
AI-TOOLKIT: A MICROSERVICES ARCHITECTURE FOR LOW-CODE DECENTRALIZED
MACHINE INTELLIGENCE

Vincenzo Lomonaco∗, Valerio De Caro∗, Claudio Gallicchio∗, Antonio Carta∗, Christos Sardianos†,
Iraklis Varlamis†, Konstantinos Tserpes†, Massimo Coppola‡, Mina Marmpena⋆, Sevasti Politi⋆,

Erwin Schoitsch∓, Davide Bacciu∗

∗Università di Pisa, †Harokopio University of Athens, ⋆Information Technology for Market Leadership,
∓Austrian Institute of Technology, ‡Consiglio Nazionale delle Ricerche

ABSTRACT

Artificial Intelligence and Machine Learning toolkits such
as Scikit-learn, PyTorch and Tensorflow provide today a
solid starting point for the rapid prototyping of R&D solu-
tions. However, they can be hardly ported to heterogeneous
decentralised hardware and real-world production environ-
ments. A common practice involves outsourcing deployment
solutions to scalable cloud infrastructures such as Amazon
SageMaker or Microsoft Azure. In this paper, we proposed
an open-source microservices-based architecture for decen-
tralised machine intelligence which aims at bringing R&D
and deployment functionalities closer following a low-code
approach. Such an approach would guarantee flexible in-
tegration of cutting-edge functionalities while preserving
complete control over the deployed solutions at negligible
costs and maintenance efforts.

Index Terms— Artificial Intelligence, Microservices,
Decentralized Learning and Inference, Pervasive Computing

1. INTRODUCTION

Artificial Intelligence and Machine Learning solutions are
invaluable cutting-edge technologies that enable products
and services even unthinkable a few decades ago, from au-
tonomous vehicles to digital personal agents, running in our
smartwatches. However, most of those solutions are based on
three main assets: i) a large quantity of high-quality, labeled
data; ii) a scalable integration and deployment infrastructure
for efficient continuous training; iii) strong expertise in AI,
data science, and engineering. Those needs often prevent
large-scale adoption of these technologies from small and
medium enterprises which can neither afford to outsource to
large centralized cloud infrastructures their AI solutions nor
face the frictions of in-house development.

Open-source R&D libraries such as Scikit-learn [1], Py-
Torch [2], and Tensorflow [3] have significantly lowered the

This research was supported by the TEACHING project, funded by the
EU Horizon 2020 research and innovation programme under GA n. 871385.

Fig. 1. General architecture of the TEACHING platform
based on Dockerized micro-services (a). Images for different
architectures and hardware are easily downloadable through
Docker-Hub2 with off-the-shelf AI functionalities made avail-
able by the AI-Toolkit library (b), as one of the key compo-
nents of the platform.

barriers to the development of machine-learning based R&D
projects. However, they still require specialized human re-
sources to prototype and then deploy optimized solutions de-
pending on the desired target use case. In this paper we pro-
pose a way to bridge this gap by providing the following key
original contributions:

1. We propose a microservice-based architecture for de-
centralised machine intelligence (Section 2).

2. We discuss the development of off-the-shelf AI method-
ologies, functional building blocks and low-code ap-
proaches for maximizing easiness of deployment and
system autonomy (Section 3).

3. We show initial results of the application of such tech-



nology and methodologies in a real-world stress predic-
tion from physiological signals task (Section 4.1).

4. Finally, we release the open-source implementation of
the library (hereafter denoted as the “AI-Tookit”) freely
accessible on GitHub3.

