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This work investigates a post-perching control for flapping-
wing flying robots (FWFRs) to control and move the system
on a branch. The flapping-wing aerial systems are lightweight
platforms that mimic the birds’ flight and they could serve
for monitoring and inspection. The interaction of the FWFRs
with the environment needs to fulfill perching on a branch,
as a preliminary step, then moving the body to gain access to
the desired pose and workspace. The leg of the robot moves the
bird to the proper position. This work studies the mathematical
modeling, simulation, and experimental implementation of this
topic. A three-degree-of-freedom system is presented to model
the robot’s body, tail, and leg. A nonlinear controller, so-called
feedback linearization (FL) is used for the control of the robot.
A linear quadratic regulator (LQR), plus an integrator, are
embedded in the FL controller to deliver optimal control for the
linearized system. The simulation results show that the actuated
leg extends the workspace of the robot significantly and confirms
the effectiveness of the proposed strategy for body control.
Experimental results present similar behavior of the system
using the proposed controller for different desired setpoints.

Index Terms—Flapping-wing, Aerial robotics, Body control,
Post-perching control.

I. INTRODUCTION

THIS work investigates the stabilization and control of a
flapping-wing flying robot (FWFR) after perching on

a branch. A complete cycle of flight for a flapping-wing
robot includes several phases. Firstly, the FWFR is shot by a
launching system to gain the necessary initial speed. Then the
robot performs a controlled flight towards a branch, which
is the desired final condition of flight and perches on it. The
controlled flight and perching on a branch were investigated
in previous literature [1]; however, the correction of the
posture and orientation of the body were not addressed. The
orientation of the robot after perching might not be desirable
for doing manipulation and the accessible workspace might
not be proper. Hence, the leg of the FWFR should perform a
controlled motion to change the posture of the robot while the
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Fig. 1. The flapping-wing robot and manipulator on top, ready for pick-
and-place task.

claw holds the robot on the branch, please see Fig. 1 which
shows an FWFR placed on a branch in indoor testbed; a
two degree-of-freedom manipulator installed at the tip of the
robot for manipulation of light objects. This work focuses on
the controlled motion of the robot after perching. This topic
has been investigated in the literature (with various scenarios
and objectives) which is reviewed briefly here. Modeling
and experimental study for a bird prototype with claw and
manipulator were presented to consider the effect of motion
of the arm and base on the center-of-mass (CoM) of the robot
[2].

A nonlinear controller was designed for the system and the
prototype was limited to stationary conditions and was not
tested for flight. A controller that was aware of the limitation
of a manipulator for a flapping-wing robot was presented to
avoid the fall while the system was set on a branch [3]. The
aerial system was imitating the bird’s natural behavior and
experimented with a stationary setup. This current work will
simulate, experiment, and perform analysis on a flapping-
wing model for having controlled motion on a branch after
perching. The motivation for this motion control is to increase
the workspace of the mounted manipulator on top of the bird.
The manipulator was designed very lightweight with a 20cm
reach, placed at the tip of the FWFR [4]. The motion of the
robot will increase the workspace drastically, see Fig. 2.
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Fig. 2. The increased workspace of the flapping-wing robot using an active
leg.

The perching topic is not limited to flapping-wing systems
and it was explored with other aerial platforms as well.
Roderick et al. presented a dual-leg design under a multirotor
[5]. The multirotor provided a stable flight condition for the
bio-inspired legs to demonstrate the perching capability of the
system. Lin et al. used a gripper under an unmanned aerial
vehicle (UAV) for perching on top of a round timber post
[6]. Stewart et al. presented a passive claw-shape perching
mechanism for a fixed-wing system that could perch up to
7(m/s) speed [7]. Another example of fixed-wing system
was studied a method to swoop and grasp rapidly using a
passive claw to perch like the birds [8]. Broers and Armanini
presented a soft claw for perching, 45(g), installed under
a multi-copter with perching experiments [9]. The energy
efficiency was considered and a servomotor was selected for
the actuation of the claw considering the minimization of
battery usage.

