
Deep R Programming

Marek Gagolewski

v1.0.0

Dr habil.MarekGagolewski
Deakin University, Australia
Systems Research Institute, Polish Academy of Sciences
Warsaw University of Technology, Poland
https://www.gagolewski.com/

Copyright (C) 2022–2023 by Marek Gagolewski. Some rights reserved.

This open-access textbook is an independent, non-profit project. It is publishedunder
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (CC BY-NC-ND 4.0). Please spread the word about it.

This project received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

Weird is the world some people decided to immerse themselves in, so here is a mes-
sage stating the obvious. Every effort has been made in the preparation of this book
to ensure the accuracy of the information presented. However, the information con-
tained in this book is provided without warranty, either express or implied. The au-
thor will, of course, not be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Anybugreports/corrections/feature requests arewelcome.Tomake this textbookeven
better, please file them at https://github.com/gagolews/deepr.

Typeset with XeLATEX. Please be understanding: it was an algorithmic process. Hence,
the results are∈ [good enough, perfect).

Homepage: https://deepr.gagolewski.com/

Datasets: https://github.com/gagolews/teaching-data

Release: v1.0.0 (2023-06-28T16:01:54+1000)

ISBN: 978-0-6455719-2-9 (v1.0; 2023; Melbourne: Marek Gagolewski)

DOI: 10.5281/zenodo.7490464 (Zenodo)

https://www.gagolewski.com/
https://github.com/gagolews/deepr
https://deepr.gagolewski.com/
https://github.com/gagolews/teaching-data
https://doi.org/10.5281/zenodo.7490464

Contents

Preface xiii
0.1 To R, or not to R . xiii
0.2 R (GNU S) as a language and an environment xiii
0.3 Aims, scope, and design philosophy xv
0.4 Classification of R data types and book structure xvi
0.5 About the author . xviii
0.6 Acknowledgements . xix
0.7 You canmake this book better xx

I Deep 1

1 Introduction 3
1.1 Hello, world! . 3
1.2 Setting up the development environment 4

1.2.1 Installing R . 4
1.2.2 Interactive mode . 4
1.2.3 Batch mode: Working with R scripts (**) 5
1.2.4 Weaving: Automatic report generation (**) 5
1.2.5 Semi-interactive modes (Jupyter Notebooks, sending code to

the associated R console, etc.) 6
1.3 Atomic vectors at a glance . 8
1.4 Getting help . 10
1.5 Exercises . 11

2 Numeric vectors 13
2.1 Creating numeric vectors . 13

2.1.1 Numeric constants . 13
2.1.2 Concatenating vectors with c 14
2.1.3 Repeating entries with rep 14
2.1.4 Generating arithmetic progressions with seq and `:` 16
2.1.5 Generating pseudorandom numbers 17
2.1.6 Reading data with scan 19

2.2 Creating named objects . 21
2.3 Vectorised mathematical functions 23

2.3.1 abs and sqrt . 23
2.3.2 Rounding . 24
2.3.3 Natural exponential function and logarithm 25

IV CONTENTS

2.3.4 Probability distributions (*) 26
2.3.5 Special functions (*) . 29

2.4 Arithmetic operations . 30
2.4.1 Vectorised arithmetic operators 30
2.4.2 Recycling rule . 31
2.4.3 Operator precedence . 32
2.4.4 Accumulating . 33
2.4.5 Aggregating . 35

2.5 Exercises . 36

3 Logical vectors 39
3.1 Creating logical vectors . 39
3.2 Comparing elements . 39

3.2.1 Vectorised relational operators 39
3.2.2 Testing for NA, NaN, and Inf 40
3.2.3 Dealing with round-off errors (*) 41

3.3 Logical operations . 43
3.3.1 Vectorised logical operators 43
3.3.2 Operator precedence revisited 44
3.3.3 Dealing with missingness 45
3.3.4 Aggregating with all, any, and sum 45
3.3.5 Simplifying predicates 46

3.4 Choosing elements with ifelse 47
3.5 Exercises . 49

4 Lists and attributes 51
4.1 Type hierarchy and conversion 51

4.1.1 Explicit type casting . 52
4.1.2 Implicit conversion (coercion) 53

4.2 Lists . 54
4.2.1 Creating lists . 54
4.2.2 Converting to and from lists 56

4.3 NULL . 57
4.4 Object attributes . 58

4.4.1 Developing perceptual indifference to most attributes 58
4.4.2 But there are a few use cases 59
4.4.3 Special attributes . 60
4.4.4 Labelling vector elements with the names attribute 61
4.4.5 Altering and removing attributes 64

4.5 Exercises . 65

5 Vector indexing 67
5.1 head and tail . 67
5.2 Subsetting and extracting from vectors 68

5.2.1 Nonnegative indexes . 68
5.2.2 Negative indexes . 70
5.2.3 Logical indexer . 71

CONTENTS V

5.2.4 Character indexer . 73
5.3 Replacing elements . 75

5.3.1 Modifying atomic vectors 75
5.3.2 Modifying lists . 75
5.3.3 Inserting new elements 77

5.4 Functions related to indexing . 78
5.4.1 Matching elements in another vector 78
5.4.2 Assigning numbers into intervals 79
5.4.3 Splitting vectors into subgroups 80
5.4.4 Ordering elements . 83
5.4.5 Identifying duplicates . 85
5.4.6 Counting index occurrences 85

5.5 Preserving and losing attributes 86
5.5.1 c . 86
5.5.2 as.something . 87
5.5.3 Subsetting . 87
5.5.4 Vectorised functions . 88

5.6 Exercises . 89

6 Character vectors 93
6.1 Creating character vectors . 93

6.1.1 Inputting individual strings 93
6.1.2 Many strings, one object 95
6.1.3 Concatenating character vectors 96
6.1.4 Formatting objects . 97
6.1.5 Reading text data from files 97

6.2 Pattern searching . 98
6.2.1 Comparing whole strings 98
6.2.2 Partial matching . 98
6.2.3 Matching anywhere within a string 99
6.2.4 Using regular expressions (*) 100
6.2.5 Locating pattern occurrences 100
6.2.6 Replacing pattern occurrences 103
6.2.7 Splitting strings into tokens 104

6.3 Other string operations . 104
6.3.1 Extracting substrings . 104
6.3.2 Translating characters 105
6.3.3 Ordering strings . 106

6.4 Other atomic vector types (*) . 106
6.4.1 Integer vectors (*) . 107
6.4.2 Raw vectors (*) . 108
6.4.3 Complex vectors (*) . 108

6.5 Exercises . 109

7 Functions 111
7.1 Creating and invoking functions 112

7.1.1 Anonymous functions . 112

VI CONTENTS

7.1.2 Named functions . 113
7.1.3 Passing arguments to functions 114
7.1.4 Grouping expressions with curly braces, `{` 115

7.2 Functional programming . 117
7.2.1 Functions are objects . 117
7.2.2 Calling on precomputed arguments with do.call 119
7.2.3 Common higher-order functions 120
7.2.4 Vectorising functions with Map 120

7.3 Accessing third-party functions 123
7.3.1 Using R packages . 123

Default packages . 125
Source vs binary packages (*) 125
Managing dependencies (*) 126

7.3.2 Calling external programs 127
7.3.3 Interfacing C, C++, Fortran, Python, Java, etc. (**) 128

7.4 Exercises . 129

8 Flow of execution 133
8.1 Conditional evaluation . 133

8.1.1 Return value . 134
8.1.2 Nested ifs . 135
8.1.3 Condition: Either TRUE or FALSE 136
8.1.4 Short-circuit evaluation 137

8.2 Exception handling . 138
8.3 Repeated evaluation . 140

8.3.1 while . 140
8.3.2 for . 141
8.3.3 break and next . 143
8.3.4 return . 145
8.3.5 Time and space complexity of algorithms (*) 145

8.4 Exercises . 148

II Deeper 151

9 Designing functions 153
9.1 Managing data flow . 153

9.1.1 Checking input data integrity and argument handling 153
9.1.2 Putting outputs into context 157

9.2 Organising andmaintaining functions 159
9.2.1 Function libraries . 159
9.2.2 Writing R packages (*) 159

Package structure (*) . 160
Building and installing (*) 160
Documenting (*) . 161

9.2.3 Writing standalone programs (**) 162
9.2.4 Assuring quality code . 163

Managing changes and working collaboratively 163

CONTENTS VII

Test-driven development and continuous integration 163
Debugging . 164
Profiling . 164

9.3 Special functions: Syntactic sugar 165
9.3.1 Backticks . 165
9.3.2 Dollar, `$` (*) . 165
9.3.3 Curly braces, `{` . 167
9.3.4 `if` . 167
9.3.5 Operators are functions 168

Calling built-in operators as functions 168
Defining binary operators 169

9.3.6 Replacement functions 169
Creating replacement functions 169
Substituting parts of vectors 170
Replacing attributes . 171
Compositions of replacement functions (*) 172

9.4 Arguments and local variables 174
9.4.1 Call by “value” . 174
9.4.2 Variable scope . 175
9.4.3 Closures (*) . 176
9.4.4 Default arguments . 176
9.4.5 Lazy vs eager evaluation 177
9.4.6 Ellipsis, `...` . 178
9.4.7 Metaprogramming (*) . 180

9.5 Principles of sustainable design (*) 182
9.5.1 To write or abstain . 182
9.5.2 To pamper or challenge 183
9.5.3 To build or reuse . 184
9.5.4 To revolt or evolve . 185

9.6 Exercises . 185

10 S3 classes 189
10.1 Object type vs class . 190
10.2 Generics andmethod dispatching 193

10.2.1 Generics, default, and custommethods 193
10.2.2 Creating generics . 195
10.2.3 Built-in generics . 197
10.2.4 First-argument dispatch and calling S3 methods directly . . 198
10.2.5 Multi-class-ness . 202
10.2.6 Operator overloading . 203

10.3 Common built-in S3 classes . 206
10.3.1 Date, time, etc. 206
10.3.2 Factors . 209
10.3.3 Ordered factors . 212
10.3.4 Formulae (*) . 213

10.4 (Over)using the forward pipe operator, `|>` (*) 213
10.5 S4 classes (*) . 216

VIII CONTENTS

10.5.1 Defining S4 classes . 217
10.5.2 Accessing slots . 219
10.5.3 Definingmethods . 219
10.5.4 Defining constructors . 221
10.5.5 Inheritance . 222

10.6 Exercises . 222

11 Matrices and other arrays 225
11.1 Creating arrays . 225

11.1.1 matrix and array . 225
11.1.2 Promoting and stacking vectors 227
11.1.3 Simplifying lists . 228
11.1.4 Beyond numeric arrays 230
11.1.5 Internal representation 231

11.2 Array indexing . 234
11.2.1 Arrays are built on basic vectors 234
11.2.2 Selecting individual elements 234
11.2.3 Selecting rows and columns 235
11.2.4 Dropping dimensions . 235
11.2.5 Selecting submatrices . 236
11.2.6 Selecting elements based on logical vectors 237
11.2.7 Selecting based on two-column numeric matrices 238
11.2.8 Higher-dimensional arrays 239
11.2.9 Replacing elements . 240

11.3 Common operations . 240
11.3.1 Matrix transpose . 240
11.3.2 Vectorised mathematical functions 241
11.3.3 Aggregating rows and columns 241
11.3.4 Binary operators . 242

11.4 Numerical matrix algebra (*) . 245
11.4.1 Matrix multiplication . 245
11.4.2 Solving systems of linear equations 246
11.4.3 Norms andmetrics . 247
11.4.4 Eigenvalues and eigenvectors 248
11.4.5 QR decomposition . 250
11.4.6 SVD decomposition . 251
11.4.7 A note on the Matrix package 252

11.5 Exercises . 253

12 Data frames 257
12.1 Creating data frames . 257

12.1.1 data.frame and as.data.frame 257
12.1.2 cbind.data.frame and rbind.data.frame 261
12.1.3 Reading data frames . 264
12.1.4 Interfacing relational databases and querying with SQL (*) . 265
12.1.5 Strings as factors? . 266
12.1.6 Internal representation 267

CONTENTS IX

12.2 Data frame subsetting . 269
12.2.1 Data frames are lists . 269
12.2.2 Data frames are matrix-like 272

12.3 Common operations . 275
12.3.1 Ordering rows . 275
12.3.2 Handling duplicated rows 278
12.3.3 Joining (merging) data frames 278
12.3.4 Aggregating and transforming columns 279
12.3.5 Handling missing values 281
12.3.6 Reshaping data frames 281
12.3.7 Aggregating data in groups 284
12.3.8 Transforming data in groups 292
12.3.9 Metaprogramming-based techniques (*) 295
12.3.10 A note on the dplyr (tidyverse) and data.table packages (*) . 298

12.4 Exercises . 299

13 Graphics 305
13.1 Graphics primitives . 305

13.1.1 Symbols (points) . 307
13.1.2 Line segments . 309
13.1.3 Polygons . 310
13.1.4 Text . 311
13.1.5 Raster images (bitmaps) (*) 312

13.2 Graphics settings . 313
13.2.1 Colours . 313
13.2.2 Plot margins and clipping regions 315
13.2.3 User coordinates and axes 317
13.2.4 Plot dimensions (*) . 319
13.2.5 Many figures on one page (subplots) 320
13.2.6 Graphics devices . 321

13.3 Higher-level functions . 323
13.3.1 Scatter and function plots with plot.default and matplot . . 324
13.3.2 Bar plots and histograms 328
13.3.3 Box-and-whisker plots 334
13.3.4 Contour plots and heat maps 334

13.4 Exercises . 336

III Deepest 339

14 Interfacing compiled code (**) 341
14.1 C and C++ code in R . 342

14.1.1 Source files for compiled code in R packages 342
14.1.2 R CMD SHLIB . 345

14.2 Handling basic types . 348
14.2.1 SEXPTYPEs . 348
14.2.2 Accessing elements in simple atomic vectors 350
14.2.3 Representation of missing values 351

X CONTENTS

14.2.4 Memory allocation . 353
14.2.5 Lists . 358
14.2.6 Character vectors and individual strings (*) 359
14.2.7 Calling R functions from C (**) 360
14.2.8 External pointers (**) . 360

14.3 Dealing with compound types 363
14.3.1 Reading and setting attributes 363
14.3.2 Factors . 364
14.3.3 Matrices . 365
14.3.4 Data frames . 367

14.4 Using existing function libraries 367
14.4.1 Checking for user interrupts 367
14.4.2 Generating pseudorandom numbers 367
14.4.3 Mathematical functions from the R API 369
14.4.4 Header files from other R packages (*) 369
14.4.5 Specifying compiler and linker flags (**) 369

14.5 Exercises . 369

15 Unevaluated expressions (*) 371
15.1 Expressions at a glance . 372
15.2 Language objects . 373
15.3 Calls as combinations of expressions 375

15.3.1 Browsing parse trees . 375
15.3.2 Manipulating calls . 377

15.4 Inspecting function definition and usage 378
15.4.1 Getting the body and formal arguments 378
15.4.2 Getting the expression passed as an actual argument 379
15.4.3 Checking if an argument is missing 379
15.4.4 Determining how a function was called 380

15.5 Exercises . 382

16 Environments and evaluation (*) 383
16.1 Frames: Environments as object containers 383

16.1.1 Printing . 384
16.1.2 Environments vs named lists 384
16.1.3 Hashmaps: Fast element lookup by name 385
16.1.4 Call by value, copy on demand: Not for environments 386
16.1.5 A note on reference classes (**) 389

16.2 The environment model of evaluation 389
16.2.1 Getting the current environment 390
16.2.2 Enclosures, enclosures thereof, etc. 391
16.2.3 Missing names are sought in enclosing environments 392
16.2.4 Looking for functions . 394
16.2.5 Inspecting the search path 395
16.2.6 Attaching to and detaching from the search path 397
16.2.7 Masking (shadowing) objects from down under 399

16.3 Closures . 402

CONTENTS XI

16.3.1 Local environment . 402
16.3.2 Lexical scope and function closures 403
16.3.3 Application: Function factories 405
16.3.4 Accessing the calling environment 408
16.3.5 Package namespaces (*) 408
16.3.6 S3 method lookup by UseMethod (*) 412

16.4 Exercises . 413

17 Lazy evaluation (**) 417
17.1 Evaluation of function arguments 417
17.2 Evaluation of default arguments 421
17.3 Ellipsis revisited . 423
17.4 on.exit (*) . 426
17.5 Metaprogramming and laziness in action: Examples (*) 427

17.5.1 match.arg . 427
17.5.2 curve . 428
17.5.3 with and within . 429
17.5.4 transform . 431
17.5.5 subset . 432
17.5.6 Forward pipe operator 433
17.5.7 Other ideas (**) . 434

17.6 Processing formulae, `~` (*) . 435
17.7 Exercises . 437
17.8 Outro . 438

Changelog 441

References 443

XII CONTENTS

Deep R Programming by Marek Gagolewski1 is a comprehensive and in-depth intro-
ductory course on one of the most popular languages for data science. It equips am-
bitious students, professionals, and researchers with the knowledge and skills to be-
come independent users of this potent environment so that they can tackle anyprob-
lem related todatawrangling andanalytics, numerical computing, statistics, andma-
chine learning.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF2 and HTML3 forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it is my hope that this publication will prove useful to those seeking know-
ledge for knowledge’s sake.

Please spread the news about it by sharing the above URLs with your mates, peers,
or students. Any bug/typo reports/fixes are appreciated. Please submit them via this
project’s GitHub repository4. Thank you.

Consider citing this book as: GagolewskiM. (2023),DeepRProgramming, Zenodo,Mel-
bourne,DOI: 10.5281/zenodo.74904645, ISBN: 978-0-6455719-2-9, URL: https://deepr.
gagolewski.com/.

Make sure to check out my other open-access book, Minimalist Data Wrangling with
Python6 [26].

1 https://www.gagolewski.com/
2 https://deepr.gagolewski.com/deepr.pdf
3 https://deepr.gagolewski.com/
4 https://github.com/gagolews/deepr/issues
5 https://dx.doi.org/10.5281/zenodo.7490464
6 https://datawranglingpy.gagolewski.com/

https://www.gagolewski.com/
https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/
https://github.com/gagolews/deepr/issues
https://dx.doi.org/10.5281/zenodo.7490464
https://deepr.gagolewski.com/
https://deepr.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/

0
Preface

0.1 To R, or not to R
R has been named the eleventh most dreaded programming language in the 2022
StackOverflow Developer Survey7.

Also, it is a free app, so there must be something wrong with it, right?

But whatever, R is deprecated anyway; themodernway is to use tidyverse.

Or we should all just switch to Python8.

Yeah, nah.

0.2 R (GNUS) as a language and an environment
Let us get one9 thing straight: R is not just a statistical package. It is a general-purpose,
high-level programming language that happens to be very powerful for numerical,
data-intense computing activities of any kind. It offers extensive support for statist-
ical, machine learning, data analysis, data wrangling, and data visualisation applica-
tions, but there is muchmore.

As we detail below, R has a long history. It is an open-source version of the S envir-
onment, which was written for statisticians, by statisticians. Therefore, it is a free,
yet oftenmore capable alternative to Stata, SAS, SPSS, Statistica, Minitab,Weka, etc.
(but without any strings attached). Unlike in some of them, in R, a spreadsheet-like
GUI is not the main gateway for performing computations on data. Here, we must
write code to get things done.Despite the beginning of the learning curve’s being a little
steeper for non-programmers, in the long run, R empowers us more because we are
not limited to tackling the most common scenarios. If some functionality is missing
or does not suit our needs, we can easily (re)implement it ourselves.

7 https://survey.stackoverflow.co/2022
8 https://datawranglingpy.gagolewski.com/
9 Also, we must not confuse RStudio with R. The former is merely one of many development environ-

ments for our language.We program in R, not in RStudio.

https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
https://datawranglingpy.gagolewski.com/

XIV PREFACE

R is thus very convenient for rapid prototyping. It helps turn our ideas into fully op-
erational code that can be battle-tested, extended, polished, run in production, and
otherwise enjoyed. As an interpreted language, it can not only be executed in an inter-
active read-eval-print loop (command–result, question–answer, …), but also in batch
mode (running standalone scripts).

Therefore, we would rather position R amongst the tools/languages for numerical or
scientific computing such as Python with the numpy ecosystem, Julia, GNU Octave,
Scilab, MATLAB, etc. However, it is more specialised in data science applications than
all of them. Hence, it provides a much smoother experience. This is why, over the
years, R has become the de facto standard in statistics and related fields.

Important R is a whole ecosystem (environment). Apart from the R language inter-
preter, it features advanced:

• graphics capabilities (see Chapter 13),

• a consistent, well-integrated help system (Section 1.4),

• ways for convenient interfacing with compiled code (Chapter 14),

• a package systemandcentralisedpackage repositories (suchasCRANandBiocon-
ductor; Section 7.3.1),

• a lively community of users and developers – curious and passionate people, like
you and yours cordially.

Note R [68] is a dialect of the very popular S system designed in the mid-1970s by
Rick A. Becker, John M. Chambers, and Allan R. Wilks at Bell Labs; see [3, 4, 5, 6] and
its later revisions [7, 9, 13, 56]. Quoting from [4]:

The design goal for S is, most broadly stated, to enable and encourage good data
analysis, that is, to provide users with specific facilities and a general environ-
ment that helps themquickly and conveniently look atmanydisplays, summar-
ies, andmodels for their data, and to follow thekindof iterative, exploratorypath
thatmost often leads to a thorough analysis.The system is designed for interact-
ive use with simple but general expressions for the user to type, and immediate,
informative feedback fromthe system, includinggraphic output onanyof avari-
ety of graphical devices.

S became popular because it offered greater flexibility than the standalone statistical
packages. It was praised for its high interactivity and array-centrism that was known

PREFACE XV

fromAPL, the familiar syntax of the C language that involves the use of {curly braces},
the ability to treat code as data known from Lisp (Chapter 15), the notion of lazy argu-
ments (Chapter 17), and the ease of calling external C and Fortran routines (Chapter
14). Its newer versions were also somewhat object-orientated (Chapter 10).

However, Swas a proprietary, and closed-source system. To address this, Robert Gen-
tlemanandRoss Ihakaof theStatisticsDepartment,University ofAucklanddeveloped
R in the 1990s10. They were later joined by many contributors11. It has been decided
that it will be distributed under the terms of the free GNU General Public License,
version 2.

In essence, R was supposed to be backwards-compatible with S, but some design
choices led to their evaluation models’ being slightly different. In Chapter 16, we dis-
cuss that R’s design was inspired by the Scheme language [1].

0.3 Aims, scope, and design philosophy
Many users were introduced to R by means of some very advanced operations in-
volving data frames, formulae, and functions that rely on nonstandard evaluation
(metaprogramming), like:

lm(

Ozone~Solar.R+Temp,

data=subset(airquality, Temp>60, select=-(Month:Day))

) |> summary()

This is horrible.

Another cohort was isolated from base R through a thick layer of popular third-party
packages that introduce an overwhelming number of functions (every operation, re-
gardless of its complexity, has a unique name).They often duplicate the core function-
ality, andmight not be fully compatible with our traditional system.

Both user families ought to be fine, as long as they limit themselves to solving only the
most common data processing problems.

But we yearn for more. We do not want hundreds of prefabricated recipes for popular
dishes that we canmindlessly apply without much understanding.

Our aim is to learn the fundamentals of base R, which constitutes the ligua franca for

10 See [12, 37] for historical notes. R version0.49 released inApril 1997 (thefirstwhose source code is avail-
able on CRAN; see https://cloud.r-project.org/src/base/R-0), was already quite feature-rich. In particular,
it implemented S3 methods, formulae, and data frames that were introduced in the 1991 version of S [13].

11The beauty of the employed open-source model is that all the contributors are real human beings, not
anonymous contractors working for soulless corporations; see https://www.r-project.org/contributors.
html.

https://cloud.r-project.org/src/base/R-0
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html

XVI PREFACE

all R users. We want to be able to indite code that everybody should understand; code
that will work without modifications ten years from now (no slang!).

We want to be able to tackle any data-intense problem. Furthermore, we want to de-
velop transferable skills so that learningnew tools such as Pythonwith numpy and pandas
(e.g., [26, 47]) or Julia will be much easier later. After all, R is not the only notable en-
vironment out there.

Anyway, enough preaching.This graduate12-level textbook is for readers who:

• would like to experience the joy of solving problems by programming,

• want to become independent users of the R environment,

• can appreciate a more cohesively and comprehensively13 organised material,

• do not mind a slightly steeper learning curve at the beginning,

• do not want to be made obsolete by artificial “intelligence” in the future.

Some readers will benefit from its being their first introduction to R (yet, without all
the pampering). For others14, this will be a fine course from intermediate to advanced
(do not skip the first chapters, though).

Either way, we should not forget to solve all the prescribed exercises.

Good luck!

0.4 Classification of R data types and book structure
Themost commonly used R data types can be classified as follows; see also Figure 1.

1. Basic types are discussed in the first part of the book:

• atomic vectors represent whole sequences of values, where every element is of
the same type:

– logical (Chapter 3) includes items that are TRUE (“yes”, “present”), FALSE
(“no”, “absent”), or NA (“not available”, “missing”);

12The author taught similar courses for his wonderfully ambitious undergraduate data/computer sci-
ence and mathematics students at the Warsaw University of Technology, where our approach has proven
not difficult whatsoever.

13 Yours truly has chosen to be neither a historian, a stenographer, nor a grammarian. Thus, he made a
few noninvasive idealisations for didactic purposes. Languages evolve over time, R is now different from
what it used to be, and we can shape it (slowly; we value its stable API) to become something even better in
the future.

14 Itmight also happen that for certain readers, this will not be an appropriate course at all, either at this
stage of their career (come back later) or in general (no dramas). This is a non-profit, open-access project,
but it does not mean it is ideal for everyone. We recommend giving other sources a try, e.g., [8, 10, 15, 45,
57, 59, 60, 67], etc. Some of them are freely available.

PREFACE XVII

NULL

logical

numeric

character
list

function

...

factor

matrix

array

data.frame

formula

Date

kmeans

...

Figure 1. An overview of the most prevalent R data types; see Figure 17.2 for a more
comprehensive list.

– numeric (Chapter 2) represents real numbers, such as 1, 3.14, -0.

0000001, etc.;

– character (Chapter 6) contains strings of characters, e.g., "groß", "123",
or “Добрий день”;

• function (Chapter 7) is used to group a series of expressions (code lines) so
that they can be applied on miscellaneous input data to generate the (hope-
fully) desired outcomes, for instance, cat, print, plot, sample, and sum;

• list (generic vector; Chapter 4) can store elements of mixed types.

The above will be complemented with a discussion on vector indexing (Chapter 5)
and ways to control the program flow (Chapter 8).

2. Compound types aremostly discussed in the secondpart.They arewrappers around
objects of basic types that might behave unlike the underlying primitives thanks
to the dedicated operations overloaded for them. For instance:

• factor (Section 10.3.2) is a vector-like object that represents qualitative data
(on a nominal or an ordered scale);

• matrix (Chapter 11) stores tabular data, i.e., arranged into rows and columns,
where each cell is usually of the same type;

• data.frame (Chapter 12) is also used for depositing tabular data, but this time
such that each column can be of a different type;

• formula (Section 17.6) is utilised by some functions to specify supervised
learning models or define operations to be performed within data sub-
groups, amongst others;

XVIII PREFACE

• and many more, which we can arbitrarily define using the principles of S3-
style object-orientated programming (Chapter 10).

In this part of the book, we also discuss the principles of sustainable coding
(Chapter 9) as well as introduce the basic ways to prepare publication-quality
graphics (Chapter 13).

3. More advancedmaterial is discussed in the third part. Formost readers, it should
be of theoretical interest only.However, it canhelp gain a complete understanding
of and control over our environment.This includes the following data types:

• symbol (name), call, expression (Chapter 15) are objects representing un-
evaluated R expressions that can be freely manipulated and executed if
needed;

• environment (Chapter 16) store named objects in hashmaps and provides the
basis for the environment model of evaluation;

• externalptr (Section 14.2.8) provides the ability tomaintain anydynamically
allocated C/C++ objects between function calls.

We shouldnot be surprised thatwedidnot list any data types definedby a few trendy15
third-party packages.Wewill later see thatwe canmost often dowithout them. If that
is not the case, we will become skilled enough to learn them quickly ourselves.

0.5 About the author
I,MarekGagolewski16 (pronounced likeMa’rekGong-olive-ski), am currently a Senior
Lecturer in Data Science/Applied AI at Deakin University in Melbourne, VIC, Aus-
tralia, and an Associate Professor at the Systems Research Institute of the Polish
Academy of Sciences.

My research interests are related to data science, in particular: modelling complex
phenomena, developing usable, general-purpose algorithms, studying their analyt-
ical properties, and finding out how people use, misuse, understand, and misunder-
stand methods of data analysis in research, commercial, and decision-making set-
tings. I am an author of over 90 publications, including journal papers in outlets such
as Proceedings of the National Academy of Sciences (PNAS), Journal of Statistical Software,
TheR Journal, Information Fusion, International Journal of Forecasting, StatisticalModelling,
Physica A: Statistical Mechanics and its Applications, Information Sciences, Knowledge-Based
Systems, IEEE Transactions on Fuzzy Systems, and Journal of Informetrics.

In my “spare” time, I write books for my students: check out my Minimalist Data

15Which does not automatically mean good. For instance, sugar, salt, and some drugs are very popular,
but it does not make them healthy.

16 https://www.gagolewski.com/

https://www.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/

PREFACE XIX

Wrangling with Python17 [26]. I also develop open-source data analysis software, such
as stringi18 (one of the most often downloaded R packages), genieclust19 (a fast and
robust clustering algorithm in both Python and R), andmany others20.

0.6 Acknowledgements
R, and its predecessor S, is the result of a collaborative effort of many program-
mers21. Without their generous intellectual contributions, the landscape of data ana-
lysiswould not be as beautiful as it is now.R is distributed under the terms of theGNU
General Public License version 2.We occasionally display fragments of its source code
for didactic purposes.

We describe and use R version 4.3.0 (2023-04-21). However, we expect 99.9% of the
material covered here to be valid in future releases (consider filing a bug report if you
discover this is not the case).

Deep R Programming is based on the author’s experience as an R user (since ~2003),
developer of open-source packages (mentioned above), tutor/lecturer (since ~2008),
and an author of a quite successful Polish textbookProgramowaniew językuR [25]which
was published by PWN (1st ed. 2014, 2nd ed. 2016). Even though the current book is an
entirely different work, its predecessor served as an excellent testbed for many ideas
conveyed here.

In particular, the teaching style exercised in this book has proven successful in many
similar courses that yours trulywas responsible for, including atWarsawUniversity of
Technology,DataScienceRetreat (Berlin), andDeakinUniversity (Melbourne). I thank
all my students and colleagues for the feedback given over the last 15-odd years.

This work received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

This book was prepared in a Markdown superset called MyST22, Sphinx23, and TeX
(XeLaTeX). Code chunks were processed with the R package knitr [62]. All fig-
ures were plotted with the low-level graphics package using the author’s own style
template. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex24, sphinxcontrib-proof25) dotted the j’s and crossed the f ’s.

17 https://datawranglingpy.gagolewski.com/
18 https://stringi.gagolewski.com/
19 https://genieclust.gagolewski.com/
20 https://github.com/gagolews
21 https://www.r-project.org/contributors.html
22 https://myst-parser.readthedocs.io/en/latest/index.html
23 https://www.sphinx-doc.org/
24 https://pypi.org/project/sphinxcontrib-bibtex
25 https://pypi.org/project/sphinxcontrib-proof

https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://stringi.gagolewski.com/
https://genieclust.gagolewski.com/
https://github.com/gagolews
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html
https://myst-parser.readthedocs.io/en/latest/index.html
https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex
https://pypi.org/project/sphinxcontrib-proof

XX PREFACE

The Ubuntu Mono26 font is used for the display of code. Typesetting of the main text
relies on the Alegreya27 and Lato28 typefaces.

0.7 You canmake this book better
When it comes to quality assurance, open, non-profit projects have to resort to the
generosity of the readers’ community.

If you find a typo, a bug, or a passage that could be rewritten or extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/deepr/issues. New feature requests are welcome as well.

Please consider “starring” the book’s GitHub repository29. Some people (weirdly) use
the number of “stars” as a proxy for quality.

Spread the news about this book by sharing the link https://deepr.gagolewski.com/
with your mates, peers, or students. You may also want to cite it in your publications
or reports.Thank you.

26 https://design.ubuntu.com/font
27 https://www.huertatipografica.com/en
28 https://www.latofonts.com/
29 https://github.com/gagolews/deepr

https://design.ubuntu.com/font
https://www.huertatipografica.com/en
https://www.latofonts.com/
https://github.com/gagolews/deepr/issues
https://github.com/gagolews/deepr/issues
https://github.com/gagolews/deepr
https://deepr.gagolewski.com/

Part I

Deep

1
Introduction

1.1 Hello, world!
Traditionally, every programming journey starts by printing a “Hello, world”-like
greeting. Let’s then get it over with asap:

cat("My hovercraft is full of eels.\n") # `\n` == newline

My hovercraft is full of eels.

By calling (invoking) the cat function, we printed out a given character string that we
enclosed in double-quote characters.

Documenting code is a good development practice. It is thus worth knowing that any
text followed by a hash sign (that is not part of a string) is a comment. It is ignored by
the interpreter.

This is a comment.

This is another comment.

cat("I cannot wait", "till lunchtime.\n") # two arguments (another comment)

I cannot wait till lunchtime.

cat("# I will not buy this record.\n# It is scratched.\n")

I will not buy this record.

It is scratched.

By convention, in this book, the textual outputs generated by R itself are always pre-
ceded by two hashes.Thismakes copy-pasting all code chunks easier in case wewould
like to experiment with them (which is always highly encouraged).

Whenever a call to a function is to be made, the round brackets are obligatory. All objects
within the parentheses (they are separated by commas) constitute the input data to be
consumed by the operation.Thus, the syntax is: a_function_to_be_called(argument1,
argument2, etc.).

4 I DEEP

1.2 Setting up the development environment
1.2.1 Installing R
It is quitenatural topine for the ability to execute the above codeourselves–wecannot
learn programming without getting our hands dirty.

The official precompiled binary distributions of R can be downloaded from https://
cran.r-project.org/.

For serious programming work1, we recommend, sooner rather than later, switch-
ing to2 one of the UNIX-like operating systems. This includes the free, open-source
(== good) variants of GNU/Linux, amongst others, or the proprietary (== not so good)
m**OS. The users thereof might employ their favourite package manager (e.g., apt,
dnf, pacman, or Homebrew) to install R.

Users of other operating systems (such as Wi***ws) might consider installing
Anaconda or Miniconda if they would like to work with Jupyter (Section 1.2.5) or Py-
thon.

Below we review several ways in which we can write and execute R code. It is up to
the benign readers to research, set up, and learn the development environment that
suits their needs. As usual in real life, there is no single universal approach that always
works best in all scenarios.

1.2.2 Interactivemode
R’s read-eval-print loop (REPL) can give us instant gratification whenever we would like
to compute something quickly, e.g., determine basic aggregates of a few numbers
entered by hand or evaluate a mathematical expression like “2+2”.

Howto start theRconsole varies fromsystemto system, e.g., users ofUNIX-likeboxes
can simply execute R from the terminal (shell, command line). Wi***ws folks can fire
up RGui from the Startmenu.

Important Whenworking interactively, the default3 command prompt, “>”, means: I
am awaiting orders. Moreover, “+” denotes: Please continue. In the latter case, we should
either complete the unfinished expression or cancel the operation by pressing ESC or
CTRL+C (depending on the operating system).

> cat("And now

+ for something

(continues on next page)

1 For instance, when interoperability with other programming languages/environments is required or
when we think about scheduling jobs on Linux-based computing/container clusters.

2 Or at least trying out – by installing a copy of GNU/Linux on a virtual machine (VM).
3 It can be changed; see help("options").

https://cran.r-project.org/
https://cran.r-project.org/

1 INTRODUCTION 5

(continued from previous page)

+ completely different

+

+

+ it is an unfinished expression...

+ awaiting another double quote character and then the closing bracket...

+

+ press ESC or CTRL+C to abort input

>

For readability, we never print out the command prompt characters in this book.

1.2.3 Batchmode:Workingwith R scripts (**)
The interactive mode of operation is unsuitable for more complicated tasks, though.

Theusers ofUNIX-like operating systemswill be interested in another extreme,which
involveswriting standaloneR scripts that canbe executed line by linewithout anyuser
intervention.

To do so, in the terminal, we can invoke:

Rscript file.R

where file.R is the path to a source file.

Exercise 1.1 (**) In your favourite text editor (e.g., Notepad++, Kate, vi, Emacs, RStudio, or
VSCodium), create a file named test.R. Write a few calls to the cat function. Then, execute this
script from the terminal through Rscript.

1.2.4 Weaving: Automatic report generation (**)
Reproducibledata analysis4 requiresus to keep the results (text, tables, plots, auxiliary
files) synchronised with the code and data that generate them.

utils::Sweave (the Sweave function from the utils package) and knitr [62] are two
example template processors that evaluate R code chunks within documents written
in LaTeX, HTML, or other markup languages.The chunks are replaced by the outputs
they yield.

This book is a showcase of such an approach: all the results, including Figure 2.3 and
the message about busy hovercrafts, were generated programmatically. Thanks to its
beingwritten in thehighlyuniversalMarkdown5 language, it couldbe easily converted

4The idea dates back to Knuth’s literate programming concept; see [40].
5 https://daringfireball.net/projects/markdown

https://daringfireball.net/projects/markdown

6 I DEEP

to a singlePDFdocument6 aswell as thewholewebsite7. Tools like pandocand docutils
facilitate such operations.

Exercise 1.2 (**) Install the knitr package by calling install.packages("knitr") from
within an R session.Then, create a text file named test.Rmdwith the following content:

Hello, Markdown!

This is my first automatically generated report,

where I print messages and stuff.

```{r}

print("G'day!")

print(2+2)

plot((1:10)^2)

```

Thank you for your attention.

Assuming that the file is located in the current working directory (compare Section 7.3.2), call
knitr::knit("test.Rmd") from the R console or run the following in the terminal:

Rscript -e 'knitr::knit("test.Rmd")'

Then, inspect the generatedMarkdown file, test.md.

Furthermore, if you have the pandoc tool installed, to generate a standalone HTML file, execute
in the terminal:

pandoc test.md --standalone -o test.html

Alternatively, for ways to call external programs fromR, see Section 7.3.2.

1.2.5 Semi-interactive modes (Jupyter Notebooks, sending code to the as-
sociated R console, etc.)

The nature of the most frequent use cases of R encourages a semi-interactive work-
flow, where we quickly progress with prototyping by trial and error.

In this mode, we compose a series of short code fragments inside a standalone R
script.

Each fragment implements a simple,well-defined task, suchas loadingdatafiles, data
cleansing, feature visualisation, computations of information aggregates, etc.

Importantly, any code chunk can be sent to the associated R console and executed

6 https://deepr.gagolewski.com/deepr.pdf
7 https://deepr.gagolewski.com/

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/

1 INTRODUCTION 7

therein. This way, we can inspect the result it generates. If we are not happy with the
outcome, we can apply the necessary corrections.

There are quite a few integrated development environments that enable such a work-
flow, including JupyterLab, Emacs, RStudio, and VSCodium. Some of them require ad-
ditional plugins for R.

Executing an individual code line or a whole text selection is usually done by pressing
(configurable) keyboard shortcuts such as Ctrl+Enter or Shift+Enter.

Exercise 1.3 (*) JupyterLab8 is a development environment that runs in aweb browser. It was
programmed in Python, but supports many programming languages.Thanks to IRkernel9, we
can use it with R.

1. Install JupyterLab and IRkernel (for instance, if you use Anaconda, run conda install

-c r r-essentials).

2. From the Filemenu, select Create a new R source file and save it as, e.g., test.R.

3. From the Filemenu, select Create a new console for the editor running the R kernel.

4. Input a few print “Hello, world”-like calls.

5. Press Shift+Enter (whilst working in the editor) to send different code fragments to the con-
sole and execute them. Inspect the results.

See Figure 1.1 for an illustration.

Figure 1.1. JupyterLab: A source file editor and the associated R console, where we can
run arbitrary code fragments.

8 https://jupyterlab.readthedocs.io/en/stable
9 https://irkernel.github.io/

https://jupyterlab.readthedocs.io/en/stable
https://irkernel.github.io/

8 I DEEP

Example 1.4 (*) JupyterLab is part of the Jupyter project. It handles dedicated Notebooks,
where editable and executable code chunks and results they generate can be kept together in a
single .ipynb (JSON) file; see Figure 1.2 for an illustration and Chapter 1 of [26] for a quick in-
troduction (from the Python language kernel perspective).

This environment is quite convenient for live coding (e.g., for teachers) or performing exploratory
data analyses. However, for more serious programming work, the code can get messy. Luckily,
there is always an option to export a notebook to an executable, plain text R script.

Figure 1.2. An example Jupyter Notebook, where we can keep code and results to-
gether.

1.3 Atomic vectors at a glance
After printing “Hello, world”, a typical programming course would normally proceed
with the discussion on basic data types for storing individual numeric or logical val-
ues. Next, we would be introduced to arithmetic and relational operations on such
scalars, followed by the definition of whole arrays or other collections of values, com-
plemented by the methods to iterate over them, one element after another.

In R, no separate types representing individual values have been defined. Instead,
what seems to be a single datum, is already a vector (sequence, array) of length one.

2.71828 # input a number; here: the same as print(2.71828)

[1] 2.7183

(continues on next page)

1 INTRODUCTION 9

(continued from previous page)

length(2.71828) # it is a vector with one element

[1] 1

To create a vector of any length, we can call the c function, which combines given ar-
guments into a single sequence:

c(1, 2, 3) # three values combined

[1] 1 2 3

length(c(1, 2, 3)) # indeed, it is a vector of length three

[1] 3

In Chapter 2, Chapter 3, and Chapter 6, we will discuss the most prevalent types of
atomic vectors: numeric, logical, and character ones, respectively.

c(0, 1, -3.14159, 12345.6) # four numbers

[1] 0.0000 1.0000 -3.1416 12345.6000

c(TRUE, FALSE) # two logical values

[1] TRUE FALSE

c("spam", "bacon", "spam") # three character strings

[1] "spam" "bacon" "spam"

We call them atomic for they can only group together values of the same type. Lists,
which we will discuss in Chapter 4, are, on the other hand, referred to as generic vec-
tors.They can be used for storing items of mixed types: other lists as well.

Note Not having separate scalar types greatly simplifies the programming of numer-
ical computing tasks. Vectors are prevalent in our main areas of interest: statistics,
simulations, data science, machine learning, and all other data-orientated comput-
ing. For example, columns and rows in tables (characteristics of clients, ratings of
items given by users) or time series (stock market prices, readings from temperature
sensors) are all best represented by means of such sequences.

The fact that vectors are the core part of the R language makes their use very natural,
as opposed to the languages that require special add-ons for vector processing, e.g.,
numpy for Python [34]. By learning different ways to process them as awhole (instead of
one element at a time), we will ensure that our ideas can quickly be turned into oper-
ational code. For instance, computing summary statistics such as, say, the mean ab-
solute deviation of a sequence x, will be as effortless as writing mean(abs(x-mean(x))).
Such code is not only easy to read andmaintain, but it is also fast to run.

10 I DEEP

1.4 Getting help
Our aim is to become independent, advanced R programmers.

Independent, however, does not mean omniscient. The R help system is the authorit-
ative source of knowledge about specific functions or more general topics. To open a
help page, we call:

help("topic") # equivalently: ?"topic"

Exercise 1.5 Sight (without going into detail) the manual on the length function by calling
help("length"). Note that most help pages are structured as follows:

1. Header: package:base means that the function is a base one (see Section 7.3.1 for more
details on the R package system);

2. Title;

3. Description: a short description of what the function does;

4. Usage: the list of formal arguments (parameters) to the function;

5. Arguments: the meaning of each formal argument explained;

6. Details: technical information;

7. Value: return value explained;

8. References: further reading;

9. See Also: links to other help pages;

10. Examples: R code that is worth inspecting.

We can also search within all the installed help pages by calling:

help.search("vague topic") # equivalently: ??"vague topic"

This way, we will be able to find answers to our questions more reliably than when
askingDuckDuckGo orG**gle, which commonly returnmany low-quality, irrelevant,
or distracting results fromsplogs.Wedonotwant to lose the sacred codewriter’s flow!
It is a matter of personal hygiene and good self discipline.

Important All code chunks, including code comments and textual outputs, form an
integral part of this book’s text.They should not be skipped by the reader. On the con-
trary, theymust become objects of our intense reflection and thorough investigation.

For instance, whenever we introduce a function, it may be a clever idea to look it up
in the help system. Moreover, playing with the presented code (running, modifying,
experimenting, etc.) is also very beneficial. We should develop the habit of asking

1 INTRODUCTION 11

ourselves questions like “What would happen if…”, and then finding the answers on
our own.

We are now ready to discuss the most significant operations on numeric vectors,
which constitute the main theme of the next chapter. See you there.

1.5 Exercises
Exercise 1.6 What are the three most important types of atomic vectors?

Exercise 1.7 According to the classification of the R data types we introduced in the previous
chapter, are atomic vectors basic or compound types?

2
Numeric vectors

In this chapter, we discuss the uttermost common operations on numeric vectors.
They are so fundamental that we will also find them in other scientific computing en-
vironments, including Pythonwith numpy or tensorflow, Julia,MATLAB, GNUOctave,
or Scilab.

At first blush, the number of functions we are going to explore may seem quite large.
Still, the reader is kindly asked to place some trust (a rare thing these days) in yours
truly. It is because our selection is comprised only of themost representative and edu-
cational amongst the plethora of possible choices. More complex building blocks can
often be reduced to a creative combination of the former or be easily found in a num-
ber of additional packages or libraries (e.g., GNU GSL [28]).

A solid understanding of base R programming is crucial for dealing with popular
packages (such as data.table, dplyr, or caret). Most importantly, base R’s API is
stable. Hence, the code we compose today will most likely work the same way in ten
years. It is often not the case when we rely on external add-ons.

In the sequel,wewill be advocatingaminimalist, keep-it-simple approach to the art of
programming data processing pipelines, one that is a healthy balance between “doing
it all byourselves”, “minimising the informationoverload”, “being lazy”, and “standing
on the shoulders of giants”.