2. OVERALL ARCHITECTURE DESIGN

The AI-Toolkit has been developed within the European
project TEACHING [4] to support the development of trust-
worthy autonomous cyber-physical applications through
Human-Centred Intelligence. An initial blueprint and demon-
stration of the AI-Toolkit has been described in [5]. Such a
toolkit leverages the “TEACHING platform” [4], a distributed
computing infrastructure based on dockerized microservices
as shown in Fig. 1. A message broker allows the dynamic
definition of data workflows that may run on any platform that
supports Docker containers (e.g. desktops, servers, embed-
ded boards, etc.). Computational workflows can be deployed
across multiple platforms. The key idea is that application de-
velopers should be able to use an abstract language to describe
the data workflows that they want to deploy, and the system
should be able to implement it transparently. In this context,
a TEACHING Application is essentially modeled as a data
workflow that is meant to close the loop between the ma-
chine and the human. Such a workflow may contain AI-based
components which will be better discussed in Section 3. The
TEACHING platform has been designed to support two types
of end users for the TEACHING Platform: the core function-
alities developers and the application developer/provider. The
core developer manages the code through a GitHub4 project
and an automated Continuous Integration and Deployment
(CI/CD) pipeline builds the Docker images to be deployed
for the platform or each application. The Application devel-
oper then defines the application model as a data workflow
and deploys it in one or more target systems. The Platform
design focuses primarily on meeting the requirements of the
application developer and encompasses four key objectives:
monitoring, quantification, integration, and programmability.
Monitoring and quantification are achieved by introducing
data workflows that aggregate human and system monitoring
data sources as well as ML models (quantification). Inte-
gration is possible through the inclusion of components at
the ends of the workflow that can interact with the target
AI-based system that is outside of TEACHING’s control. Fi-
nally, programmability is achieved using architecture patterns
that allow the creation of dynamic workflows over abstract
declarations provided by the end users, with minimal inter-
vention in their code. Towards that end, several features
have been developed. In the next section, we focus on the
AI-Toolkit, that is a specific library within the TEACHING

3https://github.com/EU-TEACHING/teaching-ai-toolkit
4https://github.com

Fig. 2. Low-code definition of the application computational
graph. AI pre-processing, training, and inference nodes can
be easily instantiated with logical data flow and dependency
connections as defined through a docker-composed yaml con-
figuration file with its parameters.

platform supporting its AI functionalities.

3. AI-TOOLKIT AND OFF-THE-SHELF NODES

The AI-Toolkit collects and implements the AI microservices
for a TEACHING application. As we mentioned above, a
TEACHING application defines a computational graph as a
docker-compose application (as shown in Fig. 2). The graph
is composed of several nodes (microservices) that act as data
Producers, Consumers, or both. The communication (ex-
change of JSON-based DataPackets) is handled by RabbitMQ
[6] in a completely transparent way. The AI-Toolkit collects
all the nodes that can be used for defining learning and in-
ference modules implementing the overall AI features of any
TEACHING app. The AI-Toolkit reflects the microservice-
based nature of the TEACHING platform. As such, it does
not force any constraints apart from the basic API for com-
munication, training, inference, and data/configuration han-
dling. This means that the AI-Toolkit, while providing sig-
nificant support to the development of the AI functionalities
within the app, can be tailored for the specific use cases and
hardware platform. In particular, the AI-toolkit offers native
off-the-shelf support for:

1. Sequence learning: Learning from structured sequen-
tial data is a key property of intelligence [7, 8]. It in-
herently relates to the ability to predict the future and
know ”what is next”. Within the AI-Toolkit we offer
native support for recurrent neural networks for time-
series forecasting and classification, which can work
within weakly supervised or unsupervised regimes.

2. Stress-Prediction: built on top of our sequence learning
algorithms we offer a state-of-the-art generally appli-
cable predictor for stress recognition based on physio-
logical data, such as Electrodermal Activity (EDA) or
Photoplethysmographic (PPG) signals [9].

3. Human-Centric Personalization via Reinforcement

https://github.com/EU-TEACHING/teaching-ai-toolkit
https://github.com


Learning: While many applications can be built based
on labeled data and supervised learning, it is also
important to consider tasks and environments where
learning comes through intrinsic or extrinsic rewards.
Within the AI-Toolkit we offer native support to pre-
dictors personalization based on reinforcement learning
[10].