The claw-shape mechanisms for the perching of “flapping-
wing robots” are hardly reported (there are reports on bio-
inspired claws installed under other platforms such as [5],
[8], [9], but under the flapping-wing systems, rarely seen
[1]). Gomez-Tamm et al. proposed a bio-inspired soft claw
for flapping-wing robots considering the lightweight design
and using shape memory alloy actuators [10]. The power
grip and adaptation to the shape of the branch for perching
or for holding an object were reported though the flight
performance was not mentioned. This work uses a claw
under the flapping-wing robot for holding the robot on a
branch. The controlled flight of the FWFR was investigated
for carrying the leg and manipulator simultaneously [4]. Here
the flight and perch are not the focus, though the paper
involves the motion control on a branch by the leg-claw
subsystem.

The presented model for motion control of the body is a
three-degree-of-freedom (DoF) linkage and is highly nonlin-
ear. Feedback linearization (FL) is a well-known nonlinear
method for controlling such systems, especially in robotics.
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Fig. 3. The schematic and joint definition of the mathematical model of the
FWFR.

Laubscher et al. presented a hybrid impedance sliding mode
control for lower limb exoskeleton control of a biped system,
in which feedback linearization was used for inner loops of
control [11]. Zhang et al. investigated the control of wheeled
mobile robots using a Lyapunov-stable feedback linearization
approach [12]. Modification of the FL controllers is an
important advantage of this method, i.e., a robust feedback
linearization method was proposed for a robotic system [13].
The method was also implemented on a parallel cable-driven
robot [14].

Combining optimal control with the FL method was intro-
duced using various schemes to increase the performance and
reduce the energy consumption in a trade-off. Martins et al.
applied a nonlinear inner-loop FL control on a UAV and also
employed LQR with integrative action in the outer and inner
loop [15]. Application of the LQR design on the linearized
dynamics of a cable-driven mobile robot was illustrated for
increasing load-carrying capacity [16]. Here in this work,
the same approach is used to provide an optimal trade-off
between the error and input control using a linear quadratic
regulator embedded in the feedback linearization structure.

The actuators of the FWFR system are servomotors that
have internal stable proportional-integral-derivative (PID)
controllers. The internal PIDs cannot be accessed for tun-
ing and they impose errors caused by potentiometers and
clearance in gearboxes. The motion capture system in the
testbed provides accurate feedback for the body control and
it will be used to close the loop and override the internal PIDs
of the servomotors to increase the accuracy and implement
nonlinear control.

The main contribution of this work is to deliver the
theoretical and experimental implementation of a nonlinear
control design based on optimal feedback linearization for
the extension of the manipulation range (workspace) of a
flapping-wing flying robot. A claw-leg system generates this
extension for the lightweight manipulator on top of the
FWFR.

The rest of the paper is organized as follows. Section II
presents the mathematical modeling of the system. Section
III expresses the control structure. Section IV presents the
simulation results. Section V presents the details of the
platform and the results of the experimentation. Conclusions
are expressed in Section VI.



II. MATHEMATICAL MODELING

In this section, the assumptions are considered and the
model is made for a maneuver after perching to increase
the workspace of the robot. The contact between the claw
and the branch is assumed completely elastic. The model of
friction for the first joint includes three components: viscous,
dynamic, and static parts. The actuation joints between the
tail and body and between the body and claw are the only
contributing inputs to the model for changing the pose of
the ornithopter. The model studies a post-perching phase,
therefore the motion of the wings is not considered as gener-
alized coordinates in the model. The aerodynamic forces and
moments generated by the movement of the tail are neglected
compared to the one produced by the torque of the second
joint (main actuator of the body).

Considering the robot perched on a branch, the system can
be modeled as a three-degree-of-freedom manipulator, with a
difference in its first joint. The first joint is passive (without
an actuator) and fixed by enough friction. The friction of the
first joint is due to the grasping force of the claw. The model
will allow some small relative movement similar to reality
when the amplitude of the moment is bigger than the friction.
The other two joints are actuated by both inputs given by u2,
u3.

