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Abstract
We propose a framework for localized learning
with Reservoir Computing dynamical neural sys-
tems in pervasive environments, where data is
distributed and dynamic. We use biologically
plausible intrinsic plasticity (IP) learning to opti-
mize the non-linearity of system dynamics based
on local objectives, and extend it to account for
data uncertainty. We develop two algorithms
for federated and continual learning, FedIP and
FedCLIP, which respectively extend IP to client-
server topologies and to prevent catastrophic for-
getting in streaming data scenarios. Results on
real-world datasets from human monitoring show
that our approach improves performance and ro-
bustness, while preserving privacy and efficiency.

1. Introduction
The increasing demand for Machine Learning systems in
on-the-edge applications (Bacciu et al., 2021a; De Caro
et al., 2022) poses new challenges for learning in pervasive
environments, where large numbers of resource-constrained
devices are involved (Figure 1). For example, in healthcare
applications (Nguyen et al., 2022; Can & Ersoy, 2021), phys-
iological data from wearable devices must be processed to
detect heart conditions, while respecting privacy regulations
(Horvitz & Mulligan, 2015) and ensuring model reliability
over time.

We identify three main challenges for learning in this do-
main: (1) achieving a good trade-off between performance
and efficiency on temporal data; (2) complying with pri-
vacy constraints that prevent data sharing; (3) avoiding data
oblivion, i.e., the loss of information due to data discarding.

Existing learning methodologies can partially address these
challenges. Echo State Networks (ESNs) (Jaeger, 2001) are

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. Learning in a pervasive environment

efficient models for temporal data that have been successful
in Human Activity Recognition (HAR) applications (Bacciu
et al., 2021b). Federated Learning (FL) (McMahan et al.,
2017) is a distributed learning method that preserves data
privacy by learning a global model without transferring
local data. Continual Learning (CL) (Parisi et al., 2019) is a
learning paradigm that allows updating a model over time
from a continuous data stream without forgetting previous
knowledge. However, the integration of these areas is still
limited and none of the existing works address the scenario
that we consider in this paper.

In this paper, we propose a methodology and practical algo-
rithms for learning in pervasive environments based on In-
trinsic Plasticity (Triesch, 2005), an unsupervised algorithm
for adapting a reservoir’s dynamics to the input sequence.
Our contribution is threefold: (1) we extend the learning
approach of Intrinsic Plasticity (IP) to handle the uncer-
tainty arising from data distribution over space and time;
(2) we propose Federated Intrinsic Plasticity (FedIP), an
instantiation of the Federated Averaging algorithm for adapt-
ing a reservoir from client-server federation with stationary
data; (3) we introduce Federated Continual Intrinsic Plastic-
ity (FedCLIP), an extension of FedIP to deal with non-
stationary scenarios. We evaluate the algorithms with an
incremental experimental setup based on two HAR bench-
marks and show that they can improve the performance of
the global model with low computation and communication
overhead, and cope with data non-stationarity.
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2. Local dynamics adaptation in pervasive
environments

Reservoir Computing (RC) (Lukoševičius & Jaeger, 2009)
is a paradigm that leverages the evolution of the neural acti-
vations of Recurrent Neural Networks (RNNs) as a discrete-
time non-linear dynamical system.

A remarkable example in RC is represented by ESNs
(Jaeger, 2001; Jaeger & Haas, 2004), which allow learn-
ing on sequential data efficiently. ESNs are made up of two
main components: a reservoir, a recurrent layer of sparsely
connected neurons, holding the internal state which evolves
over time; a readout, a typically linear transformation on
the domain of the reservoir states. Formally, we consider
an ESN with NU input units, NR hidden recurrent units,
and NY output units. Given an input sequence of vectors
u(t) ∈ RNU with t ∈ {0, . . . , T − 1}, the equations model-
ing the state transition of the reservoir with leaky-integrator
neurons (Jaeger et al., 2007) and the transformation applied
by the readout can be described as

xnet(t) = Winu(t) + brec + Ŵx(t− 1),

x(t) = (1− a)x(t− 1) + af (xnet(t)) ,

y(t) = Wx(t) + bout,

(1)

where Win ∈ RNR×NU is the input-to-reservoir weight ma-
trix, Ŵ ∈ RNR×NR is the recurrent reservoir-to-reservoir
weight matrix, brec ∈ RNR is the reservoir bias term, f is
the non-linearity applied to the neurons’ cumulative input,
a ∈ (0, 1] is the leaking rate, W ∈ RNY ×NR is the readout
weight matrix, bout is the output bias term. The hidden state
of the reservoir at time t = 0 is initialized as x(0) = 0.