4. Anomaly Detection and Cybersecurity: the ability to
identify irregularities is crucial for any autonomous
system. By utilizing the Long Short-Term Memory
AutoEncoder architecture [11, 12], this module can
effectively facilitate semi-supervised learning from
sequential data. The module can act as an intrusion
detection system, thereby enabling AI-toolkit to offer
support for cybersecurity measures.

5. Dependable and Privacy Estimation: Finally, we fo-
cused on the offering of dependable applications that
can work within defined guarantees and are aware of
the privacy leaked through learning, potentially offer-
ing a better tunable trade-off between privacy and per-
formance [13, 14].

Without the pretense of completeness, such off-the-shelf
functionalities constitute just a variegate example of what it is
possible to build on top of the AI-Toolkit and the TEACHING
platform microservices infrastructure.

3.1. Lower Level Functionalities

While off-the-shelf modules offer AI-Tookit nodes that can be
instantiated right away through low-code solutions, the AI-
Toolkit is hierarchically structured in basic utilities that can
be used to define new nodes at ease:

• Base Python Classes: At the moment, the AI-Toolkit
offers a set of base Python classes that can be inher-
ited to simplify the development of new nodes. Figure
3 shows the basic API of every node. While we of-
fer simplified Python interfaces, this does not limit the
ability of the application developer to define heteroge-
neous nodes custom other dependencies.

• Training and Inference: It is important to note that each
node in the application computational graph can be in-
stantiated with different parameters which define the
microservice behaviours. Each AI node can then be
used for inference (prediction only), training, or both.

• Reservoir computing: Learning on constrained hard-
ware and edge devices can be very demanding. Within
the AI-Toolkit we offer basic utilities to train and
use (partially) randomized neural networks exploiting
their inner complex temporal dynamics. Such net-
works are generally more efficient to train, smaller and
less energy-demanding. General Echo State Networks
(ESN) for sequential classification and time-series fore-
casting are implemented in TensorFlow.

Fig. 3. Main Application Program Interface (API) for every
AI-toolkit microservice (node). Each node has to implement
at least three main functions to build, initialise and call its
main offered functionality as a new data package arrives.

• Pre-processing: Nodes in the computational graph are
not necessarily related to predictive models, but may
be also microservices offering data preprocessing and
synchronization functionalities.

• Federated Learning: An application computational
graph is generally intended as running on a single ma-
chine even though services (our nodes) can be easily
distributed across several machines. Such applications
may leverage “clones” of the computational graph,
which are running in a distributed setting and perform
federated learning. The AI-Toolkit offers transparent
support for it, with the basic indication of a web server
to contact to create clone groups.

• Continual Learning: Mixing learning and inference
is key for any autonomous application facing real-
world ever-changing conditions. However, learning
from non-stationary data streams may pose some is-
sues related to catastrophic interference. Within the
AI-Toolkit we offer basic utilities to support training in
a continual setting with experience replay [15, 16].

3.2. Defining Custom Nodes

The AI-Toolkit has been designed to be as modular and flex-
ible as possible, allowing for easy customization. In addi-
tion to the off-the-shelf nodes, it also supports the defini-
tion and development of custom nodes. Implementing a new
node can be fairly straightforward. Let us consider Figure
3 as a reference. Overall, we just need to define three key
methods: init , build and call . The combina-
tion of the init and the build methods allows to per-



form the lazy initialization of the node: the former performs
the parametrization of the execution environment, while the
latter initializes the node during the first call of the internal
logic. The call method implements the rationale of the
node. To do so, it relies on the TEACHINGNode decora-
tor, which determines whether the node is a producer, a con-
sumer or both with respect to the other components in the
system. In particular, if consume=True, then the call
method’s header must be equipped with an input generator in-
put fn which provides the DataPackets from nodes upstream.
If produce=True then the call method needs to yield a
DataPacket: this will be downstreamed automatically to the
(eventual) consumer nodes.