Note Theexercises thatwe suggest beloware all self-containedunless explicitly stated
otherwise. The use of language constructs that are yet to be formally introduced (in
particular, if, for, and while explained in Chapter 8) is not just unnecessary: it is
discouraged. Moreover, we recommend against taking shortcuts by looking up par-
tial solutions on the internet. Rather, to get the most out of this course, we should be
seeking relevant informationwithin the current and preceding chapters as well as the
R help system.

2.1 Creating numeric vectors
2.1.1 Numeric constants
The simplest numeric vectors are those of length one:

14 I DEEP

-3.14

[1] -3.14

1.23e-4

[1] 0.000123

The latter is in what we call scientific notation, which is a convenient means of entering
numbers of very large or small orders ofmagnitude.Here, “e” stands for “… times 10 to
the power of…”.Therefore, 1.23e-4 is equal to 1.23×10−4 = 0.000123. In otherwords,
given 1.23, wemove the decimal separator by four digits towards the left, adding zer-
oes if necessary.

In real life, some information items may be inherently or temporarily missing, un-
known, or Not Available. As R is orientated towards data processing, it was equipped
with a special indicator:

NA_real_ # numeric NA (missing value)

[1] NA

It is similar to the Null marker in database query languages such as SQL. Note that
NA_real_ is displayed simply as “NA”, chiefly for readability.

Moreover, Inf denotes infinity,∞, i.e., an element that is larger than the largest rep-
resentable double-precision (64 bit) floating point value. Also, NaN stands for not-a-
number, which is returned as the result of some illegal operations, e.g., 0/0 or∞−∞.

Below we provide a few ways to create numeric vectors with possibly more than one
element.

2.1.2 Concatenating vectorswith c
First, the c function can be used to combine (concatenate)manynumeric vectors, each
of any length. It results in a single object:

c(1, 2, 3) # three vectors of length one –> one vector of length three

[1] 1 2 3

c(1, c(2, NA_real_, 4), 5, c(6, c(7, Inf)))

[1] 1 2 NA 4 5 6 7 Inf

Note Running help("c"), we will see that its usage is like c(...). In the current con-
text, this means that the c function takes an arbitrary number of arguments. In Sec-
tion 9.4.6, we will study the dot-dot-dot (ellipsis) parameter in more detail.

2.1.3 Repeating entries with rep
Second, rep replicates the elements in a vector a given number of times.

2 NUMERIC VECTORS 15

rep(1, 5)

[1] 1 1 1 1 1

rep(c(1, 2, 3), 4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

In the second case, the whole vector (1, 2, 3) has been recycled (tiled) four times. In-
terestingly, if the second argument is a vector of the same length as the first one, the
behaviour will be different:

rep(c(1, 2, 3), c(2, 1, 4))

[1] 1 1 2 3 3 3 3

rep(c(1, 2, 3), c(4, 4, 4))

[1] 1 1 1 1 2 2 2 2 3 3 3 3

Here, each element is repeated the corresponding number of times.

Calling help("rep"), we find that the function’s usage is like rep(x, ...). It is rather
peculiar. However, reading further, we discover that the ellipsis (dot-dot-dot) may be
fed with one of the following parameters:

• times,

• length.out1,

• each.

So far, we have been playing with times, which is listed second in the parameter list
(after x, the vector whose elements are to be repeated).

Important It turns out that the following function calls are all equivalent:

rep(c(1, 2, 3), 4) # positional matching of arguments: `x`, then `times`

rep(c(1, 2, 3), times=4) # `times` is the second argument

rep(x=c(1, 2, 3), times=4) # keyword arguments of the form name=value

rep(times=4, x=c(1, 2, 3)) # keyword arguments can be given in any order

rep(times=4, c(1, 2, 3)) # mixed positional and keyword arguments

We can also pass each or length.out, but their names must be mentioned explicitly:

rep(c(1, 2, 3), length.out=7)

[1] 1 2 3 1 2 3 1

rep(c(1, 2, 3), each=3)

[1] 1 1 1 2 2 2 3 3 3

rep(c(1, 2, 3), length.out=7, each=3)

[1] 1 1 1 2 2 2 3

1 A dot has no special meaning in R; see Section 2.2.

16 I DEEP

Note Whether it was a good programming practice to actually implement a range of
variedbehaviours inside a single function is amatter of taste.On theonehand, in all of
the examples above, we do repeat the input elements somehow, so remembering just
one function name is really convenient. Nevertheless, a drastic change in the repeti-
tion pattern depending, e.g., on the length of the times argument can be bug-prone.
Anyway, we have been warned2.

Zero-length vectors are possible too:

rep(c(1, 2, 3), 0)

numeric(0)

Even though their handling might be a little tricky, we will later see that they are in-
dispensable in contexts like “create an empty data framewith a specific column struc-
ture”.

Also, note that R often allows for partial matching of named arguments, but its use is
a bad programming practice; see Section 15.4.4 for more details.

rep(c(1, 2, 3), len=7) # not recommended (see later)

Warning in rep(c(1, 2, 3), len = 7): partial argument match of 'len' to

'length.out'

[1] 1 2 3 1 2 3 1

We see the warning only because we have set options(warnPartialMatchArgs=TRUE) in
our environment. It is not used by default.

2.1.4 Generating arithmetic progressionswith seq and `:`
Third, we can call the seq function to create a sequence of equally-spaced numbers on
a linear scale, i.e., an arithmetic progression.

seq(1, 15, 2)

[1] 1 3 5 7 9 11 13 15

From the function’s help page, we discover that seq accepts the from, to, by, and
length.out arguments, amongst others.Thus, the above call is equivalent to:

seq(from=1, to=15, by=2)

[1] 1 3 5 7 9 11 13 15

2 Some “caring” R users might be tempted to introduce two new functions now, one for generating (1,
2, 3, 1, 2, 3, …) only and the other outputting patterns like (1, 1, 1, 2, 2, 2, …). They would most likely wrap
them in a new package and announce that on social media. But this is nothing else than amultiplication of
entities without actual necessity. This way, we would end up with three functions. First is the original one,
rep, which everyone ought to know anyway because it is part of the standard library. Second and third are
the two redundant procedures whose user-friendliness is only illusory. See also Chapter 9 for a discussion
on the design of functions.

2 NUMERIC VECTORS 17

Note that to actually means “up to”:

seq(from=1, to=16, by=2)

[1] 1 3 5 7 9 11 13 15

We can also pass length.out instead of by. In such a case, the increments or decre-
ments will be computed via the formula ((to - from)/(length.out - 1)).This default
value is reported in the Usage section of help("seq").

seq(1, 0, length.out=5)

[1] 1.00 0.75 0.50 0.25 0.00

seq(length.out=5) # default `from` is 1

[1] 1 2 3 4 5

Arithmetic progressions with steps equal to 1 or -1 can also be generated via the `:`
operator.

1:10 # seq(1, 10) or seq(1, 10, 1)

[1] 1 2 3 4 5 6 7 8 9 10

-1:10 # seq(-1, 10) or seq(-1, 10, 1)

[1] -1 0 1 2 3 4 5 6 7 8 9 10

-1:-10 # seq(-1, -10) or seq(-1, -10, -1)

[1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Let us highlight the order of precedence of this operator: -1:10 means (-1):10, and
not -(1:10); compare Section 2.4.3.

Exercise 2.1 Take a look at the manual page of seq_along and seq_len. Determine Having
seq3 at hand, determine whether they can easily be done without.

2.1.5 Generating pseudorandomnumbers
Wecanalsogenerate sequencesdrawn independently fromarangeofunivariateprob-
ability distributions.

runif(7) # uniform U(0, 1)

[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556 0.528105

rnorm(7) # normal N(0, 1)

[1] 1.23950 -0.10897 -0.11724 0.18308 1.28055 -1.72727 1.69018

These correspond to seven pseudorandom deviates following the uniform distribu-
tion on the unit interval (i.e., (0, 1)) and the standard normal distribution (i.e., with
expectation 0 and standard deviation 1), respectively; compare Figure 2.3.

For more named distribution classes frequently occur in various real-world statistical
modelling exercises, see Section 2.3.4.

3 Certain configurations of seq and its variants might return vectors of the type integer instead of
double, some of them in a compact (ALTREP) form; see Section 6.4.1.

18 I DEEP

Another worthwhile function picks items from a given vector, either with or without
replacement:

sample(1:10, 20, replace=TRUE) # 20 with replacement (allow repetitions)

[1] 3 3 10 2 6 5 4 6 9 10 5 3 9 9 9 3 8 10 7 10

sample(1:10, 5, replace=FALSE) # 5 without replacement (do not repeat)

[1] 9 3 4 6 1

Thedistributionof the sampled values doesnot need to beuniform; the prob argument
may be fed with a vector of the corresponding probabilities. For example, here are 20
independent realisations of the random variable 𝑋 such that Pr(𝑋 = 0) = 0.9 (the
probability that we obtain 0 is equal to 90%) and Pr(𝑋 = 1) = 0.1:

sample(0:1, 20, replace=TRUE, prob=c(0.9, 0.1))

[1] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Note If n is a single number (a numeric vector of length 1), then sample(n, ...) is
equivalent to sample(1:n, ...). Similarly, seq(n) is a synonym for seq(1, n) or seq(1,
length(n)), depending on the length of n. This is a dangerous behaviour that can oc-
casionally backfire and lead to bugs (checkwhat happens when n is, e.g., 0). Nonethe-
less, we have been warned. From now on, we are going to be extra careful (but are we
really?). Readmore at help("sample") and help("seq").

Let us stress that the numbers we obtain are merely pseudorandom because they are
generated algorithmically. R uses the Mersenne-Twister MT19937 method [46] by de-
fault; see help("RNG") and [21, 29, 42]. By setting the seed of the random number gen-
erator, i.e., resetting its state to a given one,we can obtain results that are reproducible.

set.seed(12345) # seeds are specified with integers

sample(1:10, 5, replace=TRUE) # a,b,c,d,e

[1] 3 10 8 10 8

sample(1:10, 5, replace=TRUE) # f,g,h,i,j

[1] 2 6 6 7 10

Setting the seed to the one used previously gives:

set.seed(12345)

sample(1:10, 5, replace=TRUE) # a,b,c,d,e

[1] 3 10 8 10 8

We did not(?) expect that! And now for something completely different:

set.seed(12345)

sample(1:10, 10, replace=TRUE) # a,b,c,d,e,f,g,h,i,j

[1] 3 10 8 10 8 2 6 6 7 10

2 NUMERIC VECTORS 19

Reproducibility is a crucial feature of each truly scientific experiment.The same initial
condition (here: the same seed) leads to exactly the same outcomes.

Note Some claim that the only unsuspicious seed is 42 but in matters of taste, there
can be no disputes. Everyone can use their favourite picks: yours truly savours 123,
1234, and 12345 as well.

When performingmany runs ofMonte Carlo experiments, it may also be a clever idea
to call set.seed(i) in the 𝑖-th iteration of a simulation we are trying to program.
We should ensure that our seed settings are applied consistently across all our scripts.
Otherwise, wemight be accused of tampering with evidence. For instance, here is the
ultimate proof that we are very lucky today:

set.seed(1679619) # totally unsuspicious, right?

sample(0:1, 20, replace=TRUE) # so random

[1] 1

This is exactly why reproducible scripts and auxiliary data should be published along-
side all research reports or papers. Only open, transparent science can be fully trust-
worthy.

If set.seed is not called explicitly, and the randomstate is not restored from the previ-
ously saved R session (see Chapter 16), then the random generator is initialised based
on the current wall time and the identifier of the running R instance (PID). This may
justify the impression that the numbers we generate appear surprising.

To understand the “pseudo” part of the said randomness better, in Section 8.3, wewill
build a very simple random generator ourselves.

2.1.6 Reading datawith scan
An example text file named euraud-20200101-20200630.csv4 gives the EUR to AUD ex-
change rates (howmany AustralianDollars canwe buy for 1 Euro) from 1 January to 30
June 2020 (remember COVID-19?). Let us preview the first couple of lines:

EUR/AUD Exchange Rates

Source: Statistical Data Warehouse of the European Central Bank System

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/

(provided free of charge)

NA

1.6006

1.6031

NA

The four header lines that begin with “#” merely serve as comments for us humans.

4 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

20 I DEEP

They should be ignored by the interpreter. The first “real” value, NA, corresponds to
1 January (Wednesday, New Year’s Day; Forex markets were closed, hence a missing
observation).

We can invoke the scan function to read all the inputs and convert them to a single
numeric vector:

scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

[1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132

[11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA NA 1.6154

[21] 1.6177 1.6184 1.6149 1.6127 NA NA 1.6291 1.6290 1.6299 1.6412

[31] 1.6494 NA NA 1.6521 1.6439 1.6299 1.6282 1.6417 NA NA

[41] 1.6373 1.6260 1.6175 1.6138 1.6151 NA NA 1.6129 1.6195 1.6142

[51] 1.6294 1.6363 NA NA 1.6384 1.6442 1.6565 1.6672 1.6875 NA

[61] NA 1.6998 1.6911 1.6794 1.6917 1.7103 NA NA 1.7330 1.7377

[71] 1.7389 1.7674 1.7684 NA NA 1.8198 1.8287 1.8568 1.8635 1.8226

[81] NA NA 1.8586 1.8315 1.7993 1.8162 1.8209 NA NA 1.8021

[91] 1.7967 1.8053 1.7970 1.8004 NA NA 1.7790 1.7578 1.7596

[reached getOption("max.print") -- omitted 83 entries]

We used the paste0 function (Section 6.1.3) to concatenate two long strings (too long
to fit a single line of code) and form a single URL.

We can also read the files located on our computer. For example:

scan("~/Projects/teaching-data/marek/euraud-20200101-20200630.csv",

comment.char="#")

It used an absolute file path that starts at the user’s home directory, denoted “~”. Yours
truly’s case is /home/gagolews.

Note For portability reasons, we suggest slashes, “/”, as path separators; see also
help("file.path") and help(".Platform").They are recognisedby allUNIX-like boxes
as well as by other popular operating systems, includingW*****ws. Note that URLs,
such as https://deepr.gagolewski.com/, consist of slashes too.

Paths can also be relative to the currentworkingdirectory, denoted “.”, which can be read
via a call to getwd.Usually, it is thedirectory fromwhere theRsessionhasbeen started.

For instance, if the working directory was /home/gagolews/Projects/teaching-data/
marek, we could write the file path equivalently as ./euraud-20200101-20200630.csv or
even euraud-20200101-20200630.csv.

On as side note, “..” marks the parent directory of the current working direct-
ory. In the above example, ../r/iris.csv is equivalent to /home/gagolews/Projects/

teaching-data/r/iris.csv.

https://deepr.gagolewski.com/

2 NUMERIC VECTORS 21

Exercise 2.2 Read the help page about scan. Take note of the following formal arguments and
their meaning: dec, sep, what, comment.char, and na.strings.

Later we will discuss the read.table and read.csv functions. They are wrappers
around scan that reads structured data. Also, write exports an atomic vector’s contents
to a text file.

Example 2.3 Figure 2.1 shows the graph of the aforementioned exchange rates, whichwas gen-
erated by calling:

plot(scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#"),

xlab="Day", ylab="EUR/AUD")

0 50 100 150

1.6
0

1.6
5

1.7
0

1.7
5

1.8
0

1.8
5

Day

EU
R/

AU
D

Figure 2.1. EUR/AUD exchange rates from 2020-01-01 (day 1) to 2020-06-30 (day 182).

Somewhatmisleadingly (and for reasons that will become apparent later), the documentation of
plot can be accessed by calling help("plot.default"). Read about, and experiment with, dif-
ferent values of themain,xlab,ylab,type,col,pch,cex,lty, andlwdarguments.Moreplotting
routines will be discussed in Chapter 13.

2.2 Creating named objects
Theobjectswe bring forthwill often need to bememorised so that they can be referred
to in further computations. The assignment operator, `<-`, can be used for this pur-
pose:

22 I DEEP

x <- 1:3 # creates a numeric vector and binds the name `x` to it

The now-named object can be recalled5 and dealt with as we please:

print(x) # or just `x` in the R console

[1] 1 2 3

sum(x) # example operation: compute the sum of all elements in `x`

[1] 6

Important In R, all names are case-sensitive. Hence, x and X can coexist peacefully:
when set, they refer to two different objects. If we tried calling Print(x), print(X), or
PRINT(x) above, we would get an error.

Typically, we will be using syntactic names. In help("make.names"), we read: A syntactic-
ally valid name consists of letters, numbers and the dot or underline characters and starts with
a letter or the dot not followed by a number. Names such as .2way are not valid, and neither are
the reserved words such as if, for, function, next, and TRUE, but see Section 9.3.1 for an
exception.

A fine name is self-explanatory and thus reader-friendly: patients, mean, and aver-

age_scores are way better (if they are what they claim they are) than xyz123, crap, or
spam. Also, it might not be such a bad idea to get used to denoting:

• vectors with x, y, z,

• matrices (andmatrix-like objects) with A, B, …, X, Y, Z,

• integer indexes with letters i, j, k, l,

• object sizes with n, m, d, p or nx, ny, etc.,

especially when they are only of temporary nature (for storing auxiliary results, iter-
ating over collections of objects, etc.).

There are numerous naming conventions that we can adopt, but most often they
are a matter of taste; snake_case, lowerCamelCase, UpperCamelCase, flatcase, or dot.
case are equally sound as long as they are used coherently (for instance, some use
snake_case for vectors and UpperCamelCase for functions). Occasionally, we have little
choice but to adhere to the naming conventions of the project we are about to contrib-
ute to.

Note Generally, a dot, “.”, has no special meaning6; na.omit is as appropriate a name
as na_omit, naOmit, NAOMIT, naomit, and NaOmit. Readers who know other program-
ming languages will need to habituate themselves to this convention.

5 Name bindings are part of environment frames; see Chapter 16.
6 See Section 10.2 and Section 16.2.1 for a few asterisks.

2 NUMERIC VECTORS 23

R, as a dynamic language, allows for introducing new variables at any time.Moreover,
existing names can be bound to new values. For instance:

(y <- "spam") # bracketed expression – printing not suppressed

[1] "spam"

x <- y # overwrites the previous `x`

print(x)

[1] "spam"

Now x refers to a verbatim copy of y.

Note Objects are automatically destroyed when we cannot access them anymore. By
now, the garbage collector is likely to have got rid of the 1:3 vector begotten above (to
which the name xwas bound previously).

2.3 Vectorisedmathematical functions
Mathematically, we will be denoting a given vector 𝒙 of length 𝑛with (𝑥1, 𝑥2, … , 𝑥𝑛).
In other words, 𝑥𝑖 is its 𝑖-th element.
Let us review a few operations that are ubiquitous in numerical computing.

2.3.1 abs and sqrt
R implements vectorised versions of the most popular mathematical functions, e.g.,
abs (absolute value, |𝑥|) and sqrt (square root,√𝑥).

abs(c(2, -1, 0, -3, NA_real_))

[1] 2 1 0 3 NA

Here, vectorisedmeans that instead of being defined to act on a single numeric value,
the function of interest is applied on each element in a vector. The 𝑖-th resulting item
is a transformed version of the 𝑖-th input:

|𝒙| = (|𝑥1|, |𝑥2|, … , |𝑥𝑛|).

Moreover, if an input is a missing value, the corresponding output will be marked as
unknown as well.

Another example:

x <- c(4, 2, -1)

(y <- sqrt(x))

(continues on next page)

24 I DEEP

(continued from previous page)

Warning in sqrt(x): NaNs produced

[1] 2.0000 1.4142 NaN

Toattract our attention to the fact that computing the square root of anegative value is
a reckless act, R generated an informative warning. However, a warning is not an error:
the result is being produced as usual. In this case, the ill value is marked as not-a-
number.

Also, the fact that the irrational√2 is displayed7 as 1.4142doesnotmean that it is sucha
crude approximation to 1.414213562373095048801688724209698.... It was rounded
when printing purely for aesthetic reasons. In fact, in Section 3.2.3, we will point out
that the computer’s floating-point arithmetic has roughly 16 decimal digits precision
(but we shall see that the devil is in the detail).

print(y, digits=16) # display more significant figures

[1] 2.000000000000000 1.414213562373095 NaN

2.3.2 Rounding
The following functions get rid of all or portions of fractional parts of numbers:

• floor(x) (rounds down to the nearest integer, denoted ⌊𝑥⌋),
• ceiling(x) (rounds up, denoted ⌈𝑥⌉ = −⌊−𝑥⌋),
• trunc(x) (rounds towards zero),

• round(x, digits=0) (rounds to the nearest number with digits decimal digits).

For instance:

x <- c(7.0001, 6.9999, -4.3149, -5.19999, 123.4567, -765.4321, 0.5, 1.5, 2.5)

floor(x)

[1] 7 6 -5 -6 123 -766 0 1 2

ceiling(x)

[1] 8 7 -4 -5 124 -765 1 2 3

trunc(x)

[1] 7 6 -4 -5 123 -765 0 1 2

Note When we write that a function’s usage is like round(x, digits=0), compare
help("round"), we mean that the digits parameter is equipped with the default value
of 0. In other words, if rounding to 0 decimal digits is what we need, the second ar-
gument can be omitted.

7Thereare a coupleof settings inplace that control thedefault behaviourof the print function; see width,
digits, max.print, OutDec, scipen, etc. in help("options").

2 NUMERIC VECTORS 25

round(x) # the same as round(x, 0); round half to even

[1] 7 7 -4 -5 123 -765 0 2 2

round(x, 1) # round to tenths (nearest 0.1s)

[1] 7.0 7.0 -4.3 -5.2 123.5 -765.4 0.5 1.5 2.5

round(x, -2) # round to hundreds (nearest 100s)

[1] 0 0 0 0 100 -800 0 0 0

2.3.3 Natural exponential function and logarithm
Moreover:

• exp(x) outputs the natural exponential function, 𝑒𝑥, where Euler’s number 𝑒 ≃
2.718,

• log(x, base=exp(1)) computes, by default, the natural logarithm of 𝑥, log𝑒 𝑥
(which is most often denoted simply as log 𝑥).

Recall that if 𝑥 = 𝑒𝑦, then log𝑒 𝑥 = 𝑦, i.e., one is the inverse of the other.

log(c(0, 1, 2.7183, 7.3891, 20.0855)) # grows slowly

[1] -Inf 0 1 2 3

exp(c(0, 1, 2, 3)) # grows fast

[1] 1.0000 2.7183 7.3891 20.0855

These functions enjoy a number of very valuable identities and inequalities. In partic-
ular, we should know from school that log(𝑥 ⋅ 𝑦) = log 𝑥 + log 𝑦, log(𝑥𝑦) = 𝑦 log 𝑥,
and 𝑒𝑥+𝑦 = 𝑒𝑥 ⋅ 𝑒𝑦.

For the logarithm to a different base, say, log10 𝑥, we can call:

log(c(0, 1, 10, 100, 1000, 1e10), 10) # or log(..., base=10)

[1] -Inf 0 1 2 3 10

Recall that if log𝑏 𝑥 = 𝑦, then 𝑥 = 𝑏𝑦, for any 1 ≠ 𝑏 > 0.
Example 2.4 Commonly, a logarithmic scale is used for variables that grow rapidly when ex-
pressed as functions of each other; see Figure 2.2.

x <- seq(0, 10, length.out=1001)

par(mfrow=c(1, 2)) # two plots in one figure (one row, two columns)

plot(x, exp(x), type="l") # left subplot

plot(x, exp(x), type="l", log="y") # log-scale on the y-axis; right subplot

Let us highlight that 𝑒𝑥 on the log-scale is just a straight line. Such a transformation of the axes
can only be applied in the case of values strictly greater than 0.

26 I DEEP

0 2 4 6 8 10

0
5

0
0

0
10

0
0

0
15

0
0

0
2

0
0

0
0

x

ex
p

(x
)

0 2 4 6 8 10

1
10

10
0

10
0

0
10

0
0

0

x

ex
p

(x
)

Figure 2.2. Linear- vs log-scale on the y-axis.

2.3.4 Probability distributions (*)
It should come as no surprise that R offers extensive support for many univariate
probability distribution families, including:

• continuous distributions, i.e., those whose support is comprised of uncountably
many real numbers (e.g., some interval or the whole real line):

– *unif (uniform),

– *norm (normal),

– *exp (exponential),

– *gamma (gamma, Γ),
– *beta (beta, B),

– *lnorm (log-normal),

– *t (Student),

– *cauchy (Cauchy–Lorentz),

– *chisq (chi-squared, 𝜒2),

– *f (Snedecor–Fisher),

– *weibull (Weibull);

with the prefix “*” being one of:

– d (probability density function, PDF),

2 NUMERIC VECTORS 27

– p (cumulative distribution function, CDF; or survival function, SF),

– q (quantile function, being the inverse of the CDF),

– r (generation of random deviates; already mentioned above);

• discrete distributions, i.e., those whose possible outcomes can easily be enumer-
ated (e.g., some integers):

– *binom (binomial),

– *geom (geometric),

– *pois (Poisson),

– *hyper (hypergeometric),

– *nbinom (negative binomial);

here, prefixes “p” and “r” have the samemeaning as above, however:

– d now gives the probabilitymass function (PMF),

– q brings about the quantile function, defined as a generalised inverse of the
CDF.

Each distribution is characterised by a set of underlying parameters. For instance, a
normal distribution N(𝜇, 𝜎) can be pinpointed by setting its expected value 𝜇 ∈ ℝ
and standard deviation 𝜎 > 0. In R, these two have been named mean and sd, respect-
ively; see help("dnorm").Therefore, e.g., dnorm(x, 1, 2) computes the PDF of N(1, 2)
at x.

Note The parametrisations assumed in R can be subtly different fromwhat we know
from statistical textbooks or probability courses. For example, the normal distribu-
tion can be identified based on either standard deviation or variance, and the expo-
nential distribution can be defined via expected value or its reciprocal. We thus ad-
vise the reader to study carefully thedocumentationof help("dnorm"), help("dunif"),
help("dexp"), help("dbinom"), and the like.

It is also worth knowing the typical use cases of each of the distributions listed, e.g.,
a Poisson distribution can describe the probability of observing the number of in-
dependent events in a fixed time interval (e.g., the number of users downloading a
copy of R from CRAN per hour), and an exponential distribution can model the time
between such events; compare [23].

Exercise 2.5 Acall tohist(x)drawsahistogram,which canserveasanestimator of theunder-
lying continuousprobability density function of a given sample; see Figure 2.3 for an illustration.

par(mfrow=c(1, 2)) # two plots in one figure

left subplot: uniform U(0, 1)

hist(runif(10000, 0, 1), col="white", probability=TRUE, main="")

(continues on next page)

28 I DEEP

(continued from previous page)

x <- seq(0, 1, length.out=101)

lines(x, dunif(x, 0, 1), lwd=2) # draw the true density function (PDF)

right subplot: normal N(0, 1)

hist(rnorm(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(-4, 4, length.out=101)

lines(x, dnorm(x, 0, 1), lwd=2) # draw the PDF

runif(10000, 0, 1)

D
en

sit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.0

rnorm(10000, 0, 1)

D
en

sit
y

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.3. Example histograms of some pseudorandom samples and the true under-
lying probability density functions: the uniform distribution on the unit interval (left)
and the standard normal distribution (right).

Draw a histogram of some random samples of different sizes n from the following distributions:

• rnorm(n, µ, σ) – normal N(𝜇, 𝜎) with expected values 𝜇 ∈ {−1, 0, 5} (i.e., 𝜇 being
equal to either−1, 0, or 5; read “∈” as “belongs to the given set” or “in”) and standard devi-
ations𝜎 ∈ {0.5, 1, 5};

• runif(n, a, b) – uniformU(𝑎, 𝑏) on the interval (𝑎, 𝑏)with 𝑎 = 0 and 𝑏 = 1 as well as
𝑎 = −1 and 𝑏 = 1;

• rbeta(n, α, β) – betaB(𝛼, 𝛽)with 𝛼, 𝛽 ∈ {0.5, 1, 2};
• rexp(n, λ) – exponentialE(𝜆)with rates𝜆 ∈ {0.5, 1, 10};

Moreover, read about and playwith the breaks, main, xlab, ylab, xlim, ylim, and colparamet-
ers; see help("hist").

Example 2.6 We roll a six-sided dice twelve times. Let 𝐶 be a random variable denoting the
number of cases where the “1” face is thrown.𝐶 follows a binomial distribution Bin(𝑛, 𝑝)with

2 NUMERIC VECTORS 29

parameters 𝑛 = 12 (the number of Bernoulli trials) and 𝑝 = 1/6 (the probability of success
in a single roll).

Theprobabilitymass function, dbinom, represents the probabilities that the number of “1”s rolled
is equal to 0, 1, …, or 12, i.e.,𝑃(𝐶 = 0),𝑃(𝐶 = 1), …, or𝑃(𝐶 = 12), respectively:

round(dbinom(0:12, 12, 1/6), 2) # PMF at 13 different points

[1] 0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

On the other hand, the probability that we throw no more than three “1”s, 𝑃(𝐶 ≤ 3), can be
determined bymeans of the cumulative distribution function, pbinom:

pbinom(3, 12, 1/6) # pbinom(3, 12, 1/6, lower.tail=FALSE)

[1] 0.87482

The smallest 𝑐 such that𝑃(𝐶 ≤ 𝑐) ≥ 0.95 can be computed based on the quantile function:

qbinom(0.95, 12, 1/6)

[1] 4

pbinom(3:4, 12, 1/6) # for comparison: 0.95 is in-between

[1] 0.87482 0.96365

In other words, at least 95% of the time, we will be observing nomore than four successes.

Also, here are 30 pseudorandom realisations (simulations) of the random variable𝐶:

rbinom(30, 12, 1/6) # how many successes in 12 trials, repeated 30 times

[1] 1 3 2 4 4 0 2 4 2 2 4 2 3 2 0 4 1 0 1 4 4 3 2 6 2 3 2 2 1 1

2.3.5 Special functions (*)
Within mathematical formulae and across assorted application areas, certain func-
tions appear more frequently than others. Hence, for the sake of notational brevity
and computational precision, many of them have been assigned special names. For
instance, the following functionsmay bementioned in the definitions related to some
of the probability distributions listed above:

• gamma(x) for 𝑥 > 0 computes Γ(𝑥) = ∫∞
0 𝑡𝑥−1𝑒−𝑡 𝑑𝑡,

• beta(a, b) for 𝑎, 𝑏 > 0 yields 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏) = ∫1

0 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡.

Why do we have beta if it is merely amix of gammas? A specific, tailored function is ex-
pected to be faster and more precise than its DIY version; its underlying implement-
ation does not have to involve any calls to gamma.

beta(0.25, 250) # okay

[1] 0.91213

gamma(0.25)*gamma(250)/gamma(250.25) # not okay

[1] NaN

30 I DEEP

The Γ function grows so rapidly that already gamma(172) gives rise to Inf. It is due to
the fact that a computer’s arithmetic is not infinitely precise; compare Section 3.2.3.

Special functions are plentiful; see the open-accessNISTDigital Library ofMathematical
Functions [51] for one of themost definitive references (and also [2] for its predecessor).
R package gsl [33] provides a vectorised interface to the GNU GSL [28] library, which
implements many of such routines.

Exercise 2.7 ThePochhammer symbol, (𝑎)𝑥 = Γ(𝑎 + 𝑥)/Γ(𝑎), can be computed via a call to
gsl::poch(a, x), i.e., the poch function from the gsl package:

call install.packages("gsl") first

library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf_poch() from GNU GSL

[1] 1320 17160 240240 3603600

Read the documentation of the corresponding gsl_sf_poch function in the GNUGSLmanual8.
And when you are there, do not hesitate to go through the list of all functions, including those
related to statistics, permutations, combinations, and so forth.

Many functions alsohave their logarithm-of versions; see, e.g., lgamma and lbeta. Also,
for instance, dnorm and dbetahave the logparameter.Their classical use case is the (nu-
merical)maximum likelihood estimation,which involves the sums of the logarithms of
densities.

2.4 Arithmetic operations
2.4.1 Vectorised arithmetic operators
R features the following binary arithmetic operators:

• `+` (addition) and `-` (subtraction),

• `*` (multiplication) and `/` (division),

• `%/%` (integer division) and `%%` (modulo, division remainder),

• `^` (exponentiation; synonym: `**`).

They are all vectorised: they take two vectors on input and produce another vector on
output.

c(1, 2, 3) * c(10, 100, 1000)

[1] 10 200 3000

The operation was performed in an elementwise fashion on the corresponding pairs of
elements from both vectors. The first element in the left sequence was multiplied by

8 https://www.gnu.org/software/gsl/doc/html

https://www.gnu.org/software/gsl/doc/html

2 NUMERIC VECTORS 31

the corresponding element in the right vector, and the result was stored in the first ele-
ment of the output.Then, the second element in the left… all right, we get it.

Other operators behave similarly:

0:10 + seq(0, 1, 0.1)

[1] 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

0:7 / rep(3, length.out=8) # division by 3

[1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333

0:7 %/% rep(3, length.out=8) # integer division

[1] 0 0 0 1 1 1 2 2

0:7 %% rep(3, length.out=8) # division remainder

[1] 0 1 2 0 1 2 0 1

Operations involving missing values also yield NAs:

c(1, NA_real_, 3, NA_real_) + c(NA_real_, 2, 3, NA_real_)

[1] NA NA 6 NA

2.4.2 Recycling rule
Some of the above statements can be written more concisely. When the operands are
of different lengths, the shorter one is recycled asmany times as necessary, as in rep(y,
length.out=length(x)). For example:

0:7 / 3

[1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333

1:10 * c(-1, 1)

[1] -1 2 -3 4 -5 6 -7 8 -9 10

2 ^ (0:10)

[1] 1 2 4 8 16 32 64 128 256 512 1024

We call this the recycling rule.

If anoperandcannotbe recycled in its entirety, awarning9 is generated, but theoutput
is still available.

c(1, 10, 100) * 1:8

Warning in c(1, 10, 100) * 1:8: longer object length is not a multiple of

shorter object length

[1] 1 20 300 4 50 600 7 80

Vectorisation and the recycling rule are perhaps most fruitful when applying binary
operators on sequences of identical lengths or when performing vector-scalar (i.e., a
sequence vs a single value) operations. However, there is much more: schemes like

9 A few functions do not warn us whatsoever when they perform incomplete recycling (e.g., paste) or
can even give an error (e.g., as.data.frame.list). Consider this inconsistency an annoying bug and hope it
will be fixed, in the next decade or so.

32 I DEEP

“every 𝑘-th element” appear in Taylor series expansions (multiply by c(-1, 1)), 𝑘-fold
cross-validation, etc.; see also Section 11.3.4 for use cases inmatrix/tensor processing.

Also, pmin and pmax return the parallelminimum andmaximum of the corresponding
elements of the input vectors.Their behaviour is the same as the arithmetic operators,
but we call them as ordinary functions:

pmin(c(1, 2, 3, 4), c(4, 2, 3, 1))

[1] 1 2 3 1

pmin(3, 1:5)

[1] 1 2 3 3 3

pmax(0, pmin(1, c(0.25, -2, 5, -0.5, 0, 1.3, 0.99))) # clipping to [0, 1]

[1] 0.25 0.00 1.00 0.00 0.00 1.00 0.99

Note Some functions can be very deeply vectorised, i.e., with respect to multiple ar-
guments. For example:

runif(3, c(10, 20, 30), c(11, 22, 33))

[1] 10.288 21.577 31.227

generates three random numbers uniformly distributed over the intervals (10, 11),
(20, 22), and (30, 33), respectively.

2.4.3 Operator precedence
Expressions involving multiple operators need a set of rules governing the order of
computations (unless we enforce it using round brackets). We have said that -1:10
means (-1):10 rather than -(1:10). But what about, say, 1+1+1+1+1*0 or 3*2^0:5+10?

Let us list the operators mentioned so far in their order of precedence, from the least to
the most binding (see also help("Syntax")):

1. `<-` (right to left),

2. `+` and `-` (binary),

3. `*` and `/`,

4. `%%` and `%/%`,

5. `:`,

6. `+` and `-` (unary),

7. `^` (right to left).

Hence, -2^2/3+3*4means ((-(2^2))/3)+(3*4) and not, e.g., -((2^(2/(3+3)))*4).

Notice that `+` and `-`, `*` and `/`, as well as `%%` and `%/%` have the same priority.
Expressions involving a series of operations in the same group are evaluated left to

2 NUMERIC VECTORS 33

right, with the exception of `^` and `<-`, which are performed the other way around.
Therefore:

• 2*3/4*5 is equivalent to ((2*3)/4)*5,

• 2^3^4 is 2^(3^4) because, mathematically, we would write it as 234 = 281,

• “x <- y <- 4*3%%8/2” binds both y and x to 6, not x to the previous value of y and
then y to 6.

When in doubt, we can always bracket a subexpression to ensure it is executed in the
intended order. It can also increase the readability of the code.

2.4.4 Accumulating
The `+` and `*` operators, as well as the pmin and pmax functions, implement element-
wise operations that are applied on the corresponding elements taken from two given
vectors. For instance:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1 + 𝑦1
𝑥2 + 𝑦2
𝑥3 + 𝑦3

⋮
𝑥𝑛 + 𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

However, we can also scan through all the values in a single vector and combine the
successive elements that we inspect using the corresponding operation:

• cumsum(x) gives the cumulative sum of the elements in a vector,

• cumprod(x) computes the cumulative product,

• cummin(x) yields the cumulative minimum,

• cummax(x) breeds the cumulative maximum.

The 𝑖-th element in the output vector will consist of the sum/product/min/max of the
first 𝑖 inputs. For example:

cumsum

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥1 + 𝑥2
𝑥1 + 𝑥2 + 𝑥3
⋮ ⋱
𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

cumsum(1:8)

[1] 1 3 6 10 15 21 28 36

cumprod(1:8)

[1] 1 2 6 24 120 720 5040 40320

cummin(c(3, 2, 4, 5, 1, 6, 0))

(continues on next page)

34 I DEEP

(continued from previous page)

[1] 3 2 2 2 1 1 0

cummax(c(3, 2, 4, 5, 1, 6, 0))

[1] 3 3 4 5 5 6 6

Example 2.8 On a side note, diff can be considered an inverse to cumsum. It computes the it-
erated difference: subtracts the first two elements, then the second from the third one, the third
from the fourth, and so on. In other words, diff(x) gives 𝒚 such that 𝑦𝑖 = 𝑥𝑖+1 − 𝑥𝑖.

x <- c(-2, 3, 6, 2, 15)

diff(x)

[1] 5 3 -4 13

cumsum(diff(x))

[1] 5 8 4 17

cumsum(c(-2, diff(x))) # recreates x

[1] -2 3 6 2 15

Thanks to diff, we can compute the daily changes to the EUR/AUD forex rates studied earlier;
see Figure 2.4.

aud <- scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

aud_all <- na.omit(aud) # remove all missing values

plot(diff(aud_all), type="s", ylab="Daily change [EUR/AUD]") # "steps"

abline(h=0, lty="dotted") # draw a horizontal line at y=0

0 20 40 60 80 100 120

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

Index

D
ai

ly
 ch

an
ge

 [E
UR

/A
UD

]

Figure 2.4. Iterated differences of the exchange rates (non-missing values only).

2 NUMERIC VECTORS 35

2.4.5 Aggregating
Continuing theoperationsmentioned in theprevious section, ifweare interestedonly
in the last cumulant, which summarises all the inputs, we have the following10 func-
tions at our disposal:

• sum(x) computes the sum of elements in a vector,∑𝑛
𝑖=1 𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛,

• prod(x) outputs the product of all elements,∏𝑛
𝑖=1 𝑥𝑖 = 𝑥1𝑥2 ⋯ 𝑥𝑛,

• min(x) determines the minimum,

• max(x) reckons the greatest value.

sum(1:8)

[1] 36

prod(1:8)

[1] 40320

min(c(3, 2, 4, 5, 1, 6, 0))

[1] 0

max(c(3, 2, 4, 5, 1, 6, 0))

[1] 6

The above functions form the basis for the popular summary statistics11 (sample ag-
gregates) such as:

• mean(x) gives the arithmetic mean, sum(x)/length(x),

• var(x) yields the (unbiased) sample variance, sum((x-mean(x))^2)/(length(x)-1),

• sd(x) is the standard deviation, sqrt(var(x)).

Furthermore, median(x) computes the sample median, i.e., the middle value in the
sorted12 version of x.

For instance:

x <- runif(1000)

c(min(x), mean(x), median(x), max(x), sd(x))

[1] 0.00046535 0.49727780 0.48995025 0.99940453 0.28748391

Exercise 2.9 Let 𝒙 be any vector of length𝑛with positive elements. Compute its geometric and
harmonic mean, which are given by, respectively,

𝑛

√
√√
⎷

𝑛
∏
𝑖=1

𝑥𝑖 = 𝑒
1
𝑛 ∑𝑛

𝑖=1 log𝑥𝑖 and
𝑛

∑𝑛
𝑖=1

1
𝑥𝑖

.

10 Chapter 7 will discuss the Reduce function, which generalises the above by allowing any binary opera-
tion to be propagated over a given vector.

11 Actually, var and median, amongst others, are defined by the stats package. But this one is automat-
ically loaded by default, so let us not make a fuss about it now.

12 min, median, and max are special cases of quantile, which we will discuss much further (Section 4.4.3).
It is because it returns a named vector.

36 I DEEP

When solving exercises like this one, it does not reallymatterwhat data you apply these functions
on.Weare being abstract in the sense that the𝒙 vector canbe anything: from the one that features
very accurate socioeconomic predictions that will help make this world less miserable, through
the data you have been collecting for the last ten years in relation to your super important PhD
research, whatever your company asked you to crunch today, to something related to the hobby
project that you enjoy doing after hours. But you can also just test the above on something like “x
<- runif(10)”, andmove on.

All aggregation functions return a missing value if any of the input elements is un-
available. Luckily, they are equipped with the na.rm parameter, on behalf of which we
can request the removal of NAs.

aud <- scan(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

c(min(aud), mean(aud), max(aud))

[1] NA NA NA

c(min(aud, na.rm=TRUE), mean(aud, na.rm=TRUE), max(aud, na.rm=TRUE))

[1] 1.6006 1.6775 1.8635

Otherwise, we could have called, e.g., mean(na.omit(x)).

Note In the documentation, we read that the usage of sum, prod, min, and max is like
sum(..., na.rm=FALSE), etc. In this context, it means that they accept any number of
input vectors, and each of them can be of arbitrary length. Therefore, min(1, 2, 3),
min(c(1, 2, 3)) as well as min(c(1, 2), 3) all return the same result.

However, we also read that we have mean(x, trim=0, na.rm=FALSE, ...). This time,
only one vector can be aggregated, and any further arguments (except trim and na.rm)
are ignored.

Theextra flexibility (whichwedonot have to rely on, ever) of the former group is due to
their being associative operations. It holds, e.g., (2+3)+4 = 2+(3+4).Hence, these
operations canbeperformed in any order, in any group.They are primitive operations:
it is mean that is based on sum, not vice versa.

2.5 Exercises
Exercise 2.10 Answer the following questions.

• What is the meaning of the dot-dot-dot parameter in the definition of the c function?

• We say that the round function is vectorised.What does that mean?

• What is wrong with a call to c(sqrt(1), sqrt(2), sqrt(3))?

• What do wemean by saying that multiplication operates element by element?

2 NUMERIC VECTORS 37

• How does the recycling rule work when applying `+`?

• How to (and why) set the seed of the pseudorandom number generator?

• What is the difference between NA_real_ and NaN?

• How are default arguments specified in the manual of, e.g., the round function?

• Is a call to rep(times=4, x=1:5) equivalent to rep(4, 1:5)?

• List a fewways to generate a sequence like (-1, -0.75, -0.5, …, 0.75, 1).

• Is -3:5 the same as -(3:5)?What about the precedence of operators in expressions such as
2^3/4*5^6, 5*6+4/17%%8, and 1+-2^3:4-1?

• If x is a numeric vector of length 𝑛 (for some 𝑛 ≥ 0), how many values will sample(x)
output?

• Does scan support reading directly from compressed archives, e.g., .csv.gz files?

When in doubt, refer back to the material discussed in this chapter or the Rmanual.

Exercise 2.11 The following code generates an example graph of arcsine and arccosine.Thanks
to vectorisation, its implementation is quite straightforward.

x <- seq(-1, 1, length.out=11) # increase length.out for a smoother curve

plot(x, asin(x), # asin() computed for 11 points

type="l", # lines

ylim=c(-pi/2, pi), # y axis limits like c(y_min, y_max)

ylab="asin(x), acos(x)") # y axis label

lines(x, acos(x), col="red", lty="dashed") # adds to the current plot

legend("topright", c("asin(x)", "acos(x)"),

lty=c("solid", "dashed"), col=c("black", "red"), bg="white")

Inspired by the above, plot the following functions: | sin 𝑥2|, |sin |𝑥||,√⌊𝑥⌋, and 1/(1 + 𝑒−𝑥).
Recall that the documentation of plot can be viewed by calling help("plot.default").

Exercise 2.12 It can be shown that:

4
𝑛

∑
𝑖=1

(−1)𝑖+1

2𝑖 − 1 = 4 (1
1 − 1

3 + 1
5 − 1

7 + ⋯)

slowly converges to 𝜋 as 𝑛 approaches ∞. Compute the above for 𝑛 = 1,000,000 and 𝑛 =
1,000,000,000 using the vectorised functions and operators discussed in this chapter, making
use of the recycling rule as much as possible.

Exercise 2.13 Let x and y be two vectors of identical lengths 𝑛, say:

x <- rnorm(100)

y <- 2*x+10+rnorm(100, 0, 0.5)

38 I DEEP

Compute the Pearson linear correlation coefficient given by:

𝑟 =
∑𝑛

𝑖=1 (𝑥𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑥𝑗) (𝑦𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑦𝑗)

√∑𝑛
𝑖=1 (𝑥𝑖 − 1

𝑛 ∑𝑛
𝑗=1 𝑥𝑗)

2 √∑𝑛
𝑖=1 (𝑦𝑖 − 1

𝑛 ∑𝑛
𝑗=1 𝑦𝑗)

2
.

To make sure you have come up with a correct implementation, compare your result to a call to
cor(x, y).

Exercise 2.14 (*) FindanRpackage providinga function to computemoving (rolling) averages
andmedians of a given vector. Apply themon theEUR/AUDcurrency exchange data.Draw thus
obtained smoothened versions of the time series.

Exercise 2.15 (**) Use a call to convolve(..., type="filter") to compute the 𝑘-moving
average of a numeric vector.

In the next chapter, we will study operations that involve logical values.

