CHEMICAL SCIENCES

CHEMICAL INTERACTIONS AND GLASS FORMATION IN THE As2S3 - TIGaSe2 SYSTEM

Ahmedova C.

Ph.D., Associate Professor, Adiyaman University, Faculty of Arts and Sciences, Department of Chemistry, Turkey

ХИМИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ И СТЕКЛООБРАЗОВАНИЕ В СИСТЕМЕ As₂S₃ – TIGaSe₂

Ахмедова Дж.А.

К.х.н., доцент, Адыяманский университет, факультет искусств и наук, кафедра химия, Турция. https://doi.org/10.5281/zenodo.8091161

Abstract

The T-x phase diagram of the As₂S₃-TIGaSe₂ system was built using the methods of physical and chemical analysis: differential thermal analysis (DTA), X-ray phase analysis (XRD), microstructural analysis (MSA), as well as microhardness and density measurements. It has been established that the phase diagram of the As₂S₃ - TIGaSe₂ system belongs to the quasi-binary eutectic type. Limited areas of solid solutions based on the initial components were found in the system. Solid solutions based on As₂S₃ reach up to 1.5 mol % TIGaSe₂, and based on TIGaS₂ up to -12 mol % As₂S₃. The As₂S₃ and TIGaSe₂ compounds form a eutectic with a composition of 20 mol % As₂S₃, temperature 260°C. During conventional cooling in the As₂S₃-TIGaSe₂ system based on As₂S₃, the glass formation region expands to 15 mol % TIGaSe₂.

Аннотация

T-х фазовая диаграмма системы As_2S_3 -TIGaSe₂ построена с использованием методов физико-химического анализа: дифференциального термического анализа (ДТА), рентгенофазового анализа (РФА), микроструктурного анализа (МСА), а также измерением микротвердости и плотности. Установлено, что фазовая диаграмма системы As_2S_3 - TIGaSe₂ относится к квазибинарному эвтектическому типу. В системе обнаружены ограниченные участки твердых растворов на основе исходных компонентов. Твердые растворы на основе As_2S_3 достигают до 1,5 мол. % TIGaSe₂, а на основе TIGaS₂ до -12 мол. % As_2S_3 . Соединения As_2S_3 и TIGaSe₂ образуют эвтектику состава 20 мол. % As_2S_3 , при температуре 255°С. При обычном охлаждении в системе As_2S_3 -TIGaSe₂ на основе As_2S_3 область стеклообразования расширяется до 15 мол. % TIGaSe₂.

Keywords: system, quasi-binary, eutectic, microhardness, glass formation. **Ключевые слова:** система, квазибинарная, эвтектика, микротвердость, стеклообразования.

Введение

Стеклообразные соединения мышьяка As₂S₃, As₂Se₃ в халькогенидных стеклах являются полупроводниковыми материалами и обладают уникальными функциональными свойствами. Халькогениды мышьяка и стекловидные сплавы на их основе, новые сложные фазы являются материалами с фотоэлектрическими [1-7], люминесцентными свойствами, широко применяемыми в цветном телевидении [8-10], ИК-оптике в центрах памяти.

Последние годы халькогенидные волокна [11-13] на основе As_2S_3 и As_2Se_3 используются для передачи света в среднем ИК-диапазоне и нашли применение в качестве компактной нелинейной среды, позволяющей комбинационное усиление [14] и генерацию [15].

В литературе изучено много систем, содержащих таллий и галлий, получены тройные и более сложные полупроводниковые фазы обладающие фотоэлектрическими свойствами [16-20]. Ранее нами были изучены многокомпонентные системы халькогенидов мышьяка As₂S₃ с TlInS₂(Se₂,Te₂) [21–23]. А системы As₂S₃ - TlGaSe₂ изучаются впервые. Целью данной работы является изучение взаимодействия и стеклообразования в системе As₂Se₃-TlGaSe₂, а также поиск новых полупроводниковых фаз.