4. APPLICATION DEFINITION AND DEPLOYMENT

A TEACHING application can be deployed on any operating
system supporting Docker Compose (e.g. Windows, Mac
OS, or Linux). Using Windows, it can be easily installed
with Windows Subsystem for Linux (WSL2) and Docker
Desktop5. Once the environment is properly configured,
running the computational graph for an application is as sim-
ple as running docker-compose directly within your WSL
image (e.g. Ubuntu based). Once you have defined your
my-application.yml you can run it simply by running a few
lines of code as shown in Figure 4.

Fig. 4. Deploying a TEACHING application leveraging the
AI-tookit is as simple as running a Docker-Compose appli-
cation as defined within the ”my-application.yml” definition
file.

4.1. Stress Level Prediction using Echo State Networks

In Section 4 we described how we can easily set up and
deploy an AI application leveraging the AI-Toolkit and the
TEACHING platform. Such application is indeed describing
the implementation of a basic use-case for human-state-
monitoring, i.e. real-time stress-level predictions based on
Electrodermal Activity (EDA; sometimes known as galvanic

5More instructions and FAQ about the deploying procedure can be
found in our documentation: https://github.com/EU-TEACHING/teaching-
ai-toolkit

skin response, or GSR) [17]. EDA signals can be collected
with non-invasive wearable sensors (e.g. smart gloves or
smart watches) and real-time predictions can be computed di-
rectly on the edge for better privacy and personalization. For
such reason, the off-the-shelf stress-prediction node lever-
aging Echo-State-Networks (ESNs) can be used. In Figure
5 a logging trace example is reported for a stress predic-
tion node trained on real-world data of a subject placed in
an autonomous driving simulator based on Carla [18]. In
particular, the subject was wearing Shimmer Sensors6 in a
controlled setting and a simulated stress ground truth was
generated based on the simulated vehicle lateral acceleration
and velocity. If treated as a classification problem (as for
classifying the level of stress in highly stressed, normal, and
relaxed) at any point in time during the sequence, the model
was able to reach about 94% in accuracy.

Fig. 5. Example trace of the stress prediction (orange) against
the ground truth (blue) for a subject placed in an autonomous
driving simulator based on Carla [18].

While this represents just a simple application of the AI-
Toolkit functionalities, we can envision its usage in other
trustworthy autonomous cyber-physical applications with hu-
mans in the loop such as avionics, another key use-case of the
TEACHING project [4].

5. CONCLUSIONS & FUTURE WORKS

In this paper, we proposed a low-code microservices architec-
ture for decentralised machine intelligence. Such a prototype,
developed within the scope of the TEACHING project, pro-
vides a solid starting point to make our AI systems more per-
vasive and autonomous, reducing the friction in their proto-
typing and deployment in heterogeneous, distributed settings.
In future works we plan to extend this toolkit and platform
on three main aspects: i) provide a visual low-code solution
to easily create AI applications without any knowledge about
docker-compose; ii) expand the number of off-the-shelf nodes
and docker images; iii) expand the support for low-level util-
ities for custom functionalities.

6https://shimmersensing.com

https://shimmersensing.com


6. REFERENCES

[1] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al., “Scikit-learn: Machine learning in
python,” the Journal of machine Learning research, vol.
12, pp. 2825–2830, 2011.

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information
processing systems, vol. 32, 2019.

[3] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.,
“Tensorflow: a system for large-scale machine learn-
ing.,” in Proc. of 12th USENIX OSDI. Savannah, GA,
USA, 2016, pp. 265–283.

[4] Davide Bacciu, Siranush Akarmazyan, Eric Armen-
gaud, Manlio Bacco, George Bravos, Calogero Calan-
dra, Emanuele Carlini, Antonio Carta, Pietro Cassarà,
Massimo Coppola, et al., “Teaching-trustworthy au-
tonomous cyber-physical applications through human-
centred intelligence,” in 2021 IEEE International Con-
ference on Omni-Layer Intelligent Systems (COINS).
IEEE, 2021, pp. 1–6.