3
Logical vectors

3.1 Creating logical vectors
R defines three(!) logical constants: TRUE, FALSE, and NA, which represent “yes”, “no”,
and “???”, respectively. Each of them, when instantiated, is an atomic vector of length
one.

Some of the functions we introduced in the previous chapter can be used to generate
logical vectors as well:

c(TRUE, FALSE, FALSE, NA, TRUE, FALSE)

[1] TRUE FALSE FALSE NA TRUE FALSE

rep(c(TRUE, FALSE, NA), each=2)

[1] TRUE TRUE FALSE FALSE NA NA

sample(c(TRUE, FALSE), 10, replace=TRUE, prob=c(0.8, 0.2))

[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE

Note By default, T is a synonym for TRUE and F stands for FALSE. However, these are
not reserved keywords and can be reassigned to any other values.Therefore, we advise
against relying on them: they are not used throughout the course of this course.

Also, notice that the logicalmissing value is spelled simply as NA, and not NA_logical_.
Both the logical NA and the numeric NA_real_ are, for the sake of our widely-conceived
wellbeing, both printed as “NA” on the R console.This, however, does notmean they are
identical; see Section 4.1 for discussion.

3.2 Comparing elements
3.2.1 Vectorised relational operators
Logical vectors frequently come into being as a result of various testing activities. In
particular, the binary operators:

• `<` (less than),

40 I DEEP

• `<=` (less than or equal),

• `>` (greater than),

• `>=` (greater than or equal)

• `==` (equal),

• `!=` (not equal),

compare the corresponding elements of twonumeric vectors andoutput a logical vector.

1 < 3

[1] TRUE

c(1, 2, 3, 4) == c(2, 2, 3, 8)

[1] FALSE TRUE TRUE FALSE

1:10 <= 10:1

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Thus, they operate in an elementwise manner. Moreover, the recycling rule is applied
if necessary:

3 < 1:5 # c(3, 3, 3, 3, 3) < c(1, 2, 3, 4, 5)

[1] FALSE FALSE FALSE TRUE TRUE

c(1, 4) == 1:4 # c(1, 4, 1, 4) == c(1, 2, 3, 4)

[1] TRUE FALSE FALSE TRUE

Therefore, we can say that they are vectorised in the same manner as the arithmetic
operators `+`, `*`, etc.; compare Section 2.4.1.

3.2.2 Testing for NA, NaN, and Inf
Comparisons against missing values and not-numbers yield NAs. Instead of the incor-
rect “x == NA_real_”, testing for missingness should rather be performed via a call to
the vectorised is.na function.

is.na(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE

is.na(c(TRUE, FALSE, NA, TRUE)) # works for logical vectors too

[1] FALSE FALSE TRUE FALSE

Moreover, is.finite is noteworthy since it returns FALSE on Infs, NA_real_s and NaNs.

is.finite(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE

See also the more specific is.nan and is.infinite.

3 LOGICAL VECTORS 41

3.2.3 Dealingwith round-off errors (*)
In mathematics, real numbers are merely an idealisation. In practice, however, it is
impossible to store them with infinite precision (think 𝜋 = 3.141592653589793...):
computer memory is limited, and our time is precious.

Therefore, a consensus had to be reached. In R, we rely on the double-precision floating
point format.The floating point part means that the numbers can be both small (close to
zero like±2.23 × 10−308) and large (e.g.,±1.79 × 10308).

Note

2.23e-308 == 0.00

00

00

00

00

00

0000000223

1.79e308 == 179000000

00

00

00

00

00

00

These two are quite distant.

Every numeric value takes 8 bytes (or, equivalently, 64 bits) of memory. We are, how-
ever, able to store only about 15-17 decimal digits:

print(0.12345678901234567890123456789012345678901234, digits=22) # 22 is max

[1] 0.1234567890123456773699

which limits the precision of our computations. The about part is, unfortunately, due
to thenumbers’ beingwritten in the computer-friendly binary, not thehuman-aligned
decimal base.This can lead to unexpected outcomes.

In particular:

• 0.1 cannot be represented exactly for it cannot be written as a finite series of re-
ciprocals of powers of 2 (it holds 0.1 = 2−4 + 2−5 + 2−8 + 2−9 + …).This leads to
surprising results such as:

0.1 + 0.1 + 0.1 == 0.3

[1] FALSE

42 I DEEP

Quite strikingly, what follows does not show anything suspicious:

c(0.1, 0.1 + 0.1 + 0.1, 0.3)

[1] 0.1 0.3 0.3

Printing involves rounding. In the above context, it ismisleading. Actually, we ex-
perience something more like:

print(c(0.1, 0.1 + 0.1 + 0.1, 0.3), digits=22)

[1] 0.1000000000000000055511 0.3000000000000000444089

[3] 0.2999999999999999888978

• All integers between−253 and 253 all stored exactly. This is good news. However,
the next integer is beyond the representable range:

2^53 + 1 == 2^53

[1] TRUE

• The above suggests that the order of operations might matter. In particular, the
associativity property may be violated when dealing with numbers of contrasting
orders of magnitude:

2^53 + 2^-53 - 2^53 - 2^-53 # should be == 0.0

[1] -1.1102e-16

• Some numbers may just be too large, too small, or too close to zero to be repres-
ented exactly:

c(sum(2^((1023-52):1023)), sum(2^((1023-53):1023)))

[1] 1.7977e+308 Inf

c(2^(-1022-52), 2^(-1022-53))

[1] 4.9407e-324 0.0000e+00

Important Thedouble-precision floating point format (IEEE 754) is not specific to R.
It is used by most other computing environments, including Python and C++.

For discussion, see [32, 35, 42]. Also, [31] can be of particular interest to the general
statistical/data analysis audience.

Can we do anything about these issues?

Firstly, dealing with integers of a reasonable order of magnitude (e.g., various resource
or case IDs in our datasets) is safe.Their comparison, addition, subtraction, andmul-
tiplication are always precise.

In all other cases (including applying other operations on integers, e.g., division or
sqrt), we need to be very careful with comparisons, especially involving testing for

3 LOGICAL VECTORS 43

equality via `==`. The sole fact that sin𝜋 = 0, mathematically speaking, does not
mean that we should expect that:

sin(pi) == 0

[1] FALSE

Instead, they are so close that we can treat the difference between them as negligible.Thus,
in practice, instead of testing if 𝑥 = 𝑦, we will be considering:
• |𝑥 − 𝑦| (absolute error), or

• |𝑥−𝑦|
|𝑦| (relative error; which takes the order of magnitude of the numbers into ac-
count but obviously cannot be applied if 𝑦 is very close to 0),

and determining if these are less than an assumed error margin, 𝜀 > 0, say, 10−8 or
2−26. For example:

abs(sin(pi) - 0) < 2^-26

[1] TRUE

Note Rounding can sometimes have a similar effect as testing for almost equality in
terms of the absolute error.

round(sin(pi), 8) == 0

[1] TRUE

Important Theabove recommendations are valid for themost popular applications of
R, i.e., statistical and, more generally, scientific computing1. Our datasets usually do
not represent accurate measurements. Bah, the world itself is far from ideal! There-
fore, we do not have to lose sleep over our not being able to precisely pinpoint the exact
solutions.

3.3 Logical operations
3.3.1 Vectorised logical operators
Therelational operators suchas `==` and`>` acceptonly twoarguments.Their chaining
is forbidden. A test that we would mathematically write as 0 ≤ 𝑥 ≤ 1 (or 𝑥 ∈ [0, 1])

1 However, in financial applications, we had rather rely on base-10 numbers (compare the problemwith
0.1 above).There are some libraries implementing higher precision floating-point numbers or even interval
arithmetic that keeps track of error propagation in operation chains.

44 I DEEP

cannot be expressed as “0 <= x <= 1” in R. Therefore, we need a way to combine two
logical conditions so as to be able to state that “𝑥 ≥ 0 and, at the same time, 𝑥 ≤ 1”.
In such situations, the following logical operators and functions come in handy:

• `!` (not, negation; unary),

• `&` (and, conjunction; are both predicates true?),

• `|` (or, alternation; is at least one true?),

• xor (exclusive-or, exclusive disjunction, either-or; is one and only one of the pre-
dicates true?).

They again act elementwisely and implement the recycling rule if necessary (and ap-
plicable).

x <- c(-10, -1, -0.25, 0, 0.5, 1, 5, 100)

(x >= 0) & (x <= 1)

[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

(x < 0) | (x > 1)

[1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE

!((x < 0) | (x > 1))

[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

xor(x >= -1, x <= 1)

[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

Important The vectorised `&` and `|` operators should not be confused with their
scalar, short-circuit counterparts, `&&` and `||`; see Section 8.1.4.

3.3.2 Operator precedence revisited
The operators introduced in this chapter have lower precedence than the arithmetic
ones, including the binary `+` and `-`. Calling help("Syntax") reveals that we can ex-
tend our listing from Section 2.4.3 as follows:

1. `<-` (right to left; least binding),

2. `|`,

3. `&`,

4. `!` (unary),

5. `<`, `>`, `<=`, `>=`, `==`, and `!=`,

6. `+` and `-` (binary),

7. `*` and `/`,

8. …

3 LOGICAL VECTORS 45

Theorder of precedence is quite intuitive, e.g., “x+1 <= y & y <= z-1 | x <= z”means
“(((x+1) <= y) & (y <= (z-1))) | (x <= z)”.

3.3.3 Dealingwithmissingness
Operations involving missing values follow the principles of Łukasiewicz’s three-
valued logic, which is based on common sense. For instance, “NA | TRUE” is TRUE be-
cause the alternative (or) needs at least one argument to be TRUE to generate a positive
result. On the other hand, “NA | FALSE” is NA since the outcome would be different
depending on what we substituted NA for.

Let us take amoment to contemplate the logical operations’ truth tables for all the pos-
sible combinations of inputs:

u <- c(TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA)

v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)

!u

[1] FALSE TRUE NA FALSE TRUE NA FALSE TRUE NA

u & v

[1] TRUE FALSE NA FALSE FALSE FALSE NA FALSE NA

u | v

[1] TRUE TRUE TRUE TRUE FALSE NA TRUE NA NA

xor(u, v)

[1] FALSE TRUE NA TRUE FALSE NA NA NA NA

3.3.4 Aggregatingwith all, any, and sum
Just like in the case of numeric vectors, we can summarise the contents of logical se-
quences. all tests whether every element in a logical vector is equal to TRUE. any de-
termines if there exists an element that is TRUE.

x <- runif(10000)

all(x <= 0.2) # are all values in x <= 0.2?

[1] FALSE

any(x <= 0.2) # is there at least one element in x that is <= 0.2?

[1] TRUE

any(c(NA, FALSE, TRUE))

[1] TRUE

all(c(TRUE, TRUE, NA))

[1] NA

Note all will frequently be used in conjunction with `==`. This is because the latter,
as we have said above, is itself vectorised: it does not test whether a vector as a whole is
equal to another one.

46 I DEEP

z <- c(1, 2, 3)

z == 1:3 # elementwise equal

[1] TRUE TRUE TRUE

all(z == 1:3) # elementwise equal summarised

[1] TRUE

However, let us keep in mind the warning about the testing for exact equality of
floating-point numbers stated in Section 3.2.3. Sometimes, considering absolute or
relative errors might be more appropriate.

z <- sin((0:10)*pi) # sin(0), sin(pi), sin(2*pi), ..., sin(10*pi)

all(z == 0.0) # danger zone! please don't...

[1] FALSE

all(abs(z - 0.0) < 1e-8) # are the absolute errors negligible?

[1] TRUE

We can also call sum on a logical vector. Taking into account that it interprets TRUE as
numeric 1 and FALSE as 0 (more on this in Section 4.1), it will give us the number of
elements equal to TRUE.

sum(x <= 0.2) # how many elements in x are <= 0.2?

[1] 1998

Also, by computing sum(x)/length(x), we can obtain the proportion (fraction) of val-
ues equal to TRUE in x. Equivalently:

mean(x <= 0.2) # proportion of elements <= 0.2

[1] 0.1998

Naturally, we expect mean(runif(n) <= 0.2) to be equal to 0.2 (20%), but with random-
ness, we can never be sure.

3.3.5 Simplifying predicates
Each aspiring programmerneeds to become fluentwith the rules governing the trans-
formations of logical conditions, e.g., that the negation of “(x >= 0) & (x < 1)” is
equivalent to “(x < 0) | (x >= 1)”. Such rules are called tautologies. Here are a few of
them:

• !(!p) is equivalent to p (double negation),

• !(p & q) holds if and only if !p | !q (De Morgan’s law),

• !(p | q) is !p & !q (another DeMorgan’s law),

• all(p) is equivalent to !any(!p).

3 LOGICAL VECTORS 47

Various combinations thereof are, of course, possible. Further simplifications are en-
abled by other properties of the binary operations:

• commutativity (symmetry), e.g., 𝑎 + 𝑏 = 𝑏 + 𝑎, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎,
• associativity, e.g., (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐), max(max(𝑎, 𝑏), 𝑐) =
max(𝑎,max(𝑏, 𝑐)),

• distributivity, e.g., 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐 = 𝑎 ∗ (𝑏 + 𝑐), min(max(𝑎, 𝑏),max(𝑎, 𝑐)) =
max(𝑎,min(𝑏, 𝑐)),

and relations, including:

• transitivity, e.g., if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then surely 𝑎 ≤ 𝑐.
Exercise 3.1 Assuming that a, b, and c are numeric vectors, simplify the following expressions:

• !(b>a & b<c),

• !(a>=b & b>=c & a>=c),

• a>b & a<c | a<c & a>d,

• a>b | a<=b,

• a<=b & a>c | a>b & a<=c,

• a<=b & (a>c | a>b) & a<=c,

• !all(a > b & b < c).

3.4 Choosing elementswith ifelse
The ifelse function is a vectorised version of the scalar if…else conditional state-
ment, which we will forgo for as long as until Chapter 8. It permits us to select an
element from one of two vectors based on some logical condition.

A call to ifelse(l, t, f), where l is a logical vector, returns a vector y such that:

𝑦𝑖 = { 𝑡𝑖 if 𝑙𝑖 is TRUE ,
𝑓𝑖 if 𝑙𝑖 is FALSE .

In other words, the 𝑖-th element of the result vector is equal to 𝑡𝑖 if 𝑙𝑖 is TRUE and to 𝑓𝑖
otherwise. For example:

(z <- rnorm(6)) # example vector

[1] -0.560476 -0.230177 1.558708 0.070508 0.129288 1.715065

ifelse(z >= 0, z, -z) # like abs(z)

[1] 0.560476 0.230177 1.558708 0.070508 0.129288 1.715065

or:

48 I DEEP

(x <- rnorm(6)) # example vector

[1] 0.46092 -1.26506 -0.68685 -0.44566 1.22408 0.35981

(y <- rnorm(6)) # example vector

[1] 0.40077 0.11068 -0.55584 1.78691 0.49785 -1.96662

ifelse(x >= y, x, y) # like pmax(x, y)

[1] 0.46092 0.11068 -0.55584 1.78691 1.22408 0.35981

Weshouldnot be surprised anymore that the recycling rule is firedupwhennecessary:

ifelse(x > 0, x^2, 0) # squares of positive xs and 0 otherwise

[1] 0.21244 0.00000 0.00000 0.00000 1.49838 0.12947

Note All arguments are evaluated in their entirety before deciding onwhich elements
are selected.Therefore, the following call generates a warning:

ifelse(z >= 0, log(z), NA_real_)

Warning in log(z): NaNs produced

[1] NA NA 0.44386 -2.65202 -2.04571 0.53945

This is because, with log(z), we compute the logarithms of negative values anyway. To
fix this, we can write:

log(ifelse(z >= 0, z, NA_real_))

[1] NA NA 0.44386 -2.65202 -2.04571 0.53945

In case we yearn for an if…else if…else-type expression, the calls to ifelse can nat-
urally be nested.

Example 3.2 A version of pmax(pmax(x, y), z) can be written as:

ifelse(x >= y,

ifelse(z >= x, z, x),

ifelse(z >= y, z, y)

)

[1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

However, determining three intermediate logical vectors is not necessary.We can save one call to
`>=` by introducing an auxiliary variable:

xy <- ifelse(x >= y, x, y)

ifelse(z >= xy, z, xy)

[1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

Exercise 3.3 Figure 3.1 depicts a realisation of the mixture𝑍 = 0.2𝑋 + 0.8𝑌 of two normal
distributions𝑋 ∼ N(−2, 0.5) and𝑌 ∼ N(3, 1).

3 LOGICAL VECTORS 49

n <- 100000

z <- ifelse(runif(n) <= 0.2, rnorm(n, -2, 0.5), rnorm(n, 3, 1))

hist(z, breaks=101, probability=TRUE, main="", col="white")

z

D
en

sit
y

-4 -2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3.1. A mixture of two Gaussians generated with ifelse.

In other words, we generated a variate from the normal distribution that has the expected value
of−2with probability 20%, and from the one with the expectation of 3 otherwise.
Inspired by the above, generate the following Gaussianmixtures:

• 2
3𝑋 + 1

3𝑌, where𝑋 ∼ N(100, 16) and𝑌 ∼ N(116, 8),
• 0.3𝑋 + 0.4𝑌 + 0.3𝑍, where𝑋 ∼ N(−10, 2),𝑌 ∼ N(0, 2), and𝑍 ∼ N(10, 2).

(*) On a side note, knowing that if𝑋 followsN(0, 1), then the scaled-shifted𝜎𝑋 + 𝜇 is distrib-
utedN(𝜇, 𝜎), the above can be equivalently written as:

w <- (runif(n) <= 0.2)

z <- rnorm(n, 0, 1)*ifelse(w, 0.5, 1) + ifelse(w, -2, 3)

3.5 Exercises
Exercise 3.4 Answer the following questions.

• Why the statement “The Earth is flat or the smallpox vaccine is proven effective” is obviously
true?

50 I DEEP

• What is the difference between NA and NA_real_?

• Why is “FALSE & NA” equal to FALSE, but “TRUE & NA” is NA?

• Why has ifelse(x>=0, sqrt(x), NA_real_) a tendency to generate warnings and how
to rewrite it so as to prevent that from happening?

• What is the interpretation of mean(x >= 0 & x <= 1)?

• For some integer 𝑥 and 𝑦, how to verify whether 0 < 𝑥 < 100, 0 < 𝑦 < 100, and 𝑥 < 𝑦,
all at the same time?

• Mathematically, for all real 𝑥, 𝑦 > 0, it holds log 𝑥𝑦 = log 𝑥 + log 𝑦. Why then
all(log(x*y) == log(x)+log(y)) can sometimes return FALSE? How to fix this?

• Is x/y/z always equal to x/(y/z)? How to fix this?

• What is the purpose of very specific functions such as log1p and expm1 (see their help page)
andmany others listed in, e.g., the GNUGSL library [28]? Is our referring to them a viola-
tion of the beloved “do not multiply entities without necessity” rule?

• If we know that 𝑥may be subject to error, how to test whether 𝑥 > 0 in a robust manner?
• Is “y<-5” the same as “y <- 5” or rather “y < -5”?

Exercise 3.5 What is the difference between all and isTRUE? What about `==`, identical,
and all.equal? Is the last one properly vectorised?

Exercise 3.6 Compute the cross-entropy loss between a numeric vector 𝒑with values in the in-
terval (0, 1) and a logical vector 𝒚, both of length 𝑛 (you can generate them randomly or manu-
ally, it does not matter, it is just an exercise):

ℒ(𝒑, 𝒚) = 1
𝑛

𝑛
∑
𝑖=1

ℓ𝑖,

where

ℓ𝑖 = { − log 𝑝𝑖 if 𝑦𝑖 is TRUE ,
− log(1 − 𝑝𝑖) if 𝑦𝑖 is FALSE .

Interpretation: in classification problems, 𝑦𝑖 ∈ {FALSE, TRUE} denotes the true class of the 𝑖-
th object (say, whether the 𝑖-th hospital patient is symptomatic) and 𝑝𝑖 ∈ (0, 1) is a machine
learningalgorithm’s confidence that 𝑖 belongs to classTRUE (e.g., how sure adecision treemodel
is that the corresponding person is unwell). Ideally, if 𝑦𝑖 is TRUE, 𝑝𝑖 should be close to 1 and to 0
otherwise.The cross-entropy loss quantifies by howmuch a classifier differs from the omniscient
one.The use of the logarithm penalises strong beliefs in the wrong answer.

By the way, if we have solved any of the exercises encountered so far by referring to if
statements, for loops, vector indexing like x[...], or any external R package, we re-
commend to go back and rewrite our code. Let us keep things simple (effective, read-
able) by only using base R’s vectorised operations that we have introduced.

4
Lists and attributes

After two brain-teasing chapters, it is time to cool it down a little. In this more tech-
nical part, we will introduce lists, which serve as universal containers for R objects of
any size and type. Moreover, we will also show that each R object can be equipped
with a number of optional attributes.Thanks to them, we will be able to label elements
in any vector, and, in Chapter 10, introduce new complex data types such as matrices
and data frames.

4.1 Type hierarchy and conversion
So far, we have been playing with three types of atomic vectors:

1. logical (Chapter 3),

2. numeric (Chapter 2),

3. character (which we have barely touched upon yet, but rest assured that they will
be covered in detail very soon; see Chapter 6).

To determine the type of an object programmatically, we can call the typeof function.

typeof(c(1, 2, 3))

[1] "double"

typeof(c(TRUE, FALSE, TRUE, NA))

[1] "logical"

typeof(c("spam", "spam", "bacon", "eggs", "spam"))

[1] "character"

It turns out that we can easily convert between these types, either on our explicit de-
mand (type casting) or on-the-fly (coercion, when we perform an operation that expects
something different from the kind of input it was fed with).

Note (*) Numeric vectors are reported as being either of the type double (double-
precision floating-point numbers) or integer (32-bit; it is a subset of double); see Sec-
tion6.4.1. Inmostpractical cases, this is a technical detail thatwecan risklessly ignore;
compare also the mode function.

52 I DEEP

4.1.1 Explicit type casting
We can use functions such as as.logical, as.numeric1, and as.character to convert
given objects to the corresponding types.

as.numeric(c(TRUE, FALSE, NA, TRUE, NA, FALSE)) # synonym: as.double

[1] 1 0 NA 1 NA 0

as.logical(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))

[1] TRUE TRUE FALSE TRUE TRUE TRUE NA TRUE NA

Important It is easily seen that the rules are:

• TRUE → 1,

• FALSE → 0,

• NA → NA_real_,

and:

• 0→ FALSE,

• NA_real_ and NaN → NA,

• anything else→ TRUE.

The distinction between zero and non-zero is commonly applied in other program-
ming languages as well.

Moreover, in the case of the conversion involving character strings, we have:

as.character(c(TRUE, FALSE, NA, TRUE, NA, FALSE))

[1] "TRUE" "FALSE" NA "TRUE" NA "FALSE"

as.character(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))

[1] "-2" "-1" "0" "1" "2" "3" NA "-Inf" "NaN"

as.logical(c("TRUE", "True", "true", "T",

"FALSE", "False", "false", "F",

"anything other than these", NA_character_))

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE NA NA

as.numeric(c("0", "-1.23e4", "pi", "2+2", "NaN", "-Inf", NA_character_))

Warning: NAs introduced by coercion

[1] 0 -12300 NA NA NaN -Inf NA

1 (*) as.numeric is a built-in generic function identical to (synonymous with) as.double; see Sec-
tion 10.2.3. is.numeric is generic too, and is more universal than is.double, which only verifies whether
typeof returns "double". For instance, vectors of the type integer which we mention later are considered
numeric as well.

4 LISTS AND ATTRIBUTES 53

4.1.2 Implicit conversion (coercion)
Recall that we referred to the three vector types as atomic ones. They can only be used
to store elements of the same type.

Ifwemake an attempt at composing anobject ofmixed typeswith c, the common type
will be determined in such a way that data are stored without information loss:

c(-1, FALSE, TRUE, 2, "three", NA)

[1] "-1" "FALSE" "TRUE" "2" "three" NA

c("zero", TRUE, NA)

[1] "zero" "TRUE" NA

c(-1, FALSE, TRUE, 2, NA)

[1] -1 0 1 2 NA

Hence,we see that logical is themost specialised of the tree,whereas character is the
most general.

Note The logical NA is converted to NA_real_ and NA_character_ in the above examples.
R users tend to rely on implicit type conversionwhen theywrite c(1, 2, NA, 4) rather
than c(1, 2, NA_real_, 4). Inmost cases, this is fine, but it mightmake us less vigil-
ant.

However, occasionally, it will be wiser to be more unequivocal. For instance,
rep(NA_real_, 1e9) preallocates a long numeric vector instead of a logical one.

Some functions that expect vectors of specific types can apply coercion by themselves
(or act as if they do so):

c(NA, FALSE, TRUE) + 10 # implicit conversion logical –> numeric

[1] NA 10 11

c(-1, 0, 1) & TRUE # implicit conversion numeric –> logical

[1] TRUE FALSE TRUE

sum(c(TRUE, TRUE, FALSE, TRUE, FALSE)) # same as sum(as.numeric(...))

[1] 3

cumsum(c(TRUE, TRUE, FALSE, TRUE, FALSE))

[1] 1 2 2 3 3

cummin(c(TRUE, TRUE, FALSE, TRUE, FALSE))

[1] 1 1 0 0 0

Exercise 4.1 In one of the previous exercises, we computed the cross-entropy loss between a lo-
gical vector 𝒚 ∈ {0, 1}𝑛 and a numeric vector 𝒑 ∈ (0, 1)𝑛. This measure can be equivalently
defined as:

ℒ(𝒑, 𝒚) = − 1
𝑛

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)⎞⎟
⎠

.

Implement the above formula (using vectorised operations, but not relying on ifelse this time)

54 I DEEP

and compute the cross-entropy loss between, for instance, “y <- sample(c(FALSE, TRUE), n)”
and “p <- runif(n)” for some n. Note how seamlessly we translate between FALSE/TRUEs and
0/1s in the above equation (in particular, where 1 − 𝑦𝑖 means the logical negation of 𝑦𝑖).

4.2 Lists
Lists are generalised vectors.They can be comprised of R objects of any kind, also other
lists. It is whywe classify themas recursive (and not atomic) objects.They are especially
useful wherever there is a need to handle somemultitude as a single entity.

4.2.1 Creating lists
Themost straightforward way to create a list is by means of the list function:

list(1, 2, 3)

[[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

[1] 3

Notice that the above is not the same as c(1, 2, 3). We got a sequence that wraps
three numeric vectors, each of length one. More examples:

list(1:3, 4, c(TRUE, FALSE, NA, TRUE), "and so forth") # different types

[[1]]

[1] 1 2 3

##

[[2]]

[1] 4

##

[[3]]

[1] TRUE FALSE NA TRUE

##

[[4]]

[1] "and so forth"

list(list(c(TRUE, FALSE, NA, TRUE), letters), list(1:3)) # a list of lists

[[1]]

[[1]][[1]]

[1] TRUE FALSE NA TRUE

(continues on next page)

4 LISTS AND ATTRIBUTES 55

(continued from previous page)

##

[[1]][[2]]

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

[18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

##

##

[[2]]

[[2]][[1]]

[1] 1 2 3

Thedisplay of lists is (un)pretty bloated. However, the str function prints any R object
in a more concise fashion:

str(list(list(c(TRUE, FALSE, NA, TRUE), letters), list(1:3)))

List of 2

$:List of 2

..$: logi [1:4] TRUE FALSE NA TRUE

..$: chr [1:26] "a" "b" "c" "d" ...

$:List of 1

..$: int [1:3] 1 2 3

Note In Section 4.1, we said that the c function, when fed with arguments of mixed
types, tries to determine the common type that retains the sense of data. If coercion
to an atomic vector is not possible, the result will be a list.

c(1, "two", identity) # `identity` is an object of the type "function"

[[1]]

[1] 1

##

[[2]]

[1] "two"

##

[[3]]

function (x)

x

<environment: namespace:base>

Thus, the c function can also be used to concatenate lists:

c(list(1), list(2), list(3)) # three lists –> one list

[[1]]

[1] 1

##

(continues on next page)

56 I DEEP

(continued from previous page)

[[2]]

[1] 2

##

[[3]]

[1] 3

Lists can be repeated using rep:

rep(list(1:11, LETTERS), 2)

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11

##

[[2]]

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"

[18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

##

[[3]]

[1] 1 2 3 4 5 6 7 8 9 10 11

##

[[4]]

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"

[18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

4.2.2 Converting to and from lists
The conversion of an atomic vector to a list of vectors of length one can be done via a
call to as.list:

as.list(c(1, 2, 3)) # vector of length 3 –> list of 3 vectors of length 1

[[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

[1] 3

Unfortunately, calling, say, as.numeric on a list arouses an error, even if it is com-
prised of numeric vectors only.We can try flattening it to an atomic sequence by call-
ing unlist:

unlist(list(list(1, 2), list(3, list(4:8)), 9))

[1] 1 2 3 4 5 6 7 8 9

(continues on next page)

4 LISTS AND ATTRIBUTES 57

(continued from previous page)

unlist(list(list(1, 2), list(3, list(4:8)), "spam"))

[1] "1" "2" "3" "4" "5" "6" "7" "8" "spam"

Note (*) Chapter 11 will mention the simplify2array function, which generalises un-
list in a way that can sometimes give rise to a matrix.

4.3 NULL

NULL, being the one and only instance of the eponymous type, can be used as a place-
holder for an R object or designate the absence of any entities whatsoever.

list(NULL, NULL, month.name)

[[1]]

NULL

##

[[2]]

NULL

##

[[3]]

[1] "January" "February" "March" "April" "May"

[6] "June" "July" "August" "September" "October"

[11] "November" "December"

NULL is different from a vector of length zero because the latter has a type. However,
NULL sometimes behaves like a zero-length vector. In particular, length(NULL) returns
0. Also, c called with no arguments returns NULL.

Testing for NULL-ness can be done with a call to is.null.

Important NULL is not the same as NA or it is other-typed variants.The former cannot
be emplaced in an atomic vector.

c(1, NA, 3, NULL, 5) # NULL behaves like a zero-length vector here

[1] 1 NA 3 5

They have very distinct semantics (no value vs a missing value).

Later we will see that some functions return NULL invisibly when they have nothing
interesting to report. This is the case of print or plot, which are called because of
their side effects (printing and plotting).

58 I DEEP

Furthermore, in certain contexts, replacing contentwith NULLwill actually result in its
removal, e.g., when subsetting a list.

4.4 Object attributes
Lists can embrace many entities in the form of a single item sequence. Attributes, on
the other hand, give means to inject extra data into an object.

Attributes are unordered key=valuepairs,where key is a single string, and value is any
R object except NULL. They can be introduced by calling, amongst others2, the struc-
ture function:

x_simple <- 1:10

x <- structure(

x_simple, # the object to be equipped with attributes

attribute1="value1",

attribute2=c(6, 100, 324)

)

4.4.1 Developing perceptual indifference tomost attributes
Let us see how the above x is reported on the console:

print(x)

[1] 1 2 3 4 5 6 7 8 9 10

attr(,"attribute1")

[1] "value1"

attr(,"attribute2")

[1] 6 100 324

The object of concern, 1:10, was displayed first. We need to get used to that. Most of
the time, we suggest to treat the “attr…” parts of the display as if they were printed in
tiny font.

Equipping an object with attributes does not usually change its nature; see, however,
Chapter 10 for a few exceptions. The above x is still treated as an ordinary sequence
of numbers by most functions:

sum(x) # the same as sum(1:10); `sum` does not care about any attributes

[1] 55

typeof(x) # just a numeric vector, but with some perks

[1] "integer"

2 Other ways include the replacement versions of the attr and attributes functions; see Section 9.3.6.

4 LISTS AND ATTRIBUTES 59

Important Attributes are generally ignored by most functions unless they have spe-
cifically been programmed to pay attention to them.

4.4.2 But there are a few use cases
Some R functions add attributes to the return value to sneak extra information that
might be useful, just in case.

For instance, na.omit, whose main aim is to remove missing values from an atomic
vector, yields:

y <- c(10, 20, NA, 40, 50, NA, 70)

(y_na_free <- na.omit(y))

[1] 10 20 40 50 70

attr(,"na.action")

[1] 3 6

attr(,"class")

[1] "omit"

We can enjoy the NA-free version of y in any further computations:

mean(y_na_free)

[1] 38

Additionally, the na.action attribute tells us where the missing observations were:

attr(y_na_free, "na.action") # read the attribute value

[1] 3 6

attr(,"class")

[1] "omit"

We ignore the class part until Chapter 10.

As another example, gregexpr discussed in Chapter 6 searches for a given pattern in a
character vector:

needle <- "spam|durian" # pattern to search for: spam OR durian

haystack <- c("spam, bacon, and durian-flavoured spam", "spammer") # text

(pos <- gregexpr(needle, haystack, perl=TRUE))

[[1]]

[1] 1 18 35

attr(,"match.length")

[1] 4 6 4

attr(,"index.type")

[1] "chars"

attr(,"useBytes")
(continues on next page)

60 I DEEP

(continued from previous page)

[1] TRUE

##

[[2]]

[1] 1

attr(,"match.length")

[1] 4

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

We sought all occurrences of the pattern within two character strings. As their num-
ber may vary from string to string, wrapping the results in a list was a good design
choice. Each list element gives the starting positions where matches can be found:
there are three and one match(es), respectively. Moreover, every vector of positions
has a designated match.length attribute (amongst others), in case we need it.

Exercise 4.2 Create a list with EUR/AUD, EUR/GBP, and EUR/USD exchange rates read
from the euraud-*.csv, eurgbp-*.csv, and eurusd-*.csv files in our data repository3. Each
of its three elements should be a numeric vector storing the currency exchange rates. Further-
more, equip themwith currency_from, currency_to, date_from, and date_to attributes. For
example:

[1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132

[11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA

attr(,"currency_from")

[1] "EUR"

attr(,"currency_to")

[1] "AUD"

attr(,"date_from")

[1] "2020-01-01"

attr(,"date_to")

[1] "2020-06-30"

Suchanadditional piece of information couldbe stored ina few separate variables (other vectors),
but then it would not be as convenient to use as the above representation.

4.4.3 Special attributes
Attributes have great potential which is somewhat wasted, for R users rarely know:

• that attributes exist (pessimistic scenario), or

• how to handle them (realistic scenario).

But we know now.
3 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek

4 LISTS AND ATTRIBUTES 61

What is more, certain attributes have been predestined to play a unique role in R.
Namely, the most prevalent amongst the special attributes are:

• names, row.names, and dimnames are used to label the elements of atomic and gen-
eric vectors (see below) as well as rows and columns in matrices (Chapter 11) and
data frames (Chapter 12),

• dim turns flat vectors into matrices and other tensors (Chapter 11),

• levels labels the underlying integer codes in factor objects (Section 10.3.2),

• class can be used to bring forth new complex data structures based on basic types
(Chapter 10).

We call them special because:

• they cannot be assigned arbitrary values; for instance, we will soon see that names
can accept a character vector of a specific length,

• they can be accessed via designated functions, e.g., names, class, dim, dimnames,
levels, etc.,

• they are widely recognised by many other functions.

However, in spiteof theabove, special attributes canstill bemanagedasordinaryones.

Exercise 4.3 comment is perhaps the most rarely used special attribute. Create an object
(whatever) equipped with the comment attribute. Verify that assigning to it anything other than
a character vector leads to an error. Read its value by calling the comment function. Display the
object equippedwith this attribute.Note that theprint function ignores its existencewhatsoever:
this is how special it is.

Important (*)The accessor functions such as names or classmight returnmeaningful
values, even if the corresponding attribute is not set explicitly; see, e.g., Section 11.1.5
for an example.

4.4.4 Labelling vector elementswith the names attribute
The special attribute names labels atomic vectors’ and lists’ elements.

(x <- structure(c(13, 2, 6), names=c("spam", "sausage", "celery")))

spam sausage celery

13 2 6

The labels may improve the expressivity and readability of our code and data.

Exercise 4.4 Verify that the above x is still an ordinary numeric vector by calling typeof and
sum on it.

62 I DEEP

Let us stress that we can ignore the names attribute whatsoever. If we apply any oper-
ation discussed in Chapter 2, we will garner the same result regardless whether such
extra information is present or not.

It is just the print function that changed its behaviour slightly. After all, it is a special
attribute. Instead of reporting:

[1] 13 2 6

attr(,"names ")

[1] "spam" "sausage" "celery"

we got a nicely formatted table-like display. Non-special attributes are still printed in
the standard way:

structure(x, additional_attribute=1:10)

spam sausage celery

13 2 6

attr(,"additional_attribute")

[1] 1 2 3 4 5 6 7 8 9 10

Note Chapter 5 will also mention that some operations (such as indexing) gain su-
perpowers in the presence of the names attribute.

This attribute can be read by calling:

attr(x, "names") # just like any other attribute

[1] "spam" "sausage" "celery"

names(x) # because it is so special

[1] "spam" "sausage" "celery"

Named vectors can be easily created with the c and list functions as well:

c(a=1, b=2)

a b

1 2

list(a=1, b=2)

$a

[1] 1

##

$b

[1] 2

c(a=c(x=1, y=2), b=3, c=c(z=4)) # this is smart

a.x a.y b c.z

1 2 3 4

Let us contemplate how a named list is printed on the console. Again, it is still a list,
but with some extras.

4 LISTS AND ATTRIBUTES 63

Exercise 4.5 Awhole lot of functions return named vectors. Evaluate the following expressions
and read the corresponding pages in their documentation:

• quantile(runif(100)),

• hist(runif(100), plot=FALSE),

• options (take note of the digits, scipen, max.print, and width options),

• capabilities.

Note (*) Most of the time, lists are used merely as containers for other R objects. This
is a boring yet essential role. However, let us just mention here that every data frame
is, in fact, a generic vector (see Chapter 12). Each column corresponds to a named list
element:

(df <- head(iris)) # some data frame

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

typeof(df) # it is just a list (with extras that will be discussed later)

[1] "list"

unclass(df) # how it is represented exactly (without the extras)

$Sepal.Length

[1] 5.1 4.9 4.7 4.6 5.0 5.4

##

$Sepal.Width

[1] 3.5 3.0 3.2 3.1 3.6 3.9

##

$Petal.Length

[1] 1.4 1.4 1.3 1.5 1.4 1.7

##

$Petal.Width

[1] 0.2 0.2 0.2 0.2 0.2 0.4

##

$Species

[1] setosa setosa setosa setosa setosa setosa

Levels: setosa versicolor virginica

##

attr(,"row.names")

[1] 1 2 3 4 5 6

64 I DEEP

Therefore, the functionswe discuss in this chapter are of use in processing such struc-
tured data too.

4.4.5 Altering and removing attributes
Weknowthat a single attribute canbe readbycallingattr.Theirwhole list is generated
with a call to attributes.

(x <- structure(c("some", "object"), names=c("X", "Y"),

attribute1="value1", attribute2="value2", attribute3="value3"))

X Y

"some" "object"

attr(,"attribute1")

[1] "value1"

attr(,"attribute2")

[1] "value2"

attr(,"attribute3")

[1] "value3"

attr(x, "attribute1") # reads a single attribute, returns NULL if unset

[1] "value1"

attributes(x) # returns a named list with all attributes of an object

$names

[1] "X" "Y"

##

$attribute1

[1] "value1"

##

$attribute2

[1] "value2"

##

$attribute3

[1] "value3"

We can alter an attribute’s value or add further attributes by referring to the struc-
ture function once again. Moreover, setting an attribute’s value to NULL gets rid of it
completely.

structure(x, attribute1=NULL, attribute4="added", attribute3="modified")

X Y

"some" "object"

attr(,"attribute2")

[1] "value2"

attr(,"attribute3")

[1] "modified"

(continues on next page)

4 LISTS AND ATTRIBUTES 65

(continued from previous page)

attr(,"attribute4")

[1] "added"

As far as the names attribute is concerned, we may generate an unnamed copy of an
object by calling:

unname(x)

[1] "some" "object"

attr(,"attribute1")

[1] "value1"

attr(,"attribute2")

[1] "value2"

attr(,"attribute3")

[1] "value3"

In Section 9.3.6, we will introduce replacement functions. They will enable us to modify
or remove an object’s attribute by calling “attr(x, "some_attribute") <- new_value”.

Moreover, Section 5.5 highlights that certain operations (such as vector indexing, ele-
mentwise arithmetic operations, and coercion)might not preserve all attributes of the
objects that were given as their inputs.

4.5 Exercises
Exercise 4.6 Provide an answer to the following questions.

• What is the meaning of c(TRUE, FALSE)*1:10?

• What does sum(as.logical(x)) compute when x is a numeric vector?

• We said that atomic vectors of the type character are the most general ones. Therefore, is
as.numeric(as.character(x)) the same as as.numeric(x), regardless of the type of x?

• What is the meaning of as.logical(x+y) if x and y are logical vectors? What about as.
logical(x*y), as.logical(1-x), and as.logical(x!=y)?

• What is the meaning of the following when x is a logical vector?

– cummin(x) and cummin(!x),

– cummax(x) and cummax(!x),

– cumsum(x) and cumsum(!x),

– cumprod(x) and cumprod(!x).

• Let x be a named numeric vector, e.g., “x <- quantile(runif(100))”.What is the result
of 2*x, mean(x), and round(x, 2)?

66 I DEEP

• What is the meaning of x == NULL?

• Give two ways to create a named character vector.

• Give twoways (discussedabove; there aremore) to remove thenamesattribute fromanobject.

Exercise 4.7 There are a few peculiarities when joining or coercing lists. Compare the results
generated by the following pairs of expressions:

1)

as.character(list(list(1, 2), list(3, list(4)), 5))

as.character(unlist(list(list(1, 2), list(3, list(4)), 5)))

2)

as.numeric(list(list(1, 2), list(3, list(4)), 5))

as.numeric(unlist(list(list(1, 2), list(3, list(4)), 5)))

3)

unlist(list(list(1, 2), sd))

list(1, 2, sd)

4)

c(list(c(1, 2), 3), 4, 5)

c(list(c(1, 2), 3), c(4, 5))

Exercise 4.8 Given numeric vectors x, y, z, and w, how to combine x, y, and list(z, w) so as
to obtain list(x, y, z, w)? More generally, given a set of atomic vectors and lists of atomic
vectors, how to combine them to obtain a single list of atomic vectors (not a list of atomic vectors
and lists, not atomic vectors unwound, etc.)?

Exercise 4.9 readRDS serialises R objects and writes their snapshots to disk so that they can
be restored via a call to saveRDS at a later time. Verify that this function preserves object attrib-
utes. Also, check out dput and dget which work with objects’ textual representation in the form
executable R code.

Exercise 4.10 (*) Use jsonlite::fromJSON to read a JSONfile in the form of a named list.

In the extremelyunlikely event of ourfinding the current chapter boring, let us rejoice:
some of the exercises and remarks that we will encounter in the next part, which is
devoted to vector indexing, will definitely be deliciously stimulating!

5
Vector indexing

We now know plenty of ways to process vectors in their entirety, but how to extract and
replace their specific parts? We will be collectively referring to such activities as index-
ing. This is because they are often performed through the index operator, `[`.

5.1 head and tail
Let us begin with something more lightweight, though. The head function fetches a
few elements from the beginning of a vector.

x <- 1:10

head(x) # head(x, 6)

[1] 1 2 3 4 5 6

head(x, 3) # get the first three

[1] 1 2 3

head(x, -3) # skip the last three

[1] 1 2 3 4 5 6 7

Similarly, tail extracts a few elements from the end of a sequence.

tail(x) # tail(x, 6)

[1] 5 6 7 8 9 10

tail(x, 3) # get the last three

[1] 8 9 10

tail(x, -3) # skip the first three

[1] 4 5 6 7 8 9 10

Both functions work on lists too1. They are useful, e.g., when we wish to preview the
contents of a big object.

1 head and tail are actually S3 generics defined in the utils package. We will be able to call them on
matrices and data frames as well; see Chapter 10.

68 I DEEP

5.2 Subsetting and extracting from vectors
Given a vector x, x[i] returns its subset comprised of elements indicated by the in-
dexer i, which can be a single vector of:

• nonnegative integers (gives the positions of elements to retrieve),

• negative integers (gives the positions to omit),

• logical values (states which items should be fetched or skipped),

• character strings (locates the elements with specific names).

5.2.1 Nonnegative indexes
Consider the following example vectors:

(x <- seq(10, 100, 10))

[1] 10 20 30 40 50 60 70 80 90 100

(y <- list(1, 11:12, 21:23))

[[1]]

[1] 1

##

[[2]]

[1] 11 12

##

[[3]]

[1] 21 22 23

The first element in a vector is at index 1. Hence:

x[1] # the first element

[1] 10

x[length(x)] # the last element

[1] 100

Important Wemight havewonderedwhy “[1]” is displayed each timewe print out an
atomic vector on the console:

print((1:51)*10)

[1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

[18] 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

[35] 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510

It is merely a visual hint indicating which vector element we output first in each line.

5 VECTOR INDEXING 69

Vectorisation is a universal feature of R. It comes as no surprise that the indexer can
also be of length greater than one.

x[c(1, length(x))] # the first and the last

[1] 10 100

x[1:3] # the first three

[1] 10 20 30

Take note of the boundary cases:

x[c(1, 2, 1, 0, 3, NA_real_, 1, 11)] # repeated, 0, missing, out of bound

[1] 10 20 10 30 NA 10 NA

x[c()] # indexing by an empty vector

numeric(0)

When applied on lists, the index operator always returns a list as well, even if we ask
for a single element:

y[2] # a list that includes the second element

[[1]]

[1] 11 12

y[c(1, 3)] # not the same as x[1, 3] (a different story)

[[1]]

[1] 1

##

[[2]]

[1] 21 22 23

If we wish to extract a component, i.e., to dig into what is inside a list at a specific
location, we can refer to `[[`:

y[[2]] # extract the second element

[1] 11 12

This is exactly why R displays “[[1]]”, “[[2]]”, etc. when lists are printed.

On a side note, calling x[[i]] on an atomic vector, where i is a single value, has al-
most2 the same effect as x[i]. However, `[[` generates an error if the subscript is out
of bounds.

Important Let us reflect on the operators’ behaviour in the case of nonexistent items:

c(1, 2, 3)[4]

[1] NA

list(1, 2, 3)[4]

(continues on next page)

2 See also Section 5.5 for the discussion on the preservation of object attributes.

70 I DEEP

(continued from previous page)

[[1]]

NULL

c(1, 2, 3)[[4]]

Error in c(1, 2, 3)[[4]]: subscript out of bounds

list(1, 2, 3)[[4]]

Error in list(1, 2, 3)[[4]]: subscript out of bounds

Note (*) `[[` also supports multiple indexers.

y[[c(1, 3)]]

Error in y[[c(1, 3)]]: subscript out of bounds

Its meaning is different from y[c(1, 3)], though; we are about to extract a single
value, remember?Here, indexing is applied recursively.Namely, the above is equivalent
to y[[1]][[3]]. We got an error because y[[1]] is of a length smaller than three.