Компоненты системы As₂S₃ и TlGaSe₂ характеризуются следующими данными: Соединение As₂S₃ плавится с открытым максимумом при 310°C и кристаллизуется в моноклинной сингонии с параметрами решетки: a=11,49; b=9,59; c=4,25 Å, $\beta=90°27'$ (пр. гр. P2/n) [24]. Плотность и микротвердость кристаллического As₂S₃ равны 3,46 г/см₃ и 660 МПа соответственно, а стеклообразного As₂S₃ плотность равна 3,20 г/см³, микротвердость 1350 МПа [24]. СоединениеTlGaSe₂ плавится конгруэнтно при 817°C и кристаллизуется в тетрагональной сингонии с параметрами элементарной ячейки: a=7,62; c=30,5 Å, z=16, плотностью и микротвердостью соответственно $\rho=6,47$ г/см³, Нµ 820 МПа [25, 26].

Экспериментальная часть

Сплавы системы As_2S_3 -TlGaSe₂ получали из компонентов As_2S_3 и TlGaSe₂ в вакуумированных до 0,133 Па кварцевых ампулах в интервале темпе-

ратур 600-1000°С. Для получения равновесного состояния сплавов системы отжиг проводили при 300°С в течение 240 ч.

Исследование проводили методами физикохимического анализа: дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализов, а также измерением микротвердости и определением плотности.

ДТА сплавов системы был осуществлен на приборе HTP -73 со скоростью 10 град/мин. РФА проводили на рентгеновском приборе модели D2 PHASER в СиК $_{\alpha}$ - излучении с Ni-фильтром. МСА сплавов системы исследовали на микроскопе МИМ-8 на предварительно протравленных шлифах, полированных пастой ГОИ. Микротвердость сплавов системы измеряли на микротвердомере ПМТ-3. Плотность сплавов системы определяли пикнометрическим методом, в качестве наполнителя применяли толуол.

Результаты и их обсуждение

Сплавы системы As_2S_3 -TIGaSe₂ получаются в компактном состоянии, их цвет меняется от красного до рубиново-красного. Сплавы в диапазоне 0-15 мол. % концентрации TIGaSe₂ получены в стеклообразном состоянии. Все сплавы системы устойчивы к воздуху, воде и органическим растворителям, плохо растворяются даже в минеральных кислотах. Сплавы, богатые As_2S_3 , хорошо растворяются в концентрированных минеральных кислотах HNO₃ и H₂SO₄. Сплавы системы также хорошо растворимы в сильных щелочах (NaOH, KOH).

Для достижения кристаллизации стеклообразных сплавов их подвергали длительному отжигу при 220°С в течение 720 ч. Сплавы системы As₂S₃-TlGaSe₂ исследовались до и после отжига

ДТА показал, что до отжига термограммы сплавов системы имели температуру размягчения Tg. После длительного отжига при 200°С в течение 720 ч на термограммах сплавов исчезают температуры размягчения (175–200°С), но сохраняются эффекты, связанные с солидусом и ликвидусом (табл. 1).

Микроструктура сплавов системы As_2S_3 -TIGaSe₂ до отжига представляет собой одну мутную фазу. Для получения кристаллического состояния все сплавы подвергались отжигу. После кристаллизации стеклообразных образцов в структуре отчетливо видны отдельные фазы. Микроструктура сплавов системы As_2S_3 -TIGaSe₂ представлена на рис. 1 а, б, в. На рис. 1 видно, что микроструктура сплава из области стекла а) и сплава из двухфазной области б) и в) сплава твердого раствора на основе соединения TIGaSe₂.

Рис. 1. Микроструктуры сплавов системы As₂S₃-TlGaSe₂. a)-15 мол, %, б)-50 мол, %, в)-90 мол. % TlGaSe₂.

Для уточнения результатов ДТА и МСА был проведен рентгенофазовый анализ сплавов системы As_2S_3 -TlGaSe₂ до и после отжига. Рентгенофазовый анализ сплавов системы перед отжигом представлен на рис.2. Как видно из рис. 2, на рентгенограмме сплавов системы As_2S_3 -TlGaSe₂, содер-

жащих 5 и 15 мол. % TlGaSe₂ дифракционных линий не наблюдается. Это свидетельствует о том, что полученные образцы находятся в стеклообразном состоянии. На дифрактограмме сплава 30 мол. % TlGaSe₂ проявляются слабые дифракционные линии, этот образец относится к стеклокристаллической области.