In Fig. 3 a schematic view of the system is shown, where
the three degrees of freedom qi are the angles of the leg,
body, and tail with respect to their local references given by
the direction of the preceding arm, for i = 1,2,3. As stated,
the first joint is passive though it moves due to the change in
the dynamics and moments on the claw. It is similar to what
happens in the real situation for the FWFR, and this is the
reason why although q1 is not actuated, it is considered as the
first generalized coordinate. Modeling the friction is crucial
to prevent the motion of the claw in simulation when the
system moves. This friction modeling emulates the relative
movement between the claw and the branch, based on the
assumption that the first joint is passive and its angle is
considered as a generalized coordinate.

Defining q = [q1,q2,q3]
⊤ (rad) as the joint-angle vector

and u = [0,τ2,τ3]
⊤ (Nm) as the input vector, and applying

the Lagrange method, the equation-of-motion is found as a
coupled system of three differential equations:

M(q)q̈+ c(q, q̇)+g(q)+df(q̇) = u, (1)

where M(q) : R3 → R3×3 is inertia matrix, c(q, q̇) : R3 ×
R3 → R3 presents Coriolis and centrifugal terms and g(q) :
R3 → R3 denotes gravity vector. As already mentioned,
friction is modeled as the result of the dynamic, viscous, and
static components for q1, as it can be seen in the following
expression, where df = [df,1,0,0]⊤ is the friction vector [17]:

df,1 = uvq̇1 +
q̇1

|q̇1|

[
ud +(us −ud)exp

(
−|q̇1|

ε

)]
, (2)

where uv(kgm/s) represents viscous friction, ud(kgm/s2)
indicates dynamic friction and us(kgm/s2) symbolizes static
friction so that the dynamic model is completed.

Moreover, introducing x = [q⊤, q̇⊤]⊤ as the state vector, ẋ,
the state-space model, is found as the first time derivative of
the state-vector, and combining it with Eq. (1), the following
equation is reached:

ẋ =

[
q̇

M−1(q){u− c(q, q̇)−g(q)−df(q̇)}

]
. (3)

III. CONTROL STRUCTURE

An optimal feedback linearization approach has been con-
sidered for motion control and stabilization of the robot. The
state-space equation of the system, Eq. (3), is considered as
a nonlinear time-invariant affine-in-control system:

ẋ = f(x)+g(x,u) = f(x)+B(x)u,
y = h(x),

(4)

where f(x) : Rn → Rn, g(x,u) : Rn ×Rm → Rn and h(x) :
Rn →Rp in which n is the number of states, m is the number
of inputs and p is the number of outputs. The equilibrium
point of the system is f(0) = 0; f(x) and g(x,u) are vector-
valued smooth piecewise continuous functions that satisfy the
Lipschitz condition. Here the measurement of the full state
feedback is considered, then p = n. Consider the generalized
coordinate vector (or a function of that) as the output variable
vector, then continuous differentiation of the outputs provides
[18]:

y(i) = Li
f h(x)+LgLi−1

f h(x)u, (5)

where
Li

f h(x) = L f (Li−1
f h(x))

= ∇(Li−1
f h(x))f(x),

LgLi−1
f h(x) = Lg(Li−2

f h(x))

= ∇(Li−2
f h(x))B(x),

in which ∇(·) = ∂ (·)
∂x is Jacobian and L denotes Lie deriva-

tive. Assuming that the system is controllable, the relative
degree of the system is shown by r satisfying the following
condition:

LgLk
f h(x) = 0, k ≤ r−2,

in the neighborhood of x0 and

LgLr−1
f h(x0) ̸= 0.

The control law of the feedback linearization is in the form
of [18]:

u =
1

LgLr−1
f h(x)

(−Lr
f h(x)+v), (6)

where v is designed by linear quadratic regulator control
approach. The system (4) is linearized around equilibrium
point x = 0 to find linearized matrices for LQR deisgn:

ẋ = Ax+Bv, (7)



TABLE I
THE PARAMETERS OF THE SYSTEM.