More examples:

y[[c(3, 1)]] # y[[3]][[1]]

[1] 21

list(list(7))[[c(1, 1)]] # 7, not list(7)

[1] 7

5.2.2 Negative indexes
The indexer can also be a vector of negative integers. This way, we can exclude the ele-
ments at given positions:

y[-1] # all but the first

[[1]]

[1] 11 12

##

[[2]]

[1] 21 22 23

x[-(1:3)] # all but the first three

[1] 40 50 60 70 80 90 100

x[-c(1, 0, 2, 1, 1, 8:100)] # 0, repeated, out of bound indexes

[1] 30 40 50 60 70

Note Negative and positive indexes cannot be mixed.

5 VECTOR INDEXING 71

x[-1:3] # recall that -1:3 == (-1):3

Error in x[-1:3]: only 0's may be mixed with negative subscripts

Also, NA indexes cannot be mixed with negative ones.

5.2.3 Logical indexer
A vector can also be subsetted bymeans of a logical vector. If they both are of identical
lengths, the consecutive elements in the latter indicate whether the corresponding
elements of the indexed vector are supposed to be selected (TRUE) or omitted (FALSE).

1*** 2 3 4 5*** 6*** 7 8*** 9? 10***

x[c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, NA, TRUE)]

[1] 10 50 60 80 NA 100

In other words, x[l], where l is a logical vector, returns all x[i]with i such that l[i]
is TRUE. Above, we extracted the elements at indexes 1, 5, 6, 8, and 10.

Important Let us be careful: if the element selector is NA, the selected element will be
set to a missing value (for atomic vectors) or NULL (for lists).

c("one", "two", "three")[c(NA, TRUE, FALSE)]

[1] NA "two"

list("one", "two", "three")[c(NA, TRUE, FALSE)]

[[1]]

NULL

##

[[2]]

[1] "two"

This, lamentably, comeswith nowarning, whichmight be problematic when indexers
are generated programmatically. As a remedy, we sometimes pass the logical indexer
to the which function first. It returns the indexes of the elements equal to TRUE, ignor-
ing the missing ones.

which(c(NA, TRUE, FALSE, TRUE, FALSE, NA, TRUE))

[1] 2 4 7

c("one", "two", "three")[which(c(NA, TRUE, FALSE))]

[1] "two"

Recall that in Chapter 3, we discussed ample vectorised operations that generate lo-
gical vectors. Anything that yields a logical vector of the same length as x can be passed
as an indexer.

72 I DEEP

x > 60 # yes, it is a perfect indexer candidate

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

x[x > 60] # select elements in `x` that are greater than 60

[1] 70 80 90 100

x[x < 30 | 70 < x] # elements not between 30 and 70

[1] 10 20 80 90 100

x[x < mean(x)] # elements smaller than the mean

[1] 10 20 30 40 50

x[x^2 > 7777 | log10(x) <= 1.6] # indexing via a transformed version of `x`

[1] 10 20 30 90 100

(z <- round(runif(length(x)), 2)) # ten pseudorandom numbers

[1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46

x[z <= 0.5] # indexing based on `z`, not `x`: no problem

[1] 10 30 60 100

The indexer is always evaluated first and then passed to the subsetting operation.The
index operator does not care how an indexer is generated.

Furthermore, the recycling rule is applied when necessary:

x[c(FALSE, TRUE)] # every second element

[1] 20 40 60 80 100

y[c(TRUE, FALSE)] # interestingly, there is no warning here

[[1]]

[1] 1

##

[[2]]

[1] 21 22 23

Exercise 5.1 Consider a simple database about six people, their favourite dishes, and birth
years.

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")

food <- c("bacon", "spam", "spam", "eggs", "spam", "beans")

year <- c(1941, 1939, 1942, 1943, 1943, 1940)

The consecutive elements in different vectors correspond to each other, e.g., Grahamwas born in
1941, and his go-to food was bacon.

• List the names of people born in 1941 or 1942.

• List the names of those who like spam.

• List the names of those who like spam andwere born after 1940.

• Compute the average birth year of the lovers of spam.

• Give the average age, in 1969, of those who didn’t find spam utmostly delicious.

The answers to the above must be provided programmatically, i.e., we do not just write "Eric"

5 VECTOR INDEXING 73

and "Graham".The codemust be generic enough so that it works in the case of any other database
of this kind, nomatter its size.

Exercise 5.2 Removemissing values from a given vector without referring to na.omit.

5.2.4 Character indexer
Let us consider a vector equipped with the names attribute:

x <- structure(x, names=letters[1:10]) # add names

print(x)

a b c d e f g h i j

10 20 30 40 50 60 70 80 90 100

These labels can be referred to when extracting the elements. To do this, we use an
indexer that is a character vector:

x[c("a", "f", "a", "g", "z")]

a f a g <NA>

10 60 10 70 NA

Important We have said that special object attributes add extra functionality on top
of the existing ones. Therefore, indexing by means of positive, negative, and logical
vectors is still available:

x[1:3]

a b c

10 20 30

x[-(1:5)]

f g h i j

60 70 80 90 100

x[x > 70]

h i j

80 90 100

Lists can also be subsetted this way.

(y <- structure(y, names=c("first", "second", "third")))

$first

[1] 1

##

$second

[1] 11 12

##

$third

(continues on next page)

74 I DEEP

(continued from previous page)

[1] 21 22 23

y[c("first", "second")]

$first

[1] 1

##

$second

[1] 11 12

y["third"] # result is a list

$third

[1] 21 22 23

y[["third"]] # result is the specific element unwrapped

[1] 21 22 23

Important Labels do not have to be unique. When we have repeated names, the first
matching element is extracted:

structure(c(1, 2, 3), names=c("a", "b", "a"))["a"]

a

1

There is no direct way to select all but given names, just like with negative integer in-
dexers. For a workaround, see Section 5.4.1.

Exercise 5.3 Rewrite the solution to theabove spam-lovers exercise, assuming thatwenowhave
the three features wrapped inside a list.

(people <- list(

Name=c("Graham", "John", "Terry", "Eric", "Michael", "Terry", "Steve"),

Food=c("bacon", "spam", "spam", "eggs", "spam", "beans", "spam"),

Year=c(1941, 1939, 1942, 1943, 1943, 1940, NA_real_)

))

$Name

[1] "Graham" "John" "Terry" "Eric" "Michael" "Terry" "Steve"

##

$Food

[1] "bacon" "spam" "spam" "eggs" "spam" "beans" "spam"

##

$Year

[1] 1941 1939 1942 1943 1943 1940 NA

Do not refer to name, food, and year directly. Instead, use the full people[["Name"]] etc. ac-
cessors.There is no need to pout: it is just a tiny bit of extrawork. Also, notice that Steve has joined
the group; hello, Steve.

5 VECTOR INDEXING 75

5.3 Replacing elements
5.3.1 Modifying atomic vectors
There are also replacement versions of the above indexing schemes. They allow us to
substitute some new content for the old one.

(x <- 1:12)

[1] 1 2 3 4 5 6 7 8 9 10 11 12

x[length(x)] <- 42 # modify the last element

print(x)

[1] 1 2 3 4 5 6 7 8 9 10 11 42

The principles of vectorisation, recycling rule, and implicit coercion are all in place:

x[c(TRUE, FALSE)] <- c("a", "b", "c")

print(x)

[1] "a" "2" "b" "4" "c" "6" "a" "8" "b" "10" "c" "42"

Long story long: first, to ensure that the new content can be poured into the old wine-
skin, R coerced the numeric vector to a character one. Then, every second element
therein, a total of six items, was replaced by a recycled version of the replacement se-
quence of length three. Finally, the name xwas rebound to such a brought-forth object
and the previous one became forgotten.

Note For more details on replacement functions in general, see Section 9.3.6. Such
operations alter the state of the object they are called on (quite a rare behaviour in
functional languages).

Exercise 5.4 Replace missing values in a given numeric vector with the arithmetic mean of its
well-defined observations.

5.3.2 Modifying lists
List contents can be altered as well. Formodifying individual elements, the safest op-
tion is to use the replacement version of the `[[` operator:

y <- list(a=1, b=1:2, c=1:3)

y[[1]] <- 100:110

y[["c"]] <- -y[["c"]]

print(y)

$a

[1] 100 101 102 103 104 105 106 107 108 109 110

##

(continues on next page)

76 I DEEP

(continued from previous page)

$b

[1] 1 2

##

$c

[1] -1 -2 -3

The replacement version of `[` modifies a whole sub-list:

y[1:3] <- list(1, c("a", "b", "c"), c(TRUE, FALSE))

print(y)

$a

[1] 1

##

$b

[1] "a" "b" "c"

##

$c

[1] TRUE FALSE

Moreover:

y[1] <- list(1:10) # replace one element with one object

y[-1] <- 10:11 # replace two elements with two singletons

print(y)

$a

[1] 1 2 3 4 5 6 7 8 9 10

##

$b

[1] 10

##

$c

[1] 11

Note Let i be a vector of positive indexes of elements to be modified. Overall, calling
“y[i] <- z” behaves as if we wrote:

1. y[[i[1]]] <- z[[1]],

2. y[[i[2]]] <- z[[2]],

3. y[[i[3]]] <- z[[3]],

and so forth.

Furthermore, z (but not i) will be recycledwhennecessary. In otherwords,we retrieve
z[[j %% length(z)]] for consecutive js from 1 to the length of i.

5 VECTOR INDEXING 77

Exercise 5.5 Reflect on the results of the following expressions:

• y[1] <- c("a", "b", "c"),

• y[[1]] <- c("a", "b", "c"),

• y[[1]] <- list(c("a", "b", "c")),

• y[1:3] <- c("a", "b", "c"),

• y[1:3] <- list(c("a", "b", "c")),

• y[1:3] <- "a",

• y[1:3] <- list("a"),

• y[c(1, 2, 1)] <- c("a", "b", "c").

Important Setting a list item to NULL removes it from the list completely.

y <- list(1, 2, 3, 4)

y[1] <- NULL # removes the first element (i.e., 1)

y[[1]] <- NULL # removes the first element (i.e., now 2)

y[1] <- list(NULL) # sets the first element (i.e., now 3) to NULL

print(y)

[[1]]

NULL

##

[[2]]

[1] 4

Thesamenotation convention is used for dropping object attributes; see Section 9.3.6.

5.3.3 Inserting new elements
New elements can be pushed at the end of the vector quite easily3.

(x <- 1:5)

[1] 1 2 3 4 5

x[length(x)+1] <- 6 # insert at the end

print(x)

[1] 1 2 3 4 5 6

x[10] <- 10 # insert at the end but add more items

print(x)

[1] 1 2 3 4 5 6 NA NA NA 10

The elements to be inserted can be named as well:

3 And often cheaply; see Section 8.3.5 for performance notes. Still, a warning can be generated on each
size extension if the "check.bounds" flag is set; see help("options").

78 I DEEP

x["a"] <- 11 # still inserts at the end

x["z"] <- 12

x["c"] <- 13

x["z"] <- 14 # z is already there; replace

print(x)

a z c

1 2 3 4 5 6 NA NA NA 10 11 14 13

Note that xwas not equippedwith the names attribute before.The unlabelled elements
were assigned blank labels (empty strings).

Note It is not possible to insert new elements at the beginning or in the middle of a
sequence, at least not with the index operator. By writing “x[3:4] <- 1:5” we do not
replace two elements in the middle with five other ones. However, we can always use
the c function to slice parts of the vector and intertwine themwith some new content:

x <- seq(10, 100, 10)

x <- c(x[1:2], 1:5, x[5:7])

print(x)

[1] 10 20 1 2 3 4 5 50 60 70

5.4 Functions related to indexing
Let us review a few operations which pinpoint interesting elements in a vector (or
functions based on these).

5.4.1 Matching elements in another vector
Weknow that the `==` operator acts in an elementwisemanner. It compares each ele-
ment in a vector on its left side to the corresponding element in a vector on the right
side. Thus, missing values and the recycling rule aside, if “z <- (x == y)”, then z[i]

is TRUE if and only if x[i] is equal to y[i].

The `%in%` operator4 is vectorised differently. It checks whether each element on the
left-hand sidematches one of the elements on the right. Given “z <- (x %in% y)”, z[i]
is TRUEwhenever x[i] is equal to y[j] for some j.

c("spam", "bacon", "spam", "eggs", "spam") %in% c("eggs", "spam", "ham")

[1] TRUE FALSE TRUE TRUE TRUE

4 A fantastic name; see Section 9.3.5.

5 VECTOR INDEXING 79

Example 5.6 Here is how we can remove the elements of a vector that have been assigned spe-
cified labels.

(x <- structure(1:12, names=month.abb)) # example vector

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 2 3 4 5 6 7 8 9 10 11 12

x[!(names(x) %in% c("Jan", "May", "Sep", "Oct"))] # get rid of some elements

Feb Mar Apr Jun Jul Aug Nov Dec

2 3 4 6 7 8 11 12

More generally, match(x, y) gives us the index of the element in y that matches each
x[i].

match(c("spam", "bacon", "spam", "eggs", "spam"), c("eggs", "spam", "ham"))

[1] 2 NA 2 1 2

match(month.abb, c("Jan", "May", "Sep", "Oct")) # is the month on the list?

[1] 1 NA NA NA 2 NA NA NA 3 4 NA NA

match(c("Jan", "May", "Sep", "Oct"), month.abb) # which month is it?

[1] 1 5 9 10

By default, a missing value denotes a no-match.

Exercise 5.7 Check out the documentation of `%in%` to see how this operator is reduced to a call
to match. Also, verify that it treats missing values as well-defined ones.

If the elements in y are not unique, the smallest index j such that x[i] == y[j] is
returned.Therefore, for example, match(TRUE, l) fetches the index of the first occur-
rence of a positive value in a logical vector l.

(x <- round(runif(10), 2)) # example vector

[1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46

match(TRUE, x>0.8) # index of the first value > 0.8 (from the left)

[1] 4

5.4.2 Assigning numbers into intervals
findInterval can come in handy where the assigning of numeric values into real in-
tervals is needed. Namely, z <- findInterval(x, y) for increasing y gives z[i] being
the index j such that x[i] is between y[j] (by default, inclusive) and y[j+1] (by default,
exclusive).

For example, a sequence of five knots 𝒚 = (−∞, 0.25, 0.5, 0.75, ∞) splits the real line
into the following four intervals:

[−∞, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, ∞)
(1) (2) (3) (4)

Hence, for instance:

80 I DEEP

findInterval(c(0, 0.2, 0.25, 0.4, 0.66, 1), c(-Inf, 0.25, 0.5, 0.75, Inf))

[1] 1 1 2 2 3 4

Exercise 5.8 Refer to the manual of findInterval to verify the function’s behaviour when we
donot include±∞as endpointsandhowtomake∞ classifiedasamemberof the fourth interval.

Exercise 5.9 Using a call to findInterval, compose a statement that generates a logical vector
whose 𝑖-th element indicates whether x[i] is in the interval [0.25, 0.5].Was this easier towrite
than an expression involving `<=` and `>=`?

5.4.3 Splitting vectors into subgroups
split(x, z) can take the output of match or findInterval (andmany other operations)
and divide the elements in a vector x into subgroups corresponding to identical zs.

For instance, we can assign people into groups determined by their favourite dish:

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")

food <- c("bacon", "spam", "spam", "eggs", "spam", "beans")

split(name, food) # group names with respect to food

$bacon

[1] "Graham"

##

$beans

[1] "Terry"

##

$eggs

[1] "Eric"

##

$spam

[1] "John" "Terry" "Michael"

The result is a named list with labels determined by the unique elements in the second
vector.

Here is another example,wherewepigeonhole somenumbers into the four previously
mentioned intervals:

x <- c(0, 0.2, 0.25, 0.4, 0.66, 1)

split(x, findInterval(x, c(-Inf, 0.25, 0.5, 0.75, Inf)))

$`1`

[1] 0.0 0.2

##

$`2`

[1] 0.25 0.40

##

$`3`

(continues on next page)

5 VECTOR INDEXING 81

(continued from previous page)

[1] 0.66

##

$`4`

[1] 1

Items in the first argument that correspond to missing values in the grouping vector
will be ignored. Also, unsurprisingly, the recycling rule is applied when necessary.

We can also split x into groups defined by a combination of levels of two ormore vari-
ables z1, z2, etc., by calling split(x, list(z1, z2, ...)).

Example 5.10 The ToothGrowth dataset is a named list (more precisely, a data frame; see
Chapter 12) that represents the results of an experimental study involving 60 guinea pigs. The
experiment’s aimwas tomeasure the effect of different vitaminC supplement types and doses on
the growth of the rodents’ teeth lengths:

ToothGrowth <- as.list(ToothGrowth) # it is a list, but with extra attribs

ToothGrowth[["supp"]] <- as.character(ToothGrowth[["supp"]]) # was: factor

print(ToothGrowth)

$len

[1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0 16.5 16.5 15.2 17.3

[15] 22.5 17.3 13.6 14.5 18.8 15.5 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5

[29] 23.3 29.5 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3

[43] 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9

[57] 26.4 27.3 29.4 23.0

##

$supp

[1] "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC"

[15] "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC"

[29] "VC" "VC" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ"

[43] "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ"

[57] "OJ" "OJ" "OJ" "OJ"

##

$dose

[1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

[18] 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.5 0.5 0.5 0.5

[35] 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

[52] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

We can split lenwith respect to the combinations of supp and dose (also called interactions) by
calling:

split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_")

$OJ_0.5

[1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7

##

(continues on next page)

82 I DEEP

(continued from previous page)

$VC_0.5

[1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0

##

$OJ_1

[1] 19.7 23.3 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3

##

$VC_1

[1] 16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5

##

$OJ_2

[1] 25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23.0

##

$VC_2

[1] 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5

Other synonyms are, of course, possible, e.g., split(ToothGrowth[[1]], ToothGrowth[-1])

and split(ToothGrowth[[1]], list(ToothGrowth[[2]], ToothGrowth[[3]])). We re-
commendmeditating upon our conscious use of double vs single square brackets here.

Functions suchasMap (Section 7.2)will soon enable us to compute any summary statisticswithin
groups, e.g., the group averages like those obtained by executing “SELECT AVG(len) FROM

ToothGrowth GROUP BY supp, dose” in SQL. As an appetiser, let us pass a list of vectors to
the boxplot function; see Figure 5.1.

boxplot(split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_"))

OJ_0.5 VC_0.5 OJ_1 VC_1 OJ_2 VC_2

5
10

15
20

25
30

35

Figure 5.1. Box-and-whisker plots of len split by supp and dose in ToothGrowth.

5 VECTOR INDEXING 83

Note unsplit revokes the effects of split. Later, we will get used to calling un-

split(Map(some_transformation, split(x, z)), z) to modify the values in x inde-
pendently in each group defined by z (e.g., standardise the variables within each class
separately).

5.4.4 Ordering elements
The order function finds the ordering permutation of a given vector, i.e., a sequence
of indexes that leads to a sorted version thereof.

x <- c(1024, 7, 42, 666, 0, 32787)

(o <- order(x)) # the ordering permutation of x

[1] 5 2 3 4 1 6

x[o] # ordered version of x

[1] 0 7 42 666 1024 32787

Note that o[1] is the index of the smallest element in x, o[2] is the position of the
second smallest, …, and o[length(o)] is the index of the greatest value. Hence, e.g.,
x[o[1]] is equivalent to min(x).

Another example:

x <- c("b", "a", "abs", "bass", "aaargh", "aargh", "aaaargh")

(o <- order(x))

[1] 2 7 5 6 3 1 4

x[o]

[1] "a" "aaaargh" "aaargh" "aargh" "abs" "b" "bass"

Here, as x is a character vector, the ordering is lexicographical (like in a dictionary).
This is exactly how `<=` on strings works.

Note The ordering permutation that order returns is unique (that is why we call it the
permutation), even for inputs containing duplicated elements. Owing to the use of a
stable sorting algorithm, ties (repeated elements) will be listed in the order of occur-
rence.

order(c(10, 20, 40, 10, 10, 30, 20, 10, 10))

[1] 1 4 5 8 9 2 7 6 3

Above we have, e.g., five 10s at positions 1, 4, 5, 8, and 9. These five indexes are guar-
anteed to be listed in this very order.

Ordering can also be performed in a nonincreasing manner:

84 I DEEP

x[order(x, decreasing=TRUE)]

[1] "bass" "b" "abs" "aargh" "aaargh" "aaaargh" "a"

Note A call to sort(x) is equivalent to x[order(x)], but the former function can be
faster in certain scenarios. For instance, one of its arguments can induce a partially
sorted vector which can be helpful if we only seek a few order statistics (e.g., the seven
smallest values). Speed is rarely a bottleneck in the case of sorting (when it is, we have
a problem!).This iswhywewill not bother ourselveswith such topics until the last part
of this pleasant book. Currently, we aim at expanding our skill repertoire so that we
can implement anything we can think of.

Exercise 5.11 is.unsorted(x) determines if the elements in x are… not sorted with respect to
`<=`. Write an R expression that generates the same result by referring to the order function.
Also, assuming that x is numeric, do the same bymeans of a call to diff.

order also accepts one or more arguments via the dot-dot-dot parameter, `...`. This
way, we can sort a vector with respect to many criteria. If there are ties in the first
variable, they will be resolved by the order of elements in the second variable. This is
most useful for rearranging rows of a data frame, which we will exercise in Chapter
12.

x <- c(10, 20, 30, 40, 50, 60)

y1 <- c("a", "b", "a", "a", "b", "b")

y2 <- c("w", "w", "v", "u", "u", "v")

x[order(y1)]

[1] 10 30 40 20 50 60

x[order(y2)]

[1] 40 50 30 60 10 20

x[order(y1, y2)]

[1] 40 30 10 50 60 20

x[order(y2, y1)]

[1] 40 50 30 60 10 20

Note (*) Calling order on a permutation (a vector that is an arbitrary arrangement of
𝑛 consecutive natural numbers) determines its inverse.

x <- c(10, 30, 40, 20, 10, 10, 50, 30)

order(x)

[1] 1 5 6 4 2 8 3 7

order(order(x)) # inverse of the above permutation

[1] 1 5 7 4 2 3 8 6

(x[order(x)])[order(order(x))] # we get x again

[1] 10 30 40 20 10 10 50 30

Note that order(order(x)) can be considered as away to rank all the elements in x. For

5 VECTOR INDEXING 85

instance, the third value in x, 40, is assigned rank 7: it is the seventh smallest value
in this vector. This breaks the ties on a first-come, first-served basis. But we can also
write:

order(order(x, runif(length(x)))) # ranks with ties broken at random

[1] 2 5 7 4 3 1 8 6

For different variations of these, see the rank function.

Exercise 5.12 Recall that sample(x) returns a pseudorandom permutation of elements of a
given vector unless x is a single positive number. Write an expression that always produces a
proper rearrangement, regardless of the size of x.

5.4.5 Identifying duplicates
Whether any element in a vectorwas already listed in thepreviouspart of the sequence
can be verified by calling:

x <- c(10, 20, 30, 20, 40, 50, 50, 50, 20, 20, 60)

duplicated(x)

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

This function can be used to remove repeated observations; see also unique.This func-
tion returns a value that is not guaranteed to be sorted (unlike in some other lan-
guages/libraries).

Exercise 5.13 What can be the use case of a call to match(x, unique(x))?

Exercise 5.14 Given twonamed lists xand y, whichwe treat as key-value pairs, determine their
set-theoretic union (with respect to the keys). For example:

x <- list(a=1, b=2)

y <- list(c=3, a=4)

z <- ...to.do... # combine x and y

str(z)

List of 3

$ a: num 4

$ b: num 2

$ c: num 3

5.4.6 Counting index occurrences
tabulate takes a vector of values from a set of small positive integers (e.g., indexes)
and determines their number of occurrences:

86 I DEEP

x <- c(2, 4, 6, 2, 2, 2, 3, 6, 6, 3)

tabulate(x)

[1] 0 4 2 1 0 3

In other words, there are 0 ones, 4 twos, …, and 3 sixes.

Exercise 5.15 Using a call to tabulate (amongst others), return a named vector with the num-
ber of occurrences of each unique element in a character vector. For example:

y <- c("a", "b", "a", "c", "a", "d", "e", "e", "g", "g", "c", "c", "g")

result <- ...to.do...

print(result)

a b c d e g

3 1 3 1 2 3

5.5 Preserving and losing attributes
Attributes are conceived of as extra data. It is thus up to a function’s authors what they
will decide to dowith them.Generally, it is safe to assume thatmuch thought has been
put into thedesignof baseR functions.Oftentimes, they behavequite reasonably.This
is why we are now going to spend some time now exploring their approaches to the
handling of attributes.

Namely, for functions and operators that aim at transforming vectors passed as their
inputs, the assumed strategy may be to:

• ignore the input attributes completely,

• equip the output object with the same set of attributes, or

• take care only of a few special attributes, such as names, if that makes sense.

Below we explore some common patterns; see also Section 1.3 of [66].

5.5.1 c

First, c drops5 all attributes except names:

(x <- structure(1:4, names=c("a", "b", "c", "d"), attrib1="<3"))

a b c d

1 2 3 4

attr(,"attrib1")

[1] "<3"

(continues on next page)

5 To be precise, wemean the default S3 method of c here; compare Section 10.2.4.

5 VECTOR INDEXING 87

(continued from previous page)

c(x) # only `names` are preserved

a b c d

1 2 3 4

We can therefore end up calling this function chiefly for this nice side effect. Also,
recall that unname drops the labels.

unname(x)

[1] 1 2 3 4

attr(,"attrib1")

[1] "<3"

5.5.2 as.something

as.vector, as.numeric, and similar drop all attributes in the case where the output is
an atomic vector, but it might not necessarily do so in other cases (because they are S3
generics; see Chapter 10).

as.vector(x) # drops all attributes if x is atomic

[1] 1 2 3 4

5.5.3 Subsetting
Subsetting with `[` (except where the indexer is not given) drops all attributes but
names (as well as dim and dimnames; see Chapter 11), which is adjusted accordingly:

x[1] # subset of labels

a

1

x[[1]] # this always drops the labels (makes sense, right?)

[1] 1

Thereplacement versionof the indexoperatormodifies the values in an existing vector
whilst preserving all the attributes. In particular, skipping the indexer replaces all the
elements:

y <- x

y[] <- c("u", "v") # note that c("u", "v") has no attributes

print(y)

a b c d

"u" "v" "u" "v"

attr(,"attrib1")

[1] "<3"

88 I DEEP

5.5.4 Vectorised functions
Vectorised unary functions tend to copy all the attributes.

round(x)

a b c d

1 2 3 4

attr(,"attrib1")

[1] "<3"

Binary operations are expected to get the attributes from the longer input. If they are
of equal sizes, the first argument is preferred to the second.

y <- structure(c(1, 10), names=c("f", "g"), attrib1=":|", attrib2=":O")

y * x # x is longer

a b c d

1 20 3 40

attr(,"attrib1")

[1] "<3"

y[c("h", "i")] <- c(100, 1000) # add two new elements at the end

y * x

f g h i

1 20 300 4000

attr(,"attrib1")

[1] ":|"

attr(,"attrib2")

[1] ":O"

x * y

a b c d

1 20 300 4000

attr(,"attrib1")

[1] "<3"

attr(,"attrib2")

[1] ":O"

Also, Section 9.3.6 mentions a way to copy all attributes from one object to another.

Important Even in baseR, the above rules are not enforced strictly.We consider them
inconsistencies that should be, for the time being, treated as features (with which we
need to learn to live as they have not been fixed for years, but hope springs eternal).

As far as third-party extension packages are concerned, suffice it to say that a lot of R
programmers do not knowwhat attributes are whatsoever. It is always best to refer to
the documentation, perform a few experiments, and/or manually ensure the preser-
vation of the data we care about.

Exercise 5.16 Check what attributes are preserved by ifelse.

5 VECTOR INDEXING 89

5.6 Exercises
Exercise 5.17 Answer the following questions (contemplate first, then useR to find the answer).

• What is the result of x[c()]? Is it the same as x[]?

• Is x[c(1, 1, 1)] equivalent to x[1]?

• Is x[1] equivalent to x["1"]?

• Is x[c(-1, -1, -1)] equivalent to x[-1]?

• What does x[c(0, 1, 2, NA)] do?

• What does x[0] return?

• What does x[1, 2, 3] do?

• What about x[c(0, -1, -2)] and x[c(-1, -2, NA)]?

• Why x[NA] is so significantly different from x[c(1, NA)]?

• What is x[c(FALSE, TRUE, 2)]?

• What will we obtain by calling x[x<min(x)]?

• What about x[length(x)+1]?

• Why x[min(y)] is most probably amistake?What could it mean?How can it be fixed?

• Why cannot we mix indexes of different types and write x[c(1, "b", "c", 4)]? Or can
we?

• Whywould we call as.vector(na.omit(x)) instead of just na.omit(x)?

• What is the difference between sort and order?

• What is the type and the length of the object returned by a call to split(a, u)?What about
split(a, c(u, v))?

• How to get rid of the seventh element from a list of ten elements?

• How to get rid of the seventh, eight, and ninth elements from a list with ten elements?

• How to get rid of the seventh element from an atomic vector of ten elements?

• If y is a list, by how many elements “y[c(length(y)+1, length(y)+1, length(y)+1)]

<- list(1, 2, 3)” will extend it?

• What is the difference between x[x>0] and x[which(x>0)]?

Exercise 5.18 If x is an atomic vector of length n, x[5:n] obviously extracts everything from the
fifth element to the end. Does it, though? Check what happens when x is of length less than five,
including 0. List different ways to correct this expression so that itmakes (some) sense in the case
of shorter vectors.

90 I DEEP

Exercise 5.19 Similarly, x[length(x) + 1 - 5:1] is supposed to return the last five elements
in x. Propose a few alternatives that are correct also for short xs.

Exercise 5.20 Given a numeric vector, fetch its five largest elements. Ensure the code works for
vectors of length less than five.

Exercise 5.21 We can compute a trimmedmean of some x by setting the trim argument to the
mean function. Compute a similar robust estimator of location – the 𝑝-winsorised mean, 𝑝 ∈
[0, 0.5] defined as the arithmetic mean of all elements in x clipped to the [𝑄𝑝, 𝑄1−𝑝] interval,
where 𝑄𝑝 is the vector’s 𝑝-quantile; see quantile. For example, if x is (8, 5, 2, 9, 7, 4, 6, 1, 3),
we have𝑄0.25 = 3 and𝑄0.75 = 7 and hence the 0.25-winsorised mean will be equal to the
arithmetic mean of (7, 5, 3, 7, 7, 4, 6, 3, 3).

Exercise 5.22 Let x and y be two vectors of the same length, 𝑛, and no ties. Implement the for-
mula for the Spearman rank correlation coefficient:

𝜚(𝐱, 𝐲) = 1 −
6 ∑𝑛

𝑖=1 𝑑2
𝑖

𝑛(𝑛2 − 1)
,

where𝑑𝑖 = 𝑟𝑖 −𝑠𝑖, 𝑖 = 1, … , 𝑛, and 𝑟𝑖 and 𝑠𝑖 denote the rank of𝑥𝑖 and𝑦𝑖, respectively; see also
cor.

Exercise 5.23 (*) Given two vectors x and y both of length 𝑛, a call to approx(x, y, ...) can
beused to interpolate linearly between the points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛).We canuse it
whenever we wish to generate new 𝑦s for previously unobserved 𝑥s (somewhere “in-between” the
data we already have).Moreover, spline(x, y, ...) can perform a cubic spline interpolation,
which is smoother; see Figure 5.2.

x <- c(1, 3, 5, 7, 10)

y <- c(1, 15, 25, 6, 0)

x_new <- seq(1, 10, by=0.25)

y_new1 <- approx(x, y, xout=x_new)[["y"]]

y_new2 <- spline(x, y, xout=x_new)[["y"]]

plot(x, y, ylim=c(-10, 30)) # the points to interpolate between

lines(x_new, y_new1, col="black", lty="solid") # linear interpolation

lines(x_new, y_new2, col="darkred", lty="dashed") # cubic interpolation

legend("topright", legend=c("linear", "cubic"),

lty=c("solid", "dashed"), col=c("black", "darkred"), bg="white")

Using a call to one of the above, imputemissing data in euraud-20200101-20200630.csv6, e.g.,
the blanks in (0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be filled so as to obtain (0.60,
0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

Exercise 5.24 Given some 1 ≤ from ≤ to ≤ n, use findInterval to generate a logical vector of
length nwith TRUE elements only at indexes between from and to, inclusive.

Exercise 5.25 Implement expressions that give rise to the same results as calls towhich,which.
min, which.max, and rev functions.What is the difference betweenx[x>y]and x[which(x>y)]?
What about which.min(x) vs which(x == min(x))?

6 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

5 VECTOR INDEXING 91

2 4 6 8 10

-1
0

0
10

20
30

x

y

linear
cubic

Figure 5.2. Piecewise linear and cubic spline interpolation.

Exercise 5.26 Given two equal-length vectors x and y, fetch the value from the former that cor-
responds to the smallest value in the latter.Write three versions of such an expression, each deal-
ing with potential ties in y differently. For example:

x <- c("a", "b", "c", "d", "e", "f")

y <- c(3, 1, 2, 1, 1, 4)

It should choose the first ("b"), last ("e"), or random element from x fulfilling the above prop-
erty ("b", "d", or "e"with equal probability). Make sure your code works for x being of the type
character or numeric as well as an empty vector.

Exercise 5.27 Implement an expression that yields the same result as duplicated(x) for a nu-
meric vector x, but using diff and order.

Exercise 5.28 Based on match and unique, implement your versions of union(x, y), inter-
sect(x, y), setdiff(x, y), is.element(x, y), and setequal(x, y) for x and y being
nonempty numeric vectors.

6
Character vectors

Text is a universal, portable, economical, and efficient means of interacting between
humans and computers as well as exchanging data between programs or APIs. This
book is 99%made of text. And, wow, howmuch valuable knowledge is in it, innit?

6.1 Creating character vectors
6.1.1 Inputting individual strings
Specific character strings aredelimitedbyapair of eitherdoubleor singlequotes (apo-
strophes).

"a string"

[1] "a string"

'another string' # and, of course, neither 'like this" nor "like this'

[1] "another string"

The only difference between these two is that we cannot directly include, e.g., an apo-
strophe in a single quote-delimited string. On the other hand, "'tis good ol' spam"

and 'I "love" bacon' are both okay.

However, to embrace characters whose inclusion might otherwise be difficult or im-
possible, wemay always employ the so-called escape sequences.

R uses the backslash, “\”, as the escape character. In particular:

• \" inputs a double quote,

• \' generates a single quote,

• \\ includes a backslash,

• \n endows a new line.

(x <- "I \"love\" bacon\n\\\"/")

[1] "I \"love\" bacon\n\\\"/"

The print function (which was implicitly called to display the above object) does not
reveal the special meaning of the escape sequences. Instead, print outputs strings in

94 I DEEP

the same way that we ourselves would follow when inputting them. The number of
characters in x is 18, and not 23:

nchar(x)

[1] 18

To display the string as-it-really-is, we call cat:

cat(x, sep="\n")

I "love" bacon

\"/

In raw character constants, the backslash character’s special meaning is disabled.
They can be entered using the notation like r"(...)", r"{...}", or r"[...]"; see
help("Quotes"). These can be useful when inputting regular expressions (Sec-
tion 6.2.4).

x <- r"(spam\n\\\"maps)" # also: r"-(...)-", r"--(...)--", etc.

print(x)

[1] "spam\\n\\\\\\\"maps"

cat(x, sep="\n")

spam\n\\\"maps

Furthermore, the string version of the missing value marker is NA_character_.

Note (*) The Unicode standard 15.0 (version dated September 2022) defines 149 186
characters, i.a., letters from different scripts, mathematical symbols, and emojis.
Each is assignedauniquenumeric identifier; see theUnicodeCharacterCodeCharts1.
For example, the inverted exclamationmark (see the Latin-1 Supplement section therein)
has beenmapped to the hexadecimal code 0xA1 (or 161 decimally). Knowing thismagic
number permits us to specify a Unicode code point using one of the following escape
sequences:

• \uxxxx – codes using four hexadecimal digits,

• \Uxxxxxxxx – codes using eight hexadecimal digits.

For instance:

cat("!\u00a1!\U000000a1!", sep="\n")

!¡!¡!

All R installations allow for working with Unicode strings. More precisely, they sup-
port dealing with UTF-8, being a super-encoding that is native to most UNIX-like
boxes, including GNU/Linux and m**OS. Other operating systems may use some 8-
bit encoding as the system one (e.g., latin1 or cp1252), but they can be mixed with
Unicode seamlessly; see help("Encoding"), help("iconv"), and [27] for discussion.

1 https://www.unicode.org/charts

https://www.unicode.org/charts

6 CHARACTER VECTORS 95

Nevertheless, certain output devices (web browsers, LaTeX renderers, text terminals)
might be unable to display every possible Unicode character, e.g., due to some fonts’
being missing. However, as far as processing character data is concerned, this does
not matter because R does it with its eyes closed. For example:

cat("\U0001f642\u2665\u0bb8\U0001f923\U0001f60d\u2307", sep="\n")

������

In the PDF version2 of this adorable book, the Unicode glyphs are not rendered cor-
rectly for some reason. However, its HTML variant3, generated from the same source
files, should be displayed by most web browsers properly.

Note (*) Some output devices may support the following codes that control the posi-
tion of the caret (text cursor):

• \b inserts a backspace (moves cursor one column to the left),

• \t implants a tabulator (advances to the next tab stop, e.g., a multiply of four or
eight text columns),

• \r injects a carriage return (move to the beginning of the current line).

cat("abc\bd\tef\rg\nhij", sep="\n")

gbd ef

hij

These canbeusedonunbufferedoutputs like stderr to display the status of the current
operation, for instance, an animated textual progress bar, the print-out of the ETA, or
the percentage of work completed.

Further, certain terminals can also understand the ECMA-48/ANSI-X3.64 escape se-
quences4 of the form \u001b[... to control the cursor’s position, text colour, and even
style. For example, \u001b[1;31m outputs red text in bold font and \u001b[0m resets the
settings to default. We recommend giving, e.g., cat("\u001b[1;31mspam\u001b[0m")
or cat("\u001b[5;36m\u001b[Abacon\u001b[Espam\u001b[0m") a try.

6.1.2 Many strings, one object
Less trivial character vectors (meaning, of length greater than one) can be constructed
by means of, e.g., c or rep5.

2 https://deepr.gagolewski.com/deepr.pdf
3 https://deepr.gagolewski.com/
4 https://en.wikipedia.org/wiki/ANSI_escape_code
5 Internally, there is a string cache (a hash table). Multiple clones of the same string do not occupymore

RAM than necessary.

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/
https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

96 I DEEP

(x <- c(rep("spam", 3), "bacon", NA_character_, "spam"))

[1] "spam" "spam" "spam" "bacon" NA "spam"

Thus, a character vector is, in fact, a sequence of sequences of characters6. As usual,
the total number of strings canbe fetched via the length function.However, the length
of each string may be read with the vectorised nchar.

length(x) # how many strings?

[1] 6

nchar(x) # the number of code points in each string

[1] 4 4 4 5 NA 4

6.1.3 Concatenating character vectors
paste can be used to concatenate (join) the corresponding elements of two or more
character vectors:

paste(c("a", "b", "c"), c("1", "2", "3")) # sep=" " by default

[1] "a 1" "b 2" "c 3"

paste(c("a", "b", "c"), c("1", "2", "3"), sep="") # see also paste0

[1] "a1" "b2" "c3"

The function is deeply vectorised:

paste(c("a", "b", "c"), 1:6, c("!", "?")) # coercion of numeric to character

[1] "a 1 !" "b 2 ?" "c 3 !" "a 4 ?" "b 5 !" "c 6 ?"

We can also collapse (flatten, aggregate) a sequence of strings into a single string:

paste(c("a", "b", "c", "d"), collapse=",")

[1] "a,b,c,d"

paste(c("a", "b", "c", "d"), 1:2, sep="", collapse="")

[1] "a1b2c1d2"

Perhaps for convenience, alas, paste treatsmissing values differently frommost other
vectorised functions:

paste(c("A", NA_character_, "B"), "!", sep="")

[1] "A!" "NA!" "B!"

6 (*) Chapter 14 will mention that objects of the type character are internally represented as objects with
SEXPTYPE of STRSXP. They are arrays with elements whose SEXPTYPE is CHARSXP, each of which is a string of
characters (char*).

6 CHARACTER VECTORS 97

6.1.4 Formatting objects
Strings can also arise by converting other-typed R objects into text. For example, the
quite customisable (see Chapter 10) format function prepares data for display in dy-
namically generated reports.

x <- c(123456.789, -pi, NaN)

format(x)

[1] "123456.7890" " -3.1416" " NaN"

cat(format(x, digits=8, scientific=FALSE, drop0trailing=TRUE), sep="\n")

123456.789

-3.1415927

NaN

Moreover, sprintf is a workhorse for turning possibly many atomic vectors into
strings. Its first argument is a format string. Special escape sequences starting with
the per cent sign, “%”, serve as placeholders for the actual values. For instance, “%s” is
replaced with a string and “%f” with a floating point value taken from further argu-
ments.

sprintf("%s%s", "a", c("X", "Y", "Z")) # like paste(...)

[1] "aX" "aY" "aZ"

sprintf("key=%s, value=%f", c("spam", "eggs"), c(100000, 0))

[1] "key=spam, value=100000.000000" "key=eggs, value=0.000000"

The numbers’ precision, strings’ widths and justification, etc., can be customised,
e.g., “%6.2f” is a number that, when converted to text, will occupy six text columns7,
with two decimal digits of precision.

sprintf("%10s=%6.2f%%", "rate", 2/3*100) # "%%" renders the per cent sign

[1] " rate= 66.67%"

sprintf("%.*f", 1:5, pi) # variable precision

[1] "3.1" "3.14" "3.142" "3.1416" "3.14159"

Also, e.g., “%1$s”, “%2$s”, … inserts the first, second, … argument as text.

sprintf("%1$s, %2$s, %1$s, and %1$s", "spam", "bacon") # numbered argument

[1] "spam, bacon, spam, and spam"

Exercise 6.1 Read help("sprintf") (highly recommended!).

6.1.5 Reading text data fromfiles
Given a raw text file, readLines loads it into memory and represents it as a character
vector, with each line stored in a separate string.

7This is only true for 8-bit native encodings or ASCII; see also sprintf from the stringx package, which
takes the text width and not the number of bytes into account.

98 I DEEP

head(readLines(

"https://github.com/gagolews/teaching-data/raw/master/README.md"

))

[1] "# Dr [Marek](https://www.gagolewski.com)'s Data for Teaching"

[2] ""

[3] "> *See the comment lines within the files themselves for"

[4] "> a detailed description of each dataset.*"

[5] ""

[6] "*Good* datasets are actually hard to find!"

writeLines is its counterpart. There is also an option to read or write parts of files at
a time using file connections which we mention in Section 8.3.5. Moreover, cat(...,
append=TRUE) can be used to create a text file incrementally.

6.2 Pattern searching
6.2.1 Comparingwhole strings
Wehave already reviewed a couple ofways to compare strings as awhole. For instance,
the `==` operator implements elementwise testing:

c("spam", "spam", "bacon", "eggs") == c("spam", "eggs") # recycling rule

[1] TRUE FALSE FALSE TRUE

In Section 5.4.1, we introduced the match function and its derivative, the `%in%` oper-
ator.They are vectorised in a different way:

match(c("spam", "spam", "bacon", "eggs"), c("spam", "eggs"))

[1] 1 1 NA 2

c("spam", "spam", "bacon", "eggs") %in% c("spam", "eggs")

[1] TRUE TRUE FALSE TRUE

Note (*) match relies on a simple, bytewise comparison of the corresponding code
points. It might not be valid in natural language processing activities, e.g., where
the German word groß should be equivalent to gross [18]. Moreover, in the rare situ-
ationswherewe readUnicode-unnormaliseddata, canonically equivalent stringsmay
be considered different; see [17].

6.2.2 Partialmatching
When only a consideration of the initial part of each string is required, we can call:

6 CHARACTER VECTORS 99

startsWith(c("s", "spam", "spamtastic", "spontaneous", "spoon"), "spam")

[1] FALSE TRUE TRUE FALSE FALSE

Ifweprovidemanyprefixes, the above functionwill be applied elementwisely, just like
the `==` operator.

On the other hand, charmatchperforms a partialmatching of strings. It is an each-vs-all
version of startsWith:

charmatch(c("s", "sp", "spam", "spams", "eggs", "bacon"), c("spam", "eggs"))

[1] 1 1 1 NA 2 NA

charmatch(c("s", "sp", "spam", "spoo", "spoof"), c("spam", "spoon"))

[1] 0 0 1 2 NA

Note that 0 designates that there was an ambiguous match.

Note (*) In Section 9.4.7, we discuss match.arg, which a fewR functions rely onwhen
theyneed to select a value froma range of possible choices. Furthermore, Section 9.3.2
and Section 15.4.4 mention the (discouraged) partial matching of list labels and func-
tion argument names.

6.2.3 Matching anywherewithin a string
Fixedpatterns can also be searched for anywherewithin character strings using grepl:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")

grepl("spam", x, fixed=TRUE) # fixed patterns, as opposed to regexes below

[1] TRUE TRUE FALSE FALSE

Important The order of arguments is like grepl(needle, haystack), not vice versa.
Also, this function is not vectorised with respect to the first argument.

Exercise 6.2 How the calls to grep(y, x, value=FALSE) and grep(y, x, value=TRUE) can
be implemented based on grepl and other operations we are already familiar with?

Note (*) As a curiosity, agrepl performs approximatematching, which can account for
a smöll nmber of tpyos.

agrepl("spam", x)

[1] TRUE TRUE FALSE TRUE

agrepl("ham", x, ignore.case=TRUE)

[1] TRUE TRUE TRUE TRUE

100 I DEEP

It is based on Levenshtein’s edit distance that measures the number of character inser-
tions, deletions, or substitutions required to turn one string into another.