Instead of backpropagating the error signal through time as
in standard RNNs, ESNs keep the input-to-reservoir matrix
Win and the reservoir-to-reservoir matrix Ŵ fixed, with
the only constraint of choosing spectral radius ρ(Ŵ) <
1 to empirically display asymptotically stable dynamics1.
Thus, the readout weights W are the only free parameters.
By formulating the learning problem of the readout as a
least squares problem, we can take advantage of Ridge
Regression (RR) to obtain a closed-form solution defined as

W = YST (SST + λI)−1, (2)

where Y denotes the matrix of time-ordered target labels,
S is the matrix of time-ordered reservoir states, λ is an
L2-regularization term, and I is the identity matrix.

IP (Triesch, 2005; Schrauwen et al., 2008) is an algorithm
inspired by a biological phenomenon, called homeostatic
plasticity, for adapting the reservoir in an unsupervised man-
ner. From a computational perspective, IP maximizes the

1The interested reader can find rigorous discussions on the-
oretical aspects of reservoir initialization in (Yildiz et al., 2012;
Gallicchio & Micheli, 2017).

entropy of the units’ activations. Focusing the attention on
the i-th neural unit, the algorithm requires the neuron’s func-
tion to be reformulated as f̃(xi

net; θ
i) = f(gixi

net + bi),
where θ = {g,b} is the set of learnable, unit-wise gain and
the bias parameters of the reservoir’s non-linearity. When
the non-linearity f is the tanh function, IP minimizes the
following Kullback-Leibler divergence:

L(θ;µ, σ) = DKL(q̃ || Nµ,σ) =

∫
q̃(x) log

(
q̃(x)

Nµ,σ(x)

)
dx,

(3)
where q̃ is the empirical distribution of the neural activa-
tions upon application of f̃(· ; θ) as non-linearity, and Nµ,σ

is the desired Gaussian distribution with mean µ and stan-
dard deviation σ. The derivation of the loss function leads
to the following update rules for the set of gain and bias
parameters:

∆b = −η
(
− µ

σ2 + x̃
σ2 + 1− x̃2 + µx̃

)
,

∆g = η
g +∆bxnet,

(4)

where x̃ is the result of the application of f̃ in the computa-
tion of the state transition, and η is the learning rate. These
simple learning rules allow for maximizing the information
content of reservoir states, and to reduce the variance in
performance due to random initialization.

In this paper, we aim to extend the use of IP towards the
adaptation of the local dynamics in pervasive environment.
As we mentioned, the constraints of such an environment
impose that (1) devices must collaborate in the learning
process without disclosing the data and (2) they must be
able to update continually in order to avoid data oblivion.
To address the objective (1), we must reformulate the loss of
IP to account for the distribution of the data across clients
in the federated scenario. By employing the derivation
in Appendix A, the loss function of IP translates to the
federated setting as:

LF (θ;µ, σ) =
∑

c∈C pcDKL(q̃c || Nµ,σ), (5)

where q̃ is the global distribution of the reservoir’s neural
activations, q̃c is the empirical distribution of the activations
of client c, computed with its local realization of the global
model f̃c on the local dataDc, and pc is the weighting factor.
Our proposal is intended for a client-server topology and is
based on Federated Averaging (FedAvg). The algorithm,
namely FedIP, instantiates FedAvg to learn the global
gain and bias parameters, i.e., θ = {g,b}, by minimizing
the loss function in eq. (6). The pseudocode is summarized
in Algorithm 1 and 3 for the server side and for the client
side, respectively. In FedIP, the number of parameters
exchanged between a client is NR.
To address objectives (1) and (2), we must extend our pro-
posal to a continual setting, where all the clients consider
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Algorithm 1 Federated Intrinsic Plasticity (FedIP)
Input: clients C, number of rounds R, learning rate η, local epochs