[5] Valerio De Caro, Saira Bano, Achilles Machumilane,
Alberto Gotta, Pietro Cassarà, Antonio Carta, Rudy
Semola, Christos Sardianos, Christos Chronis, Iraklis
Varlamis, et al., “Ai-as-a-service toolkit for human-
centered intelligence in autonomous driving,” in 2022
IEEE International Conference on Pervasive Comput-
ing and Communications Workshops and other Affili-
ated Events (PerCom Workshops). IEEE, 2022, pp. 91–
93.

[6] David Dossot, RabbitMQ essentials, Packt Publishing
Ltd, 2014.

[7] Benjamin A Clegg, Gregory J DiGirolamo, and
Steven W Keele, “Sequence learning,” Trends in cogni-
tive sciences, vol. 2, no. 8, pp. 275–281, 1998.

[8] Davide Maltoni and Vincenzo Lomonaco, “Semi-
supervised tuning from temporal coherence,” in 2016
23rd International Conference on Pattern Recognition
(ICPR). IEEE, 2016, pp. 2509–2514.

[9] Jorge Rodrı́guez-Arce, Liliana Lara-Flores, Otniel
Portillo-Rodrı́guez, and Rigoberto Martı́nez-Méndez,
“Towards an anxiety and stress recognition system

for academic environments based on physiological
features,” Computer methods and programs in
biomedicine, vol. 190, pp. 105408, 2020.

[10] Christos Chronis, Christos Sardianos, Iraklis Varlamis,
Dimitrios Michail, and Konstantinos Tserpes, “A driv-
ing profile recommender system for autonomous driving
using sensor data and reinforcement learning,” in 25th
Pan-Hellenic Conference on Informatics, 2021, pp. 33–
38.

[11] Pankaj Malhotra, Lovekesh Vig, Gautam M. Shroff, and
Puneet Agarwal, “Long short term memory networks
for anomaly detection in time series,” in The European
Symposium on Artificial Neural Networks, 2015.

[12] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi
Anand, Lovekesh Vig, Puneet Agarwal, and Gautam M.
Shroff, “Lstm-based encoder-decoder for multi-sensor
anomaly detection,” ArXiv, vol. abs/1607.00148, 2016.

[13] Georg Macher, Siranush Akarmazyan, Eric Armengaud,
Davide Bacciu, Calogero Calandra, Herbert Danzinger,
Patrizio Dazzi, Charalampos Davalas, Maria Carmela
De Gennaro, Angela Dimitriou, et al., “Dependable in-
tegration concepts for human-centric ai-based systems,”
in Computer Safety, Reliability, and Security. SAFE-
COMP 2021 Workshops: DECSoS, MAPSOD, DepDe-
vOps, USDAI, and WAISE, York, UK, September 7,
2021, Proceedings 40. Springer, 2021, pp. 11–23.

[14] Davide Bacciu, Antonio Carta, Daniele Di Sarli, Clau-
dio Gallicchio, Vincenzo Lomonaco, and Salvatore
Petroni, “Towards Functional Safety Compliance of Re-
current Neural Networks,” in Proceedings of the 1st
International Conference on AI for People: Towards
Sustainable AI, CAIP 2021, 20-24 November 2021,
Bologna, Italy, Dec. 2021.

[15] Vincenzo Lomonaco, “Continual learning with deep ar-
chitectures,” 2019.

[16] Andrea Cossu, Davide Bacciu, Antonio Carta, Claudio
Gallicchio, and Vincenzo Lomonaco, “Continual learn-
ing with echo state networks,” European Symposium on
Artificial Neural Networks (ESANN), 2021.

[17] Federico Matteoni, Andrea Cossu, Claudio Gallicchio,
Vincenzo Lomonaco, and Davide Bacciu, “Continual
learning for human state monitoring,” European Sym-
posium on Artificial Neural Networks (ESANN), 2021.

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun, “Carla: An open ur-
ban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.


	 Introduction
	 Overall Architecture Design
	 AI-Toolkit and Off-the-Shelf Nodes
	 Lower Level Functionalities
	 Defining Custom Nodes

	 Application Definition and Deployment
	 Stress Level Prediction using Echo State Networks

	 Conclusions & Future Works
	 References