6.2.4 Using regular expressions (*)
Setting perl=TRUE allows for identifying occurrences of patterns specified by regular
expressions (regexes).

grepl("^spam", x, perl=TRUE) # strings that begin with `spam`

[1] TRUE FALSE FALSE FALSE

grepl("(?i)^spam|spam$", x, perl=TRUE) # begin or end; case ignored

[1] TRUE TRUE TRUE FALSE

Note For more details on regular expressions in general, see, e.g., [24]. The ultimate
reference on the PCRE2 pattern syntax is the Unix man page pcre2pattern(3)8. From
now on, we assume that the reader is familiar with it.

Apart from the Perl-compatible regexes, R also gives access to the TRE library (ERE-
like), which is the default one; see help("regex"). However, we discourage its use be-
cause it is feature-poorer.

Exercise 6.3 The list.files function generates the list of file names in a given directory that
match a given regular expression. For instance, the following gives all CSV files in a folder.

list.files("~/Projects/teaching-data/r/", "\\.csv$")

[1] "air_quality_1973.csv" "anscombe.csv" "iris.csv"

[4] "titanic.csv" "tooth_growth.csv" "trees.csv"

[7] "world_phones.csv"

Writea single regular expression thatmatchesfilenames endingwith “.csv”or “.csv.gz”.Also,
scribble a regex that matches CSV files whose names do not begin with “eurusd”.

6.2.5 Locating pattern occurrences
regexpr finds the first occurrence of a pattern in each string:

regexpr("spam", x, fixed=TRUE)

[1] 1 3 -1 -1

attr(,"match.length")

[1] 4 4 -1 -1

attr(,"index.type")

[1] "chars"

(continues on next page)

8 http://www.pcre.org/current/doc/html/pcre2pattern.html

http://www.pcre.org/current/doc/html/pcre2pattern.html

6 CHARACTER VECTORS 101

(continued from previous page)

attr(,"useBytes")

[1] TRUE

In particular, there is a pattern occurrence starting at the third code point of the
second string in x. Moreover, the last string has no pattern match, which is denoted
with -1.

The match.length attribute is generallymore informativewhen searchingwith regular
expressions.

To locate all the matches, i.e., globally, we use gregexpr:

`spam` followed by 0 or more letters, case insensitively

gregexpr("(?i)spam\\p{L}*", x, perl=TRUE)

[[1]]

[1] 1

attr(,"match.length")

[1] 4

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[2]]

[1] 3 12

attr(,"match.length")

[1] 8 4

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[3]]

[1] 7

attr(,"match.length")

[1] 4

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[4]]

[1] -1

attr(,"match.length")

[1] -1

attr(,"index.type")
(continues on next page)

102 I DEEP

(continued from previous page)

[1] "chars"

attr(,"useBytes")

[1] TRUE

As we noted in Section 4.4.2, wrapping the results in a list was a clever choice for the
number of matches can obviously vary between strings.

InSection 7.2,wewill lookat the Map function,which, alongwith substring introduced
below, canaid ingetting themost out of suchdata.Meanwhile, let us justmention that
regmatches extracts the matching substrings:

regmatches(x, gregexpr("(?i)spam\\p{L}*", x, perl=TRUE))

[[1]]

[1] "spam"

##

[[2]]

[1] "spammite" "spam"

##

[[3]]

[1] "SPAM"

##

[[4]]

character(0)

Note (*) Let us consider what happens when a regular expression contains parenthes-
ised subexpressions (capture groups).

r <- "(?<basename>[^.]+)\\.(?<extension>[^]*)"

The above regex consists of two capture groups separated by a dot. The first one is
labelled “basename”. It comprises several arbitrary characters except for spaces and
dots.The second group, named “extension”, is a substring consisting of anything but
spaces.

Such a pattern can be used for unpacking space-delimited lists of file names.

z <- "dataset.csv.gz something_else.txt spam"

regexpr(r, z, perl=TRUE)

[1] 1

attr(,"match.length")

[1] 14

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

(continues on next page)

6 CHARACTER VECTORS 103

(continued from previous page)

attr(,"capture.start")

basename extension

[1,] 1 9

attr(,"capture.length")

basename extension

[1,] 7 6

attr(,"capture.names")

[1] "basename" "extension"

gregexpr(r, z, perl=TRUE)

[[1]]

[1] 1 16

attr(,"match.length")

[1] 14 18

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

attr(,"capture.start")

basename extension

[1,] 1 9

[2,] 16 31

attr(,"capture.length")

basename extension

[1,] 7 6

[2,] 14 3

attr(,"capture.names")

[1] "basename" "extension"

The capture.* attributes give us access to the matches to the individual capture
groups, i.e., the basename and the extension.

Exercise 6.4 (*) Check out the difference between the results generated by regexec and reg-
expr as well as between the outputs of gregexec and gregexpr.

6.2.6 Replacing pattern occurrences
sub and gsub can replace first and all, respectively, matches to a pattern:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")

sub("spam", "ham", x, fixed=TRUE)

[1] "ham" "y hammite spam" "yummy SPAM" "sram"

gsub("spam", "ham", x, fixed=TRUE)

[1] "ham" "y hammite ham" "yummy SPAM" "sram"

104 I DEEP

Note (*) If a regexdefines capture groups,matches thereto canbementionednot only
in the pattern itself but also in the replacement string:

gsub("(\\p{L})\\p{L}\\1", "\\1", "aha egg gag NaN spam", perl=TRUE)

[1] "a egg g N spam"

Theabovematches in the following order: a letter (it is a capture group), another letter,
and the former letter again. Each suchpalindromeof length three is replacedwith just
the repeated letter.

Exercise 6.5 (*)Display the source code of glob2rx by calling print(glob2rx) and study how
this function converts wildcards such as file???.* or *.csv to regular expressions that can be
passed to, e.g., list.files.

6.2.7 Splitting strings into tokens
strsplit divides each string in a character vector into chunks.

strsplit(c("spam;spam;eggs;;bacon", "spam"), ";", fixed=TRUE)

[[1]]

[1] "spam" "spam" "eggs" "" "bacon"

##

[[2]]

[1] "spam"

Note that this time the search pattern specifying the token delimiter is given as the
second argument (an inconsistency).

6.3 Other string operations
6.3.1 Extracting substrings
substring extracts parts of strings between given character position ranges.

substring("spammity spam", 1, 4) # from the first to the fourth character

[1] "spam"

substring("spammity spam", 10) # from the tenth to end

[1] "spam"

substring("spammity spam", c(1, 10), c(4, 14)) # vectorisation

[1] "spam" "spam"

substring(c("spammity spam", "bacon and eggs"), 1, c(4, 5))

[1] "spam" "bacon"

6 CHARACTER VECTORS 105

Note There is also a replacement (compare Section 9.3.6) version of the above:

x <- "spam, spam, bacon, and spam"

substring(x, 7, 11) <- "eggs"

print(x)

[1] "spam, eggs, bacon, and spam"

Unfortunately, the number of characters in the replacement string should not exceed
the length of the part being substituted (try "chickpeas" instead of "eggs"). However,
substring replacement can be written as a composition of substring extraction and
concatenation:

paste(substring(x, 1, 6), "chickpeas", substring(x, 11), sep="")

[1] "spam, chickpeas, bacon, and spam"

Exercise 6.6 Take the output generatedbyregexprandapplysubstring to extract the pattern
occurrences. If there is nomatch in a string, the corresponding output should be NA.

6.3.2 Translating characters
tolower and toupper converts between lower and upper case:

toupper("spam")

[1] "SPAM"

Note Like many other string operations in base R, these functions perform very
simple character substitutions.Theymightnotbe valid innatural languageprocessing
tasks. For instance, groß is not converted to GROSS, being the correct case folding in
German.

Moreover, chartr translates individual characters:

chartr("\\", "/", "c:\\windows\\system\\cmd.exe") # chartr(old, new, x)

[1] "c:/windows/system/cmd.exe"

chartr("([S", ")]*", ":(:S :[")

[1] ":) :* :]"

In the first line, we replace each backslash with a slash. The second example replaces
“(”, “[”, and “S” with “)”, “]”, and “*”, respectively.

106 I DEEP

6.3.3 Ordering strings
We have previously mentioned that operators and functions such as `<`, `>=`, sort,
order, rank, and xtfrm9 are based on the lexicographic ordering of strings.

sort(c("chłodny", "hardy", "chladný", "hladný"))

[1] "chladný" "chłodny" "hardy" "hladný"

It is worth noting that the ordering depends on the currently selected locale; see Sys.
getlocale("LC_COLLATE"). For instance, in the Slovak language setting, we would ob-
tain "hardy" < "hladný" < "chladný" < "chłodny".

Note Many “structured” data items can be displayed or transmitted as human-
readable strings. In particular, we know that as.numeric can convert a string to a
number. Moreover, Section 10.3.1 will discuss date-time objects such as "1970-01-01
00:00:00 GMT".Wewill beprocessing themwith specialised functions suchas strptime
and strftime.

Important (*) Many string operations in base R are not necessarily portable. The
stringx package defines drop-in, “fixed” replacements therefor.They are based on the
International Components for Unicode (ICU10) library, a de facto standard for pro-
cessing Unicode text, and the R package stringi; see [27].

call install.packages("stringx") first

suppressPackageStartupMessages(library("stringx")) # load the package

sort(c("chłodny", "hardy", "chladný", "hladný"), locale="sk_SK")

[1] "hardy" "hladný" "chladný" "chłodny"

toupper("gro\u00DF") # compare base::toupper("gro\u00DF")

[1] "GROSS"

detach("package:stringx") # remove the package from the search path

6.4 Other atomic vector types (*)
We have discussed four vector types: logical, double, character, and list. To get a
more complete picture of the sequence-like types in R, let us briefly mention integer,
complex, and raw atomic types so that we are not surprised when we encounter them.

9 See Section 12.3.1 for a use case.
10 https://icu.unicode.org/

https://icu.unicode.org/

6 CHARACTER VECTORS 107

6.4.1 Integer vectors (*)
Integer scalars can be input manually by using the L suffix:

(x <- c(1L, 2L, -1L, NA_integer_)) # looks like numeric

[1] 1 2 -1 NA

typeof(x) # but is integer

[1] "integer"

Some functions return them in a few contexts11:

typeof(1:10) # seq(1, 10) as well, but not seq(1, 10, 1)

[1] "integer"

as.integer(c(-1.1, 0, 1.9, 2.1)) # truncate/round towards 0

[1] -1 0 1 2

In most expressions, integer vectors behave like numeric ones. They are silently co-
erced to double if need be. Usually, there is no practical12 reason to distinguish
between them. For example:

1L/2L # like 1/2 == 1.0/2.0

[1] 0.5

Note (*) R integers are 32-bit signed types. In the double type, we can store more of
them.Themaximal contiguously representable integer is231−1 and253, respectively;
see Section 3.2.3:

as.integer(2^31-1) + 1L # 32-bit integer overflow

Warning in as.integer(2^31 - 1) + 1L: NAs produced by integer overflow

[1] NA

as.integer(2^31-1) + 1 == 2^31 # integer+double == double – OK

[1] TRUE

(2^53 - 1) + 1 == 2^53 # OK

[1] TRUE

(2^53 + 1) - 1 == 2^53 # lost due to FP rounding; left side equals 2^53 - 1

[1] FALSE

Note Since R 3.0, there is support for vectors longer than 231 − 1 elements. As there
are no 64-bit integers in R, long vectors are indexed by doubles (we have been doing
all this time). In particular, x[1.9] is the same as x[1], and x[-1.9]means x[-1], i.e.,

11 Actually, 1:10 returns an integer vector in a compact (ALTREP; see [55]) form; compare the results of
the call to .Internal(inspect(1:10)) and .Internal(inspect(seq(1, 10, 1))). This way, the whole vector
does not have to be allocated. This saves memory and time. At the R level, though, it behaves as any other
integer (numeric) sequence.

12They are of internal interest, e.g., when writing C/C++ extensions; see Chapter 14.

108 I DEEP

the fractional part is truncated. It is why the notation like x[length(x)*0.2] works,
whether the length of x is a multiple of five or not.

6.4.2 Raw vectors (*)
Vectors of the type raw can store bytes, i.e., unsigned 8-bit integers, whose range is
0–255. For example:

as.raw(c(-1, 0, 1, 2, 0xc0, 254, 255, 256, NA))

Warning: out-of-range values treated as 0 in coercion to raw

[1] 00 00 01 02 c0 fe ff 00 00

They are displayed as two-digit hexadecimal (base-16) numbers.There are no raw NAs.

Only a few functions deal with such vectors: e.g., readBin, charToRaw, and rawToChar.

Interestingly, themeaning of the logical operators differs for raw vectors; they denote
bitwise operations. See also bitwAnd, bitwOr etc. that work on integer vectors.

xor(as.raw(0xf0), as.raw(0x0f))

[1] ff

bitwXor(0x0fff0f00, 0x0f00f0ff)

[1] 16777215

Example 6.7 (*) One use case of bitwise operations is for representing a selection of items in a
small set of possible values.This can be useful for communicating with routines implemented in
C/C++. For instance, let us define three flags:

HAS_SPAM <- 0x01 # binary 00000001

HAS_BACON <- 0x02 # binary 00000010

HAS_EGGS <- 0x04 # binary 00000100

Now a particular subset can be created using the bitwise OR:

dish <- bitwOr(HAS_SPAM, HAS_EGGS) # {spam, eggs}

Testing for inclusion is done via the bitwise AND:

as.logical(bitwAnd(dish, c(HAS_SPAM, HAS_BACON, HAS_EGGS)))

[1] TRUE FALSE TRUE

6.4.3 Complex vectors (*)
Wecanalso playwith vectors of the type complex,with “1i” representing the imaginary
unit, √−1. Complex numbers appear in quite a few engineering or scientific applic-
ations, e.g., in physics, electronics, or signal processing. They are (at least: ought to

6 CHARACTER VECTORS 109

be) part of introductory subjects or textbooks in university-levelmathematics, includ-
ing the statistics- andmachine learning-orientated ones because of their heavy use of
numerical computing; see e.g., [19, 30].

c(0, 1i, pi+pi*1i, NA_complex_)

[1] 0.0000+0.0000i 0.0000+1.0000i 3.1416+3.1416i NA

Apart from the basic operators, mathematical and aggregation functions, procedures
like fft, solve, qr, or svd can be fed with or produce such data. For more details, see
help("complex") and somematrix examples in Chapter 11.

6.5 Exercises
Exercises marked with (*) might require tinkering with regular expressions or third-
party R packages.

Exercise 6.8 Answer the following questions.

• Howmany characters are there in the string "ab\n\\\t\\\\\""?What about r"-{ab\n\\
\t\\\\\"-)}-"?

• What is the result of a call to paste(NA, 1:5, collapse="")?

• What is the meaning of the following sprintf format strings: “%s”, “%20s”, “%-20s”, “%f”,
“%g”, “%e”, “%5f”, “%5.2f%%”, “%.2f”, “%0+5f”, and “[%+-5.2f]”?

• What is the difference between regexpr and gregexpr?What does “g” in the latter function
name stand for?

• What is the result of a call to grepl(c("spam", "spammity spam", "aubergines"),

"spam")?

• Is it always the case that “"Aaron" < "Zorro"”?

• Why “x < "10"” and “x < 10” may return different results?

• If x is a character vector, is “x == x” always equal to TRUE?

• If x and y are character vectors of lengths 𝑛 and 𝑚, respectively, what is the length of the
output of match(x, y)?

• If x is a named vector, why is there a difference between x[NA] and x[NA_character_]?

• What is the difference between “x == y” and “x %in% y”?

Exercise 6.9 Let x, y, and z be atomic vectors and a and b be single strings. Generate the same
results as pastena(x, collapse=b), pastena(x, y, sep=a), pastena(x, y, sep=a, col-

lapse=b), pastena(x, y, z, sep=a), pastena(x, y, z, sep=a, collapse=b), assuming
that pastena is a version of paste (which we do not have) that handles missing data in a way
consistent withmost other functions.

110 I DEEP

Exercise 6.10 Based on list.files and glob2rx, generate the list of all PDFs on your com-
puter.Then, use file.size to filter out the files smaller than 10MiB.

Exercise 6.11 Read a text file that stores a long paragraph of some banal prose. Concatenate
all the lines to form a single, long string. Using strwrap and cat, output the paragraph on the
console, nicely formatted to fit a block of text of an aesthetic width, say, 60 columns.

Exercise 6.12 (*) Implement a simplified version of basename and dirname.

Exercise 6.13 (*) Implement an operation similar to trimws using the functions introduced in
this chapter.

Exercise 6.14 (*) Write a regex that extracts all words from each string in a given character
vector.

Exercise 6.15 (*)Write a regex that extracts, from each string in a character vector, all:

• integers numbers (signed or unsigned),

• floating-point numbers,

• numbers of any kind (including those in scientific notation),

• #hashtags,

• email@address.es,

• hyperlinks of the form http://… and https://….

Exercise 6.16 (*)What do 42i, 42L, and 0x42 stand for?

Exercise 6.17 (*) Check out stri_sort in the stringi package (or sort.character in
stringx) for a way to obtain an ordering like "a1" < "a2" < "a10" < "a11" < "a100".

Exercise 6.18 (*) In sprintf, the formatter "%20s"means that if a string is less than 20 bytes
long, the remaining bytes will be replaced with spaces. Only for ASCII characters (English let-
ters, digits, some punctuationmarks, etc.), it is true that one character is represented by one byte.
Other Unicode code points can take up between two and four bytes.

cat(sprintf("..%6s..", c("abc", "1!<", "aßc", "ąß©")), sep="\n") # aligned?

.. abc..

.. 1!<..

.. aßc..

..ąß©..

Use the stri_pad function from the stringi package to align the strings aesthetically. Altern-
atively, check out sprintf from stringx.

Exercise 6.19 (*) Implement an operation similar to stri_pad from stringi using the func-
tions introduced in this chapter.

7
Functions

R is a functional language, i.e., one where functions play first fiddle. Each action we
perform reduces itself to a call to some function or a combination thereof.

So far, we have been tinkering with dozens of available functions which were mostly
part of base R. They constitute the essential vocabulary that everyone must be able to
speak fluently.

Any operation, be it sum, sqrt, or paste, when fed with a number of arguments, gen-
erates a (hopefully fruitful) return value.

sum(1:10) # invoking `sum` on a specific argument

[1] 55

From a user’s perspective, each function ismerely a tool. To achieve a goal at hand, we
do not have to care about what is going on under its bonnet, i.e., how the inputs are
being transformed so that, after a couple of nanoseconds or hours, we can relish what
has been bred.This is very convenient: all we need to know is the function’s specifica-
tion which can be stated, for example, informally, in plain Polish or Malay, on its help
page.

In this chapter, we will learn how to write our own functions. Using this skill is a good
development practice when we expect that the same operations will need to be executed
many times but perhaps on different data.

Also, some functions invoke other procedures, for instance, on every element in a list
or every section of a data frame grouped by a qualitative variable.Thus, it is advisable
to learn how we can specify a custom operation to be propagated thereover.

Example 7.1 Given some objects (whatever):

x1 <- runif(16)

x2 <- runif(32)

x3 <- runif(64)

assume we want to apply the same action on different data, say, compute the root mean square.
Then, instead of retyping almost identical expressions (or a bunch of them) over and over again:

sqrt(mean(x1^2)) # very fresh

[1] 0.6545

sqrt(mean(x2^2)) # the same second time; borderline okay

(continues on next page)

112 I DEEP

(continued from previous page)

[1] 0.56203

sqrt(mean(x3^2)) # third time the same; tedious, barbarous, and error-prone

[1] 0.57206

we can generalise the operation to any object like x:

rms <- # bind the name `rms` to...

function(x) # a function that takes one parameter, `x`

sqrt(mean(x^2)) # transforming the input to yield output this way

and then reuse it on different concrete data instances:

rms(x1)

[1] 0.6545

rms(x2)

[1] 0.56203

rms(x3)

[1] 0.57206

or even combine it with other function calls:

rms(sqrt(c(x1, x2, x3)))^2

[1] 0.50824

Thus, custom functions are very useful.

Important Does writing own functions equal reinventing the wheel? Can everything
be found online these days (including on Stack Overflow, GitHub, or CRAN)? Luckily,
it is not the case. Otherwise, data analysts’, researchers’, and developers’ lives would
bemonotonous, dreary, and uninspiring.What ismore, wemight be able to compose
a function from scratch much more quickly than to get through the whole garbage
dump called the internet from where, only occasionally, we can dig out some pearls.
Let us remember thatwe advocate forminimalism in this book.Wewill reflect on such
issues in Chapter 9.There is also the personal growth side: we become better program-
mers by crunching those exercises.

7.1 Creating and invoking functions
7.1.1 Anonymous functions
Functions are usually created through the following notation:

7 FUNCTIONS 113

function(args) body

First, args is a (possibly empty) list of comma-separated parameter names which act
as input variables.

Second, body is a single R expression that is evaluated when the function is called.The
value this expression yields will constitute the function’s output.

For example, here is a definition of a function that takes no inputs and generates a
constant output:

function() 1

function() 1

We thus created a function object. However, aswe have not used it at all, it disappeared
immediately thereafter.

Any function f can be invoked, i.e., evaluated on concrete data, using the syntax f(arg1,
..., argn). Here, arg1, …, argn are expressions passed as arguments to f.

(function() 1)() # invoking f like f(); here, no arguments are expected

[1] 1

Only now have we obtained a return value.

Note (*) Calling typeof on a function object will report "closure" (user-defined func-
tions), "builtin", or "primitive" (built-in, base ones) for the reasons that we explain
in more detail in Section 9.4.3 and Section 16.3.2. In our case:

typeof(function() 1)

[1] "closure"

7.1.2 Named functions
Namescanbebound to functionobjects.Thisway,wecan refer to themmultiple times:

one <- function() 1 # one <- (function() 1)

Wecreated an object named one (we use bold font to indicate that it is of the type func-
tion for functions are so crucial in R).We are very familiarwith such a notation, as not
since yesterday we are used to writing “x <- 1”, etc.

Invoking one, which can be done by writing one(), will generate a return value:

one() # (function() 1)()

[1] 1

114 I DEEP

This output can be used in further computations. For instance:

0:2 - one() # 0:2 - (function() 1)(), i.e., 0:2 - 1

[1] -1 0 1

7.1.3 Passing arguments to functions
Functionswith no arguments are kind of boring.Thus, let us distil amore highbrowed
operation:

concat <- function(x, y) paste(x, y, sep="")

Wecreated amappingwhose aim is to concatenate two objects using a specialised call
to paste. Yours faithfully pleads guilty to multiplying entities needlessly: it should not
be a problem for anyone to write paste(x, y, sep="") each time. Yet, ‘tis merely an
illustration.

The concat function has two parameters, x and y. Hence, calling it will require the pro-
vision of two arguments, which we put within round brackets and separate from each
other by commas.

u <- 1:5

concat("spam", u) # i.e., concat(x="spam", y=1:5)

[1] "spam1" "spam2" "spam3" "spam4" "spam5"

Important Notice the distinction: parameters (formal arguments) are abstract, general,
or symbolic; “something, anything that will be put in place of x when the function is
invoked”. Contrastingly, arguments (actual parameters) are concrete, specific, and real.

During the above call, x in the function’s body is precisely "spam" and nothing else.
Also, the u object from the caller’s environment can be accessed via y in concat. Most
of the time (yet, see Section 16.3), it is best to think of the function as being fed not
with u per se but the value that u is bound to, i.e., 1:5.

Also:

x <- 1:5

y <- "spam"

concat(y, x) # concat(x="spam", y=1:5)

[1] "spam1" "spam2" "spam3" "spam4" "spam5"

This call is equivalent to concat(x=y, y=x). The argument x is assigned the value of y
from the calling environment, "spam". Let us stress that one x is not the same as the
other x; which is which is unambiguously defined by the context.

Exercise 7.2 Write a function standardise that takes a numeric vector x as argument and re-

7 FUNCTIONS 115

turns its standardised version, i.e., from each element in x, subtract the sample arithmetic mean
and then divide it by the standard deviation.

Note Section 2.1.3mentioned that, syntactically speaking, the following are perfectly
valid alternatives to the positionally-matched call concat("spam", u):

concat(x="spam", y=u)

concat(y=u, x="spam")

concat("spam", y=u)

concat(u, x="spam")

concat(x="spam", u)

concat(y=u, "spam")

However, we recommend to avoid the last two for the sake of the readers’ sanity. It is
best to provide positionally-matched arguments before the keyword-based ones; see
Section 15.4.4 for more details.

Also, Section 10.4 introduces the (overused) forward pipe operator, `|>`, which will
enable us to write the above as “"spam" |> concat(u)”.

7.1.4 Grouping expressionswith curly braces, `{`
Wehave been informed that a function’s body is a singleR expressionwhose evaluated
value is passed to the user as its output. This may sound restrictive and in contrast
with what we have experienced so far. Rarely are we faced with such simple comput-
ing tasks, and we have already seen R functions performing quite sophisticated oper-
ations.

Grammatically, a single R expression can be arbitrarily complex (Chapter 15). We can
use curly braces to group many calls that are to be evaluated one after another. For
instance:

{

cat("first expression\n")

cat("second expression\n")

...

cat("last expression\n")

}

first expression

second expression

last expression

We used four spaces to visually indent the constituents for greater readability (some
developers prefer tabs over spaces, others find two or three spaces more urbane, but
we do not).This single (compound) expression can nowplay a role of a function’s body.

116 I DEEP

Important The last expression evaluated in a curly-braces delimited blockwill be con-
sidered its output value.

x <- {

1

2

3 # <--- last expression: will be taken as the output value

}

print(x)

[1] 3

The above code block can also be written more concisely by replacing newlines with
semicolons, albeit with perhaps some loss in readability:

{1; 2; 3}

[1] 3

Section 9.3 will give a fewmore details about `{`.

Example 7.3 Here is a version of the above concat function, which guarantees amore Chapter
2-style missing values’ propagation:

concat <- function(a, b)

{

z <- paste(a, b, sep="")

z[is.na(a) | is.na(b)] <- NA_character_

z # last expression in the block – return value

}

Example calls:

concat("a", 1:3)

[1] "a1" "a2" "a3"

concat(NA_character_, 1:3)

[1] NA NA NA

concat(1:6, c("a", NA_character_, "c"))

[1] "1a" NA "3c" "4a" NA "6c"

Let us appreciate the fact thatwe could keep the code brief thanks to paste’s and `|`’s implement-
ing the recycling rule.

Exercise 7.4 Write a function normalise that takes a numeric vector x and returns its version
shiftedandscaled to the [0, 1] interval.Todo so, subtract the sampleminimumfromeachelement,
and then divide it by the range, i.e., the difference between the maximum and the minimum.
Avoid computing min(x) twice.

Exercise 7.5 Write a function that applies the robust standardisation of a numeric vector: sub-

7 FUNCTIONS 117

tract the median and divide it by the median absolute deviation, 1.4826 times the median of the
absolute differences between the values and their median.

Note R is an open-source (free, libre) project distributed under the terms of the GNU
General Public License version 2. Therefore, we are not only encouraged to run the
software for whatever purpose, but also study andmodify its source code without re-
strictions. To facilitate this, we can display all function definitions:

print(concat) # code of the above procedure

function(a, b)

{

z <- paste(a, b, sep="")

z[is.na(a) | is.na(b)] <- NA_character_

z # last expression in the block – return value

}

print(union) # a built-in function

function (x, y)

{

u <- as.vector(x)

v <- as.vector(y)

unique(c(u, v))

}

<environment: namespace:base>

Nevertheless, some functionality might be implemented in compiled programming
languages such as C, C++, or Fortran; notice a call to .Internal in the source code of
paste, .Primitive in list, or .Call in runif.Therefore, we will sometimes have to dig
a bit deeper to access the underlying definition; see Chapter 14 for more details.

7.2 Functional programming
R is a functional programming language. As such, it shares several features with other
languages that emphasise the role of functionmanipulation in software development
(e.g., Common Lisp, Scheme, OCaml, Haskell, Clojure, F#). Let us explore these com-
monalities now.

7.2.1 Functions are objects
R functions were given the right to a fair go; they are what we refer to as first-class cit-
izens. In other words, our interaction with them is not limited to their invocation; we
treat them as any other language object.

• They can be stored inside list objects, which can embrace R objects of any kind:

118 I DEEP

list(identity, NROW, sum) # a list storing three functions

[[1]]

function (x)

x

<environment: namespace:base>

##

[[2]]

function (x)

if (length(d <- dim(x))) d[1L] else length(x)

<environment: namespace:base>

##

[[3]]

function (..., na.rm = FALSE) .Primitive("sum")

• They can be created and then called inside another function’s body:

euclidean_distance <- function(x, y)

{

square <- function(z) z^2 # auxiliary/internal/helper function

sqrt(sum(square(x-y))) # square root of the sum of squares

}

euclidean_distance(c(0, 1), c(1, 0)) # example call

[1] 1.4142

This is whywe tend to classify functions as representatives of recursive types (com-
pare is.recursive).

• They can be passed as arguments to other operations:

Replaces missing values with a given aggregate

of all non-missing elements:

fill_na <- function(x, filler_fun)

{

missing_ones <- is.na(x) # otherwise, we'd have to call is.na twice

replacement_value <- filler_fun(x[!missing_ones])

x[missing_ones] <- replacement_value

x

}

fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), mean)

[1] 0 3 3 2 3 7 3

fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), median)

[1] 0.0 2.5 2.5 2.0 3.0 7.0 2.5

Procedures like this are called higher-order functions.

7 FUNCTIONS 119

Note More advanced techniques, which we will discuss in the third part of the book,
will let the functions be:

• returned as other function’s outputs,

• equipped with auxiliary data,

• generated programmatically on the fly,

• modified at runtime.

Below we review the most basic higher-order functions, including do.call and Map.

7.2.2 Calling on precomputed argumentswith do.call
Notation like f(arg1, ..., argn) has no monopoly over how we call a function on
a specific sequence of arguments. The list of actual parameters does not have to be
hardcoded.

Here is an alternative. We can first prepare a number of objects to be passed as f’s
inputs, wrap them in a list l, and then invoke do.call(f, l) to get the same result.

words <- list(

c("spam", "bacon", "eggs"),

c("buckwheat", "quinoa", "barley"),

c("ham", "spam", "spam")

)

do.call(paste, words) # paste(words[[1]], words[[2]], words[[3]])

[1] "spam buckwheat ham" "bacon quinoa spam" "eggs barley spam"

do.call(cbind, words) # column-bind; returns a matrix (explained later)

[,1] [,2] [,3]

[1,] "spam" "buckwheat" "ham"

[2,] "bacon" "quinoa" "spam"

[3,] "eggs" "barley" "spam"

do.call(rbind, words) # row-bind (explained later)

[,1] [,2] [,3]

[1,] "spam" "bacon" "eggs"

[2,] "buckwheat" "quinoa" "barley"

[3,] "ham" "spam" "spam"

The length and content of the list passed as the second argument of do.call can be
arbitrary (possibly unknown at the time of writing the code). See Section 12.1.2 for
more use cases, e.g., ways to concatenate a list of data frames (perhaps produced by
some complex chain of commands) into a single data frame.

If elements of the list are named, they will be matched to the corresponding keyword
arguments.

120 I DEEP

x <- 2^(seq(-2, 2, length.out=101))

plot_opts <- list(col="red", lty="dashed", type="l")

do.call(plot, c(list(x, log2(x), xlab="x", ylab="log2(x)"), plot_opts))

(plot display suppressed)

Notice that our favourite plot_opts cannowbe reused in further calls to graphics func-
tions.This is very convenient as it avoids repetitions.

7.2.3 Common higher-order functions
There is an important class of higher-order functions that permit us to apply custom
operations on consecutive elements of sequences without relying on loop-like state-
ments, at least explicitly.They can be found in all functional programming languages
(e.g., Lisp,Haskell, Scala) and have been ported to various add-on libraries (functools
in Python, more recent versions of the C++ Standard Library, etc.) or frameworks
(Apache Spark and the like).Their presence reflects the obvious truth that certain op-
erations occur more frequently than others. In particular:

• Map calls a function on each element of a sequence in order to transform:

– their individual components (just like sqrt, round, or the unary `!` operator
in R), or

– the corresponding elements ofmany sequences so as to vectorise a given op-
eration elementwisely (compare the binary `+` or paste),

• Reduce (also called accumulate) applies a binary operation to combine consecutive
elements in a sequence, e.g., to generate the aggregates, like, totally (compare sum,
prod, all, max) or cumulatively (compare cumsum, cummmin),

• Filter creates a subset of a sequence that is comprised of elements that enjoy a
given property (which we typically achieve in R bymeans of the `[` operator),

• Find locates the first element that fulfils some logical condition (compare which).

Below we will only focus on the Map function.The inspection of the remaining ones is
left as an exercise. This is because, oftentimes, we can be better off with their more
R-ish versions (e.g., using the subsetting operator, `[`).

7.2.4 Vectorising functionswith Map
In data-centric computing, we are frequently faced with tasks that involve processing
each vector element independently, one after another. Suchuse cases canbenefit from
vectorised operations like those discussed in Chapter 2, Chapter 3, and Chapter 6.

Unfortunately, most of the functions that we introduced so far cannot be applied on
lists. For instance, if we try calling sqrt on a generic vector, we will get an error, even
if it is a list of numeric sequences only. One way to compute the square root of all
elements would be to invoke sqrt(unlist(...)). It is a go-to approach if we wish to

7 FUNCTIONS 121

treat all the list’s elements as one sequence. However, this comes at the price of losing
the list’s structure.

Wehave also discussed a fewoperations that arenot vectorisedwith respect to all their
arguments, even though they could have been designed this way, e.g., grepl.

The Map function1 applies an operation on each element in a vector or the correspond-
ing elements in a number of vectors. In many situations, it may be used as a more
elegant alternative to for loops that we will introduce in the next chapter.

First2, a call to Map(f, x) yields a list whose 𝑖-th element is equal to f(x[[i]]) (recall
that `[[` works on atomic vectors too). For example:

x <- list(# an example named list

x1=1:3,

x2=seq(0, 1, by=0.25),

x3=c(1, 0, NA_real_, 0, 0, 1, NA_real_)

)

Map(sqrt, x) # x is named, hence the result will be named as well

$x1

[1] 1.0000 1.4142 1.7321

##

$x2

[1] 0.00000 0.50000 0.70711 0.86603 1.00000

##

$x3

[1] 1 0 NA 0 0 1 NA

Map(length, x)

$x1

[1] 3

##

$x2

[1] 5

##

$x3

[1] 7

unlist(Map(mean, x)) # compute three aggregates, convert to an atomic vector

x1 x2 x3

2.0 0.5 NA

Map(function(n) round(runif(n, -1, 1), 1), c(2, 4, 6)) # x is atomic now

[[1]]

[1] 0.4 0.8

(continues on next page)

1 Yes, the author is aware that Mapwas implemented using the slightlymore primitive mapply but we are
not fond of the latter function’s having the SIMPLIFY argument set to TRUE by default.

2This use case scenario can also be programmedusing lapply; lapply(x, f, ...) is equivalent to Map(f,
x, MoreArgs=list(...)).

122 I DEEP

(continued from previous page)

##

[[2]]

[1] 0.5 0.8 -0.1 -0.7

##

[[3]]

[1] -0.3 0.0 0.5 1.0 -0.9 -0.7

Next, we can vectorise a given function over several parameters. A call to, e.g., Map(f,
x, y, z) breeds a list whose 𝑖-th element is equal to f(x[[i]], y[[i]], z[[i]]). Like
in the case of, e.g., paste, the recycling rule will be applied if necessary.

For example, the following generates list(seq(1, 6), seq(11, 13), seq(21, 29)):

Map(seq, c(1, 11, 21), c(6, 13, 29))

[[1]]

[1] 1 2 3 4 5 6

##

[[2]]

[1] 11 12 13

##

[[3]]

[1] 21 22 23 24 25 26 27 28 29

Moreover, we can get list(seq(1, 40, length.out=10), seq(11, 40, length.out=5),

seq(21, 40, length.out=10), seq(31, 40, length.out=5)) by calling:

Map(seq, c(1, 11, 21, 31), 40, length.out=c(10, 5))

[[1]]

[1] 1.0000 5.3333 9.6667 14.0000 18.3333 22.6667 27.0000 31.3333

[9] 35.6667 40.0000

##

[[2]]

[1] 11.00 18.25 25.50 32.75 40.00

##

[[3]]

[1] 21.000 23.111 25.222 27.333 29.444 31.556 33.667 35.778 37.889 40.000

##

[[4]]

[1] 31.00 33.25 35.50 37.75 40.00

Note If we have some additional arguments to be passed to the function applied
(which it does not have to be vectorised over), we can wrap them inside a separate
list and toss it via the MoreArgs argument (à la do.call).

7 FUNCTIONS 123

unlist(Map(mean, x, MoreArgs=list(na.rm=TRUE))) # mean(..., na.rm=TRUE)

x1 x2 x3

2.0 0.5 0.4

Alternatively, we can always construct a custom anonymous function:

unlist(Map(function(xi) mean(xi, na.rm=TRUE), x))

x1 x2 x3

2.0 0.5 0.4

Exercise 7.6 Here is an example list of files (see our teaching data repository3) with daily Forex
rates:

file_names <- c(

"euraud-20200101-20200630.csv",

"eurgbp-20200101-20200630.csv",

"eurusd-20200101-20200630.csv"

)

Call Map to read themwith scan. Determine each series’ minimal, mean, andmaximal value.

Exercise 7.7 Implement your version of the Filter function based on a call to Map.

7.3 Accessing third-party functions
Whenwe indulge in the writing of a software piece, a few questions naturally arise. Is
the problem we are facing fairly complex? Has it already been successfully addressed
in its entirety? If not, can it, or its parts, be split into manageable chunks? Can it be
constructed based on some readily available nontrivial components?

A smart developer is independent but knowswhen to stand on the shoulders to cry on.
Let us explore a few ways to reuse the existing function libraries.

7.3.1 Using R packages
Most contributedR extensions come in the formof add-onpackages, which can include:

• reusable code (e.g., new functions),

• data (which we can exercise on),

• documentation (manuals, vignettes, etc.);

see Section 9.2.2 for more andWriting R Extensions [63] for all the details.

3 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek

124 I DEEP

Most packages are published in the moderated repository that is part of the Compre-
hensive R ArchiveNetwork (CRAN4). However, there are also other popular sources such
as Bioconductor5 which specialises in bioinformatics.

We call install.packages("pkg") to fetch a package pkg from a repository (CRAN by
default; see, however, the repos argument).

A call to library("pkg") loads an indicated package and makes the exported objects
available to the user (i.e., attaches it to the search path; see Section 16.2.6).

For instance, in one of the previous chapters, we have mentioned the gsl package:

call install.packages("gsl") first

library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf_poch() from GNU GSL

[1] 1320 17160 240240 3603600

Here, poch is an object exported by package gsl. If we did not call library("gsl"),
trying to access the former would raise an error.

We could have also accessed the above functionwithout attaching it to the search path
using the pkg::object syntax, namely, gsl::poch.

Note For more information about any R extension, call help(package="pkg"). Also,
it is advisable to visit the package’s CRAN entry at an address like https://CRAN.R-
project.org/package=pkg to access additional information, e.g., vignettes. Why waste
our time and energy by querying aweb search engine that will likely lead us to a dodgy
middleman when we can acquire authoritative knowledge directly from the source?

Moreover, it is worth exploring various CRAN Task Views6 that group the packages
into topics such as Genetics, Graphics, and Optimisation. They are curated by experts in
their relevant fields.

Important Frequently, R packages are written in their respective authors’ free time,
many of whom are volunteers. Neither get they paid for this, nor do it as part of the
so-called their job. Yes, not everyone is driven by money or fame.

Someday, when we come up with something valuable for the community, we will be-
come one of them. Before this happens,we can show appreciation for their generosity
by, e.g., spreading theword about their software by citing it in publications (see cita-
tion(package="pkg")), talking about them during lunchtime, or mentioning them in
(un)social media. We can also help them improve the existing code base by reporting

4 https://cloud.r-project.org/
5 https://bioconductor.org/
6 https://cloud.r-project.org/web/views

https://cloud.r-project.org/
https://bioconductor.org/
https://cloud.r-project.org/web/views

7 FUNCTIONS 125

bugs, polishing documentation, proposing new features, or cleaning up the redund-
ant fragments of their APIs.

Default packages

The base package is omnipresent. It provides us with the most crucial functions such
as the vector addition, c, Map, and library. Certain other extensions are also loaded by
default:

getOption("defaultPackages")

[1] "datasets" "utils" "grDevices" "graphics" "stats"

[6] "methods"

This list can, theoretically, be changed7. However, in this book, we assume that the
above are always attachedbecause it is reasonable to do so.This iswhy inSection 2.4.5,
there was no need to call, for example, library("stats") before referring to the var
and sd functions.

On a side note, grDevices and graphicswill be discussed in Chapter 13. methodswill be
mentioned in Section 10.5. datasets brings a few example R objects on which we can
exercise our skills. The functions from utils, graphics, and stats already appeared
here and there.

Exercise 7.8 Use the find function to determine which packages define mean, var, find, and
Map. Recall fromSection 1.4where such information can be found in these objects’manual pages.

Source vs binary packages (*)

R is an open environment. Therefore, its packages are published primarily in the
source form. This way, anyone can study how they work and improve them or reuse
parts thereof in different projects.

If we call install.packages("path", repos=NULL, type="source"), we should be able
to install a package fromsources: path canbepinpointing either adirectory or a source
tarball (most often as a compressed pkg_version.tar.gz file; see help("untar")).

Note that type="source" is the default unless one is on aW****ws or m**OS box; see
getOption("pkgType").This is because these two operating systems require additional
build tools, especially if a package relies on C or C++ code; see Chapter 14 and Section
C.3 of [65]:

• RTools8 onW****ws,

• Xcode Command Line Tools9 onm**OS.

These systems are less developer-orientated.Thus, as a courtesy to their users, CRAN

7 (*) R is greatly configurable: we can have custom ~/.Renviron and ~/.Rprofile files that are processed
on R’s startup; see help("Startup").

8 https://cran.r-project.org/bin/windows/Rtools
9 https://developer.apple.com/xcode/resources

https://cran.r-project.org/bin/windows/Rtools
https://developer.apple.com/xcode/resources

126 I DEEP

also distributes the platform-specific binary versions of the packages (.zip or .tgz
files). install.packageswill try to fetch them by default.

Example 7.9 GitLab andGitHub are quite popular hosting platforms. It is very easy to retrieve
a package’s source directly from them. At the time of writing this, the relevant linkswere, respect-
ively:

• https://gitlab.com/user/repo/-/archive/branch/repo-branch.zip,

• https://github.com/user/repo/archive/branch.zip.

For example, to download the contents of themaster branch in the GitHub repository rpack-
agedemo owned by gagolews, we can call:

f <- tempfile() # download destination: a temporary file name

download.file("https://github.com/gagolews/rpackagedemo/archive/master.zip",

destfile=f)

Next, the contents can be extracted with unzip:

t <- tempdir() # temporary directory for extracted files

(d <- unzip(f, exdir=t)) # returns extracted file paths

The path where the files were extracted can be passed to install.packages:

install.packages(dirname(d)[1], repos=NULL, type="source")

file.remove(c(f, d)) # clean up

Exercise 7.10 Use the git2r package to clone the git repository located at https://github.com/
gagolews/rpackagedemo.git and install the package published therein.

Managing dependencies (*)

By calling update.packages, all installed add-on packages may be upgraded to their
most recent versions available on CRAN or other indicated repository.

As a general rule, the more experienced we become, the less excited we get about the
new. Sure, bug fixes and well-thought-out additional features are usually welcome.
Still, just we wait until someone updates a package’s API for the 𝑛-th time, 𝑛 ≥ 2,
breaking our so-far flawless program.

Hence, when designing software projects (see Chapter 9 for more details), we must
ask ourselves the ultimate question: do we really need to import that package with
lots of dependencies from which we will just use only about 3–5 functions? Wouldn’t
it be better to write our own version of some functionality (and learn something new,
exercise our brain, etc.), or call a mature terminal-based tool?

Otherwise, as all the historical versions of the packages are archived on CRAN10,

10 https://cran.r-project.org/src/contrib/Archive

https://github.com/gagolews/rpackagedemo.git
https://github.com/gagolews/rpackagedemo.git
https://cran.r-project.org/src/contrib/Archive

7 FUNCTIONS 127

simple software dependency management can be conducted by storing different re-
leases of packages in different directories. This way, we can create an isolated envir-
onment for the add-ons. To fetch the locationswhere packages are sought (in this very
order), we call:

.libPaths()

[1] "/home/gagolews/R/x86_64-pc-linux-gnu-library/4.3"

[2] "/usr/local/lib/R/site-library"

[3] "/usr/lib/R/site-library"

[4] "/usr/lib/R/library"

The same function can add new folders to the search path; see also the environment
variable R_LIBS_USER that we can set using Sys.setenv.The install.packages function
will honour them as target directories; see its lib parameter for more details. Note
that only one version of a package can be loaded at a time, though.

Moreover, the packages may deposit auxiliary data on the user’s machine. Therefore,
it might be worthwhile to set the following directories (via the corresponding envir-
onment variables) relative to the current project:

tools::R_user_dir("pkg", "data") # R_USER_DATA_DIR

[1] "/home/gagolews/.local/share/R/pkg"

tools::R_user_dir("pkg", "config") # R_USER_CONFIG_DIR

[1] "/home/gagolews/.config/R/pkg"

tools::R_user_dir("pkg", "cache") # R_USER_CACHE_DIR

[1] "/home/gagolews/.cache/R/pkg"

7.3.2 Calling external programs
Many tasks can be accomplished by calling external programs. Such an approach is
particularly natural on UNIX-like systems, which classically follow modular, minim-
alist design patterns.There are many tools at a developer’s hand and each tool is spe-
cialised at solving a single, well-defined problem.

Apart from the many standard UNIX commands11, we may consider the following:

• pandoc12 converts documents between markup formats, e.g., Markdown, HTML,
reStructuredText, and LaTeX and can generate LibreOffice Writer documents,
EPUB or PDF files, or slides;

• jupyter-nbconvert converts Jupyter13 notebooks (see Section 1.2.5) to other
formats such as LaTeX, HTML, Markdown, etc.;

• convert (from ImageMagick14) applies various operations on bitmap graphics (scal-
ing, cropping, conversion between formats);

11 https://en.wikipedia.org/wiki/List_of_Unix_commands
12 https://pandoc.org/
13 https://jupyter.org/
14 https://imagemagick.org/

https://en.wikipedia.org/wiki/List_of_Unix_commands
https://pandoc.org/
https://jupyter.org/
https://imagemagick.org/

128 I DEEP

• graphviz15 and PlantUML16 draws graphs and diagrams;

• python, perl, … can be called to perform tasks that can be expressedmore easily in
languages other than R.