E, batch size B
1 R ← {Win,Ŵ,brec, α} θ0 ← {g0 ← 1, b0 ← 0} Send R

to all clients c ∈ C for each round r ∈ {0, 1, . . . , R− 1} do
2 for each client c ∈ C in parallel do
3 Send θr to client c θrc ← IPUpdatec(gr , br , η, E) ;

// Alg. 3
4 end
5 θr+1 ←

{∑
c∈C

nc
n

gr+1
c ,

∑
c∈C

nc
n
br+1
c

}
6 end

Algorithm 2 Federated Continual Intrinsic Plasticity
(FedCLIP)
Input: clients C, learning rate η, local epochs E, batch size B

7 R ← {Win,Ŵ, α} θ00 ← {g0
0 ← 1, b0

0 ← 0} Send R to all
clients c ∈ C for each experience t ∈ {0, 1, . . . , T − 1} do

8 for each round r ∈ {0, 1, . . . , R− 1} do
9 for each client c ∈ C in parallel do

10 Send θrt to client c θrt,c ← ContinualIPUpdatec(t,
gr
t , br

t , η, E, r == R− 1)
11 end
12 θr+1

t ←
{∑

c∈C
nt,c

nt
gr
t,c,

∑
c∈[C]

nt,c

nt
br
t,c

}
13 end
14 end

that the local data is non-stationary and arrives in a stream-
ing fashion. To do so, we solved (2) by itself by deriving
the loss for a continual setting in a centralized scenario, and
proposing a replay-based algorithm that suits the mentioned
setting (Section B.1). Then, we extended Algorithm 1 to-
wards a scenario where all the clients face their own, local
continual scenario.

3. Experiments
We tested the FedIP and FedCLIP on the WEarable Stress
and Affect Detection (WESAD) (Schmidt et al., 2018) and
the Heterogeneity Human Activity Recognition (HHAR)
(Stisen et al., 2015) datasets, two Human Activity Recog-
nition benchmarks. To maximally exercise our algorithms,
we employed four versions for both datasets: centralized;
continual; federated; federated and continual. Details on the
datasets (including pre-processing and data splitting), and
on the experimental setup are provided in Section C.

Federated and stationary setting Table 4 shows the test
accuracy over five retraining runs for each setting and per-
centage of the training clients on both benchmarks.

From the results in Table 4 we can observe two distinct
behaviours of FedIP, depending on the percentage of train-
ing clients involved. For lower percentages of training
clients, i.e., 25% and 50%, we can observe that the ESNs
trained with FedIP significantly outperform those trained

via Federated Ridge Regression (FedRR), with a gain of at
least 5 accuracy points (except for HHAR with 50% training
clients). In these cases, FedIP acts mainly as a regularizer:
since the information to be represented with 25% and 50%
of clients is low, the algorithm clusters it within gaussians
with small standard deviations (i.e., σ = 0.05 for 25% of
training clients, and σ = 0.1 for 50%). Instead, for higher
percentages of training clients, i.e., 75% and 100%, the
performance gain becomes less significant, but still in fa-
vor of the ESNs trained via FedIP. In this case, FedIP
maximizes the information gain by dampening the effect
of the band-pass filtering applied by the tanh activation.
In an untrained reservoir, the initial dynamics provides no
guarantee that the net input of each neuron stands in the
range [-3, +3]. This leads the activation function to a con-
tracting behavior by squashing inputs outside this range to
-1 and +1. Instead, converging to the desired gaussian with
σ < 1 forces the net input to stand within a range where the
dynamics of the reservoir are fully exploited, resulting in
better representation capabilities. These points suggest that
the information gained by the use of FedIP improves the
generalization capabilities of the ESNs.

Training the reservoir via FedIP mitigates the variance in
the performance in comparison with the ESNs adapted only
via FedRR. The rationale about the dynamics of an un-
trained reservoir still holds: initializing the reservoir naı̈vely
does not allow to appropriately represent features that are
useful for discriminating the correct label. Instead, adapting
the reservoir via FedIP allows obtaining good representa-
tions of the information even in the face of bad initializations.
However, the results on HHAR with 50% of training clients
expose a drawback of this effect. Depending on the quality
of the input information, the algorithm may filter out also
“lucky” initializations.

