clients and the distribution of the data among clients,
selecting the most important units leads to better generalization capabilities
while reducing communication cost.
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2 Compressed Federated Ridge Regression

Echo State Networks. Reservoir Computing (RC) [3] paradigm avoids the
shortcomings of gradient-descent in Recurrent Neural Networks (RNNs) train-
ing by using two main components: a reservoir, a recurrent layer of sparsely
connected neurons, holding the internal state which evolves over time; a read-
out, a linear transformation on the domain of the reservoir states. Echo State
Networks [4] represents one of the pioneering reservoir computing methods. The
approach is based on the assumption that if the recurrent layer is characterized
by stable dynamics, training only a linear readout from it is often sufficient to
achieve excellent performance in practical applications. Formally, given an input
sequence u(t) ∈ RNu for t ∈ {0, 1, . . . , T}, the state transition function of the
discrete-time dynamical system and the readout can be described as

x(t) = (1− a)x(t− 1) + af
(
Winu(t) + brec + Ŵx(t− 1)

)
y(t) = Wx(t) + bout

(1)

where Win ∈ RNx×Nu is the input-to-reservoir weight matrix, Ŵ ∈ RNx×Nx is
the recurrent reservoir-to-reservoir weight matrix, W ∈ RNy×Nx is the readout
weight matrix and α ∈ (0, 1] is the leaking rate. ESNs allow us to avoid the
aforementioned shortcomings of recurrent models by fixing input and recurrent
transformation matrices Win and Ŵ, and enforces stability of the dynamics by
imposing the recurrent transformation to be asymptotically stable, i.e., ρ(Ŵ) <
1 [4]. As a result, the only set of free parameters is represented by readout
weights W.

One approach to learning the readout is to cast it to the problem of solving a
linear system of the form Y = WS, where Y ∈ RNy×N is the matrix containing
the accumulated targets over N time steps, S ∈ RNx×N is the matrix composed
by the reservoir states over time. This problem can be approached by minimiza-
tion of the least squares, i.e. argminW(Y−WS)2, which can be easily solved via

ridge regression, a closed-form solution formalized as W = YST (SST + λI)−1,
where λ ∈ R+ is the L2-regularization term and I is the identity matrix. Authors
in [1] introduce an exact federated version of ridge regression for client-server
topologies, namely FedRR. In this algorithm, each client c ∈ C computes the
local matrices Ac = YcS

T
c and Bc = ScS

T
c . The server aggregates the matrices

A =
∑

c∈C Ac and B =
(∑

c∈C Bc

)
+ λI and computes W = AB−1.

Partial Federated Ridge Regression. We extend FedRR towards an approx-
imate, communication-efficient solution, named Partial Federated Ridge Regres-
sion (pFedRR). Given an ESN with Nx recurrent units, each client c applies a
policy to determine a set of indices Sc ⊆ {0, 1, . . . , Nx − 1} of the recurrent neu-
rons whose information has to be forwarded to the server. Given the matrix Bc

computed on the local data, the client sparsifies the matrix Bc as follows:

B̃c = Bc ⊙ (MS + I) (2)

where MSc
∈ {0, 1}Nx×Nx is a binary matrix such that MS [i, j] = 1 if i ̸= j,

i, j ∈ S, and I is the identity matrix. Then, the client sends the pair (Ac, B̃c)



to the server, which aggregates the received matrices A =
∑

c∈C Ac and B̃ =∑
c∈C B̃c and solves the approximate linear system as W = A(B̃+λI)−1. Com-

pressing only the matrix Bc is supported by the straightforward motivation that,
from the communication perspective, the dimensionality of Bc is usually much
larger than that of Ac, since it is quadratic on the number of units Nx.