The good news is thatwe are not limited to calling R from the system shell in the inter-
active or batchmode; see Section 1.2. Our environment serves well as a glue language
too.

The system2 function invokes a system command. Communication between such pro-
gramsmay be done using, e.g., intermediate text, JSON,CSV,XML, or any other files.
The stdin, stdout, and stderr arguments control the redirection of the standard I/O
streams.

system2("pandoc", "-s input.md -o output.html")

system2("bash", "-c 'for i in `seq 1 2 10`; do echo $i; done'", stdout=TRUE)

[1] "1" "3" "5" "7" "9"

system2("python3", "-", stdout=TRUE,

input=c(

"import numpy as np",

"print(repr(np.arange(5)))"

))

[1] "array([0, 1, 2, 3, 4])"

On a side note, the current working directory can be read and changed through a call
to getwd and setwd, respectively. By default, it is the directory where the current R
session was started.

Important Relying on system2 assumes that the commands it refers to are available
on the target platform.Hence, itmight not be portable unless additional assumptions
aremade, e.g., that a user runs aUNIX-like systemand that certain libraries are avail-
able.We strongly recommendGNU/Linux or FreeBSD for both software development
and production use, as they are free, open, developer-friendly, user-loving, reliable,
ethical, and sustainable. Users of other operating systems aremissing out on somany
good features.

7.3.3 Interfacing C, C++, Fortran, Python, Java, etc. (**)
Most standalone data processing algorithms are implemented in compiled, slightly
lower-level programming languages. This usually makes them faster and more re-
usable in other environments. For instance, an industry-standard library might be
written in very portable C, C++, or Fortran and define bindings for easier access from
within R, Python, Julia, etc. It is the case with FFTW, LIBSVM, mlpack, OpenBLAS,

15 https://graphviz.org/
16 https://plantuml.com/

https://graphviz.org/
https://plantuml.com/

7 FUNCTIONS 129

ICU, and GNU GSL, amongst many others. Chapter 14 explains basic ways to refer to
such compiled code.

Also, the rJava package can dynamically create JVMobjects and access their fields and
methods. Similarly, reticulate can be used to access Python objects, including numpy
arrays and pandas data frames (but see also the rpy2 package for Python).

Important We should not feel obliged to use R in all parts of a data processing
pipeline. Some activities can be expressed more naturally in other languages or en-
vironments (e.g., parse raw data and create a SQL database in Python but visualise it
in R).

7.4 Exercises
Exercise 7.11 Answer the following questions.

• What is the result of “{x <- "x"; x <- function(x) x; x(x)}”?

• How to compose a function that returns two objects?

• What is a higher-order function?

• What are the use cases of do.call?

• Why a call to Map is redundant in the expression Map(paste, x, y, z)?

• What is the difference between Map(mean, x, na.rm=TRUE) and Map(mean, x, More-

Args=list(na.rm=TRUE))?

• What do wemean when we write stringx::sprintf?

• How to get access to the vignettes (tutorials, FAQs, etc.) of the data.table and dplyr pack-
ages? Why perhaps 95% of R users would just googleit, and what is suboptimal about this
strategy?

• What is the difference between a source and a binary package?

• How to update the base package?

• How to ensure that we will always run an R session with only specific versions of a set of
packages?

Exercise 7.12 Write a function that computes the Gini index of a vector of positive integers x,
which, assuming 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑛, is equal to:

𝐺(𝑥1, … , 𝑥𝑛) =
∑𝑛

𝑖=1(𝑛 − 2𝑖 + 1)𝑥𝑖

(𝑛 − 1) ∑𝑛
𝑖=1 𝑥𝑖

.

130 I DEEP

Exercise 7.13 Implement a function between(x, a, b) that verifies whether each element in
x is in the [a, b] interval. Return a logical vector of the same length as x. Ensure the function is
correctly vectorised with respect to all the arguments and handles missing data correctly.

Exercise 7.14 Write your version of the strrep function called dup.

dup <- ...to.do...

dup(c("a", "b", "c"), c(1, 3, 5))

[1] "a" "bbb" "ccccc"

dup("a", 1:3)

[1] "a" "aa" "aaa"

dup(c("a", "b", "c"), 4)

[1] "aaaa" "bbbb" "cccc"

Exercise 7.15 Given a list x, generate its sublist with all the elements equal to NULL removed.

Exercise 7.16 Implement your version of the sequence function.

Exercise 7.17 Using Map, how can we generate window indexes like below?

[[1]]

[1] 1 2 3

##

[[2]]

[1] 2 3 4

##

[[3]]

[1] 3 4 5

##

[[4]]

[1] 4 5 6

Write a function windows(k, n) that yields index windows of length 𝑘 with elements between 1
and 𝑛 (the above example is for 𝑘 = 3 and 𝑘 = 6).
Exercise 7.18 Write a function to extract all 𝑞-grams, 𝑞 ≥ 1, from a given character vector.
Return a list of character vectors. For example, bigrams (2-grams) in "abcd" are: "ab", "bc",
“cd”`.

Exercise 7.19 Implement a function movstat(f, x, k) that computes, using Map, a given ag-
gregate f of each 𝑘 consecutive elements in x. For instance:

movstat <- ...to.do...

x <- c(1, 3, 5, 10, 25, -25) # example data

movstat(mean, x, 3) # 3-moving mean

[1] 3.0000 6.0000 13.3333 3.3333

movstat(median, x, 3) # 3-moving median

[1] 3.0000 6.0000 13.3333 3.3333

Exercise 7.20 Recodea character vectorwitha small number of distinct values toavectorwhere

7 FUNCTIONS 131

each unique code is assigned a positive integer from 1 to 𝑘.Here are example calls and the corres-
ponding expected results:

recode <- ...to.do...

recode(c("a", "a", "a", "b", "b"))

[1] 1 1 1 2 2

recode(c("x", "z", "y", "x", "y", "x"))

[1] 1 3 2 1 2 1

Exercise 7.21 Implement a function that returns the number of occurrences of each unique ele-
ment in a given atomic vector. The return value should be a numeric vector equipped with the
names attribute. Hint: use match and tabulate.

count <- ...to.do...

count(c(5, 5, 5, 5, 42, 42, 954))

5 42 954

4 2 1

count(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", NA_character_))

w x y z <NA>

1 5 3 1 1

Exercise 7.22 Extend the built-in duplicated function. For each vector element, indicate
which occurrence of a repeated value is it (starting from the beginning of the vector).

duplicatedn <- ...to.do...

duplicatedn(c("a", "a", "a", "b", "b"))

[1] 1 2 3 1 2

duplicatedn(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", "z"))

[1] 1 1 1 2 2 3 1 4 5 3 2

Exercise 7.23 Based on a call to Map, implement your version of split that takes two atomic
vectors as arguments. Then, extend it to handle the second argument being a list of the form
list(y1, y2, ...) representing the product of many levels. If the 𝑦s are of different lengths,
apply the recycling rule.

Exercise 7.24 Implement my_unsplit being your version of unsplit. For any x and g of the
same lengths, ensure that my_unsplit(split(x, g), g) is equal to x.

Exercise 7.25 Write a function that takes as arguments: (a) an integer 𝑛, (b) a numeric vector
x of length 𝑘 and no duplicated elements, (c) a vector of probabilities p of length 𝑘. Verify that
𝑝𝑖 ≥ 0 for all 𝑖 and ∑𝑘

𝑖=1 𝑝𝑖 ≃ 1. Based on a random number generator from the uniform
distribution on the unit interval, generate 𝑛 independent realisations of a random variable 𝑋
such that Pr(𝑋 = 𝑥𝑖) = 𝑝𝑖 for 𝑖 = 1, … , 𝑘. To obtain a single value:
1. generate 𝑢 ∈ [0, 1],

2. find𝑚 ∈ {1, … , 𝑘} such that 𝑢 ∈ (∑𝑚−1
𝑗=1 𝑝𝑗, ∑

𝑚
𝑗=1 𝑝𝑗],

3. the result is then 𝑥𝑚.

132 I DEEP

Exercise 7.26 Write a function that takes as arguments: (a) an increasingly sorted vector x of
length 𝑛, (b) any vector y of length 𝑛, (c) a vector z of length 𝑘 and elements in [𝑥1, 𝑥𝑛). Let 𝑓 be
the piecewise linear spline that interpolates the points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛). Return a vector w
of length 𝑘 such that𝑤𝑖 = 𝑓 (𝑧𝑖).
Exercise 7.27 (*) Write functions dpareto, ppareto, qpareto, and rpareto that implement
the basic functions related to the Pareto distribution; compare Section 2.3.4.

8
Flow of execution

The ifelse and Map functions are potent. However, they allow us to process only the
consecutive elements in a vector.

Thus, let us (finally!) discuss different ways to alter a program’s control flowmanually,
basedonsomecriterion, and toevaluate the sameexpressionmany times, butperhaps
on different data. Before proceeding any further, let us, however, contemplate the fact
thatwehavemanagedwithout them for such a long time, despite the fact that the data
processing exercises we learnt to solve were far from trivial.

8.1 Conditional evaluation
Life is full of surprises, so it would be nice if we were able to adapt to any future chal-
lenges.

The following evaluates a given expression if and only if a logical condition is true.

if (condition) expression

When performing some other_expression is preferred rather than doing nothing in
the case of the condition’s being false, we can write:

if (condition) expression else other_expression

For instance:

(x <- runif(1)) # to spice things up

[1] 0.28758

if (x > 0.5) cat("head\n") else cat("tail\n")

tail

Many expressions can, of course, be grouped with curly braces, `{`.

if (x > 0.5) {

cat("head\n")

x <- 1

(continues on next page)

134 I DEEP

(continued from previous page)

} else { # do not put newline before else!

cat("tail\n")

x <- 0

}

tail

print(x)

[1] 0

Important At the top level, we should not put a new line before else. Otherwise, we
will get an error like Error: unexpected 'else' in "else". This is because the inter-
preter enthusiastically executes the statements read line by line as soon as it regards
themas standalone expressions. In this case,wefirst get an ifwithout else, and then,
separately, a dangling elsewithout the preceding if.

This is not an issuewhen a conditional statement is part of an expression group as the
latter is read in its entirety.

function (x)

{ # opening bracket – start

if (x > 0.5)

cat("head\n")

else # not dandling because {...} is read as a whole

cat("tail\n")

} # closing bracket – expression ends

As an exercise, try removing the curly braces and see what happens.

8.1.1 Return value
`if` is a function (compare Section 9.3). Hence, it has a return value: the result of eval-
uating the conditional expression.

(x <- runif(1))

[1] 0.28758

y <- if (x > 0.5) "head" # no else

print(y)

NULL

y <- if (x > 0.5) "head" else "tail"

print(y)

[1] "tail"

This is particularly useful when a call to `if` is the last expression in a curly brace-
delimited code block that constitutes a function’s body.

8 FLOW OF EXECUTION 135

mint <- function(x)

{

cond <- (x > 0.5) # could be something more sophisticated

if (cond) # the last expression in the code block

"head" # this can be the return value...

else

"tail" # or this one, depending on the condition

}

mint(x)

[1] "tail"

unlist(Map(mint, runif(5)))

[1] "tail" "head" "tail" "head" "head"

Example 8.1 Add-on packages can be loaded using requireNamespace. Contrary to library,
the former does not fail when a package is not available. Also, it does not attach it to the search
path; see Section 16.2.6. Instead, it returns a logical value indicating if the package is available
for use. This can be helpful in situations where the availability of some features depends on the
user environment’s configuration:

process_data <- function(x)

{

if (requireNamespace("some_extension_package", quietly=TRUE))

some_extension_package::very_fast_method(x)

else

normal_method(x)

}

8.1.2 Nested ifs
If more than two test cases are possible, i.e., when we need to go beyond either con-
dition or !condition, then we can use the following construction:

if (a) {

expression_a

} else if (b) {

expression_b

} else if (c) {

expression_c

} else {

expression_else

}

This evaluates all conditions a, b, … (in this order) until the first positive case is found
and then executes the corresponding expression.

136 I DEEP

It isworth stressing that the above is nothing else than a series of nested if statements
but written in a more readable1manner:

if (a) {

expression_a

} else {

if (b) {

expression_b

} else {

if (c) {

expression_c

} else {

expression_else

}

}

}

Exercise 8.2 Write a function named sign that determines if a given numeric value is "pos-
itive", "negative", or "zero".

8.1.3 Condition: Either TRUE or FALSE
if expects a condition that is a single, well-defined logical value, either TRUE or FALSE.
Thence, problemsmay arise when this is not the case.

If the condition is of length not equal to one, we get an error:

if (c(TRUE, FALSE)) cat("spam\n")

Error in if (c(TRUE, FALSE)) cat("spam\n"): the condition has length > 1

if (logical(0)) cat("bacon\n")

Error in if (logical(0)) cat("bacon\n"): argument is of length zero

We cannot pass a missing value either:

if (NA) cat("ham\n")

Error in if (NA) cat("ham\n"): missing value where TRUE/FALSE needed

Important If we think that we are immune to writing code violating the above con-
straints, just we wait until the condition becomes a function of data for which there
is no sanity-checking in place.

mint <- function(x)

if (x > 0.5) "head" else "tail"

(continues on next page)

1 (*) Somewhat related is the switch function which relies on the lazy evaluation of its arguments
(Chapter 17). However, it can always be replaced by a series of ifs.

8 FLOW OF EXECUTION 137

(continued from previous page)

mint(0.25)

[1] "tail"

mint(runif(5))

Error in if (x > 0.5) "head" else "tail": the condition has length > 1

mint(log(rnorm(1))) # not obvious, only triggered sometimes

Warning in log(rnorm(1)): NaNs produced

Error in if (x > 0.5) "head" else "tail": missing value where TRUE/FALSE

needed

In Chapter 9, we will be particularly interested in ways to ensure input data integrity
so that such cases will either fail gracefully or succeed bombastically. In the above ex-
ample, we should probably ensure that x is a single finite numeric value. Alternatively,
wemight need to apply ifelse, all, or any.

Interestingly, conditions other that logical are coerced:

x <- 1:5

if (length(x)) # i.e., length(x) != 0, but way less readable

cat("length is not zero\n")

length is not zero

Recall that coercion of numeric to logical yields FALSE if and only if the original value
is zero.

8.1.4 Short-circuit evaluation
Especially for formulating logical conditions in if and while (see below), we have the
scalar `||` (alternative) and `&&` (conjunction) operators.

FALSE || TRUE

[1] TRUE

NA || TRUE

[1] TRUE

Contrary to their vectorised counterparts (`|` and `&`), the scalar operators are lazy
(Chapter 17) in the sense that they evaluate the first operand and then determine if the
computing of the second one is necessary (because, e.g., FALSE && whatever is always
FALSE anyway).

Therefore,

if (a && b)

expression

is equivalent to:

138 I DEEP

if (a) {

if (b) { # compute b only if a is TRUE

expression

}

}

and:

if (a || b)

expression

corresponds to:

if (a) {

expression

} else if (b) { # compute b only if a is FALSE

expression

}

For instance, “is.vector(x) && length(x) > 0 && x[[1]] > 0” is a risk-free test. It takes
into account that x[[1]] has the desired meaning only for objects that are nonempty
vectors.

Some other examples:

{cat("spam"); FALSE} || {cat("ham"); TRUE} || {cat("cherries"); FALSE}

spamham

[1] TRUE

{cat("spam"); TRUE} && {cat("ham"); FALSE} && {cat("cherries"); TRUE}

spamham

[1] FALSE

Recall that the expressionswithin the curly braces are evaluated one after another and
that the result is determined by the last value in the series.

Exercise 8.3 Study the source code of isTRUE and isFALSE and determine if these functions
could be useful in formulating the conditions within the if expressions.

8.2 Exception handling
Exceptions are exceptional, but theymay happen and break stuff. For instance, we are
in deep skit when the internet connection drops while we try to download a file, an
optimisation algorithm fails to converge, or:

8 FLOW OF EXECUTION 139

read.csv("/path/to/a/file/that/does/not/exist")

Warning in file(file, "rt"): cannot open file '/path/to/a/file/that/does/

not/exist': No such file or directory

Error in file(file, "rt"): cannot open the connection

Three types of conditions are frequently observed:

• errors stop the flow of execution,

• warnings are not critical, but can be turned into errors (see warn in option),

• messages transmit diagnostic information.

They can be manually triggered using the stop, warning, and message functions.

Errors (but warnings too) can be handled bymeans of the tryCatch function, amongst
others.

tryCatch({ # block of expressions to execute, until an error occurs

cat("a...\n")

stop("b!") # error – breaks the linear control flow

cat("c?\n")

},

error = function(e) { # executed immediately on an error

cat(sprintf("[error] %s\n", e[["message"]]))

},

finally = { # always executed at the end, regardless of error occurrence

cat("d.\n")

}

)

a...

[error] b!

d.

The two other conditions can be ignored by calling suppressWarnings and suppress-

Messages.

log(-1)

Warning in log(-1): NaNs produced

[1] NaN

suppressWarnings(log(-1)) # yeah, yeah, we know what we're doing

[1] NaN

Exercise 8.4 At the time of writing this book, when the data.table package is attached, it
emits a message. Call suppressMessages to silence it. Note that consecutive calls to library do
not reload an already loaded package.Therefore, themessagewill only be seen once perR session.

Related functions include stopifnot discussed in Section 9.1 and on.exitmentioned
in Section 17.4; see Section 9.2.4 for some code debugging tips.

140 I DEEP

8.3 Repeated evaluation
And now for something completely different… time for the elephant in the room!

We have been able to manage without loops so far (and will be quite all right in the
second part of the book too). This is because many data processing tasks can be writ-
ten in terms of vectorised operations such as `+`, sqrt, sum, `[`, Map, and Reduce. Of-
tentimes, compared to their loop-based counterparts, they are more readable and ef-
ficient. We will explore this in the exercises below.

However, at times, using an explicit while or for loop might be the only natural way
to solve a problem, for instance, when processing chunks of data streams. Also, an ex-
plicitly “looped” algorithmmay occasionally have better2 time ormemory complexity.

8.3.1 while

if considers a logical condition provided and determines whether to execute a given
statement. On the other hand:

while (condition) # single TRUE or FALSE, as in `if`

expression

evaluates a given expression as long as the logical condition is true.Therefore, it is ad-
visable to make the condition dependent on some variable that the expression can
modify.

i <- 1

while (i <= 3) {

cat(sprintf("%d, ", i))

i <- i + 1

}

1, 2, 3,

Nested loops are possible too:

i <- 1

while (i <= 2) {

j <- 1

while (j <= 3) {

cat(sprintf("%d %d, ", i, j))

j <- j + 1

}

cat("\n")

i <- i + 1

(continues on next page)

2 In such a case, rewriting it in C or C++might be beneficial; see Chapter 14.

8 FLOW OF EXECUTION 141

(continued from previous page)

}

1 1, 1 2, 1 3,

2 1, 2 2, 2 3,

Example 8.5 Implement a simple linear congruential pseudorandom number generator that,
given some seed𝑋0 ∈ [0, 𝑚), outputs a sequence (𝑋1, 𝑋2, …) defined by:

𝑋𝑖 = (𝑎𝑋𝑖−1 + 𝑐) mod 𝑚,

with, e.g., 𝑎 = 75, 𝑐 = 74, and𝑚 = 216 + 1 (here,mod is the division remainder, `%%`).This
generator has poor statistical properties and its use in practice is discouraged. In particular, after
a rather small number of iterations 𝑘, we will find a cycle such that𝑋𝑘 = 𝑋1, 𝑋𝑘+1 = 𝑋2, ….

8.3.2 for

The for-each loop:

for (name in vector)

expression

takes each element, from the beginning to the end, in a given vector, assigns it some
name, and evaluates the expression. For example:

fridge <- c("spam", "spam", "bacon", "eggs")

for (food in fridge)

cat(sprintf("%s, ", food))

spam, spam, bacon, eggs,

Another example:

for (i in 1:length(fridge)) # better: seq_along(fridge), see below

cat(sprintf("%s, ", fridge[i]))

spam, spam, bacon, eggs,

Onemore:

for (i in 1:2) {

for (j in 1:3)

cat(sprintf("%d %d, ", i, j))

cat("\n")

}

1 1, 1 2, 1 3,

2 1, 2 2, 2 3,

The iterator still exists after the loop’s watch has ended:

142 I DEEP

print(i)

[1] 2

print(j)

[1] 3

Important Writing:

for (i in 1:length(x))

print(x[i])

is reckless. If x is an empty vector, then we will observe undesired behaviour because
we ask to iterate over 1:0:

x <- logical(0)

for (i in 1:length(x))

print(x[i])

[1] NA

logical(0)

Recall from Chapter 5 that x[1] tries to access an out-of-bounds element here, and
x[0] returns nothing.

Wegenerally suggest replacing1:length(x)withseq_along(x)orseq_len(length(x)).
wherever possible.

Note The above model for loop is roughly equivalent to:

name <- NULL

tmp_vector <- vector

tmp_iter <- 1

while (tmp_iter <= length(tmp_vector)) {

name <- tmp_vector[[tmp_iter]]

expression

tmp_iter <- tmp_iter + 1

}

Note that the tmp_vector is determined before the loop itself. Hence, any changes to
the vector will not influence the execution flow. Furthermore, due to the use of `[[`,
the loop can also be applied on lists.

Example 8.6 Let x be a list and f be a function.The following code generates the same result as
Map(f, x):

8 FLOW OF EXECUTION 143

n <- length(x)

ret <- vector("list", n) # a new list of length `n`

for (i in seq_len(n))

ret[[i]] <- f(x[[i]])

Example 8.7 Letxandybe two listsandfbea function.Here is themostbasic versionofMap(f,
x, y).

nx <- length(x)

ny <- length(y)

n <- max(nx, ny)

ret <- vector("list", n)

for (i in seq_len(n))

ret[[i]] <- f(x[[((i-1)%%nx)+1]], y[[((i-1)%%ny)+1]])

Note that x and ymight be of different lengths. Feel free to upgrade the above code by adding a
warning like the longer argument is not amultiple of the length of the shorter one. Also,
rewrite it without using themodulo operator, `%%`.

8.3.3 break and next
break can be used to escape the current loop. next skips the remaining expressions
and advances to the next iteration (where the testing of the logical condition occurs).

Here is a rather random example:

x <- c(10, 0.03, 0.04, 1, 0.001, 0.05)

s <- 0

for (e in x) {

if (e > 0.1) # skip the current element if it is greater than 0.1

next

print(e)

if (e < 0.01) # stop at the first element less than 0.01

break

s <- s + e

}

[1] 0.03

[1] 0.04

[1] 0.001

print(s)

[1] 0.07

We have used a frequently occurring design pattern:

144 I DEEP

for (e in x) {

if (condition)

next

many_statements...

}

which is equivalent to:

for (e in x) {

if (!condition) {

many_statements...

}

}

but which avoids introducing a nested block of expressions.

Note (*) There is a third loop type,

repeat

expression

which is a shorthand for

while (TRUE)

expression

i.e., it is a possibly infinite loop. Such constructs are invaluable when expressing situ-
ations like repeat-something-until-success, e.g., whenwewant to execute a command
at least once.

i <- 1

repeat { # while (TRUE)

simulate dice casting until we throw "1"

if (runif(1) < 1/6) break # repeat until this

i <- i+1 # how many times until success

}

print(i)

[1] 6

Exercise 8.8 What is wrong with the following code?

j <- 1

while (j <= 10) {

if (j %% 2 == 0) next

(continues on next page)

8 FLOW OF EXECUTION 145

(continued from previous page)

print(j)

j <- j + 1

}

Exercise 8.9 What about this one?

j <- 1

while (j <= 10);

j <- j + 1

8.3.4 return

return, when called from within a function, immediately yields a specified value and
goes back to the caller.

For example, here is a simple recursive function that flattens a given list:

my_unlist <- function(x)

{

if (is.atomic(x))

return(x)

so if we are here, x is definitely not atomic

out <- NULL

for (e in x)

out <- c(out, my_unlist(e))

out # or return(out); not necessary as it's the last expression

}

my_unlist(list(list(list(1, 2), 3), list(4, list(5, list(6, 7:10)))))

[1] 1 2 3 4 5 6 7 8 9 10

return is a function: the round brackets are obligatory.

8.3.5 Time and space complexity of algorithms (*)
Analysis of algorithms can give us a rough estimate of their run time ormemory con-
sumption as a function of the input problem size, especially for big data (e.g., [14, 43]).

In scientific computing and data science, we often deal with vectors (sequences) or
matrices/data frames (tabulardata).Therefore,wemightbe interested indetermining
how many primitive operations need to be performed as a function of their length 𝑛 or
the number of rows 𝑛 and columns𝑚, respectively.
The𝑂 (Big-Oh)notation canexpress theupperbounds for time/resource consumption
in asymptotic cases. For instance,we say that the time complexity is𝑂(𝑛2), if for large

146 I DEEP

𝑛, the number of operations to perform ormemory cells to use will be proportional to
at most the square of the vector size (more precisely, there exists 𝑚 and 𝐶 > 0 such
that for all 𝑛 > 𝑚, the number of operations is≤ 𝐶𝑛2).

Therefore, if we have two algorithms that solve the same task, one that has𝑂(𝑛2) time
complexity, and other of 𝑂(𝑛3), it is better to choose the former. For large problem
sizes, we expect it to be faster.

Moreover, whether time grows proportionally to log 𝑛, √𝑛, 𝑛, 𝑛 log𝑛, 𝑛2, 𝑛3, or 2𝑛,
can be informative in predicting how big the data can be if we have a fixed deadline or
not enough space left on the disk.

Exercise 8.10 The hclust function determines a hierarchical clustering of a dataset. It is fed
with an object that stores the distance between all the pairs of input points.There are𝑛(𝑛−1)/2
(i.e.,𝑂(𝑛2)) unique point pairs for any given𝑛. One numeric scalar (double type) takes 8 bytes
of storage. If you have 16 GiB of RAM, what is the largest dataset that you can process on your
machine using this function?

Oftentimes, we can learn about the time or memory complexity of the functions we
use from their documentation; see, e.g., help("findInterval").

Example 8.11 Acourse indata structures inalgorithms,which this one isnot,will giveusplenty
of opportunities to implementmany algorithms ourselves.This way, we can gain a lot of insights
and intuitions.

For instance, this is a𝑂(𝑛)-time algorithm:

for (i in seq_len(n))

expression

and this is one runs in𝑂(𝑛2) time:

for (i in seq_len(n))

for (j in seq_len(n))

expression

as long as, of course, the expression is rather primitive (e.g., operations on scalar variables).

R is a very expressive language. Hence, quite complex and lengthy operations can look pretty
innocent. After all, it is a glue language for rapid prototyping.

For example:

for (i in seq_len(n))

for (j in seq_len(n))

z <- z + x[[i]] + y[[j]]

can be seen as𝑂(𝑛3) if each element in the lists x and y as well as z itself are atomic vectors of
length 𝑛.
Similarly,

8 FLOW OF EXECUTION 147

Map(mean, x)

is𝑂(𝑛2) if x is a list of 𝑛 atomic vectors, each of length 𝑛.

Note A quite common statistical scenario involves generating a data buffer of a fixed
size:

ret <- c() # start with an empty vector

for (i in seq_len(n))

ret[[i]] <- generate_data(i) # here: ret[[length(ret)+1]] <- ...

This notation, however, involves growing the ret array in each iteration. Luckily, since
R version 3.4.0, each such size extension has amortised 𝑂(1) time as some more
memory is internally reserved for its prospective growth (dynamic arrays; see, e.g.,
Chapter 17 of [14]).

However, it is better to preallocate the output vector of the desired final size. We can
construct vectors of specific lengths and types in an efficient way (more efficient than
with rep) by calling:

numeric(3)

[1] 0 0 0

numeric(0)

numeric(0)

logical(5)

[1] FALSE FALSE FALSE FALSE FALSE

character(2)

[1] "" ""

vector("numeric", 8)

[1] 0 0 0 0 0 0 0 0

vector("list", 2)

[[1]]

NULL

##

[[2]]

NULL

Note Not all data fit intomemory, but it does notmean thatwe should start installing
Apache Hadoop and Spark immediately. Some datasets can be processed chunk by
chunk. R enables data stream handling (some can be of infinite length) through file
connections. For example:

f <- file("https://github.com/gagolews/teaching-data/raw/master/README.md",

open="r") # a big file, the biggest file ever

(continues on next page)

148 I DEEP

(continued from previous page)

i <- 0

while (TRUE) {

few_lines <- readLines(f, n=4) # reads only four lines at a time

if (length(few_lines) == 0) break

i <- i + length(few_lines)

}

close(f)

print(i) # the number of lines

[1] 90

Many functions support reading from/writing to already established connections of
different types, e.g., file, gzfile, textConnection, batch by batch.

A frequent scenario involves reading a very large CSV, JSON, or XMLfile only by thou-
sands of lines/records at a time, parsing and cleansing them, and exporting them to
SQL databases (which we will exercise in Chapter 12).

8.4 Exercises
From now on, we must stay alert. Many, if not all, of the following tasks, can still be
implemented without the explicit use of the R loops but based only on the operations
covered in the previous chapters. If this is the case, try composing both the looped and
loop-free versions. Use proc.time to compare their run times3.

Exercise 8.12 Answer the following questions.

• Let x be a numeric vector.When does “if(x > 0) ...” yield a warning?When does it give
an error? How to guard ourselves against them?

• What is a dangling else?

• What happens if you put if as the last expression in a curly braces block within a function’s
body?

• Why do we say that `&&` and `||` are lazy?What are their use cases?

• What is the difference between `&&` and `&`?

• Can while always be replaced with for?What about the other way around?

• What is wrong with “return (1+2)*3”?

Exercise 8.13 Verify which of the following can be safely used as logical conditions in if state-

3 It might be the case that a for-based solution is faster (e.g., for larger objects) because of the use of a
more efficient algorithm. Such cases will benefit from a rewrite in C or C++ (Chapter 14).

8 FLOW OF EXECUTION 149

ments. If that is not the case for all x, y, …, determine the additional conditions that must be im-
posed to make them valid.

• x == 0,

• x[y] > 0,

• any(x>0),

• match(x, y),

• any(x %in% y).

Exercise 8.14 What can gowrong in the following code chunk, depending on the type and form
of x? Consider as many scenarios as possible.

count <- 0

for (i in 1:length(x))

if (x[i] > 0)

count <- count + 1

Exercise 8.15 Implement shift_left(x, n) and shift_right(x, n). The former function
gets rid of the first𝑛 observations in x andadds𝑛missing values at the end of the resulting vector,
e.g., shift_left(c(1, 2, 3, 4, 5), 2) is c(3, 4, 5, NA, NA). On the other hand,
shift_right(c(1, 2, 3, 4, 5), 2) is c(NA, NA, 1, 2, 3).

Exercise 8.16 Implement your version of diff.

Exercise 8.17 Write a function that determines the longest ascending trend in a given numeric
vector, i.e., the length of the longest subsequence of consecutive increasing elements. For example,
the input c(1, 2, 3, 2, 1, 2, 3, 4, 3) should yield 4.

Exercise 8.18 Implement the functions that round down and round up each element in a nu-
meric vector to a number of decimal digits.

This concludes the first part of this magnificent book.

Part II

Deeper

9
Designing functions

InChapter 7,we learnt how to compose simple functions.This skill is vital to enforcing
the good development practice of avoiding code repetition: running the same com-
mand sequence on different data.

This chapter is devoted to designing reusable methods so that they are easier to use,
test, andmaintain.We also providemore technical details about functions.Theywere
not of the highest importance during our first exposure to this topic but are crucial to
our better understanding of how R works.

9.1 Managing data flow
A function, most of the time, can and should be treated as a black box. Its callers do
not have to care what it hides inside. After all, they are supposed to use it. Given some
inputs, they expect well-defined outputs that are explained in detail in the function’s
manual.

9.1.1 Checking input data integrity and argument handling
A function takes R objects of any kind as arguments, but it does not mean feeding it
with everything is healthy for its guts.

When designing functions, it is best to handle the inputs in a manner similar to base
R’s behaviour.This will make our contributions easier to work with.

Lamentably, base functions frequently donot process arguments of a similar kind fully
consistently. Such variability might be due to many reasons and, in essence, is not
necessarily bad. Usually, there might be many possible behaviours and choosing one
over another would make a few users unhappy anyway. Some choices might not be
optimal, but they are for historical compatibility (e.g., with S). Of course, itmight also
happen that something is poorly designed or there is a bug (but the likelihood is low).

This is why it is better to keep the vocabulary quite restricted Even if there are ex-
ceptions to the general rules, with fewer functions, they are easier to remember. We
advocate for suchminimalism in this book.

Consider the following case study, illustrating that even the extremely simple scenario
dealing with a single positive integer is not necessarily straightforward.

154 II DEEPER

Exercise 9.1 In mathematical notation, we usually denote the number of objects in a collec-
tion with the famous “𝑛”. It is implicitly assumed that such 𝑛 is a single natural number (albeit
whether this includes 0 or not should be specified at some point). The functions runif, sample,
seq, rep, strrep, and class::knn take it as arguments.Nonetheless, nothing stops us from try-
ing to challenge them by passing:

• 2.5, -1, 0, 1-1e-16 (non-positive numbers, non-integers);

• NA_real_, Inf (not finite);

• 1:5 (not of length 1; after all, there are no scalars in R);

• numeric(0) (an empty vector);

• TRUE, NA, c(TRUE, FALSE, NA), "1", c("1", "2", "3") (non-numeric, but coercible to);

• list(1), list(1, 2, 3), list(1:3, 4) (non-atomic);

• "Spanish Inquisition" (unexpected nonsense);

• as.matrix(1), factor(7), factor(c(3, 4, 2, 3)), etc. (compound types; Chapter 10).

Read the aforementioned functions’ reference manuals and call them on different inputs. Notice
how differently they handle such atypical arguments.

Sometimes we will rely on other functions to check data integrity for us.

Example 9.2 Let us consider the following function that generates 𝑛 pseudorandom numbers
from the unit interval rounded to 𝑑 decimal digits.We strongly believe or at least hope (the good
faith and high competence assumption) that its author knewwhat he was doing when he wrote:

round_rand <- function(n, d)

{

x <- runif(n) # runif will check if `n` makes sense

round(x, d) # round will determine the appropriateness of `d`

}

What constitutes correct 𝑛 and 𝑑 and how the function behaves when not provided with positive
integers is determined by the two underlying functions, runif and round:

round_rand(4, 1) # the expected use case

[1] 0.3 0.8 0.4 0.9

round_rand(4.8, 1.9) # 4, 2

[1] 0.94 0.05 0.53 0.89

round_rand(4, NA)

[1] NA NA NA NA

round_rand(0, 1)

numeric(0)

Some design choices can be defended if they arewell thought out and adequately doc-
umented. Certain programmerswill opt for high uniformity/compatibility across nu-
merous tools, as there are cases where diversity does more good than harm.

9 DESIGNING FUNCTIONS 155

Our functions might become part of a more complicated data flow pipeline. Let us
think what happens when another procedure generates a value that we did not expect
(due to a bug or because we did not study its manual). The problem arises when this
unthinkable value is passed to our function. In our case, this would correspond to the
said 𝑛’s or 𝑑’s being determined programmatically.
Example 9.3 Continuing the previous example, the followingmight be somewhat challenging
with regard to our being flexible and open-minded:

round_rand(c(100, 42, 63, 30), 1) # n=length(c(...))

[1] 0.7 0.6 0.1 0.9

round_rand("4", 1) # n=as.numeric("4")

[1] 0.2 0.0 0.3 1.0

Sure, it is quite convenient. Nevertheless, it might lead to problems that are hard to diagnose.

Also, note the not so informative error messages in cases like:

round_rand(NA, 1)

Error in runif(n): invalid arguments

round_rand(4, "1")

Error in round(x, d): non-numeric argument to mathematical function

Defensive design strategies are always welcome, especially if they lead to constructive
error messages.

Important stopifnot gives a convenient means to assert the enjoyment of our ex-
pectations about a function’s arguments (or intermediate values). A call to stopi-

fnot(cond1, cond2, ...) is more or less equivalent to:

if (!(is.logical(cond1) && !any(is.na(cond1)) && all(cond1)))

stop("`cond1` are not all TRUE")

if (!(is.logical(cond2) && !any(is.na(cond2)) && all(cond2)))

stop("`cond2` are not all TRUE")

...

Thus, if all the elements in the given logical vectors are TRUE, nothing happens.We can
move on with certainty.

Example 9.4 We can rewrite the above function as follows:

round_rand2 <- function(n, d)

{

stopifnot(

is.numeric(n), length(n) == 1,

is.finite(n), n > 0, n == floor(n),

is.numeric(d), length(d) == 1,

(continues on next page)

156 II DEEPER

(continued from previous page)

is.finite(d), d > 0, d == floor(d)

)

x <- runif(n)

round(x, d)

}

round_rand2(5, 1)

[1] 0.7 0.7 0.5 0.6 0.3

round_rand2(5.4, 1)

Error in round_rand2(5.4, 1): n == floor(n) is not TRUE

round_rand2(5, "1")

Error in round_rand2(5, "1"): is.numeric(d) is not TRUE

It is the strictest test for “a single positive integer” possible. In the case of any violation of the un-
derlying condition, we get a very informative error message.

Example 9.5 Atother times,wemightbe interested inamore liberal yet still foolproof argument
checking like:

if (!is.numeric(n))

n <- as.numeric(n)

if (length(n) > 1) {

warning("only the first element will be used")

n <- n[1]

}

n <- floor(n)

stopifnot(is.finite(n), n > 0)

This way, "4" and c(4.9, 100)will all be accepted as 41.

We see that there is always a tension between being generous/flexible and pre-
cise/restrictive. Also, because of their particular use cases, for certain functions, it
will be better to behave differently from the others. Excessive uniformity is as bad as
chaos.We are always expected to rely on common sense. Let us not be boring bureau-
crats.

Still, it is our duty to be explicit about all the assumptions we make or exceptions we
tolerate (by writing comprehensive documentation; see Section 9.2.2).

Note (*) Example exercises related to improving the consistency of base R’s argument
handling in different domains include the vctrs and stringxpackages. Can these con-
tributions be justified?

1We rely on the S3 generics is.numeric and as.numeric here; see Section 10.2.3.

9 DESIGNING FUNCTIONS 157

Exercise 9.6 Reflect on how you would respond to miscellaneous boundary cases in the follow-
ing scenarios (and how base R and other packages or languages you know deal with them):

• a vectorisedmathematical function (empty vector? non-numeric input?what if it is equipped
with the names attribute? what if it has other ones?);

• an aggregation function (what about missing values? empty vector?);

• a function vectorised with regard to two arguments (elementwise vectorisation? recycling
rule? only scalar vs vector, or vector vs vector of the same length allowed? what if one argu-
ment is a row vector and the other is a column vector?);

• a function vectorised with respect to all arguments (really all? maybe some exceptions are
necessary?);

• a function vectorisedwith respect to thefirst argument but not the second (why sucha restric-
tion? when?).

Find a few functions that match each case.

9.1.2 Putting outputs into context
Our functions do not exist in a vacuum. We should put them into a much broader
context: how can they be combined with other tools?

As a general rule, we ought to generate outputs of a predictable kind.This way, we can
easily deduce what will happen in the code chunks that utilise them.

Example 9.7 Some base R functions do not adhere to this rule for the sake of (questionable)
users’ convenience.Wewill meet a few of them in Chapter 11 and Chapter 12. In particular, sap-
ply and the underlying simplify2array, can return a list, an atomic vector, or amatrix.

simplify2array(list(1, 3:4)) # list

[[1]]

[1] 1

##

[[2]]

[1] 3 4

simplify2array(list(1, 3)) # vector

[1] 1 3

simplify2array(list(1:2, 3:4)) # matrix

[,1] [,2]

[1,] 1 3

[2,] 2 4

Further, the index operator with drop=TRUE, which is the default, may output an atomic vector.
However, it may as well yield amatrix or a data frame.

(A <- matrix(1:6, nrow=3)) # an example matrix

[,1] [,2]

(continues on next page)

158 II DEEPER

(continued from previous page)

[1,] 1 4

[2,] 2 5

[3,] 3 6

A[1,] # vector

[1] 1 4

A[1:2,] # matrix

[,1] [,2]

[1,] 1 4

[2,] 2 5

A[1, , drop=FALSE] # matrix with 1 row

[,1] [,2]

[1,] 1 4

We proclaim that, if there are many options, the default functions’ behaviour should
be to return the object of the most generic kind possible, even when it is not the most
convenient form.Then, either:

• we equip the function with a further argument which must be explicitly set if we
reallywish to simplify the output, or

• we ask the user to call a simplifier explicitly after the function call; in this case, if
the simplifier cannot neaten the object, it should probably fail by issuing an er-
ror or at least try to apply some brute force solution (e.g., “fill the gaps” somehow
itself, preferably with a warning).

For instance:

as.numeric(A[1:2,]) # always returns a vector

[1] 1 2 4 5

stringi::stri_list2matrix(list(1, 3:4)) # fills the gaps with NAs

[,1] [,2]

[1,] "1" "3"

[2,] NA "4"

Ideally, a function is expected to perform one (and only one) well-defined task. If it
tends to generate objects of different kinds, depending on the arguments provided, it
might be better to compose two or more separate procedures instead.

Exercise 9.8 Functions such as rep, seq, and sample do not perform a single task. Or do they?

Note (*) In a purely functional programming language, we can assume the so-called
referential transparency: a call to a pure function can always be replaced with the value it
generates. If this is true, then for the same set of argument values, the output is always
the same. Furthermore, there are no side effects. In R, it is not exactly the case:

• a call can introduce/modify/delete variables in other environments (see Chapter
16), e.g., the state of the random number generator,

9 DESIGNING FUNCTIONS 159

• due to lazy evaluation, functions are free to interpret the argument forms (passed
expressions, i.e., not only: values) however they like; see Section 9.4.7, Section 12.3.9,
and Section 17.5,

• printing, plotting, file writing, and database access have apparent consequences
with regard to the state of certain external devices or resources.

Important Each function must return a value. However, in several instances (e.g.,
plotting, printing) this does not necessarily make sense. In such a case, we may con-
sider returning invisible(NULL), a NULLwhose first printingwill be suppressed. Com-
pare the following:

f <- function() invisible(NULL)

f() # printing suppressed

x <- f() # by the way, assignment also returns an invisible value

print(x) # no longer invisible

NULL

9.2 Organising andmaintaining functions
9.2.1 Function libraries
Definitions of frequently-used functions or datasets can be emplaced in separate
source files (.R extension) for further reference.

Such libraries can be executed by calling:

source("path_to_file.R")

Exercise 9.9 Create a source file (script) named mylib.R, where you define a function called
nlargestwhich returns a few largest elements in a given atomic vector.

Fromwithin another script, call source("mylib.R"); note that relative paths refer to the current
workingdirectory (Section2.1.6).Then,write a few lines of codewhere you testnlargest on some
example inputs.

9.2.2 Writing R packages (*)
When a function library grows substantially, there is a need for equipping its contents
with the relevant help pages, or we wish to rely on compiled code, turning it into an R
package might be worth considering.

160 II DEEPER

Important Packages can be written only for ourselves or a small team’s purpose. We
do not have to publish them on CRAN2. Let us havemercy on the busy CRANmaintain-
ers and do not contribute to the information overload unless we have come up with
something potentially of service3 for other R users. Packages can always be hosted on
and installed from GitLab or GitHub.

Package structure (*)

A source package is a directory containing the following special files and subdirectories:

• DESCRIPTION – a text file that gives the name of the project, its version, authors,
dependencies on other packages, license, etc.;

• NAMESPACE – a text file containing directives stating which objects are available to
the package users and which names are imported from other packages;

• R – a directory with R scripts (.R files), which define, e.g., functions, example
datasets, etc.;

• man – a directory with R documentation files (.Rd), describing at least all the ex-
ported objects (Section 9.2.2);

• src – optional; compiled code (Chapter 14);

• tests – optional; tests to run on the package check (Section 9.2.4).

See Section 1 of Writing R Extensions [63] for more details and other options. We do
not need to repeat the information from the official manual as all readers can read it
themselves.

Exercise 9.10 Inspect the source codeof the examplepackageavailable fordownload fromhttps:
//github.com/gagolews/rpackagedemo.

Building and installing (*)

Recall from Section 7.3.1 that a source package can be built and installed by calling:

install.packages("pkg_directory", repos=NULL, type="source")

Then it canbeusedas anyotherRpackage (Section 7.3.1). Inparticular, it canbe loaded
and attached to the search path (Section 16.2.6) via a call to:

library("pkg")

2 Always consult the CRANRepository Policy at https://cran.r-project.org/web/packages/policies.html.
3 Let us make it less about ourselves andmore about the community. Developing expertise in any com-

plex area takes years of hard work. In the meantime, we can help open-source projects by spreading the
good word about them, submitting bug fixes, extending documentation, supporting other users through
their journey, etc.

https://github.com/gagolews/rpackagedemo
https://github.com/gagolews/rpackagedemo
https://cran.r-project.org/web/packages/policies.html

9 DESIGNING FUNCTIONS 161

All the exported objects mentioned in its NAMESPACE file are now available to the user;
see also Section 16.3.5.

Exercise 9.11 Create a package mypkg with the solutions to the exercises listed in the previous
chapter.When in doubt, refer to the official manual [63].

Note (*)The building and installing of packages also be done from the command line:

R CMD build pkg_directory # creates a distributable source tarball (.tar.gz)

R CMD INSTALL pkg-version.tar.gz

R CMD INSTALL --build pkg_directory

Also, some users may benefit from authoring Makefiles that help automate the pro-
cesses of building, testing, checking, etc.

Documenting (*)

Documenting functions and commenting code thoroughly is critical, even if we just
write for ourselves.Most programmers sooner or laterwill notice that theyfind it hard
to determine what a piece of code is doing after they took a break from it. In some
sense, we always communicate with external audiences, which includes our future
selves.

The help system is one of the stronger assets of the R environment. By far, we most
likely have interacted withmany documentation pages and got a general idea of what
constitutes an informative documentation piece.

From the technical side, documentation (.Rd) files are located in the man subdirectory
of a source package. All exported objects (e.g., functions) should be described clearly.
Additional topics can be covered too.

During the package installation, the .Rd files are converted to various output formats,
e.g., HTML or plain text, and displayed on a call to the well-known help function.