Finally, we can observe that the performance obtained in
the federated setting is comparable, if not greater than the
one reported for the centralized setting. This highlights that
not only FedIP does not suffer from the approximation
given by the model averaging, but it may take advantage
of it. As we mentioned, IP optimizes the neurons’ pa-
rameters to let the activations’ densities converge towards
a Gaussian distribution. A property of such distribution
is that, given n Gaussian distributions with parameters
(µ1, σ

2
1), (µ2, σ

2
2), . . . , (µn, σ

2
n), the distribution of the sum

is a Gaussian with parameters
(∑n

i=1 µi,
∑n

i=1 σ
2
i

)
. This

property can be straightforwardly extended to convex com-
binations of Gaussian distributions. Given this premise, the
reason behind the improvement in the performance in the
federated setting against the centralized can be intuitively
addressed to this property. In the federated setting, each
client tends to converge to the optimal set of parameters to
best fit the Gaussian with respect to the local activations.
Then, the aggregation leverages the aforementioned prop-
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Table 1. Results of the experiments on the stationary settings. The best results are highlighted in bold, and the results whose difference is
not statistically significant (i.e., p-value > 0.05) are highlighted in italics.

%TR WESAD HHAR
w/o FedIP w/ FedIP w/o FedIP w/ FedIP

25% 72.09± 0.59 78.68 ± 0.12 57.08± 3.11 69.83 ± 0.64

50% 72.04± 1.03 77.43 ± 0.19 63.88 ± 6.02 57.74 ± 0.19

75% 76.53± 1.08 77.97 ± 0.41 71.09 ± 0.56 71.08 ± 0.69

100% 77.78± 0.58 79.42 ± 0.39 70.29 ± 0.99 71.38 ± 0.43

Table 2. Results of the experiments on the federated and continual setting. In the federated setting, the best results are highlighted in bold,
and the results whose difference is not statistically significant (i.e., p-value > 0.05) are highlighted in italics.

%TR WESAD HHAR
Naı̈ve Replay Joint Naı̈ve Replay Joint

25% 27.32± 10.86 79.23 ± 0.44 78.75 ± 0.67 34.85± 3.08 51.16± 5.88 69.44 ± 0.38

50% 30.60± 7.51 77.49 ± 0.89 75.95± 1.07 30.16± 2.10 43.77± 1.50 60.85 ± 4.37

75% 51.50± 4.10 77.04± 0.89 78.17 ± 0.54 28.62± 0.93 59.83± 0.88 71.14 ± 0.84

100% 50.80± 1.50 77.46± 1.31 79.51 ± 0.35 30.30± 0.43 62.28± 0.54 71.22 ± 0.32

erty and is able to compose accurate information about the
local distributions without suffering from approximations.
Instead, in the centralized setting, the learning algorithm is
subject to stochasticity due to the shuffling of the dataset,
and may not be able to fit the parameters in order to best
represent all the local distributions.

Federated and Continual Setting. Table 5 reports the per-
formance of an ESN trained in the continual setting. In
particular, we report the stream accuracy (i.e., the accuracy
on the cumulative data up to the current experience) on
five retraining runs of an ESN trained via ContinuaL In-
trinsic Plasticity (CLIP) and FedCLIP with the naı̈ve and
joint strategies as a baseline, and with the proposed replay
strategy.

On a general note, Table 5 and Figure 3 show that the two
baseline strategies behave as expected. While the naı̈ve
strategy is not able to retain information from previous
experiences, and it is prone to forgetting, the joint strategy
acts as an upper bound with respect to the performance of
the CL strategies.

On WESAD, the replay strategy is able to achieve the same
performance as the joint strategy over the stream with any
percentage of training clients. This highlights not only ro-
bustness to forgetting, but also the capability of FedCLIP
to learn the same information as in the stationary scenario
with less amount of data. Furthermore, Figure 4 highlights
two points. First, we can observe that the distribution of acti-
vations gradually adjusts as we proceed through the learning
experiences, converging to approximately the same distri-
bution obtained in the stationary case. Moreover, paying
attention to the distribution of “amusement” activations we
notice that convergence toward its final distribution begins
before meeting the data from the corresponding learning
experience. This denotes that FedCLIP is characterized by

good forward transfer in the adaptation of reservoir dynam-
ics.