parameters value unit source
mb 0.4 kg measured
mt 0.05 kg measured
mc 0.17 kg measured
lb,1 0.2 m measured
lb,2 0.5 m measured
lt 0.4 m measured
lc 0.2 m measured
Ib 0.016333 kgm2 computed
It 0.00066667 kgm2 computed
Ic 0.00056667 kgm2 computed
uv 20 kgm/s estimated
ud 1 kgm/s2 estimated
us 2.5 kgm/s2 estimated
ε 0.0001 − estimated

where A ∈ Rn×n and B ∈ Rn×m. The Pair of {A,B} is a
controllable parameterization of system (4) [19]. The cost
function of optimal control is defined as [20]:

J =
1
2

∫
∞

0
{v⊤Rv+x⊤Qx}dt, (8)

where Q ∈ Rn×n and R ∈ Rm×m are weighting matrices of
states and inputs, respectively. Q is symmetric positive semi-
definite and R is symmetric positive definite. The pair of
{A,Q1/2} is a completely observable parameterization of
system (4).

The control law of the LQR is [21]:

v =−R−1B⊤Kx, (9)

where K ∈ Rn×n is the symmetric positive definite gain of
the control law, the solution to the algebraic matrix Riccati
equation:

(10)A⊤K + KA − KBR−1B⊤K + Q = 0.

There is always a gap between the theoretical models
and experimental setups due to unmodeled terms such as
clearance in joints, a mismatch between the models, different
distribution of inertia in the links and body of the robot
with respect to the theoretical model, error in estimation and
measurement of friction, etc. As a result, an integrator is
augmented to the LQR to eliminate the steady-state error
in the implementation. The effect of this integrator might
not be seen in the simulation; however, the reduction of
steady-state error in the experiment is significant due to the
mismatch in the modeling process. The modified LQR plus
integrator is presented as (considering error in the control
law for generalizing the problem):

v(t) =−R−1B⊤Ke(t)−KI

∫ t

0
e(τ)dτ, (11)

where e(t) = x(t)− xdes in which xdes is the desired state
vector and KI ∈ Rm×m is the integral gain, a symmetric
positive definite matrix.
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Fig. 4. The flapping-wing robot movement in the simulation.
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Fig. 5. The applied input torque to the second link.

IV. SIMULATION

In this section, the simulation methods that are used in
solving the problem are described, as well as the analysis of
the results. First, it is convenient to describe the fundamental
parameters and variables that intervene in the problem. Table
I shows all the physical parameters used for the simulations.
The subscript “b” refers to the body, “t” to the tail, and “c” to
the claw, which are the three parts of the system. The masses
and the lengths were measured directly from the prototype.

Applying Eq. (6) for system (3), the following control law
is obtained:

u = M(x)v+ c(x)+g(x)+df(x), (12)

where u1 = 0 is forced to zero. Considering Table I, the
linearized system matrices are also expressed:

A =

[
03×3 I3×3
03×3 03×3

]
, (13)

B =


0 0 0
0 0 0
0 0 0

79.3805 −116.3394 46.7217
−116.3394 205.6453 −169.4999

46.7217 −169.4999 692.9460

 . (14)
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Fig. 6. The applied input torque to the third link.
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Fig. 7. The variation of the first link of the robot.

The torque limit of the motors, which are taken from the
datasheet is: us = [0,1.266,0.4278]⊤ (Nm). Considering the
first passive joint, the weighting matrices are set as:

Q =


1 0 0 0 0 0
0 50 0 0 0 0
0 0 50 0 0 0
0 0 0 0 0 0
0 0 0 0 10 0
0 0 0 0 0 5

 , (15)

R =

0.01 0 0
0 0.01 0
0 0 0.01

 . (16)

Substituting (13) to (16) into algebraic Riccati equation
(10), the following optimal gain is found:

K =


0.1608 0.0183 0.0036 0.0129 0.0086 0.0012
0.0183 22.3721 0.0032 0.0026 0.0053 0.0010
0.0036 0.0032 15.8156 0.0005 0.0015 0.0013
0.0129 0.0026 0.0005 0.0021 0.0014 0.0002
0.0086 0.0053 0.0015 0.0014 0.0025 0.0005
0.0012 0.0010 0.0013 0.0002 0.0005 0.0004

 . (17)

The final time of the simulation is fixed as tf = 5(s), and the
initial condition for position is q(0) = [2π/3,1.75,−π/6]⊤.
The initial and final conditions of the first link have been
set similarly to keep the robot steady on the branch. Final
desired position is fixed as q(tf) = q(0)⊤+ [0,−1.2,0.3]⊤.
The integrator is only needed for the main body link and
actuator which results in the selection of KI matrix as

KI =

0 0 0
0 10 0
0 0 0

 .
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Fig. 8. The variation of the second link of the robot.
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Fig. 9. The variation of the third link of the robot.