Рис. 2. Дифрактограммы сплавов системы As₂S₃-TlGaSe₂ до отжига. 1- As₂S₃, 2-5 мол. %, 3-15 мол. %, 4-30 мол. % TlGaSe₂.

По результатам физико-химических данных построена T-х фазовая диаграмма системы As_2S_3 -TlGaSe₂ (рис. 3). T-фазовая диаграмма системы As_2S_3 - TlGaSe₂ относится к квазибинарному эвтектическому типу. В системе соединения As_2S_3 и TlGaSe₂ образуют эвтектику состава 20 мол. % TlGaSe₂ и температуре 255°C. Установлено, что твердые растворы на основе As_2S_3 достигают до 1,2 мол. % TlGaSe₂, а на основе TlGaSe₂ до -12 мол. % As₂S₃.

Ликвидус системы состоит из моновариантных кривых первичной кристаллизации α твердых растворов на основе As₂S₃ и β твердых растворов на основе TlGaSe₂. Совместная кристаллизация α - и β фаз заканчивается в двойной эвтектической точке: Ж $\leftrightarrow \alpha + \beta$.

В системе As_2S_3 - TIGaSe₂ при обычном охлаждении область стеклообразования достигает до 15 мол. % TIGaSe₂, а стеклокристаллическая область простирается от 15 до 30 мол. % TIGaSe₂.

Рис. 3. Т-х фазовая диаграмма системы As₂S₃ - TlGaSe₂.

Некоторые физико-химические свойства системы As_2S_3 -TlGaSe₂ до термообработки приведены в табл. 1. При измерении микротвердости литых сплавов системы As_2S_3 -TlGaSe₂ были обнаружены два ряда значений (табл. 1). Значение

микротвердости $H\mu = (135-1400)$ МПа соответствует микротвердости α -фазы твердых растворов на основе As_2S_3 и второй β -фазы твердых растворов на основе TlGaSe₂ $H\mu = (820-870)$ МПа.

Таблица 1.

Составы, результаты ДТА, измерения микротвердости и определения плотности сплавов системы As₂S₃-TlGaSe₂ до отжига

Состав, мол. %				Микротвердость фаз, МПа	
As_2S_3	Tl GaSe ₂	Термические эф- фекты, °С	Плотность 10 ³ кг/м ³	α	β
				P=0,15 H	
100	0	170, 310	3,20	1350	-
97	3,0	170,305	3,36	1370	-
95	5,0	170,260,300	3,45	1390	-
90	10	170,255,290	3,53	1390	-
85	15	175,155	3,70	1390	-
80	20	175,155	3,85	1390	-
75	25	175,255,410	4,08	1390	870
70	30	180,255,500	4,18	1390	870

Таблина 2.

Аздаз- польед после отжита									
Состав, мол. %		Tomaria of		Микротвердость фаз, МПа					
As ₂ S ₃	TlAsSe ₂	термические эф- фекты нагревания, °С	Плотность, 10 ³ кг/м ³	α	β				
				P=0,1 H					
100	0	310	3,46	670	-				
97	3,0	310	3,50	690	-				
95	5,0	260,300	3,59	730	-				
90	10	255,290	3,76	760	-				
85	15	155	3,91	-	-				
80	20	155	4,06	Эвтек.	Эвтек.				
75	25	255,410	4,20	-	-				
70	30	255,500	4,36	-	870				
60	40	255,610	4,66	-	870				
50	50	255,660	4,96	-	870				
40	60	255,700	5,25	-	870				
30	70	255,740	5,59	-	870				
20	80	255,765	5,95	-	870				
10	90	375,790	6,50	-	860				
5,0	95	550,800	6,49	-	850				
0,0	100	817	6,47	-	820				

Составы, результаты ДТА, измерения микротвердости и определения плотности сплавов системы As2S3-TIGaSe2 после отжига

После отжига микротвердость сплавов системы As_2S_3 -TlGaSe₂ для α -фазы составляет (670-770) МПа, а для β -фазы значения микротвердости $H\mu = (820\text{-}870)$ МПа остаются неизменными (табл. 2).