On HHAR, we observe a different trend. All the strategies
are able to maintain a stable accuracy during the first three
learning experiences. This happens because the devices cor-
responding to these experiences are the three smartphones
kept by the user performing the activities. Instead, in the
fourth experience, corresponding to the smartwatch, the re-
lation between the movement of the user and the performed
activity changes, causing an abrupt concept drift and a con-
sequent decay in performance.

Finally, as happens in the stationary scenario, Table 5 high-
lights that FedCLIP is able to achieve performances equal
or greater than the centralized baseline.

4. Conclusions
In this paper, we have proposed a framework for localized
learning based on homeostatic plasticity of dynamical neural
systems, based on Reservoir Computing (RC). We extended
Intrinsic Plasticity (IP), a method to adapt ESNs reservoir
dynamics to the input sequence, to a client-server, pervasive
scenario with federated and continual data. We proposed
FedIP for federated and stationary data, and FedCLIP
for federated and non-stationary data. We tested our algo-
rithms on two HAR benchmarks with incremental setup and
different numbers of training clients. The achieved results
indicate that our proposals improve the global model perfor-
mance, achieving comparable results to the joint baseline
and their centralized versions, at the same time showing
robustness against model averaging approximation.
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A. FedIP
A.1. Derivation

In the federated setting it is reasonable to assume that, given a finite set of clients C, we compute the global model θ as
a convex combination of the local models learned by the clients, i.e., θ =

∑
c∈C pcθc. Here, we specialize this concept

by assuming that the distribution q̃ can be calculated as a convex combination of the clients’ local distributions, i.e.,
q̃ =

∑
c∈C pcq̃c. This assumption allows us to derive an upper bound of the centralized loss function in eq. (3):

DKL(q̃ || Nµ,σ) = DKL

(∑
c∈C pcq̃c || Nµ,σ

)
= DKL

(∑
c∈C pcq̃c ||

∑
c∈C pcNµ,σ

)
≤
∑

c∈C pcDKL(q̃i || Nµ,σ).

Since minimizing the upper bound implies the minimization of the initial loss, we can re-define the loss function for the
federated setting as follows:

LF (θ;µ, σ) =
∑

c∈C pcLc(θc;µ, σ)
=
∑

c∈C pcDKL(q̃c || Nµ,σ),
(6)

where q̃ is the global distribution of the reservoir’s neural activations, q̃c is the empirical distribution of the activations of
client c, computed with its local realization of the global model f̃c on the local data Dc, and pc is the weighting factor.

A.2. Client-Side Algorithm

Algorithm 3 IPUpdate (on client c)
Input: global gain gr, global bias br, learning rate η, local epochs E

15 gc, bc ← gr,br Split local data into a set of batches B of size B for epoch e ∈ {0, 1, . . . , E − 1} do
16 for batch b ∈ B do
17 Compute the average ∆gb, ∆bb over b ; // Eq. (4)
18 gc, bc ← gc +∆gb, bc +∆bb

19 end
20 end
21 return gc, bc

B. Federated Continual Intrinsic Plasticity
B.1. Continual Intrinsic Plasticity

In the continual setting, we rely on the same formalization by Lesort et al. (Lesort et al., 2021): we assume that, given
a finite set of contexts K (i.e., possible states of the data distribution), there exists a hidden, discrete stochastic process
{Kt}Tt=1 that determines the evolution of the data distribution over time. Given that pk,t corresponds to the realization of
the context variable for context k at time t, we can apply the following derivation:

DKL(q̃ || Nµ,σ) =

∫
q̃(x) log

q̃(x)

Nµ,σ
dx

=

∫ T∑
t=1

∑
k∈K

pt,kq̃k(x) log

∑
k∈K pt,kq̃k(x)

Nµ,σ
dx

=

T∑
t=1

∫ ∑
k∈K

pt,kq̃k(x) log

∑
k∈K pt,kq̃k(x)∑
k∈K pt,kNµ,σ

dx

=

T∑
t=1

DKL

(∑
k∈K

pt,kq̃k ||
∑
k∈K

pt,kNµ,σ

)