Figure 4 shows the configuration of the robot and links
between the initial and final conditions of the simulation. It
can be seen that there is relatively small movement between
the leg and the branch due to the realistic model of the
joint (with motion and friction) explained in Section II about
the physical model. It is also observed that the rest of the
flapping-wing robot components moved to the desired final
conditions. The magnitude of these input signals can be
seen in Figs. 5 and 6, from which the conclusion is that
the necessary torques to perform these movements are much
lower than the available stall torques of motors. The exerted
torque corresponding to the first degree of freedom is not
shown because, as explained above, it does not have an
actuator; the claw of the flapping-wing robot attached to
the branch, where we find a certain relative movement that
is not due to the action of a motor, but for the reaction
to the motion of the body and tail. Figures 7-12 show the
temporal evolution of the three degrees of freedom and their
corresponding angular velocities during the simulation. It
is observed that the relative movement between the branch
and the leg is, in magnitude of the order, lower than the
movements of the body and the tail. The speeds of the body
and the tail tend to zero, stabilizing the system to be able to
manipulate once the desired position conditions are reached.
It is observed that the angular velocity between the branch
and the leg does not reach exactly zero. This is because
this degree of freedom has been modeled as a movement
(of small magnitude), which presents small changes, but in
reality, it is not entirely true, it actually would be a movement
that ends up stopping. Although the desired final position
is indeed reached, the obtained error is acceptable. Lastly,
it is worth mentioning that, as can be seen in Fig. 4, the
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system movement achieves the goal of this study, which is
to substantially change the space work for manipulation.

V. EXPERIMENTAL PLATFORM AND RESULTS

A manipulation operation after perching needs a stable
platform as the base of the system. It should resist and hold its
position on the branch and hold the robot steady on it while
the manipulator is moving. Due to the size limitation, the
manipulator generates a workspace of 20(cm) in length while
the arm is stretched. So, the leg also could be used as a tool to
extend the workspace as expressed in the introduction. Here
as a preliminary work of the body control after perching, ex-
perimental validation of the feedback linearization with linear
quadratic regulator and integral effect has been implemented
on a real prototype.

The manipulator is a two-degree-of-freedom arm, planar in
XZ plane while gravity is in Z direction. The links of the arm
are 12(mm)-diameter carbon-fiber tubes and the actuators
are lightweight BMS-115HV Blue Bird servomotors, 11.3(g)
each one, producing 5.5(kg.cm) torque at 7.4(V). The total
weight of the system considering a simple 3D printed gripper
and Arduino Micro processing board was gained 76.7(g),
presented in Fig. 13. The flapping-wing flying robot, as the
target platform for carrying the manipulator, is the high-
payload E-Flap prototype [22], modified with an active
leg designed for perching [1]. The leg facilitates the body
control after perching thanks to its high torque 18.5(kg.cm),
generated by low weight 34(g) servomotor, while its energy-
storing claw embraces the branch with maximum grip after
impact and releases the pre-stored energy for grasping.

The purpose of these experimental tests is to ensure that
the feedback linearization (with LQR) controller regulates the

0 1 2 3 4 5

t(s)

-0.5

0

0.5

1

3
(t

)

3

3d

Fig. 12. The angular velocity of the third link of the FWFR.

Fig. 13. The 76.7g manipulator with 3 servomotor actuators and Arduino
Micro processing board.

system to the desired output, as well as to verify its robustness
when modeling errors occur. The servomotors have internal
closed-loop controllers with potentiometer feedback. This
reduces the precision of the system and motivated us to
close the loop with an outer loop controller with Opti-Track
external vision feedback. The Opti-Track system generates
motion capture visual position and orientation feedback of
the robot with 100(Hz) by installing markers on the robot.