Заключение

Химическое взаимодействие и стеклообразование в системе As₂S₃-TlGaSe₂ изучались методами физико-химического анализа: дифференциальнотермического анализа (ДТА), рентгенофазового анализа (РФА), микроструктурного анализа (МСА), а также измерением микротвердости и плотности, построена Т-х фазовая диаграмма. Диаграмма состояния системы As_2S_3 - TlGaSe₂ относится к квазибинарному эвтектическому типу. Совместная кристаллизация As₂S₃ и TlGaSe₂ заканчивается эвтектикой, состав которой достигает 20 мол. %, TlGaSe₂ и температуре 255°С. В системе As₂S₃-TlGaSe₂ твердые растворы на основе As₂S₃ простираются до 1,5 мол. % TlGaSe₂, а на основе TlGaSe₂ до -12 мол. % As₂S₃. Установлено, что при обычном охлаждении в системе на основе As₂S₃ область стеклообразования расширяется до 15 мол. % TlGaSe₂.

Список литературы:

1. Dinesh Chandra SATI1, Rajendra KUMAR, Ram Mohan MEHRA Influence of Thickness Oil Optical Properties of a: As₂Se₃ Thin Films // Turk J Phys, 2006. V.30. P.519- 527.

2. Lovu M., Shutov S., Rebeja S., Colomeyco E., Popescu M. Effect of metal additives on photodarkening kinetics in amorphous As_2Se_3 films // Journal of Optoelectronics and Advanced Materials 2000. V. 2, Issue: 1. P 53-58.

3. Jun J. Li Drabold. D. A.. Atomistic comparison between stoichiometric and nonstoichiometric glasses: The cases of As_2Se_3 and As_4Se_4 // Phys. Rev. 2001, V. 64. P. 104206-104213. 4. Кириленко В.В., Дембовский С.А., Поляков Ю.А. Оптические свойства стекол в системах As₂S₃–TlS и As₂Se₃–TlSe // Известия АН СССР. Неорганические материалы, 1975, т.11, №11, с.1923-1928.

5. Алиев И.И., Бабанлы М.Б., Фарзалиев А.А. Оптические и фотоэлектрические свойства тонких пленок стекол (As₂Se₃)_{1-x}(TlSe)_x (x=0,05-0,10) // XI Международная конференция по физике и технологии тонких пленок. Иваново-Франковск, Украина, 7-12 мая, 2007, с. 86.

6. Hineva T., Petkova T., Popov C., Pektov P.. Reithmaier J. P., Funrmann-Lieker T., Axente E.. Sima F.. Mihailescu C. N., Socol G., Mihailescu I. N. Optical study of thin $(As_2Se_3)_{1-x}(AgI)_x$ films // Journal of optoelektronics and Advanced Materials. 2007.V. 9. No. 2. February. P. 326 – 329.

7. Seema Kandpal, Kushwaha R. P. S.. Photoacoustic spectroscopy of thin films of As₂S₃, As₂Se₃ and GeSe₂ // Indian Academy of Sciences. PRAM ANA journal of physics. 2007. V. 69. No. 3. P. 481-484.

8. Andriesh A.M., Verlan V. I.. Donor- and acceptor-like center revealing by Photoconduktivity of amorphous thin As₂Se₃ films // Journal of Optoelectronic and Advanced Materials 2001. V. 3. No. 2, June. P. 455 – 458.

9. Бабаев А. А., Мурадов Р., Султанов С. Б., Асхабов А. М.. Влияние условий получения на оптические и фотолюминесцентные свойства стеклообразных As₂S₃ // Неорган. материалы. 2008. №11. Т.44. С. 1187-1201.