≤
T∑

t=1

∑
k∈K

pt,kDKL(q̃k || Nµ,σ).
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Algorithm 4 ContinualIP
Input: stream = [D0,D1, . . . ,DT−1], learning rate η, epochs E

22 θ0 = {1, 0} M0 = {} ; // Memory buffer, initially empty
23 for Dt ∈ stream do
24 Bt ← split data Dt ∪Mt into a set of batches of size B for epoch e ∈ {0, 1, . . . , E − 1} do
25 for batch b ∈ B do
26 Compute the average ∆gb, ∆bb over b ; // Eq. (4)
27 gt, bt ← gt +∆gb, bt +∆bb

28 end
29 end
30 θt+1 ← {gt,bt} Mt+1 ← UpdateWithStrategy(Dt,Mt)
31 end
32 return θT

However, in the continual setting, the realizations of the context variable pk,t are not available, and we can rely only on the
information provided by the data available at time t. Thus, by assuming that, at time t, the available data are enough to
approximate the behavior of the stochastic process, we can approximate the loss function as follows:

LC(θ;σ, µ) =

T∑
t=1

∑
k∈K

pt,kDKL(q̃k || Nµ,σ)

≃
T∑

t=1

DKL(q̃t || Nµ,σ),

(7)

where q̃t is the empirical distribution computed upon application of f̃(·, θ) on the dataset at experience t, i.e., Dt, and Nµ,σ

is the desired gaussian distribution with mean µ and standard deviation σ.

To address this problem, we propose CLIP, which extends IP to cope with NI scenarios with known task boundaries. As
described in algorithm 4, CLIP is articulated in learning experiences, one for each task in the given data stream. During
the t-th experience, it splits the data from the current dataset Dt and the memory bufferMt in a set of mini-batches Bt
(line 4). Then, it performs E training epochs by applying Intrinsic Plasticity on the mini-batches in Bt (lines 5-10). When
the learning phase is complete, it updates the model (line 11) and the memory buffer (line 12) for the learning experience
(t+ 1).

The policy for updating the memory buffer and sampling the mini-batches (which refer to lines 12 and 4 respectively in
Algorithm 4) depends on the CL strategy at hand. In particular, we applied three main strategies:

• naı̈ve, the algorithm is not equipped with a memory buffer and the mini-batches are sampled from the dataset of the
current experience Dt;

• replay with reservoir sampling (Vitter, 1985), where a bounded buffer is kept balanced with data from each of the
previous learning experiences, and each mini-batch is injected with data from the buffer sampled uniformly;

• joint, the memory keeps all the data from all the learning experiences up to Dt, and the mini-batches are sampled by
chunking Dt ∪Mt.

While the former and the latter represent a lower and upper bound on the performance respectively (Lesort et al., 2019), the
replay strategy represents our CL strategy of choice in the proposed setting.
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B.2. Client-Side Algorithm

Algorithm 5 ContinualIPUpdate (on client c)
Env: stream = [D0,D1, . . . ,DT−1],M0 = {}
Input: experience t, global gain gr

t , global bias br
t , learning rate η, epochs E, boolean update

33 Bt ← split data Dt ∪Mt into a set of batches of size B for epoch e ∈ {0, 1, . . . , E − 1} do
34 for batch b ∈ B do
35 Compute the average ∆gb, ∆bb over b ; // Eq. (4)
36 gt, bt ← gt +∆gb, bt +∆bb

37 end
38 end
39 if update then
40 Mt+1 ← UpdateWithStrategy(Dt,Mt)
41 end
42 return {gt,bt}

C. Experimental setup
Datasets Description and Pre-processing WESAD is a dataset for stress and affect detection from wearable devices. It
was collected from 15 participants in a ∼36-minute session where they performed activities depending on the cognitive state
to be induced. In particular, data collection unfolded over five main contexts: baseline condition; stress induction; meditation;
amusement induction; meditation. Each sample in the resulting time series is equipped with a label corresponding to the
expected cognitive states of the user. In our setup, we used a subset of the available data, which consisted of 8 synchronized
time series of physiological data sampled at 700Hz by a chest-worn device. We normalized the data of each user and
chunked it in non-overlapping sequences of 700 samples (i.e., 1 second).