The manipulator is located at the head of the E-Flap to
have the maximum reachability of the system for manipula-
tion tasks. In order to keep the shift in the center of mass
of the robot at a minimum level, the arm will spread over
the body during the flight. This concept was investigated and
flight capability was demonstrated in Ref. [4].

The self-programmed controller board consists of a Nanopi
Neo Air with a Quad-core Allwinner H3 processor, where the
nonlinear controller and a kinematic model of the servomo-
tors have been implemented following the control diagram
in Fig. 14. To compensate for the unknown servomotor
behavior, a linear mapping of torque to the position was
regarded to adjust the LQR output to the servomotors input.
As the LQR + Integrator is more robust than FL (presented
in Section III, Eq. (11)), it should handle the uncertainty
between the modeling and experimental platform.

Test without manipulator for validation of the controller.
As a first stage of the experiment, the controller was tested on
the F-flap without the manipulator, to validate the controller.
Figure 15 illustrates how the initial approach to the setpoint
is divided by the effect of the FL+LQR (fast) response and
then the integrator (slow) provides a high accuracy correction



Fig. 14. The control diagram of the practical implementation of feedback linearization plus LQR and integrator design.

Fig. 15. The variation of the second link in the experiment, setpoint 45◦.

Fig. 16. The input torque of the second link in the experiment, and its
components, main signal, and integrator, setpoint 45◦.

with oscillations once close to the desired setpoint. A control
signal breakdown is shown in Fig. 16, where we can see how
the LQR gives the quick input to move the system to the
operating point while the integrator provides the controller
with zero steady-state error. The necessity of an integrator
was already expected and presented in the mathematical
modeling Eq. (11), due to the uncertainty in the modeling
and the unknown behavior of the servomotor (which has an
internal inaccessible controller). Considering a higher second
link reference, as shown in Fig. 17, the initial response due
to the linear mapping is similar, but the transition towards
zero steady-state error is faster.

Final test with the integrated manipulator. The second
stage in experiments was to validate the performance of
the controller while the manipulator moves and imposes
disturbance to the controlled system. In Fig. 18 the variation
of the body, the second link, is plotted in time, the light
blue zone covers the motion of the leg and the light pink

Fig. 17. The variation of the second link in the experiment, setpoint 65◦.

Fig. 18. The experiment of the motion of the leg and arm together and
the performance of the controller on keeping the robot steady in the desired
position.

zone presents the motion of the manipulator while the leg
regulates the system to the desired point and tries to keep
the system steady on the branch. As we considered a fast
response LQR and an integrator for regulation towards zero
steady-state error, the error did not reach zero during the
transition of the manipulator, but the error was minimized and
the leg tried to compensate for the disturbance. The controller
reaction to manipulator oscillations was presented in Fig. 19.

VI. CONCLUSION

This paper investigated the modeling and control of a
flapping-wing robot, perched on a branch to increase the
workspace of the manipulator using the active leg-claw
system. The leg-claw system was attached to the branch and
provides enough friction to keep the bird steadily on that.
Modeling was done including the motion of the leg to present
a realistic scenario for the control and simulation. Therefore,



Fig. 19. The input signals of the robot for manipulator movement experi-
ment.

a small variation was observable in the simulation for the
first joint (leg). A feedback linearization has been designed
for controlling the system. A linear quadratic regulator was
embedded in the control to add optimality to the system and
easy tuning of the linear controller of the FL. The simula-
tion showed that the controlled leg increased (shifted) the
workspace drastically and the results also demonstrated the
extension of the workspace. The kinematics transformation
between the joint angles and end-effectors could be incorpo-
rated into the dynamics and treated by output-feedback-based
controllers [23]–[25], to command in Cartesian coordinates
which is proposed for future studies.
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[2] D. Feliu-Talegon, J. Á. Acosta, A. Suarez, and A. Ollero, “A bio-
inspired manipulator with claw prototype for winged aerial robots:
Benchmark for design and control,” Applied Sciences, vol. 10, no. 18,
p. 6516, 2020.
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