Importance-based Selection Policy. To comply with the requirement of
pFedRR, we propose a selection policy where each client sends to the server the
parameters which are most relevant with respect to their local distribution. For
this purpose, we propose a method, namely Importance-based Partial Federated
Ridge Regression (I-pFedRR) where the compression happens upon the selection
of the most relevant neurons for the local task. To do so, we employ the Fisher
Information Matrix (FIM), which estimates how much information a set of data
provides about the unknown parameters of a statistical model. From now on,
we omit the subscript denoting the k-th client for better clarity. Let’s assume
that our readout f(W) = WSi + ϵ is characterized by a measurement error ϵ
sampled from a normal distribution. The log-likelihood of the data is given by
the density:

L(W) = −1

2
log(2πσ2)− −(Yi −WSi)

2

2σ2
. (3)

The FIM is defined as the expected value of the negative second derivative of
the log-likelihood function, i.e.,

F(W) = −E [H(W)] = SST /σ2. (4)

For our purposes, the use of the FIM is to rank the neurons to determine which
are most relevant for the local model. As a result, since the term σ is constant,
we can neglect it from the formulation of the FIM and derive F(W) = SST = B.
From this formulation of the FIM, we define the importance vector for ranking
the recurrent neurons as

I =

Nx∑
j=0

B2
ij , (5)

which is the sum over the columns of F squared. Then, we apply min-max
rescaling to all the entries of I to have all the values in [0, 1]. Given this vector
and a threshold hyperparameter τ ∈ (0, 1), we define the subset of selected
neurons as S = {i | 0 ≤ i < Nx − 1; Ii > (1 − τ)}. This thresholding technique
allows to select all the neurons whose local, relative importance is highest.

3 Experimental Assessment

The aim of our experiments is to assess the quality of the global readout when
learned with the proposed technique. We assessed the effectiveness of I-pFedRR
by comparing it to the baseline method FedRR, and R-pFedRR (i.e., pFedRR with
random selection of the units for compression) on benchmarks with an increasing
number of training clients, and increasing degree of compression. We conducted
our experiments on two Human State Monitoring benchmarks: WESAD [5], a



dataset for stress and affect detection from wearable devices; HHAR [6], a dataset
for activity recognition from inertial data. Both datasets lend themselves to the
adaptation to a federated scenario thanks to the presence of IDs identifying
both the user and the device. Being an activity recognition dataset with a
low number of participants, HHAR represents a more challenging benchmark
for the federated setting, since the heterogeneity of local client behaviors is not
compensated by the presence of a sufficient number of participating clients.

Setup. The WESAD dataset was collected from 15 participants, each of which
presents 8 synchronized time series of physiological data sampled at 700Hz by
a chest-worn device. Each timestep in the sequence is equipped with a label
denoting one of 4 cognitive states experienced during the collection. In the
HHAR dataset, for each participant, we selected the sequence corresponding
to the data from the LG Nexus4 smartphone, and downsampled it to 100Hz.
Each timestep is associated with 6 features corresponding to intertial data, and
with a label denoting one of the 6 activities performed by the participant. In
both datasets, we chunked the sequence in sections of 700 and 200 timesteps
for WESAD and HHAR respectively. Similarly to [2], we employed a client-
wise training-validation-test split of the dataset, which is 9-3-3 and 5-2-2 for
WESAD and HHAR respectively. We conducted our experiments by involving
an incremental number of training clients, i.e., 25%, 50%, 75% and 100%.

Given a percentage of training clients, the experiments that we report were
anticipated by a preliminary model selection to determine the best configuration
of hyperparameters for an ESN with 1000 recurrent units. In particular, we
evaluated configurations with ρ ∈ [0.3, 0.99], input scaling in [0.5, 1), leaking
rate α ∈ [0.1, 0.9]. In this phase, we selected the configuration with the highest
validation accuracy, and fixed it for the subsequent experiments.

Then, for each percentage of training clients, we performed a comparison of
the three methodologies with the following setup. First, we chose a value for τ for
the current experiment. Then, the server instantiates a reservoir with the best
configuration of the current percentage of training users and forwards it to the
training clients. Each training client computes three pairs of matrices: one with
FedRR; one with I-pFedRR with threshold τ ; one with R-pFedRR with a chosen
number of units equal to the one in I-pFedRR. Then, the server computes three
readouts, one for each methodology. The resulting readouts are assessed on the
validation clients. This experiment was conducted for all τ ∈ {0.1, 0.2, . . . , 0.9},
and repeated 5 times for each value of τ . The proposed setup ensures fairness
across the methods, since all of them employ the same reservoir and the two
selection policies in pFedRR select the same number of units for the compression.