10. Bhawana Dabas and R. K. Sinha Dispersion Properties of Chalcogenide As₂Se₃ Glass Photonic Crystal Fiber // ICOP 2009-International Conference on Optics and Photonics Chandigarh, India, 30 Oct.-1 Nov.2009. P. 123-127. 11. Littler I. C. M., Fu L. B., Mägi E. C., Pudo D., Eggleton B. J., Widely tunable, acoustooptic resonances in Chalcogenide As_2Se_3 fiber // Optics Express. 2006.V. 14. Issue 18. P. 8088- 8095.

12. Slusher R.E., Lenz G., Hodelin J., Sanghera J., Shaw L.B., and Aggarwal I.D. Large Raman gain and nonlinear phase shifts in high-purity As₂Se₃ Chalcogenide fibers // J. Opt. Soc. Am. 2004. B. 21. P. 1146-1155.

13. Jackson S.D. and Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser // Appl. Phys. Lett., 2006. V.88. P. 221106.

14. Fu L.B., Fuerbach A., Littler I.C.M., and Eggleton B.J. Efficient optical pulse compression using Chalcogenide single-mode fibers // Appl. Phys. Lett. 2006. V.88. P. 081116.

15. Fu L.B., Rochette M., Ta'eed V., Moss D., and Eggleton B.J. Investigation of self-phase modulation based optical regeneration in single mode As_2Se_3 Chalcogenide glass fiber // Opt. Express 2005. V. 13. P. 7637-7642.

16. 16.Selahattin Ozdemir, Mahmut Bucurgat. Photoelectical properties of TlGaSe₂ Single Crystals // Solid State Sciences 2014. V.33. P. 26-30. DOI:10.1016/j.solidstatesciences.2014.04.006

17. Alexander K Fedotov, M.I.Tarasik, T. G. Mammadov, Ivan Svito et.oil. Elektrical properties of the layered single crystals TlGaSe₂ and TlInS₂ // Prze-glad Elektrotechniczny. 2012. V. 88(7a). P. 301-304.

18. Şenturk E., Tumbek L., Salehli F., Mikailov F.A., Incommensurate phase properties of TlGaSe2 layered crystals, Crystal Research and Technology. 2005. 40. No. 3. P. 248-252.

19. Abdullayev N.A., Mammadov T.G. S u l e y m a n o v R . A . , Negative thermal expansion in the layered semiconductor $TIGaSe_2$, Physica Status Solidi (b), 242 (2005), 983-989.

20. Seyidov H.Yu., Suleymanov R.A., Anomalies in the electrophysical, thermal, and elastic properties of layered ferroelectric semiconductor TlGaSe₂: Instability in the electronic subsystem, Physics of the Solid State. 2008. V. 50. P.1219-1226.

21. Ahmedova *C*. Phusico-chemical and X-ray structural investigation of alloys of the As_2S_3 -TlInTe₂ system // Norwegian Journal of development of the International Science No 89/2022.P. 13-18. https://doi.org/10.5281/zenodo.6912603

22. Ahmedova C. Synthesis and investigation of glass formation and properties of obtained phases in the As_2S_3 -TlInSe₂ system. Norwegian Journal of development of the International Science No 87/2022. P. 12-17. https://doi.org/10.5281/zenodo.6778279

23. Ahmedova C. Chemical interaction and glass formation in the As_2S_3 -TlInS₂ system and the properties hte obtained phases // The scientific heritage No 93 (2022). P. 7-11.

24. Хворестенко А.С. Халькогениды мышьяка. Обзор из серии Физические и химические свойства твердого тела. - М., 1972. 93 с.

25. Гусуйинов Г.Д., Сеидов Ф.М., Пащаев А.М., Халилов Х.Я., Нани Р.Х. Исследование системы TIS-GaS. Изв. АН СССР. Неорган. материалы. 1972. Т.7. № 1. С.1-2.

26. Hahn H., Wellman B. Uber ternare chalcogenides des Thallium mit gallium und Indium // J. Natuewiss. 1967.V.54. № 2. P.42-45.