The second dataset is HHAR, which is a dataset for activity recognition. It was collected from 9 users keeping 12 smart
devices while performing different activities (biking, sitting, standing, walking, stair up, and stair down), to show the
heterogeneity of the sensing across the devices. For each user, we selected a subset of samples corresponding to the
smartphones LG Nexus4, Samsung Galaxy S3, Samsung Galaxy S3 Mini, and the smartwatch LG Watch. Each sample
had 6 features corresponding to the axes of the device’s accelerometer and gyroscope, and a label denoting one of the 6
activities performed by the user. For each user and device, we downsampled the sequence to 100Hz to obtain homogeneity
of sampling rate across the devices, normalized it, and split the corresponding chunk into non-overlapping sequences of 200
samples (∼2 seconds).

Data splitting First, we performed a user-wide split into training, validation, and test sets on both datasets. Given the
user-specific chunks (15 for WESAD, 9 for HHAR), we applied a 9-3-3 and 5-2-2 split for WESAD and HHAR respectively.
With these splits, we were able to simulate the local private data of the clients. In the federated setting, each split fulfills a
particular purpose: the training users are involved in the learning process; the validation users monitor the performance of
the trained models for model selection; the test users assess the performance of clients joining the federation after training is
over. Then, we split each user-specific chunk into learning experiences dependent on the activity performed by the user in
WESAD, and the device worn by the user in HHAR. In the continual setting, this split allowed us to simulate a continuous
data stream that exposes domain drifts over time. The resulting representations are depicted in Figure 2.

In the stationary setting, we developed a centralized baseline, where all the data is available in advance on a single machine.
Here, we assessed the behavior of an ESN trained via RR only and via IP+RR. We extended this baseline towards spatial
distribution by experimenting on a federated and stationary scenario, where each client has its own, private data as a full
dataset available in advance. Here, we evaluated the performance of an ESN trained via FedIP and FedRR and compared
it with a baseline ESN trained only via FedRR.
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Figure 2. Representation of the different data grouping among the four assessed scenarios. Each chunk Di,e represents the data of the i-th
client from the e-th learning experience. From left to right. Full dataset: a single machine holds all the data in advance. Federated
scenario: each user holds the full private dataset in advance. Continual scenario: a single machine gets the data from clients in a
streaming fashion. Federated and continual scenario: each user has its own private data stream.

Table 3. Search space for the two datasets on the stationary and continual settings.
((a)) Hyperparameters tested on the stationary settings. The search space

spanned by Reservoir and RR / FedRR is common to all the algorithms. The
subspaces spanned by IP and FedIP are employed only in experiments
with the corresponding algorithms.

WESAD HHAR

Reservoir

Units {200,300,400} {100, 200, 300, 400, 500}
ρ(Ŵ) [0.3, 0.99) [0.3, 0.99)

Input Scaling [0.5, 1) [0.5, 1)
Leaking Rate [0.1, 0.8] [0.1, 0.5]

RR / FedRR L2 [1e−4, 1] [1e−4, 1]

IP

µ 0 0
σ (0.05, 1) (0.05.1)
η 0.01 0.01

Epochs {10, 12, . . . , 20} {10, 12, . . . , 20}

FedIP

µ 0 0
σ (0.05, 1) (0.05.1)
η 0.01 0.01

Global Rounds {10, 12, . . . , 20} {10, 12, . . . , 20}
Local Epochs {3, 5, 10} {3, 5, 10}

((b)) Hyperparameters tested on the continual settings. We constrained
the hyperparameter space by using from the best configuration selected
on the corresponding centralized and federated settings. Then, we limited
this phase to a grid search for selecting the optimal number of learning
iterations (i.e., epochs in IP and rounds in FedIP) to perform in each
learning experience.