Results. Table 1 reports a summary of the results in our experiments. For
FedRR, we report the average test accuracy across all the experiments (since
it is not subject to validation). For I-pFedRR and R-pFedRR, we report the
average test accuracy and number of units chosen for compression with the τ
whose validation accuracy across the 5 trials was highest. Figure 1 reports the
behavior of pFedRR with both selection policies and increasing value of τ .



Users
WESAD

FedRR I-pFedRR R-pFedRR
Acc. Acc. % Units Acc. % Units

25% 72.41± 1.40 80.71± 0.37 49.72± 1.71 78.85± 1.04 91.28± 1.78

50% 73.56± 0.54 77.74± 0.74 13.72± 1.01 77.87± 1.05 90.86± 1.28

75% 75.50± 0.82 79.77± 0.21 11.39± 1.14 79.99± 0.43 89.71± 1.25

100% 76.92± 0.85 80.46± 0.32 1.22± 0.14 80.55± 0.44 1.22± 0.14

Users
HHAR

FedRR I-pFedRR R-pFedRR
Acc. Acc. % Units Acc. % Units

25% 72.95± 4.66 68.73± 2.31 94.50± 0.81 59.74± 1.69 94.50± 1.81

50% 76.31± 13.08 57.93± 4.95 88.63± 1.32 49.93± 3.21 88.63± 1.32

75% 84.96± 0.37 69.83± 1.95 91.41± 1.06 65.01± 1.56 91.41± 1.06

100% 83.53± 0.39 74.39± 3.05 93.53± 1.76 68.67± 3.21 93.53± 1.76

Table 1: Summary of the results. The best trade-off between test accuracy and
% of units is reported in bold.

Fig. 1: Results for increasing value of τ on WESAD (above) and HHAR (below).

On WESAD, we can observe that both compression-based approaches out-
perform the baseline method FedRR with each percentage of training clients
involved. This shows that in addition to the advantage of significantly reduc-
ing the communication cost, using a subset of the neurons for global readout
learning also works as a regularization method that improves the generalization
ability of the method. In addition, we can observe that with a lower num-
ber of training clients involved, the percentage of neurons chosen by I-pFedRR
is significantly lower than R-pFedRR. Thus, in the presence of less information
for readout learning, turning to a technique biased on relevant information is
more performant. Finally, Figure 1 (above) shows that as the number of train-
ing clients increases, the importance-based method requires progressively fewer



units to achieve maximum accuracy on the test data. In particular, the cases
with 25% and 50% training clients reach their peak accuracy with ∼50% and
∼13% of units, respectively.

On HHAR (see Table 1, and Figure 1 below), even if both compression-based
methods achieve lower performance than the baseline, the importance-based
method always yields the best trade-off between accuracy and communication
efficiency. Finally, in Figure 1, the rightmost plots indicate that the growth
of unit numbers is nearly linear for HHAR, but tends to be exponential for
WESAD, suggesting that HHAR lacks a clear distinction between relevant and
irrelevant information unlike WESAD.

4 Conclusions

We proposed a novel methodology for computing the Ridge Regression on Feder-
ated Echo State Networks with a communication-efficient approach. Each client
selects a subset of the most relevant neurons and sparsifies the statistics to be
forwarded to the server. We evaluated this methodology in comparison with the
original method with full statistics, and one with random sparsification. The
results show that using the importance policy in selecting the neurons allows
for improving the generalization capabilities of the model while reducing the
communication overhead.

In future work, we plan to develop a hybrid selection policy between impor-
tance and random to balance bias and variance in the information exchanged.
In addition, this methodology can also be exploited in continual learning to
encourage information sparsification in the global readout.
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[3] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer science review, 3(3):127–149, 2009.

[4] Herbert Jaeger. The ”echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center for
Information Technology GMD Technical Report, 148(34):13, 2001.

[5] Philip Schmidt et al. Introducing wesad, a multimodal dataset for wearable stress and
affect detection. In Proceedings of the 20th ACM international conference on multimodal
interaction, pages 400–408, 2018.

[6] Allan Stisen et al. Smart devices are different: Assessing and mitigating mobile sensing
heterogeneities for activity recognition. In Proceedings of the 13th ACM conference on
embedded networked sensor systems, pages 127–140, 2015.


	Introduction
	Compressed Federated Ridge Regression
	Experimental Assessment
	Conclusions