Documentation files use a LaTeX-like syntax, which looks quite obscure to an un-
trained eye.The relevant commands are explained in very detail in Section 2 of [63].

Note The process of writing .Rd files by hand might be tedious, especially keeping
track of the changes to the \usage and \arguments commands. Rarely do we recom-
mend the use of external packages for base R facilities are usually sufficient. But roxy-
gen2might be worth a try because it makes the developers’ lives easier. Most import-
antly, it allows the documentation to be specified alongside the functions’ definitions,
which is muchmore natural.

Exercise 9.12 Add a fewmanual pages to your example R package.

162 II DEEPER

9.2.3 Writing standalone programs (**)
Section 7.3.2 mentioned how to call external programs using system2.

On UNIX-like operating systems, it is easy to turn our R scripts into standalone tools
that can be run from the terminal. We have already touched upon this topic in Sec-
tion 1.2.3.

The commandArgs function returns the list of arguments passed from the command line
to our script in the form of a character vector. Whatever we do with them is up to us.
Moreover, q can terminate a script, yielding any integer return code. By convention,
anything other than 0 indicates an error.

Example 9.13 Say we have the following script named testfile in the current directory:

#!/bin/env -S Rscript --vanilla

argv <- commandArgs(trailingOnly=TRUE)

cat("commandArgs:\n")

print(argv)

if (length(argv) == 0) {

cat("Usage: testfiles file1 file2 ...\n")

q(save="no", status=1) # exit with code 1

}

if (!all(file.exists(argv))) {

cat("Some files do not exist.\n")

q(save="no", status=2) # exit with code 2

}

cat("All files exist.\n")

exits with code 0 (success)

Example interactions with this program from aUNIX-like shell (bash):

chmod u+x testfiles # add permission to execute

./testfiles

commandArgs:

character(0)

Usage: testfiles file1 file2 ...

./testfiles spanish_inquisition

commandArgs:

[1] "spanish_inquisition"

Some files do not exist.

./testfiles spam bacon eggs spam

commandArgs:

(continues on next page)

9 DESIGNING FUNCTIONS 163

(continued from previous page)

[1] "spam" "bacon" "eggs" "spam"

All files exist.

stdin, stdout, and stderr represent the always-open connections mapped to the
standard input (“keyboard”), as well as the normal and error output.They can be read
from or written to using functions such as scan or cat.

During run time, we can redirect stdout and stderr to different files or even strings
using sink.

9.2.4 Assuring quality code
Below we mention some good development practices related to maintaining quality
code.This is an important topic, but writing about them is tedious to the same extent
that reading about them is dull. It is the more artistic part of software engineering as
such heuristics are learnt best by observing and mimicking what more skilled pro-
grammers are doing (the exercises below aim to make up for our not having them at
hand at the moment).

Managing changes andworking collaboratively

We are recommended to employ a source code version control system, such as git, to
keep track of the changes made to the software.

Note It is worth investing time and effort to learn how to use git from the command
line; see https://git-scm.com/doc.

There are a few hosting providers for git repositories, with GitLab and GitHub being
particularly popular among open-source software developers. They support working
collaboratively on the projects and are equipped with additional tools for reporting
bugs, suggesting feature requests, etc.

Exercise 9.14 Find source code of your favourite R packages or other projects. Explore the cor-
responding repositories, feature trackers, wikis, discussion boards, etc. Each community is dif-
ferent and is governed by varied, sometimes contrasting guidelines; after all, we come from all
corners of the world.

Test-driven development and continuous integration

It is often hygienic to include some principles of test-driven development.

Exercise 9.15 Assume that, for some reason,wewere asked to compose a function to compute the
root mean square (quadratic mean) of a given numeric vector. Before implementing the actual
routine, we need to reflect upon what we want to achieve, especially howwe want our function to
behave in certain boundary cases.

https://git-scm.com/doc

164 II DEEPER

stopifnot gives simple means to ensure that a given assertion is fulfilled. If that is the case, it
will move forward without fuss.

Let us say we have come up with the following set of expectations:

stopifnot(all.equal(rms(1), 1))

stopifnot(all.equal(rms(1:100), 58.16786054171151931769))

stopifnot(all.equal(rms(rep(pi, 10)), pi))

stopifnot(all.equal(rms(numeric(0)), 0))

Write a function rms that fulfils the above assertions.

Exercise 9.16 Implement your version of the sample function (assuming replace=TRUE), us-
ing calls to runif. Start by writing a few unit tests.

A couple of R packages support writing and executing unit tests, including testthat,
tinytest, RUnit, or realtest. However, in themost typical use cases, relying on stopi-
fnot is powerful enough.

Exercise 9.17 (*) Consult theWriting R Extensions manual [63] about where and how to
include unit tests in your example package.

Note (*) R can check a couple of code quality areas: running R CMD check

pkg_directory from the command line (preferably using the most recent version of
the environment) will suggest several improvements.

Also, it is possible to use various continuous integration techniques that are automat-
ically triggered when pushing changes to our software repositories; see GitLab CI or
GitHub Actions. For instance, we can run a package build, install, and check process
is possible on every git commit. Also, CRAN deploys continuous integration services,
including checking the package on various platforms.

Debugging

For all his life, the current author has been debugging his programs primarily by
manually printing the state of the suspicious variables (printf and the like) indifferent
code areas.This is old-school but weirdly efficient.

R has an interactive debugger; see the browser function and Section 9 of [67] for more
details. Some IDEs (e.g., RStudio) also support this feature; see their corresponding
documentation.

Profiling

Typically, a programspends relatively long timeexecutingonly a small portionof code.
The Rprof function canbe ahelpful tool to identifywhich chunksmight need a rewrite,
for instance, using a compiled language (Chapter 14).

Please remember, though, that bottlenecks are not only formed by using algorithms

9 DESIGNING FUNCTIONS 165

with high computational complexity, but also data input and output (such as reading
files from disk, printing messages on the console, queryingWeb APIs, etc.).

9.3 Special functions: Syntactic sugar
Some functions, such as `*`, are somewhat special.They can be referred to using infix
syntax which, for obvious reasons, most of us accepted as the default one. However,
belowwewill reveal, amongst others, that “5 * 9” reduces to an ordinary function call:

`*`(5, 9) # a call to `*` with two arguments, equivalent to 5 * 9

[1] 45

9.3.1 Backticks
In Section 2.2, we mentioned that via `<-` we can assign syntactically valid names to
our objects. Most identifiers comprised of letters, digits, dots, and underscores can
be used directly in R code.

Nevertheless, it is possible to label our objects however we like. Not syntactically valid
(nonstandard) identifiers just need to be enclosed in backticks (back quotes, grave ac-
cents):

`42 a quite peculiar name :O` <- c(a=1, `b c`=2, `42`=3, `!`=4)

1/(1+exp(-`42 a quite peculiar name :O`))

a b c 42 !

0.73106 0.88080 0.95257 0.98201

Such names are less convenient but backticks let us refer to them in any setting.

9.3.2 Dollar, `$` (*)
The dollar operator, `$`, can be an alternative accessor to a single element in a named
list4. If a label is a syntactically valid name, then x$label does the same job as
x[["label"]] (saving five keystrokes: such a burden!).

x <- list(spam="a", eggs="b", `eggs and spam`="c", best.spam.ever="d")

x$eggs

[1] "b"

x$best.spam.ever # recall that a dot has no special meaning in most contexts

[1] "d"

Nonstandard names must still be enclosed in backticks:

4 And hence also in data frames.

166 II DEEPER

x$`eggs and spam` # x[["eggs and spam"]] is okay as usual

[1] "c"

We are minimalist by design here. Thence, we will avoid this operator for it does not
increase the expressive power of our function repertoire. Also, it does not work on
atomic vectors nor matrices. Furthermore, it does not support names that are gener-
ated programmatically:

what <- "spam"

x$what # the same as x[["what"]]; we do not want this

NULL

x[[what]] # works fine

[1] "a"

Thesupport for the partialmatching of element names has been added to provide users
working in interactive programming sessions with some relief in the case where they
find typing the whole label daunting:

x$s

Warning in x$s: partial match of 's' to 'spam'

[1] "a"

Compare:

x[["s"]] # no warning here...

NULL

x[["s", exact=FALSE]]

[1] "a"

Partialmatching is generally a rubbishy programmingpractice.The result depends on
the names of other items in x (whichmight change later) and can decrease code read-
ability. The only reason why we obtained a warning message was because this book
enforces the options(warnPartialMatchDollar=TRUE) setting, which, sadly, is not the
default.

Note the behaviour on an ambiguous partial match:

x$egg # ambiguous resolution

NULL

as well as on an element assignment:

x$s <- "e"

str(x)

List of 5

$ spam : chr "a"

$ eggs : chr "b"

(continues on next page)

9 DESIGNING FUNCTIONS 167

(continued from previous page)

$ eggs and spam : chr "c"

$ best.spam.ever: chr "d"

$ s : chr "e"

It did not modify spam but added a new element, s. Confusing? Just let us not use the
dollar operator and we will have one less thing to worry about.

9.3.3 Curly braces, `{`
A block of statements grouped with curly braces, `{`, corresponds to a function call.
When we write:

{

print(TRUE)

cat("two")

3

}

[1] TRUE

two

[1] 3

The parser translates it to a call to:

`{`(print(TRUE), cat("two"), 3)

[1] TRUE

two

[1] 3

When the above is executed, every argument to `{` is evaluated one by one.Then, the
last value is returned as the result of that call.

9.3.4 `if`
if is a function too. Asmentioned in Section 8.1, it returns the value corresponding to
the expression that is evaluated conditionally. Hence, wemay write:

if (runif(1) < 0.5) "head" else "tail"

[1] "head"

but also:

`if`(runif(1) < 0.5, "head", "tail")

[1] "head"

168 II DEEPER

Note A call like `if`(test, what_if_true, what_if_false) can only work correctly
because of the lazy evaluation of function arguments; see Chapter 17.

On a side note, while, for, repeat can also be called that way, but they return invis-

ible(NULL).

9.3.5 Operators are functions
Calling built-in operators as functions

Every arithmetic, logical, and relational operator is translated to a call to the corres-
ponding function. For instance:

`<`(`+`(`*`(`-`(3), 4)), 5) # 2+(-3)*4 < 5

[1] TRUE

Also, x[i] is equivalent to `[`(x, i) and x[[i]]maps to `[[`(x, i).

Knowing this will not only enable us tomanipulate unevaluated R code (Chapter 15) or
access the corresponding manual pages (see, e.g., help("[")), but also verbalise cer-
tain operations more concisely. For instance:

x <- list(1:5, 11:17, 21:23)

unlist(Map(`[`, x, 1)) # 1 is a further argument passed to `[`

[1] 1 11 21

is equivalent to a call to Map(function(e) e[1], x).

Note Unsurprisingly, the assignment operator, `<-`, is also a function. It returns the
assigned value invisibly.

`<-` binds right to left (compare help("Syntax")). Thus, the expression “a <- b <- 1”
assigns 1 to both b and a. It is equivalent to `<-`("a", `<-`("b", 1)) and `<-`("b", 1)

returns 1.

Owing to the pass-by-value-like semantics (Section 9.4.1), we can also expect that we
will be assigning a copyof the value on the right side of the operator (with the exception
of environments; Chapter 16).

x <- 1:6

y <- x # makes a copy (but delayed, on demand, for performance reasons)

y[c(TRUE, FALSE)] <- NA_real_ # modify every second element

print(y)

[1] NA 2 NA 4 NA 6

print(x) # state of x has not changed; x and y are different objects

[1] 1 2 3 4 5 6

9 DESIGNING FUNCTIONS 169

This is especially worth pointing out to Python (amongst others) programmers, where
the above assignment would mean that x and y both refer to the same (shared) object
in the computer’s memory.

However, with no harm done to semantics, copying x is postponed until absolutely
necessary (Section 16.1.4). This is efficient both time- andmemory-wisely.

Defining binary operators

We can also introduce custom binary operators named like `%myopname%`:

`%:)%` <- function(e1, e2) (e1+e2)/2

5 %:)% 1:10

[1] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Recall that `%%`, `%/%`, and `%in%` are built-in operators denoting division remainder,
integer division, and testing for set inclusion. Also, in Chapter 11, we will learn about
`%*%`, which implements matrix multiplication.

Note Chapter 10 notes that most existing operators can be overloaded for objects of
custom types.

9.3.6 Replacement functions
Functions generally do not change the state of their arguments. However, there is
some syntactic sugar that permits us to replace objects or their parts with new con-
tent. We call them replacement functions.

For instance, three of the following calls replace the input xwith its modified version:

x <- 1:5 # example input

x[3] <- 0 # replace the third element with 0

length(x) <- 7 # "replace" length

names(x) <- LETTERS[seq_along(x)] # replace the names attribute

print(x) # `x` is now different

A B C D E F G

1 2 0 4 5 NA NA

Creating replacement functions

A replacement function is a mapping named like `f<-` with at least two parameters:

• x (the object to be modified),

• ... (possible further arguments),

• value (as the lastparameter; theobject on the right-handsideof the `<-`operator).

170 II DEEPER

We will most often interact with existing replacement functions, not create our own
ones. But knowing how to do the latter is vital to understanding this language feature.
For example:

`add<-` <- function(x, where=TRUE, value)

{

x[where] <- x[where] + value

x # the modified object that will replace the original one

}

The above aims to add a value to a subset of the input vector x (by default, to each
element therein).Then, it returns its altered version.

y <- 1:5 # example vector

add(y) <- 10 # calls y <- `add<-`(y, value=10)

print(y) # y has changed

[1] 11 12 13 14 15

add(y, 3) <- 1000 # calls y <- `add<-`(y, 3, value=1000)

print(y) # y has changed again

[1] 11 12 1013 14 15

Thus, invoking “add(y, w) <- v” is equivalent to “y <- `add<-`(y, w, value=v)”.

Note (*) According to [67], a call “add(y, 3) <- 1000” is a syntactic sugar precisely for:

`*tmp*` <- y # temporary substitution

y <- `add<-`(`*tmp*`, 3, value=1000)

rm("*tmp*") # remove the named object from the current scope

This has at least two implications. First, in the unlikely event that a variable `*tmp*`
existed before the call to the replacement function, it will be no more, it will cease
to be. It will be an ex-variable. Second, the temporary substitution guarantees that y
must exist before the call (due to lazy evaluation, a function’s body does not have to
refer to all the arguments passed).

Substituting parts of vectors

The replacement versions of the index-like operators are named as follows:

• `[<-` is used in substitutions like “x[i] <- value”,

• `[[<-` is called when we perform “x[[i]] <- value”,

• `$<-` is used whilst calling “x$i <- value”.

x <- 1:5

`[<-`(x, c(3, 5), NA_real_) # returns a new object

(continues on next page)

9 DESIGNING FUNCTIONS 171

(continued from previous page)

[1] 1 2 NA 4 NA

print(x) # does not change the original input

[1] 1 2 3 4 5

Exercise 9.18 Write a function `extend<-`, which pushes new elements at the end of a given
vector, modifying it in place.

`extend<-` <- function(x, value) ...to.do...

Example use:

x <- 1

extend(x) <- 2 # push 2 at the back

extend(x) <- 3:10 # add 3, 4, ..., 10

print(x)

[1] 1 2 3 4 5 6 7 8 9 10

Replacing attributes

There are many replacement functions to reset object attributes (Section 4.4). In
particular, each special attribute has its replacement procedure, e.g., `names<-`,
`class<-`, `dim<-`, `levels<-`, etc.

x <- 1:3

names(x) <- c("a", "b", "c") # change the `names` attribute

print(x) # x has been altered

a b c

1 2 3

Individual (arbitrary, includingnon-special ones) attributes canbe set using `attr<-`,
and all of them can be established via a single call to `attributes<-`.

x <- "spam"

attributes(x) <- list(shape="oval", smell="meaty")

attributes(x) <- c(attributes(x), taste="umami")

attr(x, "colour") <- "rose"

print(x)

[1] "spam"

attr(,"shape")

[1] "oval"

attr(,"smell")

[1] "meaty"

attr(,"taste")

[1] "umami"

(continues on next page)

172 II DEEPER

(continued from previous page)

attr(,"colour")

[1] "rose"

Also, setting an attribute to NULL results, by convention, in its removal:

attr(x, "taste") <- NULL # it is tasteless now

print(x)

[1] "spam"

attr(,"shape")

[1] "oval"

attr(,"smell")

[1] "meaty"

attr(,"colour")

[1] "rose"

attributes(x) <- NULL # remove all

print(x)

[1] "spam"

Which can be worthwhile in contexts such as:

x <- structure(c(a=1, b=2, c=3), some_attrib="value")

y <- `attributes<-`(x, NULL)

y is a version of xwith metadata removed.The latter remains unchanged.

Compositions of replacement functions (*)

Updating only selected names like:

x <- c(a=1, b=2, c=3)

names(x)[2] <- "spam"

print(x)

a spam c

1 2 3

is possible due to the fact that “names(x)[i] <- v” is equivalent to:

old_names <- names(x)

new_names <- `[<-`(old_names, i, value=v)

x <- `names<-`(x, value=new_names)

Important More generally, a composition of replacement calls “g(f(x, a), b) <- y”
yields a result equivalent to “x <- `f<-`(x, a, value=`g<-`(f(x, a), b, value=y))”.
Both f and `f<-` need to be defined, but having g is not necessary.

9 DESIGNING FUNCTIONS 173

Exercise 9.19 (*)What is “h(g(f(x, a), b), c) <- y” equivalent to?

Exercise 9.20 Write a (convenient!) function `recode<-` which replaces specific elements in a
character vector with other ones, allowing the following interface:

`recode<-` <- function(x, value) ...to.do...

x <- c("spam", "bacon", "eggs", "spam", "eggs")

recode(x) <- c(eggs="best spam", bacon="yummy spam")

print(x)

[1] "spam" "yummy spam" "best spam" "spam" "best spam"

We see that the named character vector gives a few from="to" pairs, e.g., all eggs are to be re-
placed by best spam. Determine which calls are equivalent to the following:

x <- c(a=1, b=2, c=3)

recode(names(x)) <- c(c="z", b="y") # or equivalently = ... ?

print(x)

a y z

1 2 3

y <- list(c("spam", "bacon", "spam"), c("spam", "eggs", "cauliflower"))

recode(y[[2]]) <- c(cauliflower="broccoli") # or = ... ?

print(y)

[[1]]

[1] "spam" "bacon" "spam"

##

[[2]]

[1] "spam" "eggs" "broccoli"

Exercise 9.21 (*) Consider the `recode<-` function from the previous exercise.

Here is an examplematrixwith thedimnamesattributewhosenamesattribute is set (more details
in Chapter 11):

(x <- Titanic["Crew", , "Adult",])

Survived

Sex No Yes

Male 670 192

Female 3 20

recode(names(dimnames(x))) <- c(Sex="sex", Survived="survived")

print(x)

survived

sex No Yes

Male 670 192

Female 3 20

This changes the x object. For each of the following subtasks, compose a single call that alters
names(dimnames(x))without modifying x in place but returning a recoded copy of:

• names(dimnames(x)),

174 II DEEPER

• dimnames(x),

• x.

Exercise 9.22 (*) Consider the `recode<-` function again but now let an example object be a
data frame with a column of the factor class:

x <- iris[c(1, 2, 51, 101),]

recode(levels(x[["Species"]])) <- c(

setosa="SET", versicolor="VER", virginica="VIR"

)

print(x)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 SET

2 4.9 3.0 1.4 0.2 SET

51 7.0 3.2 4.7 1.4 VER

101 6.3 3.3 6.0 2.5 VIR

How to change levels(x[["Species"]]) and return an altered copy of:

• levels(x[["Species"]]),

• x[["Species"]],

• x

without modifying x in place?

9.4 Arguments and local variables
9.4.1 Call by “value”
As a general rule, functions cannot change the state of their arguments5.We can think
of them as being passed by value, i.e., as if their copy was made.

test_change <- function(y)

{

y[1] <- 7

y

}

x <- 1:5

test_change(x)

(continues on next page)

5With the exception of objects of the type environment, which are passed by reference; see Chapter 16.
Also, the fact that we have access to unevaluated R expressions can cause further deviations to this rule
because, actually, R implements the call-by-need strategy; see Chapter 17.

9 DESIGNING FUNCTIONS 175

(continued from previous page)

[1] 7 2 3 4 5

print(x) # same

[1] 1 2 3 4 5

If the above statement was not true, the state of xwould change after the call.

9.4.2 Variable scope
Function arguments and any other variables we create inside a function’s body are
relative to each call to that function.

test_change <- function(x)

{

x <- x+1

z <- -x

z

}

x <- 1:5

test_change(x*10)

[1] -11 -21 -31 -41 -51

print(x) # x in the function's body was a different x

[1] 1 2 3 4 5

print(z) # z was local

Error in eval(expr, envir, enclos): object 'z' not found

Both x and z are local variables. They only live whilst our function is being executed.
The former temporarilymasks6 the object of the same name from the caller’s context.

Important It is a good development practice to refrain from referring to objects not
created within the current function, especially to “global” variables. We can always
pass an object as an argument explicitly.

Note It is a function call as such, not curly braces per se that form a local scope.When
we run “x <- { y <- 1; y + 1 }”, y is not an temporary variable. It is an ordinary
named object created alongside x.

On the other hand, in “x <- (function() { z <- 1; z + 1 })()”, zwill not be available
thereafter.

6 Chapter 16 discusses this topic in-depth: names are bound to objects within environment frames.
Moreover, R uses lexical (static) scoping, which is not necessarily intuitive, especially taking into account
that a function’s environment can always be changed.

176 II DEEPER

9.4.3 Closures (*)
Most user-defined functions are, in fact, instances of the so-called closures; see Sec-
tion 16.3.2 and [1]. They not only consist of an R expression to evaluate but also can
carry auxiliary data.

For instance, given two numeric vectors x and y of the same length, a call to approx-

fun(x, y) returns a function that linearly interpolates between the consecutive points
(𝑥1, 𝑦1), (𝑥2, 𝑦2), etc., so that a corresponding 𝑦 can be determined for any 𝑥.

x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x^2)

f2 <- approxfun(x, x^3)

f1(0.75) # check that it is quite close to the true 0.75^2

[1] 0.565

f2(0.75) # compare with 0.75^3

[1] 0.4275

Let us inspect the source code of the above functions:

print(f1)

function (v)

.approxfun(x, y, v, method, yleft, yright, f, na.rm)

<environment: 0x561e197cb5a0>

print(f2)

function (v)

.approxfun(x, y, v, method, yleft, yright, f, na.rm)

<environment: 0x561e198361c8>

We might wonder how they can produce different results. It is evident that they are
identical. It turns out, however, that they internally store additional data that are re-
ferred to when they are called:

environment(f1)[["y"]]

[1] 0.00 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00

environment(f2)[["y"]]

[1] 0.000 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1.000

Wewill explore these concepts in detail in the third part of this book.

9.4.4 Default arguments
We often need to find a sweet spot between being generous, mindful of the diverse
needs of our users, and making the API neither overwhelming nor oversimplistic.
We have established that it is best if a function performs a single, well-specified task.
However, we are always delighted when it also lets us tweak its behaviour should we
wish to do so.The use of default arguments can facilitate this principle.

For instance, log computes logarithms, by default, the natural ones.

9 DESIGNING FUNCTIONS 177

log(2.718) # the same as log(2.718, base=exp(1)), i.e., default base, e

[1] 0.9999

log(4, base=2) # different base

[1] 2

Exercise 9.23 Study the documentation of the following functions and note the default values
they define: round, hist, grep, and download.file.

Let us create a function equipped with such recommended settings:

test_default <- function(x=1) x

test_default() # use default

[1] 1

test_default(2) # use something else

[1] 2

Most often, default arguments are just constants, e.g., 1. Generally, though, they can
be any R expressions, also ones that include a reference to other arguments passed to
the same function; see Section 17.2.

Default argumentsusually appearat theendof theparameter list, but seeSection9.3.6
(on replacement functions) for a well-justified exception.

9.4.5 Lazy vs eager evaluation
In some languages, function arguments are always evaluated prior to a call. In R,
though, they are only computedwhen actually needed.We call it lazy or delayed evalu-
ation.Recall that inSection8.1.4,we introduced the short-circuit evaluationoperators
`||` (or) and `&&` (and).They can do their job precisely thanks to this mechanism.

Example 9.24 In the following example, we do not use the function’s argument at all:

lazy_test1 <- function(x) 1 # x is not used

lazy_test1({cat("and now for something completely different!"); 7})

[1] 1

Otherwise, we would see amessage being printed out on the console.

Example 9.25 Next, let us use x amidst other expressions in the body:

lazy_test2 <- function(x)

{

cat("it's... ")

y <- x+x # using x twice

cat(" a man with two noses")

y

(continues on next page)

178 II DEEPER

(continued from previous page)

}

lazy_test2({cat("and now for something completely different!"); 7})

it's... and now for something completely different! a man with two noses

[1] 14

An argument is evaluated once, and its value is stored for further reference. If that was not the
case, we would see twomessages like “and now...”.

Wewill elaborate on this in Chapter 17.

9.4.6 Ellipsis, `...`
Let us start with an exercise.

Exercise 9.26 Notice the presence of `...` in the parameter list of c, list, structure, cbind,
rbind, cat, Map (and the underlying mapply), lapply (a specialised version of Map), optimise,
optim, uniroot, integrate, outer, aggregate. What purpose does it serve, according to these
functions’ documentation pages?

We can create a variadic function by including `...` (dot-dot-dot, ellipsis; see
help("dots")) somewhere in its parameter list.The ellipsis serves as a placeholder for
all objects passed to the function but notmatched by any formal (named) parameters.

The easiestway to process arguments passed via `...` programmatically (see also Sec-
tion 17.3) is by redirecting them to list.

test_dots <- function(...)

list(...)

test_dots(1, a=2)

[[1]]

[1] 1

##

$a

[1] 2

Such a list can be processed just like… any other generic vector. What we can do
with these arguments is only limited by our creativity (in particular, recall from Sec-
tion 7.2.2 the very powerful do.call function).There are two primary use cases of the
ellipsis7:

• create a new object by combining an arbitrary number of other objects:

c(1, 2, 3) # three arguments

[1] 1 2 3
(continues on next page)

7Which is somewhat similar to Python’s *args and **kwargs in a function’s parameter list.

9 DESIGNING FUNCTIONS 179

(continued from previous page)

c(1:5, 6:7) # two arguments

[1] 1 2 3 4 5 6 7

structure("spam") # no additional arguments

[1] "spam"

structure("spam", color="rose", taste="umami") # two further arguments

[1] "spam"

attr(,"color")

[1] "rose"

attr(,"taste")

[1] "umami"

cbind(1:2, 3:4) # two

[,1] [,2]

[1,] 1 3

[2,] 2 4

cbind(1:2, 3:4, 5:6, 7:8) # four

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 42) # twelve

[1] 108

• pass further arguments (as-is) to other methods:

lapply(list(c(1, NA, 3), 4:9), mean, na.rm=TRUE) # mean(x, na.rm=TRUE)

[[1]]

[1] 2

##

[[2]]

[1] 6.5

integrate(dbeta, 0, 1,

shape1=2.5, shape2=0.5) # dbeta(x, shape1=2.5, shape2=0.5)

1 with absolute error < 1.2e-05

Example 9.27 Thedocumentation of lapply states that this function is defined like lapply(X,
FUN, ...). Here, the ellipsis is a placeholder for a number of optional arguments that can be
passed to FUN. Hence, if we denote the 𝑖-th element of a vector X by X[[i]], calling lapply(X,
FUN, ...)will return a list whose 𝑖-th element will be equal to FUN(X[[i]], ...).

Exercise 9.28 Usinga single call tolapply, generatea listwith threenumeric vectors of lengths
3, 9, and 7, respectively, drawn from the uniformdistribution on the unit interval.Then, upgrade
your code to get numbers sampled from the interval [−1, 1].
Example 9.29 Chapter 4 mentioned that concatenating a mix of lists and atomic vectors with
c, unfortunately, unrolls the latter:

str(c(u=list(1:2), v=list(a=3:4, b=5:6), w=7:8))

(continues on next page)

180 II DEEPER

(continued from previous page)

List of 5

$ u : int [1:2] 1 2

$ v.a: int [1:2] 3 4

$ v.b: int [1:2] 5 6

$ w1 : int 7

$ w2 : int 8

Let us implement a fix:

as.list2 <- function(x) if (is.list(x)) x else list(x)

clist <- function(...) do.call(c, lapply(list(...), as.list2))

str(clist(u=list(1:2), v=list(a=3:4, b=5:6), w=7:8))

List of 4

$ u : int [1:2] 1 2

$ v.a: int [1:2] 3 4

$ v.b: int [1:2] 5 6

$ w : int [1:2] 7 8

9.4.7 Metaprogramming (*)
We can access expressions passed as a function’s arguments without evaluating them.
In particular, a call to the composition of deparse and substitute converts them to
a character vector.

test_deparse_substitute <- function(x)

deparse(substitute(x)) # does not evaluate whatever is behind `x`

test_deparse_substitute(testing+1+2+3)

[1] "testing + 1 + 2 + 3"

test_deparse_substitute(spam & spam^2 & bacon | grilled(spam))

[1] "spam & spam^2 & bacon | grilled(spam)"

Exercise 9.30 Check out the y-axis label generated by plot.default((1:100)^2). Inspect its
source code. Notice a call to the two aforementioned functions.

Similarly, call shapiro.test(log(rlnorm(100))) and take note of the “data:” field.

A function is free to do with such an expression whatever it likes. For instance, it can
modify the expression and then evaluate it in a very different context. Such a language
feature allows certainoperations tobe expressedmuchmore compactly. In theory, it is
apotent tool.Alas, it is easy tofindmanypractical exampleswhere itwasover/misused
andmade learning or using R confusing.

Example 9.31 (*) In Section 12.3.9 and Section 17.5, we explain that subset and transform
use metaprogramming techniques to specify basic data frame transformations. For instance:

9 DESIGNING FUNCTIONS 181

transform(

subset(

iris,

Sepal.Length>=7.7 & Sepal.Width >= 3.0, # huh?

select=c(Species, Sepal.Length:Sepal.Width) # le what?

),

Sepal.Length.mm=Sepal.Length/10 # pardon my French, but pardon?

)

Species Sepal.Length Sepal.Width Sepal.Length.mm

118 virginica 7.7 3.8 0.77

132 virginica 7.9 3.8 0.79

136 virginica 7.7 3.0 0.77

None of the arguments (except iris) makes sense outside of the function’s call. In particular,
neither Sepal.Length nor Sepal.Width exists as a standalone variable.

The two functions took the liberty to interpret the arguments passed how they felt. They created
their own virtual reality within our well-definedworld.The readermust refer to their document-
ation to discover the meaning of such special syntax.

Note (*) Some functions have rather peculiar default arguments. For instance, in the
manual pageof prop.test,we read that the alternativeparameterdefaults to c("two.
sided", "less", "greater") but that "two.sided" is actually the default one.

If we call print(prop.test), we will find the code line responsible for this behaviour:
“alternative <- match.arg(alternative)”. Consider the following example:

test_match_arg <- function(x=c("a", "b", "c")) match.arg(x)

test_match_arg() # missing argument; choose first

[1] "a"

test_match_arg("c") # one of the predefined options

[1] "c"

test_match_arg("d") # unexpected setting

Error in match.arg(x): 'arg' should be one of "a", "b", "c"

In this setting, match.arg only allows an actual parameter from a given set of choices
but selects the first option if the argument is missing.

Unfortunately, we have to learn this behaviour by heart because looking at the above
source code gives us no clue about this being possible. If such an expression was
normally evaluated, we would use either the default argument or whatever the user
passed as x (but then the function would not know the range of possible choices). A
call to match.arg(x, c("a", "b", "c")) could guarantee the desired functionality
and would be much more readable. Instead, metaprogramming techniques enabled

182 II DEEPER

match.arg to access the enclosing function’s default argument list without explicitly
referring to them.

One may ask: why is it so? The only sensible answer to this will be “because its pro-
grammer decided it must be this way”. Let us contemplate this for a while. In cases
like these, we are not dealing with some base R language design choice that wemight
like or dislike, but which we should just accept as an inherent feature. Instead, we are
struggling intellectually because of some programmers’ (mis)use (in good faith…) of
R’s flexibility itself.They have introduced a slang/dialect on top of ourmother tongue,
whose meaning is valid only within this function. Blame the middleman, not the en-
vironment, please.

This is why we generally advocate for avoiding metaprogramming-based techniques
wherever possible. We shall elaborate on this topic in the third part of this book.

9.5 Principles of sustainable design (*)
Fine design is more art than science. As usual in real life, we will need to make many
compromises. This is because improving things with regard to one criterion some-
times makes them worse with respect to other aspects8 (also those that we are not
aware of). Moreover, not everything that counts can nor will be counted.

Wedonotwant to be consideredheedless enablerswho say that if anything is possible,
it should be done.Therefore, belowwe serve some food for thought.However, as there
is no accounting for taste, the kind readersmight aswell decide to skip this spicymeal.

9.5.1 Towrite or abstain
Our functions can often be considered merely creative combinations of the building
blocks available in base R or a few high-quality add-on packages. Some are simpler
than others. Thus, there is a question if a new operation should be introduced at all:
whether we are faced with the case of multiplying entities without necessity.

On the one hand, the DRY (don’t repeat yourself) principle tells us that the most fre-
quently used code chunks (say, called at least thrice) should be generalised in the form
of a new function. As far as complex operations are concerned, this is definitely a cor-
rect approach.

On the other hand, not every generalisation is necessarily welcome. Let us say we are
tired of writing g(f(x)) for the 𝑛-th time, 𝑛 ≥ 2. Why not introduce h defined as
a combination of g and f? This might seem like a clever idea, but let us not take it for
granted. Being tiredmight be an indication thatweneed a rest. Being lazy canbe a call

8 Compare the notion of Pareto efficiency.

9 DESIGNING FUNCTIONS 183

formore self-discipline (not an overly popular word these days, but still, an endearing
trait).

Example 9.32 paste0 is a specialised version of paste, but has the sep argument hardcoded to
an empty string.

• Even if this might be the most often applied use case, is the introduction of a new function
justifiable? Is it so hard to write sep="" each time?

• Would changing paste’s default argument be better?That, of course, would harm backward
compatibility, but what strategies could we apply to make the transition as smooth as pos-
sible?

• What about introducing a new version of paste with sep defaulting to "", and informing
the users that the old version is deprecated andwill be removed in, say, two years? (ormaybe
onemonth is better? or five?)

Example 9.33 R 4.0 defined a new function called deparse1. It is nothing but a combination
of deparse and paste:

print(deparse1)

function (expr, collapse = " ", width.cutoff = 500L, ...)

paste(deparse(expr, width.cutoff, ...), collapse = collapse)

<environment: namespace:base>

Let us say this covers 90%of use cases: was introducing it a justified idea then?What if that num-
ber was 99%? Might it lead to new users’ not knowing that the more primitive operations are
available?

Overall,more functions contribute to information overload.Wedonotwant our users
to be overwhelmed by unreasonably many choices. Luckily, nothing is cemented once
and for all. Had we made bad design choices resulting in our API’s being bloated, we
could always cancel those that no longer spark joy.

9.5.2 To pamper or challenge
We should think about the kind of audience wewould like to serve: is it our team only,
students, professionals, certain client groups, etc.? Do they have mathematical, pro-
gramming, engineering, or scientific background?

Not everything appropriate for one cohort will be valuable for another.

Not everythingpleasing somenowwill benefit themin the long run:people (their skills,
attitudes, etc.) change.

Example 9.34 Assumewearewritinga friendly package for noviceswhowould like to grasp the
basics of data analysis as quickly as possible. Without much effort, it could enable them to solve
80–95% of the most common, easy problems.

Thinkof introducing the students to a function that returns thefive largest observations inagiven

184 II DEEPER

vector. Let us call it nlargest. So pleasant. Itmakes the students feel empowered and improves
their retention9.

However, when faced with the remaining 5–20% of tasks, they will have to learn another, more
advanced, generic, and capable tool anyway (in our case, the base R itself). Are they determined
and skilled enough to do that? Somemight, unfortunately, say: “it is notmyproblem, Imade sure
everyone was happy at that time”. Due to this shortsightedness, it is our problem now.

Recall that it took us some time to arrive at order and subsetting via `[`. Assuming that we read
this book from the beginning to the end and solve all the exercises, which we should, we are now
able to author the saidnlargest (and lots of other functions) ourselves, usinga single line of code.
Thiswill also pay off inmany scenarios thatwewill be facing in the future, e.g.,whenwe consider
matrices and data frames.

Yes, everyone will be reinventing their own nlargest this way. But this constitutes a great ex-
ercise: by our being immoderately nice (spoonfeeding), some might have lost an opportunity to
learn a new, more universal skill.

Althoughmost users would love to minimise the effort put into all their activities, ul-
timately, they sometimes need to learn new things. Let us thus not be afraid to teach
them stuff.

Furthermore, we do not want to discourage experts (or experts to-be) by presenting
themwithoverly simplified solutions that keep theirhands tiedwhensomethingmore
ambitious needs to be done.

9.5.3 To build or reuse
The fail-fast philosophy encourages us to build applications using prefabricated com-
ponents.This is fantastic at the early stage of their life cycles. Nonetheless, if we con-
struct something uncomplicated or whose only purpose is to illustrate an idea, edu-
cate, or show off, let us be explicit about it so that other users do not feel obliged to
treat our product (exercise) seriously.

In the (not so likely, probabilistically speaking) event of its becoming successful,weare
expected to start thinking about the project’s long-term stability and sustainability.
After all, relying on third-party functions, packages, or programsmakes our software
projects less… independent.This may be problematic because:

• the dependencies might not be available on every platform or may behave differ-
ently across various system configurations,

• they may be huge (and can depend on other external software too),

• their APIs may be altered, which can cause our code to break,

• their functionality can change, which can lead to unexpected behaviour.

9 Brought to the extreme, this strategy is employed by certain companies (and drug dealers): make the
introductory experience smooth and fun. At the same time, do not permit your users to become independ-
ent too easily. Instead, make them rely on your product lines/proprietary solutions/payable services, etc.

9 DESIGNING FUNCTIONS 185

Hence, it might be better to rewrite some parts from scratch on our own.

Exercise 9.35 Identifya fewRpackages onCRANwithmanydependencies.Seewhat functions
they import from other packages. How often do they only borrow a few lines of code?

The UNIX philosophy emphasises building and using minimalist yet nontrivial,
single-purpose, high-quality pieces of software that can work as parts of more com-
plex pipelines. R serves as a glue language quite well.

In the long run, our software project might converge to such a tool. Thus, we might
have to standardise its API (e.g.,make it available from the command line; Section 1.2)
so that the users of other languages can benefit from our work.

Important If our project is merely a modified interface/front-end to a standalone
program developed by others, we should be humble about it. We should strive to en-
sure we are not the ones who get all the credit for other people’s work. Also, we must
clearly state how the original tools can be used to achieve the same goals, e.g., when
working from the command line. In other words, let us not be selfish jerks.

9.5.4 To revolt or evolve
Thewise, gradual improving of things is generally welcome. It gives everyone time to
adjust.

Some projects, however, are governed in a compulsive way, reinforced by neurotic
thinking that “stakeholders need to be kept engaged orwe’re going to lose popularity”.
It is not a sustainable strategy. Less is better, even though slightly more challenging.
Put good engineering first.

It might even happen that we realise that “everything so far was wrong and we need a
global reset”.But ifwebecomevery successful,wewill causeadivide in the community.
Especiallywhenwedecide toduplicate the existing, base functionality,we shouldnote
that some userswill be introduced to the system through the supplementary interface
and they will not be familiar with the classic one. Others will have to learn the added
syntax to be able to communicatewith the former group.This gives rise to awhole new
set of issues (how to make all the functions interoperable with each other seamlessly,
etc.). Such moves are sometimes necessary, but let us not treat them lightly; it is a
great responsibility.

9.6 Exercises
Exercise 9.36 Answer the following questions.

• Will stopifnot(1) stop? What about stopifnot(NA), stopifnot(TRUE, FALSE), and
stopifnot(c(TRUE, TRUE, NA))?

186 II DEEPER

• What does the `if` function return?

• Does `attributes<-`(x, NULL)modify x?

• When can we be interested in calling `[` and `[<-` as functions (and not as operators) dir-
ectly?

• How to define a new binary operator? Can it be equipped with default arguments?

• What are the main use cases of the ellipsis?

• What is wrong with transform, subset, and match.arg?

• When a call like f(-1, do_something_that_takes_a_million_years()) does not neces-
sarily have to be a regrettable action?

• What is the difference between “names(x)[1] <- new_name” and “names(x[1]) <-

new_name”?

• Whatmight be the form of x if it is legit to call it like x[[c(1, 2)]]()()()[[1]]()()?

Exercise 9.37 Consider the following function.

f <- function(x)

for (e in x)

print(e)

What is the return value of a call to f(list(1, 2, 3))? Is it NULL, invisible(NULL),
x[[length(x)]], or invisible(x[[length(x)]])? Does it change relative to whether x is
empty or not?

Exercise 9.38 The split function also has its replacement version. Study its documentation to
learn how it works.

Exercise 9.39 A call to ls(envir=baseenv()) returns all objects defined in the base package
(see Chapter 16). List the names corresponding to replacement functions.

Important Apply the principle of test-driven development when solving the remain-
ing exercises.

Exercise 9.40 Implement your version of the Position and Find functions. Evaluation should
stop as soon as the first element fulfilling a given predicate has been found.

Exercise 9.41 Implement your version of the Reduce function.

Exercise 9.42 Write a function slide(f, x, k, ...) which returns a list y with
length(x)-k+1 elements such that y[[i]] = f(x[i:(i+k-1)], ...)

unlist(slide(sum, 1:5, 1))

[1] 1 2 3 4 5

unlist(slide(sum, 1:5, 3))

[1] 6 9 12
(continues on next page)

9 DESIGNING FUNCTIONS 187

(continued from previous page)

unlist(slide(sum, 1:5, 5))

[1] 15

Exercise 9.43 Using slide defined above, write another function that counts how many in-
creasing pairs of numbers are in a given numeric vector. For instance, in (0, 2, 1, 1, 0, 1, 6, 0),
there are three such pairs: (0, 2), (0, 1), (1, 6).

Exercise 9.44 (*) Write your version of tools::package_dependencieswith reverse=TRUE
based on information extracted by calling utils::available.packages.

Exercise 9.45 (**) Write a standalone program which can be run from the system shell and
which computes the total size of all the files in directories given as the script’s arguments (via
commandArgs).

10
S3 classes

Let x be a randomly generated matrix with 1 000 000 rows and 1 000 columns, y be
a data frame with results from the latest survey indicating that things are way more
complicated than what most people think, and z be another matrix, this time with
many zeroes.

The human brain is not capable of dealing with excessive data that are immoderately
specific. This is why we have a natural tendency to group different entities based on
their similarities.This way, we formmore abstract classes of objects.

Also,many of us are inherently lazy. Oftentimeswe take shortcuts tominimise energy
(at a price to be paid later).

Printing out a matrix, a data frame, and a time series are all instances of the display-
ing of things, although they undoubtedly differ in detail. By now, we have probably
forgottenwhich objects are hidden behind x, y, and z that we introduced above. Being
able to simply call print(y)without having to recall that, yes, y is a data frame, might
seem quite appealing.

This chapter introduces S3 classes [13]. They provide a lightweight object-orientated
programming (OOP) approach for automated dispatching calls to generics of the type
print(y) to concrete methods such as print.data.frame(y), based on the class of the
object they are invoked on.

We shall see that S3 classes in their essence are beautifully simple1. Ultimately, gener-
ics andmethods are ordinary R functions (Chapter 7) and classes are merely additional
object attributes (Section 4.4).

Of course, this does not mean that wrapping our heads around them will be effort-
less. However, unlike other “class systems”2, S3 is ubiquitous inmost R programming
projects. Suffice it to say that factors, matrices, and data frames discussed in the fol-
lowing chapters are quite straightforward, S3-based extensions of the conceptswe in-
troduce below.

1They were built on top of the ordinary (“old S”) R so they have inherent limitations that we discuss in
the sequel: classes cannot be formally defined (often we will use named lists for representing objects, and
we knowwe cannot be anymore flexible than this), andmethod dispatching can only be based on the class
of one of the arguments (usually the first one, but, e.g., binary operators take both types into account).

2 Other class systems may give an impression that they are alien implants which were forcefully added
to our language to solve a specific, rather narrow class of problems; e.g., S4 (Section 10.5), reference classes
(Section 16.1.5), and other ones proposed by third-party packages.

190 II DEEPER

10.1 Object type vs class
Recall that typeof (introduced in Section 4.1) returns the internal type of an object. So
far, we were mostly focused on atomic and generic vectors; compare Figure 1 in the
Preface.

typeof(NULL)

[1] "NULL"

typeof(c(TRUE, FALSE, NA))

[1] "logical"

typeof(c(1, 2, 3, NA_real_))

[1] "double"

typeof(c("a", "b", NA_character_))

[1] "character"

typeof(list(list(1, 2, 3), LETTERS))

[1] "list"

typeof(function(x) x)

[1] "closure"

Thenumber of admissible types is small3, but they open the world of endless possibil-
ities4.They provide a basis formore complex data structures.This is thanks to the fact
that they can be equipped with arbitrary attributes (Section 4.4).

Most compound types constructed using themechanisms discussed in this chapter only
pretend they are something different from what they actually are. Still, they often do
their job very well. By looking under their bonnet, we will be able to manipulate their
state outside of the prescribed use cases.

Important Setting the class attributemightmake some objects behave differently in
certain scenarios.

Example 10.1 Let us equip two identical objects with different class attributes.

xt <- structure(123, class="POSIXct") # POSIX calendar time

xd <- structure(123, class="Date")

Both objects are represented using numeric vectors:

c(typeof(xt), typeof(xd))

[1] "double" "double"

However, when printed, they are decoded quite differently:
3Their list is hardcoded at the C language level; see the list of SEXPTYPEs in Table 14.1 and [66].
4 In particular, Section 14.2.8 mentions externalptrs which are simple pointers to memory blocks that

can be instances of any C structs or C++ classes.This makes R a very extensible language.

10 S3 CLASSES 191

print(xt)

[1] "1970-01-01 10:02:03 AEST"

print(xd)

[1] "1970-05-04"

In the former case, 123 is understood as the number of seconds since theUNIX epoch, 1970-01-
01T00:00:00+0000.The latter is deciphered as the number of days since the said timestamp.

Therefore, we expect that there must exist a mechanism that calls a version of print dependent
on an object’s virtual class.