WESAD HHAR

CLIP
Exp. Epochs ip epochs/2 ± 2 ip epochs/2 ± 2
Buffer Size 5% full dataset size 5% full dataset size

FedCLIP
Exp. Rounds fedip rounds/5 ± 2 fedip rounds/4 ± 2
Buffer Size 5% user dataset size 5% user dataset size

In the continual setting, we followed the same approach as in the stationary one. We provided a centralized baseline, where
the data arrives in a streaming fashion on a single machine. First, we assessed the behavior of CLIP with two baselines
CL strategies: naı̈ve, trains both the reservoir and the readout only on the data available from the current experience; joint,
accumulates all the data up to the current experience and re-trains the model from scratch. Then, we assessed CLIP with
the Replay strategy with a fixed buffer updated via Reservoir Sampling, where we trained the reservoir as described in
Algorithm 4, and the readout by applying RR to the union of the data from the current experience and the data available
from the buffer. Finally, we assess the behavior of FedCLIP in the federated and continual setting, where each client has
its own, private data stream. Here, we applied the same strategies as in the centralized one, i.e., naı̈ve, replay and joint.
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Table 5. Results of the experiments on the centralized, continual setting. We report the mean and standard deviation of the stream accuracy
on the last experience for each strategy and percentage of training users.

%TR WESAD HHAR
Naı̈ve Replay Joint Naı̈ve Replay Joint

25% 30.23± 1.16 78.37± 1.11 78.64± 0.90 35.65± 4.21 59.56± 1.26 69.44± 0.37

50% 42.55± 8.86 79.91± 0.54 76.42± 0.44 31.78± 0.36 48.01± 1.35 68.40± 2.53

75% 32.13± 6.47 80.27± 0.87 79.22± 0.33 28.08± 0.56 58.93± 1.51 70.26± 0.49

100% 27.43± 0.29 76.19± 1.66 79.28± 0.52 28.7± 0.93 58.52± 1.58 70.46± 0.26

In each scenario, we repeated the experiments with four percentages of training clients, i.e., {25%, 50%, 75%, 100%} to
assess the generalization capabilities of the algorithms. Given one of the four scenarios and a percentage of training clients,
the corresponding experiment consisted of three steps:

1. Model selection: given the search spaces depicted in Table 3, we performed a random search with 100 configurations if
the scenario is stationary, and a grid search if it is continual. We selected the configurations with the highest scores on
the data from the validation clients;

2. Re-training: given the best configuration selected in step 1, we retrained 5 instances of the model and the corresponding
algorithm with the corresponding configuration;

3. Risk assessment: we assessed the performance of the 5 instances by computing the metrics on the data from the test
clients.

The metrics that we employed for steps (1) and (3) are the accuracy and the stream accuracy for the stationary and continual
settings, respectively. The latter is defined as

SACCt =
1∑t

i=0 Ni

∑
j=0

ACCj ∗Nj , (8)

where Nj and ACCj are respectively the number of samples and the accuracy of the model on the data from the j-th
learning experience. On the WESAD dataset, during the risk assessment phase, we also computed the reservoir’s activation
density to investigate the behavior of the adapted reservoir. Finally, on all the settings, we verify the results statistically
by applying a two-sided T-Test, comparing the performances of the baselines with the ones of the proposed methods. We
consider the differences between the results statistically significant for p-values ≤ 0.05.

D. Experimental Results
D.1. Centralized Baseline Results

Table 4. Results of the experiments on the centralized baseline of the stationary setting. For each percentage of the users, we report the
mean and standard deviation of the test accuracy of each model with and without the use of IP.

%TR WESAD HHAR
w/o IP w/ IP w/o IP w/ IP

25% 72.60± 1.24 78.14± 0.32 61.34± 3.19 68.82± 0.49

50% 72.88± 1.35 76.98± 0.22 58.70± 5.29 66.64± 2.28

75% 77.06± 1.02 78.68± 0.38 71.49± 0.93 70.33± 0.42

100% 79.18± 0.40 78.89± 0.19 71.71± 0.72 70.88± 0.74

D.2. Results in the Continual Settings
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Figure 3. Stream accuracy of an ESN trained via CLIP (left) and FedCLIP (right) as learning experiences progress, with different
percentages of training clients.
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Figure 4. Left: Activation density on the last learning experience with each percentage of training clients. Right: Activation density on
test clients (columns) with reservoirs trained via FedCLIP.
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