That it only relies on the class attribute, which might be set, unset, or reset quite freely, is em-
phasised below.

attr(xt, "class") <- "Date" # change class from POSIXct to Date

print(xt) # same 123, but now interpreted as Date

[1] "1970-05-04"

as.numeric(xt) # drops all attributes

[1] 123

unclass(xd) # drops the class attribute; `attr<-`(xd, "class", NULL)

[1] 123

We are having so much fun that one more illustration can only increase our joy.

Example 10.2 Consider an example data frame:

x <- iris[1:3, 1:2] # a subset of an example data frame

print(x)

Sepal.Length Sepal.Width

1 5.1 3.5

2 4.9 3.0

3 4.7 3.2

It is an object of the following class (an object whose class attribute is set to):

attr(x, "class")

[1] "data.frame"

Somemay say, and they are absolutely right, that we have not covered data frames yet. After all,
they are the topic of Chapter 12, which is still ahead of us. However, from the current perspective,
we should know that R data frames are nothing but lists of vectors of the same lengths equipped
with the names and row.names attributes.

typeof(x)

[1] "list"

`attr<-`(x, "class", NULL) # or unclass(x)

$Sepal.Length

[1] 5.1 4.9 4.7

(continues on next page)

192 II DEEPER

(continued from previous page)

##

$Sepal.Width

[1] 3.5 3.0 3.2

##

attr(,"row.names")

[1] 1 2 3

print(x)

Sepal.Length Sepal.Width

1 5.1 3.5

2 4.9 3.0

3 4.7 3.2

Important Revealing how x is actually represented enables us to process it using the
extensive skill set that we have already5 developed by studying the material covered
in the previous part of our book (including all the exercises). This fact is noteworthy
because some built-in and third-party data types are not particularly well-designed.

Let us underline again that attributes are simple additions to R objects. However, as
we said in Section 4.4.3, certain attributes are special, and class is one of them. In
particular, we can only set class to be a character vector (possibly of length greater
than one; see Section 10.2.5).

x <- 12345

attr(x, "class") <- 1 # character vectors only

Error in attr(x, "class") <- 1: attempt to set invalid 'class' attribute

Furthermore, the class function can read the value of the class attribute. Its replace-
ment version is also available.

class(x) <- "Date" # set; the same as attr(x, "class") <- "Date"

class(x) # get; here, it is the same as attr(x, "class")

[1] "Date"

Important The class function always yields a value, even if the corresponding at-
tribute is not set. We call it an implicit class. Compare the following and the outputs
generated by typeof:

class(NULL) # no `class` set because NULL cannot have any attributes

[1] "NULL"

class(c(TRUE, FALSE, NA)) # no attributes so class is implicit (= typeof)

(continues on next page)

5 For instance, consider once again the example from Section 5.4.3 that applies the split function on a
data frame reduced to a list.

10 S3 CLASSES 193

(continued from previous page)

[1] "logical"

class(c(1, 2, 3, NA_real_)) # typeof returns "double"

[1] "numeric"

class(c("a", "b", NA_character_))

[1] "character"

class(list(list(1, 2, 3), LETTERS))

[1] "list"

class(function(x) x) # typeof gives "closure"

[1] "function"

Also, Chapter 11 will explain that any object equipped with the dim attribute also has
an implicit class:

(x <- as.matrix(c(1, 2, 3)))

[,1]

[1,] 1

[2,] 2

[3,] 3

attributes(x) # `class` is not amongst the attributes

$dim

[1] 3 1

class(x) # implicit class

[1] "matrix" "array"

typeof(x) # it is still a numeric vector (under the bonnet)

[1] "double"

10.2 Generics andmethod dispatching
10.2.1 Generics, default, and custommethods
Let us inspect the source code of the print function:

print(print) # sic!

function (x, ...)

UseMethod("print")

<environment: namespace:base>

Any function like the above6wewill call fromnowona generic (anS3generic, fromSver-

6 Some functions can have a version of UseMethod hidden at the C language level (internally); see Sec-
tion 10.2.3.

194 II DEEPER

sion 3 [13]). Its only job is to invoke UseMethod("print"). It dispatches the control flow
to another function, referred to as amethod, based on the class of the first argument.

Important All arguments passed to the generic will also be available7 in the method
dispatched to.

For example, let us define an object of the class categorical (a name that we have just
comeupwith;we could have called it cat, CATEGORICAL, or SpanishInquisition aswell).
It will be our version of the factor type that we discuss later.

x <- structure(

c(1, 3, 2, 1, 1, 1, 3),

levels=c("a", "b", "c"),

class="categorical"

)

We assume that such an object is a sequence of small positive integers (codes). It is
equipped with the levels attribute, which is a character vector of length not less than
themaximum of the said integers. In particular, the first level deciphers themeaning
of the code 1. Hence, the above vector represents a sequence a, c, b, a, a, a, c.

There isno specialmethod fordisplayingobjects of the categorical class.Hence,when
we call print, the default (fallback) method is invoked:

print(x)

[1] 1 3 2 1 1 1 3

attr(,"levels")

[1] "a" "b" "c"

attr(,"class")

[1] "categorical"

This is the standard function for displaying numeric vectors.We arewell familiarwith
it. Its name is print.default, and we can always call it directly:

print.default(x) # the default print method

[1] 1 3 2 1 1 1 3

attr(,"levels")

[1] "a" "b" "c"

attr(,"class")

[1] "categorical"

However, we can introduce a designatedmethod for printing categorical objects. Its
namemust precisely be print.categorical:

7 However, it cannot be implied by reading the above source code. UseMethod heavily relies on some ob-
scure hacks. We may only call it inside a function’s body. Once invoked, it does not return to the generic.
Before dispatching to a particularmethod, it creates a couple of hidden variables which givemore detail on
the operation conveyed, e.g., `.Generic` or `.Class`; see help("UseMethod") and Section 5 of [67].

10 S3 CLASSES 195

print.categorical <- function(x, ...)

{

x_character <- attr(x, "levels")[unclass(x)]

print(x_character) # calls `print.default`

cat(sprintf("Categories: %s\n",

paste(attr(x, "levels"), collapse=", ")))

invisible(x) # this is what all print methods do; see help("print")

}

Calling print automatically dispatches the control flow to the above method:

print(x)

[1] "a" "c" "b" "a" "a" "a" "c"

Categories: a, b, c

Of course, the default method can still be called. Referring to print.default(x) dir-
ectly will output the same result as the one a few chunks above.

Note print.categorical has been equipped with the dot-dot-dot attribute since the
generic print had one too8.

10.2.2 Creating generics
IntroducingnewS3generics is as straightforwardasdefininga function that calls Use-
Method. For instance, here is a dispatcherwhich creates newobjects of the categorical
class based on other objects:

as.categorical <- function(x, ...)

UseMethod("as.categorical") # synonym: UseMethod("as.categorical", x)

We always need to define the default method:

as.categorical.default <- function(x, ...)

{

if (!is.character(x))

x <- as.character(x)

xu <- unique(sort(x)) # drops NAs

structure(

match(x, xu),

class="categorical",

levels=xu

)

}

8 (*) Ensuring S3 generic/method consistency is part of R package check.

196 II DEEPER

Testing:

as.categorical(c("a", "c", "a", "a", "d", "c"))

[1] "a" "c" "a" "a" "d" "c"

Categories: a, c, d

as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))

[1] "3" "6" "4" NA "9" "9" "6" NA "3"

Categories: 3, 4, 6, 9

The above method is already quite flexible. It handles a wide variety of data types be-
cause it relies on the built-in generic as.character (Section 10.2.3).

Example 10.3 Wemight want to forbid the conversion from lists because it does not necessarily
make sense:

as.categorical.list <- function(x, ...)

stop("conversion of lists to categorical is not supported")

The users can always be instructed in the method’s documentation that they are responsible for
converting lists to another type prior to a call to as.categorical.

Example 10.4 The default method deals with logical vectors perfectly fine:

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.default

[1] "TRUE" "FALSE" NA NA "FALSE"

Categories: FALSE, TRUE

However, we might still want to introduce its specialised version. This is because we know a
slightly more efficient algorithm (and we have nothing better to do) based on the fact that FALSE
and TRUE converted to numeric yield 0 and 1, respectively:

as.categorical.logical <- function(x, ...)

{

if (!is.logical(x))

x <- as.logical(x) # or maybe stopifnot(is.logical(x))?

structure(

x + 1, # only 1, 2, and NAs will be generated

class="categorical",

levels=c("FALSE", "TRUE")

)

}

It spawns the same result as the default method but is slightly faster.

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.logical

[1] "TRUE" "FALSE" NA NA "FALSE"

Categories: FALSE, TRUE

Weperformed someargument consolidation at the beginning because a user is always able to call

10 S3 CLASSES 197

amethod directly on an R object of any kind (which is a good thing; see Section 10.2.4). In other
words, there is no guarantee that the argument xmust be of type logical.

10.2.3 Built-in generics
Many9 functions and operators we have introduced so far are, in fact, S3 generics:
print, head, `[`, `[[`, `[<-`, `[[<-`, length, `+`, `<=`, is.numeric, as.numeric, is.
character, as.character, as.list, round, log, sum, rep, c, and na.omit, to name a few.

Example 10.5 Let us overload the as.charactermethod.The default one does not makemuch
sense for the objects of our custom type:

as.character(x)

[1] "1" "3" "2" "1" "1" "1" "3"

So:

as.character.categorical <- function(x, ...)

attr(x, "levels")[unclass(x)]

And now:

as.character(x)

[1] "a" "c" "b" "a" "a" "a" "c"

Exercise 10.6 Overload the unique and repmethods for objects of the class categorical.

Example 10.7 New types ought to be designed carefully. For instance, if we forget to overload
the to-numeric converter, some users might be puzzled10 when they see:

(x <- as.categorical(c(4, 9, 100, 9, 9, 100, 42, 666, 4)))

[1] "4" "9" "100" "9" "9" "100" "42" "666" "4"

Categories: 100, 4, 42, 666, 9

as.double(x) # synonym: as.numeric(x); here, it calls as.double.default(x)

[1] 2 5 1 5 5 1 3 4 2

9 Generating the list of all S3 generics is somewhat tricky but at least the internal ones are enu-
merated in help("InternalMethods") and help("groupGeneric"); compare `.knownS3Generics` and also `.
S3_methods_table`. Some of themdo not even call UseMethod explicitly; they dispatch internally at the C lan-
guage level.This is quite unfortunate as it decreases transparency. Instead of simply inspecting a function’s
source code (compare, e.g., cbind), we need to look this information up in the documentation. Also, meth-
ods may be hardcoded internally, and thus be unoverloadable. However, sometimes these design choices
can be defended because they improve execution speed or memory consumption.

10 It is a different story if we really want this behaviour. Provided that we document it thoroughly (see
how help("factor") discusses the behaviour of a to-numeric conversion), we can start holding the users
responsible for their feeling confused (those who have experience in teaching others will certainly agree
how complex this matter is). Remember that we can never make an API fully foolproof and that there will
always be someone to challenge/stress-test our ideas. Bad design is alwayswrong, but being overprotective
or too defensive also has its cons. We should maintain our audience wisely. Users of open-source software
are not our clients. We do not work for them.We are in this together.

198 II DEEPER

Hence, wemight want to introduce a newmethod:

as.double.categorical <- function(x, ...) # not: as.numeric.categorical

{

actually: as.double.default(as.character.categorical(x))

as.double(as.character(x))

}

It now yields:

as.double(x) # or as.numeric(x); calls as.double.categorical(x)

[1] 4 9 100 9 9 100 42 666 4

Note We can still use unclass to fetch the codes:

unclass(x)

[1] 2 5 1 5 5 1 3 4 2

attr(,"levels")

[1] "100" "4" "42" "666" "9"

It is because the above returns a class-free object, which is now guaranteed to be pro-
cessed by the default methods (print, subsetting, as.character, etc.).

Exercise 10.8 What would happen if we used as.numeric instead of unclass in print.

categorical and as.character.categorical?

Exercise 10.9 Update the above methods so that we can also create named objects of the class
categorical (i.e., equipped with the names attribute).

Exercise 10.10 The levels of x are sorted lexicographically, not numerically. Introduce a single
method that would make the above code (when rerun without any alterations) generate a more
natural result.

10.2.4 First-argument dispatch and calling S3methods directly
With S3, dispatching is most often done based on the class of only one11 argument: by
default, the first one from the parameter list.

For example, the c function is a generic that dispatches on the first argument’s class.
Let us overload it for categorical objects. In other words, we will create a function to
be called by the generic when it is invoked on a series of objects whose first element is
of the said class.

11There aremany exceptions to this rule.Theyweremade for the (debatable) sake of the R users’ conveni-
ence. Inparticular, in Section 12.1.2wemention that cbind and rbindwill dispatch to the data.framemethod
if at least one argument is a data frame (and others are unclassed). Binary operators consider the type of
both operands; see Section 10.2.6. Furthermore, it is worth noting that the S4 class system (Section 10.5)
allows for dispatching based on the classes many arguments.

10 S3 CLASSES 199

c.categorical <- function(...)

as.categorical(

unlist(

lapply(list(...), as.character)

)

)

It converts each argument to a character vector, relying on the generic as.character to
take care of the details. It works because unlist converts a list of such atomic vectors
to a single sequence of strings.

Calling c with the first argument of the class categorical dispatches to the above
method:

x <- c(9, 5, 7, 7, 2)

xc <- as.categorical(x)

c(xc, x) # c.categorical

[1] "9" "5" "7" "7" "2" "9" "5" "7" "7" "2"

Categories: 2, 5, 7, 9

However, if the first argument is, say, unclassed, the defaultmethodwill be consulted:

c(x, xc) # default c

[1] 9 5 7 7 2 4 2 3 3 1

It ignored the class attribute and saw xc as it is, a bareboned numeric vector:

`attributes<-`(xc, NULL) # the underlying codes

[1] 4 2 3 3 1

It is not a bug. It is a well-documented (and now explained) behaviour. After all, com-
pound types (classed objects) are emulated through the basic ones.

Important In most cases, S3 methods can be called directly to get the desired out-
come:

c.categorical(x, xc) # force a call to the specific method

[1] "9" "5" "7" "7" "2" "9" "5" "7" "7" "2"

Categories: 2, 5, 7, 9

We said in most cases because methods can be:

• hardcoded at the C language level (e.g., there is no c.default defined at all12),

12 Dispatching to internalmethods can also be done… internally. For instance, overloading `<.character`
(or Compare.character; see below) will have no effect unless the base `<` is replaced with a custom one that
makes an explicit call to UseMethod. Most often, we can expect that the built-in types (e.g., atomic vectors),
factors, data frames, andmatrices and other arrays might be treated specially.

200 II DEEPER

• hidden (defined in a package’s namespace but not exported; Section 16.3.6),

• overloaded as a group; see Section 10.2.6 and help("groupGeneric").

Example 10.11 Just for fun, let us find a partition of the iris dataset into three clusters using
the 𝑘-means algorithm:

res <- kmeans(iris[-5], centers=3, nstart=10)

print(res)

K-means clustering with 3 clusters of sizes 50, 62, 38

##

Cluster means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.0060 3.4280 1.4620 0.2460

2 5.9016 2.7484 4.3935 1.4339

3 6.8500 3.0737 5.7421 2.0711

##

Clustering vector:

[1] 1

[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[71] 2 2 2 2 2 2 2 3 2

[reached getOption("max.print") -- omitted 51 entries]

##

Within cluster sum of squares by cluster:

[1] 15.151 39.821 23.879

(between_SS / total_SS = 88.4 %)

##

Available components:

##

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault"

The above is an object of the class:

class(res)

[1] "kmeans"

which, in fact, is a:

typeof(res)

[1] "list"

The underlying list looks like:

unclass(res)

$cluster

(continues on next page)

10 S3 CLASSES 201

(continued from previous page)

[1] 1

[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[71] 2 2 2 2 2 2 2 3 2

[reached getOption("max.print") -- omitted 51 entries]

##

$centers

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.0060 3.4280 1.4620 0.2460

2 5.9016 2.7484 4.3935 1.4339

3 6.8500 3.0737 5.7421 2.0711

##

$totss

[1] 681.37

##

$withinss

[1] 15.151 39.821 23.879

##

$tot.withinss

[1] 78.851

##

$betweenss

[1] 602.52

##

$size

[1] 50 62 38

##

$iter

[1] 2

##

$ifault

[1] 0

We already know that res was displayed in a fancy way only because there is a printmethod
overloaded for objects of the kmeans class.

But is there?

print.kmeans

Error in eval(expr, envir, enclos): object 'print.kmeans' not found

Even though the method is hidden (internal) in the stats package’s namespace, from Sec-
tion 16.3.6 we will learn that it can be accessed by calling getS3method("print", "kmeans")

or referring to stats:::print.kmeans (note the triple colon).

202 II DEEPER

10.2.5 Multi-class-ness
The class attribute can be instantiated as a character vector of any length. For ex-
ample:

(t1 <- Sys.time())

[1] "2023-06-28 15:20:49 AEST"

(t2 <- strptime("2021-08-15T12:59:59+1000", "%Y-%m-%dT%H:%M:%S%z"))

[1] "2021-08-15 12:59:59"

Let us inspect the classes of these two objects:

class(t1)

[1] "POSIXct" "POSIXt"

class(t2)

[1] "POSIXlt" "POSIXt"

Section 10.3.1 will discuss date-time classes in more detail. It will highlight that the
former is represented as a numeric vector, while the latter is a list. Thus, these two
should primarily be seen as instances of two distinct types.

However, both of them have a lot in common. Hence, it was a wise design choice to
allow themtobe seenalso as the representativesof the samegeneric categoryofPOSIX
time objects.

Important When calling a generic function13 f on an object x of the classes14 class1,
class2, …, classK (in this order), UseMethod(f, x) dispatches to the method determ-
ined as follows:

1. if f.class1 is available15, call it;

2. otherwise, if f.class2 is available, call this one;

3. …;

4. otherwise, if f.classK is available, invoke it;

5. otherwise, refer to the fallback f.default.

Example 10.12 There is amethod diff for objects of the class POSIXt that carries a statement:

r <- if (inherits(x, "POSIXlt")) as.POSIXct(x) else x

This way, we can process both POSIXct and POSIXlt instances using the same procedure.

Let us see nomagic in this simple scheme. It is nothingmore than what we described

13The case of binary operators is handled differently; see Section 10.2.6.
14 UseMethod dispatches on the implicit class as determined by the class function. Note that the class

attribute does not necessarily have to be set in order for class to return a sensible answer.
15 For more details on S3 method lookup, see Section 16.3.6.

10 S3 CLASSES 203

above: away to determinewhichmethod to call for a particular R object. It can be used
as a mechanism to mimic the idea of inheritance in object-orientated programming
languages. However, the S3 system does not allow for defining classes in any formal
manner.

For example, we cannot say that objects of the class POSIXct inherit from POSIXt.
Neither can we say that each object of the class POSIXct is also an instance of POSIXt.
The class attribute can still be set arbitrarily on a per-object basis. We can create
ones whose class is simply POSIXct (without the POSIXt part) or even c("POSIXt",

"POSIXct") (in this order).

Note In any method, it is possible to call the method corresponding to the next class
by calling NextMethod.

For instance, if we are in f.class1, a call to NextMethod(f) will try invoking f.class2.
If such a method does not exist, further methods in the search chain will be probed,
falling back to the default method if necessary. We will give an illustration later.

10.2.6 Operator overloading
Operators are ordinary functions (Section 9.3.5). Even though what follows can par-
tially be implied bywhatwe have said above, as usual in R, therewill be some oddities.

For example, let us overload the index operator for objects of the class categorical.
Looking at help("["), we see that the default method has two arguments: x (the cat-
egorical object being sliced) and i (the indexer). Ours will have the same interface
then:

`[.categorical` <- function(x, i)

{

structure(

unclass(x)[i], # `[`(unclass(x), i)

class="categorical",

levels=attr(x, "levels") # the same levels as input

)

}

The default S3 method, `[.default`, is hardcoded at the C language level and we can-
not refer to it directly.This is why we called unclass instead. Alternatively, we can also
invoke NextMethod:

`[.categorical` <- function(x, i)

{

structure(

NextMethod("["), # call default method, passing `x` and `i`

class="categorical",

(continues on next page)

204 II DEEPER

(continued from previous page)

levels=attr(x, "levels") # the same levels as input

)

}

We can also introduce the replacement version of this operator:

`[<-.categorical` <- function(x, i, value)

{

levels <- attr(x, "levels")

value <- match(value, levels) # integer codes corresponding to levels

structure(

NextMethod("[<-"), # call default method, passing `x`, `i`, `values`

class="categorical",

levels=levels # same levels as input

)

or, equivalently:

structure(

`[<-`(unclass(x), i, value=match(value, attr(x, "levels"))),

class="categorical",

levels=attr(x, "levels")

)

}

Testing:

x <- as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))

x[1:4]

[1] "3" "6" "4" NA

Categories: 3, 4, 6, 9

x[1:4] <- c("6", "7")

print(x)

[1] "6" NA "6" NA "9" "9" "6" NA "3"

Categories: 3, 4, 6, 9

Notice how we handled the case of nonexistent levels and that the recycling rule has
been automagically inherited (amongst other features) from the default index oper-
ator.

Exercise 10.13 Do these two operators preserve the names attribute of x? Is indexing with neg-
ative integers or logical vectors supported as well?Why is that/is that not the case?

Furthermore, let us overload the `==` operator. Assume16 that we would like two cat-

16There are, of course, many possible ways to implement the `==` operator for the discussed objects. For
instance, itmay return either a single TRUEor FALSEdependingon if twoobjects are identical (althoughprob-
ably overloading all.equal would be a better idea). We could also compare the corresponding underlying
integer codes instead of the labels, etc.

10 S3 CLASSES 205

egoricalobjects to be comparedbased on the actual labels they encode, in an element-
wise manner:

`==.categorical` <- function(e1, e2)

as.character(e1) == as.character(e2)

We are feeling lucky: by not performing any type checking, we rely on the particular
as.charactermethods corresponding to the types of e1 and e2. Also, assuming that
as.character always17 returns a character object, we dispatch to the default method
for `==` (which handles atomic vectors).

Some examples:

as.categorical(c(1, 3, 5, 1)) == as.categorical(c(1, 3, 1, 1))

[1] TRUE TRUE FALSE TRUE

as.categorical(c(1, 3, 5, 1)) == c(1, 3, 1, 1)

[1] TRUE TRUE FALSE TRUE

c(1, 3, 5, 1) == as.categorical(c(1, 3, 1, 1))

[1] TRUE TRUE FALSE TRUE

Important In the case of binary operators, dispatching is done based on the classes of
both arguments. In all three example calls above, we call `==.categorical`, regardless
of whether the classed object is the first or the second operand.

If two operands are classed, and differentmethods are overloaded for both, awarning
will be generated, and the default internal method will be called.

`==.A` <- function(e1, e2) "A"

`==.B` <- function(e1, e2) "B"

structure(c(1, 2, 3), class="A") == structure(c(2, NA, 3), class="B")

Warning: Incompatible methods ("==.A", "==.B") for "=="

[1] FALSE NA TRUE

Note (*) By creating a single Ops method, we can define the meaning of all binary
operators at once.

Ops.categorical <- function(e1, e2)

{

if (!(.Generic %in% c("<", ">", "<=", ">=", "==", "!=")))

stop(sprintf("%s not defined for 'categorical' objects", .Generic))

e1 <- as.character(e1)

e2 <- as.character(e2)

(continues on next page)

17Which, of course, does not have to be the case; it is merely an assumption based on our belief in the
common sense of other developers.

206 II DEEPER

(continued from previous page)

NextMethod(.Generic) # dispatch to the default method (for character)

}

as.categorical(c(1, 3, 5, 1)) > c(1, 2, 4, 2)

[1] FALSE TRUE TRUE FALSE

Here, `.Generic` is a variable representing the name of the operator (generic) being
invoked; see Section 16.3.6.

Other group generics are: Summary (including functions such as min, sum, and all), Math
(abs, log, round, etc.), and Complex (e.g., Re, Im); see help("groupGeneric") for more
details.

Sometimeswemust rely on registerS3method to forceR to recognise a custommethod
related to such generics.

10.3 Common built-in S3 classes
Let us discuss a few noteworthy classes, including those representing date-time in-
formation and factors (ordered or not).

Classes representing tabular data will be dealt with in separate parts, owing to their
importance and ubiquity. Namely, matrices and other arrays are covered in Chapter
11, and data frames are discussed in Chapter 12.

Inspecting other18 interesting compound types is left as a simple exercise for the stu-
dious reader.

10.3.1 Date, time, etc.
The Date class represents… dates (calendar ones, not fruits).

(x <- c(Sys.Date(), as.Date(c("1969-12-31", "1970-01-01", "2023-02-29"))))

[1] "2023-06-28" "1969-12-31" "1970-01-01" NA

class(x)

[1] "Date"

Complex types are built on basic ones. Underneath, what we deal with here is:

typeof(x)

[1] "double"

(continues on next page)

18 unique(.S3_methods_table[, 2]) approximates the list of available classes.

10 S3 CLASSES 207

(continued from previous page)

unclass(x)

[1] 19536 -1 0 NA

which is the number of days since the UNIX epoch, 1970-01-01T00:00:00+0000 (mid-
night GMT/UTC).

The POSIXct (calendar time) class represents date-time objects:

(x <- Sys.time())

[1] "2023-06-28 15:20:49 AEST"

class(x)

[1] "POSIXct" "POSIXt"

typeof(x)

[1] "double"

unclass(x)

[1] 1687929650

Underneath, it is the number of seconds since the UNIX epoch. By default, whilst
printing, the current default timezone is used (see Sys.timezone). However, such ob-
jects can be equipped with the tzone attribute.

structure(1, class=c("POSIXct", "POSIXt")) # using current default timezone

[1] "1970-01-01 10:00:01 AEST"

structure(1, class=c("POSIXct", "POSIXt"), tzone="UTC")

[1] "1970-01-01 00:00:01 UTC"

In both cases, the time is 1 second after the beginning of the UNIX epoch. On the au-
thor’s PC, the former is displayed in the current local timezone, though.

Exercise 10.14 UseISOdatetime to inspecthowmidnightsaredisplayed indifferent timezones.

The POSIXlt (local time) class is represented using a list of atomic vectors19.

(x <- as.POSIXlt(c(a="1970-01-01 00:00:00", b="2030-12-31 23:59:59")))

a b

"1970-01-01 00:00:00 AEST" "2030-12-31 23:59:59 AEDT"

class(x)

[1] "POSIXlt" "POSIXt"

typeof(x)

[1] "list"

str(unclass(x)) # calling str instead of print to make display more compact

List of 11

$ sec : num [1:2] 0 59

$ min : int [1:2] 0 59

$ hour : int [1:2] 0 23

(continues on next page)

19Which was inspired by struct tm in C’s <time.h>.

208 II DEEPER

(continued from previous page)

$ mday : int [1:2] 1 31

$ mon : int [1:2] 0 11

$ year : Named int [1:2] 70 130

..- attr(*, "names")= chr [1:2] "a" "b"

$ wday : int [1:2] 4 2

$ yday : int [1:2] 0 364

$ isdst : int [1:2] 0 1

$ zone : chr [1:2] "AEST" "AEDT"

$ gmtoff: int [1:2] NA NA

- attr(*, "tzone")= chr [1:3] "" "AEST" "AEDT"

- attr(*, "balanced")= logi TRUE

Exercise 10.15 Read about the meaning of each named element, especially mon and year; see
help("DateTimeClasses").

The manual states that POSIXlt is supposedly closer to human-readable forms than
POSIXct, but it is a matter of taste. Some R functions return the former, and other
output the latter type.

Exercise 10.16 The two main functions for date formatting and parsing, strftime and strp-
time, use special field formatters (similar to sprintf). Read about them in the Rmanual.What
type of inputs do they accept?What outputs do they produce?

There are several methods overloaded for objects of the said classes. In fact, the first
call in this section already involved the use of c.Date.

Exercise 10.17 Play around with the overloaded versions of seq, rep, and as.character.

A specific number of days or seconds can be added to or subtracted from a date or
time, respectively. However, `-` (see also diff) can also be applied on two date-time
objects, which yields an object of the class difftime.

Sys.Date() - (Sys.Date() - 1)

Time difference of 1 days

Sys.time() - (Sys.time() - 1)

Time difference of 1 secs

Exercise 10.18 Check out how objects of the class difftime are internally represented.

Applying other arithmetic operations on date-time objects raises an error. Because
date-time objects are just numbers, they can be compared to each other using binary
operators20. Also, methods such as sort and order21 could be applied on them.

Exercise 10.19 Check out the stringx package,which replaces the base R date-time processing
functions with their more portable counterparts.

20The overloaded group generic Ops prevents us from adding or multiplying two dates and defines the
meaning of the relational operators. As an exercise, check out its source code.

21 See an exercise below on the use of xtfrm.

10 S3 CLASSES 209

Exercise 10.20 proc.time can be used to measure the time to execute a given expression:

t0 <- proc.time() # timer start

... to do - something time-consuming ...

sum(runif(1e7)) # whatever, just testing

[1] 4999488

print(proc.time() - t0) # elapsed time

user system elapsed

0.229 0.029 0.258

The function returns an object of the class proc_time. Inspect how it is represented internally.

10.3.2 Factors
The factor class is oftenused to representqualitativedata, e.g., species, groups, types.
In fact, categorical (the example class that we played with above) was inspired by the
built-in factor.

(x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon"))

[1] "spam" "spam" "bacon" "sausage" "spam" "bacon"

(f <- factor(x))

[1] spam spam bacon sausage spam bacon

Levels: bacon sausage spam

Note how factors are printed.There are no double quote characters around the labels.
The list of levels is given at the end.

Internally, such objects are represented as integer vectors (Section 6.4.1) with ele-
ments between 1 and 𝑘.They are equippedwith the special (as in Section 4.4.3) levels
attribute, which is a character vector of length 𝑘22.

class(f)

[1] "factor"

typeof(f)

[1] "integer"

unclass(f)

[1] 3 3 1 2 3 1

attr(,"levels")

[1] "bacon" "sausage" "spam"

attr(f, "levels") # also: levels(f)

[1] "bacon" "sausage" "spam"

22 [67] states: Factors are currently implemented using an integer array to specify the actual levels anda secondarray
of names that are mapped to the integers. Rather unfortunately users often make use of the implementation in order to
make some calculations easier.This, however, is an implementation issue and is not guaranteed to hold in all implement-
ations of R. Still, fortunately, this has been a de facto standard for factors for a very long time.

210 II DEEPER

Factors are often used instead of character vectors defined over a small number of
unique labels23, where there is a need to manipulate their levels conveniently.

attr(f, "levels") <- c("a", "b", "c") # also levels(f) <- c(....new...)

print(f)

[1] c c a b c a

Levels: a b c

The underlying integer codes remain the same.

Certain operations on vectors of small integers are relatively easy to express, espe-
cially those concerning element grouping: splitting, counting, and plotting (e.g., Fig-
ure 13.17). It is because the integer codes can naturally be used whilst indexing other
vectors. Section 5.4 mentioned a few functions related to this, such as match, split,
findInterval, and tabulate. Specifically, the latter can be implemented like “for each
i, increase count[factor_codes[i]] by one”.

Exercise 10.21 Study the source code of the factor function. Note the use of as.character,
unique, order, and match.

Exercise 10.22 Implement a simplified version of table based on tabulate. It shouldwork for
objects of the class factor and return a named numeric vector.

Exercise 10.23 Implement a version of cut based on findInterval.

Important The as.numeric method has not been overloaded for factors. Therefore,
whenwe call the generic, the defaultmethod is used: it returns the underlying integer
codes as-is.This can surprise unaware users when they play with factors representing
integer numbers:

(g <- factor(c(11, 15, 16, 11, 13, 4, 15))) # converts numbers to strings

[1] 11 15 16 11 13 4 15

Levels: 4 11 13 15 16

as.numeric(g) # the underlying codes

[1] 2 4 5 2 3 1 4

as.numeric(as.character(g)) # to get the numbers encoded

[1] 11 15 16 11 13 4 15

Alas, support for factors is often hardcoded at the C language level. From the end user
perspective, itmakes this class behave less predictably. In particular, themanual over-
loading of certain methods for factor objects might have no effect.

Important If f is a factor, then x[f] does not behave like x[as.character(f)], i.e., it
is not indexing by labels using the names attribute. Instead, we get x[as.numeric(f)];
the underlying codes determine the positions.

23 Recall that there is a global (internal) string cache. Hence, having many duplicated strings is not a
burden on the computer’s memory.

10 S3 CLASSES 211

h <- factor(c("a", "b", "a", "c", "a", "c"))

levels(h)[h] # the same as c("a", "b", "c")[c(1, 2, 1, 3, 1, 3)]

[1] "a" "b" "a" "c" "a" "c"

c(b="x", c="y", a="z")[h] # names are not used whilst indexing

b c b a b a

"x" "y" "x" "z" "x" "z"

c(b="x", c="y", a="z")[as.character(h)] # names are used now

a b a c a c

"z" "x" "z" "y" "z" "y"

More often than not, indexing by factors will happen “accidentally”24, leaving us
slightly puzzled. In particular, factors lookmuch like character vectors when they are
carried in data frames:

(df <- data.frame(A=c("x", "y", "z"), B=factor(c("x", "y", "z"))))

A B

1 x x

2 y y

3 z z

class(df[["A"]])

[1] "character"

class(df[["B"]])

[1] "factor"

Important Be careful when combining factors and not-factors:

x <- factor(c("A", "B", "A"))

c(x, "C")

[1] "1" "2" "1" "C"

c(x, factor("C"))

[1] A B A C

Levels: A B C

Exercise 10.24 When subsetting a factor object, the result will inherit the levels attribute in
its entirety:

f[c(1, 2)] # drop=FALSE

[1] c c

Levels: a b c

24 (*) Up until R 4.0, many functions (including data.frame and read.csv) had the stringsAsFactors op-
tion set to TRUE; see help("options"). It resulted in all character vectors’ being automatically converted to
factors, e.g., when creating data frames (compare Section 12.1.5). Luckily, this is no longer the case. How-
ever, factor objects can still be encountered; for instance, check the class of iris[["Species"]].

212 II DEEPER

However:

f[c(1, 2), drop=TRUE]

[1] c c

Levels: c

Implement your version of the droplevels function, which removes the unused attributes.

Exercise 10.25 The replacement version of the index operator does not automatically add new
levels to the modified object:

x <- factor(c("A", "B", "A"))

`[<-`(x, 4, value="C") # like in x[4] <- "C"

Warning in `[<-.factor`(x, 4, value = "C"): invalid factor level, NA

generated

[1] A B A <NA>

Levels: A B

Implement a version of `[<-.factor` that has such a capability.

10.3.3 Ordered factors
When creating factors, we can enforce a particular ordering and the number of levels:

x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon")

factor(x, levels=c("eggs", "bacon", "sausage", "spam"))

[1] spam spam bacon sausage spam bacon

Levels: eggs bacon sausage spam

If we want the arrangement of the levels to define a linear ordering relation over the
set of labels, we can call:

(f <- factor(x, levels=c("eggs", "bacon", "sausage", "spam"), ordered=TRUE))

[1] spam spam bacon sausage spam bacon

Levels: eggs < bacon < sausage < spam

class(f)

[1] "ordered" "factor"

It yields an ordered factor, which enables comparisons like:

f[f >= "bacon"] # what's not worse than bacon?

[1] spam spam bacon sausage spam bacon

Levels: eggs < bacon < sausage < spam

How is that possible?Well, based on information provided in this chapter, it will come
as no surprise that it is because… someone has created a relational operator for objects
of the class ordered.

10 S3 CLASSES 213

10.3.4 Formulae (*)
Formulae are created using the `~` operator. Some R users employ them to specify
widely-conceived statistical models in functions such as lm (e.g., linear regression),
glm (generalised linear models like logistic regression etc.), aov (analysis of variance),
wilcox.test (the two-sample Mann–Whitney–Wilcoxon test), aggregate (computing
aggregates within data groups), boxplot (box-and-whisker plots for a variable split by
a combination of factors), or plot (scatter plots); see also Chapter 11 of [57]. For in-
stance, formulae can be used to describe symbolic relationships such as:

• “y as a linear combination of x1, x2, and x3”,

• “y grouped/split by a combination of x1 and x2”,

where y, x1, etc., are, for example, column names in a data frame.

Formulae are interpreted by the corresponding functions, and not the R language
itself. Thus, programmers are free to assign them any meaning. As their syntax is
quite esoteric, beginners might find them confusing. Hence, we will postpone dis-
cussing them until Section 17.6. Luckily, the use of formulae can usually quite easily
be avoided25.

10.4 (Over)using the forward pipe operator, `|>` (*)
The OOP paradigm is utile when we wish to define a new data type, perhaps even a
hierarchy of types.Many development teams find it an efficient tool to organise larger
pieces of software. However, in the data science and numerical computing domains,
more often than not, we are the consumers of object orientation rather than class de-
signers.

Thanks to the S3 method dispatch mechanism, our language is easily extensible.
Something that mimics a new data type can easily be introduced. Most importantly,
methods can be added or removed during runtime, e.g., when importing external
packages.

However, R is still a functional programming language, where functions are not just
first-class citizens: they are privileged.

In functional programming, the emphasis is on operations (verbs), not data (nouns).
It leads to a very readable syntax. For example, assuming that square, x, and y are
sensibly defined, the mean squared difference can be written as:

mean(square(x-y)) # read: mean of squares of differences

25 For example, lm.fit can be used instead of lm. It is slightlymore difficult to learn, but it has the added
benefit of ensuring the user knows that the emergence of all model variables is not magical (especially the
nonlinear/mixed effect terms).

214 II DEEPER

Example 10.26 Base R is extremely flexible.We can introduce new vocabulary aswe please. In
Section 12.3.7, we will study an example where we define:

• group_by (a function that splits a data framewith respect to a combination of levels in given
named columns and returns a list of data frames with class list_dfs),

• aggregate.list_dfs (which applies an aggregation function on every column of all data
frames in a given list), and

• mean.list_dfs (a specialised version of the former that calls mean).

The specifics do not matter now. Let us just consider the notation we use when the operations are
chained:

select a few rows and columns from the `iris` data frame:

iris_subset <- iris[51:150, c("Sepal.Width", "Petal.Length", "Species")]

compute the averages of all variables grouped by Species:

mean(group_by(iris_subset, "Species"))

Species x Mean

1 versicolor Sepal.Width 2.770

2 versicolor Petal.Length 4.260

3 virginica Sepal.Width 2.974

4 virginica Petal.Length 5.552

Thefunctional syntax is very reader-centric.Wecompute themean ingroupsdefinedbySpecies
ina subset of theirisdata frame.Allverbsappear on the left side of the expression,with thefinal
(the most important?) operation being listed first.

By the way, self-explanatory variable names and rich comments are priceless.

Nonetheless, when implementing more complex data processing pipelines, program-
mers think in different categories: “first, we need to do this, then we need to do that,
and afterwards…”. When they write their ideas down, they have to press Home and End

or arrow keys a few times to move the caret to the right places:

finally(thereafter(then(first(x))))

As we are inherently lazy, we might want to “optimise” our workflow to save a bit of
energy.

Inmore traditional object-orientated programming languages, either themethod list
is sealed inside26 the class’ definition (like inC++), or peculiar patchesmust be applied
to inject amethod (like in Python)27.There, it is the objects that are toldwhat to do.They
are treated as black boxes.

Many popular languages rely on message-passing syntax, where operations are

26When methods are parts of particular classes, there can be a lot of duplicated code. Functional OOP
can be more developer-friendly as we can provide all methods related to roughly the same functionality in
one spot.

27 See also the concept of extensionmethods in C# or Kotlin and, to some extent, of class inheritance.

10 S3 CLASSES 215

propagated (and written) left-to-right instead of inside-out. For instance, obj.

method1().method2() might mean “call method1 on obj and then call method2 on the
result”.

Since R 4.1.0, there is a pipe operator28, `|>`. It ismerely syntactic sugar for translating
between the message-passing and function-centric notion. In a nutshell, writing:

x |> f() |> g(y) |> h()

(x-y) |> square() |> mean()

is equivalent, respectively, to:

h(g(f(x), y))

mean(square(x-y))

This syntax is developer-centric. It emphasises the order in which the operations are
executed, something that couldalwaysbeachievedwith the function-centric formand
perhaps a few auxiliary variables.

The placeholder `_` can be used on the right side of the pipe operator (only once) to in-
dicate that the left side must be matched with a specific named argument of the func-
tion to be called. Otherwise, the left side is always passed as the first argument.

Therefore, the two following expressions are equivalent:

x |> median() |> `-`(e1=x, e2=_) |> abs() |> median()

median(abs(x-median(x)))

Example 10.27 Thepipeoperatorversionof theaboveirisaggregationexercisewould look like:

iris_subset |> group_by("Species") |> mean()

Expressions on the right side of the pipe operator must always be proper calls.There-
fore, the use of round brackets is obligatory. Thus, when passing anonymous func-
tions, wemust write:

runif(10) |> (function(x) mean((x-mean(x))^2))() # note the "()" at the end

[1] 0.078184

Peculiarly, in R 4.1.0, a “shorthand” notation for creating functions was introduced.
We can save seven keystrokes and scribble “\(...) expr” instead of “function(...)
expr”.

runif(10) |> (\(x) mean((x-mean(x))^2))() # again: "()" at the end

[1] 0.078184

28 It was inspired by `|` in Bash and `|>@` in F# and Julia (which are part of the language specification).
Also, there is a `%>%` operator (and related ones) in the R package magrittr.

216 II DEEPER

There is nothing that cannot be achieved without the pipe operator. As this book is
minimalist by design, we refrain ourselves from using it.

Note When writing code interactively, we may sometimes benefit from using the
rightward `->` operator. Suffice it to say that “name <- value” and “value -> name” are
synonymous.

This way, we can type some lengthy code, store the result in an intermediate variable,
and then continue in the next line (possibly referring to that auxiliary valuemore than
once). For instance:

runif(10) -> .

mean((.-mean(.))^2)

[1] 0.078184

Recall that `.` is as valid a variable name as any other one. Another example:

iris[, c("Sepal.Width", "Petal.Length", "Species")] -> .

.[.[, "Species"] %in% c("versicolor", "virginica"),] -> .

mean(group_by(., "Species"))

Species x Mean

1 versicolor Sepal.Width 2.770

2 versicolor Petal.Length 4.260

3 virginica Sepal.Width 2.974

4 virginica Petal.Length 5.552

10.5 S4 classes (*)
TheS3-styleOOP is based on a brilliantly simple idea: calling a generic f(x)dispatches
automatically to a method f.class_of_x(x) or f.default(x) in the case where the
former does not exist. Naturally, S3 has the following inherent limitations:

• classes cannot be formally defined; the class attributemay be assigned arbitrarily
to any object29,

• argument dispatch is performed only30 with regard to one data type31.

29 A partial solution to this could involve defining a method like validate.class_name, which is called
frequently and which checks whether a given object enjoys a few desirable constraints.

30 Certain functions implement ad hoc workarounds (see, e.g., cbind, which dispatches to cbind.data.

frame if one argument is a data frame and the remaining ones are vectors or matrices). Also, we said in the
previous chapter that binary operators consider the classes of both operands.

31 Hypothetically, we can imagine an OOP system relying on methods named like method.class_name1.
class_name2 where dispatching is based on two argument types. This would be beautiful, but it is not the
case in R.

10 S3 CLASSES 217

In most cases, and with an appropriate level of mindfulness, they are not a problem
at all. However, it is a typical condition of programmers who come to our world from
moremainstream languages (e.g., C++ or Java; yours truly included) until they appre-
ciate the true beauty of R’s being somewhat different. Before they fully develop such
an acquired taste, though, they grow restless as “R is has no real OOP because it lacks
polymorphism, encapsulation, formal inheritance, and so on, and somethingmust be
done about it!”. The truth is that it had not had to, but with high probability, it would
have anyway in one way or another.

And so the fourth version of the S languagewas introduced in 1998 (see [9]). It brought
a new object-orientated system, which we are used to referring to as S4. Its R version
is defined by the methods package. Below we discuss it briefly. For more details, see
help("Classes_Details") and help("Methods_Details") as well as [10] and [11].

Note (*) S4 was loosely inspired by the Common Lisp Object System (with its def-
class, defmethod, etc.; see, e.g., [20]). In the current author’s opinion, the S4 system
is somewhat of an afterthought. Due to appendages like this, R seems like a patch-
work language. Suffice it to say that it was not the last attempt to introduce a “real”
OOP in the overall functional R: the story will resume in Section 16.1.5.

The main issue with all the supplementary OOP approaches is that each of them is
parallel to S3which never lost its popularity and is still in the very core of our language.
We are thus covering them only for the sake of completeness for the readers might
come across such objects. In particular, below we explain the meaning of a notation
like x@slot. Moreover, in Section 11.4.7 we mention the Matrix class which is perhaps
the most prominent showcase of S4.

Nonetheless, the current author advises takingwith a pinch of salt statements such as
for new projects, it is recommended to use themore flexible and robust S4 scheme provided in the
methods packagementioned in help("UseMethod").

10.5.1 Defining S4 classes
An S4 class can be formally registered through a call to setClass. For instance:

library("methods") # in the case where it is not auto-loaded

setClass("qualitative", slots=c(data="integer", levels="character"))

We defined a class named qualitative (similarity to our own categorical and the
built-in factor S3 classes is intended). It has two slots: data and levels being integer
and character vectors, respectively.This notation is already quite peculiar.There is no
assignment suggesting that we have introduced something novel.

An object of the above class can be instantiated by calling new:

z <- new("qualitative", data=c(1L, 2L, 2L, 1L, 1L), levels=c("a", "b"))

print(z)
(continues on next page)

218 II DEEPER

(continued from previous page)

An object of class "qualitative"

Slot "data":

[1] 1 2 2 1 1

##

Slot "levels":

[1] "a" "b"

That z is of this class can be verified by calling is.

is(z, "qualitative")

[1] TRUE

class(z) # also: attr(z, "class")

[1] "qualitative"

attr(,"package")

[1] ".GlobalEnv"

Important A fewR packages import the methods package only to get access the handy
is function. It does not mean they are defining new S4 classes.

Note S4 objects are marked as being of the following basic type:

typeof(z)

[1] "S4"

See Section 1.12 of [66] for technical details on how they are internally represented. In
particular, in our case, all the slots are simply stored as object attributes:

attributes(z)

$data

[1] 1 2 2 1 1

##

$levels

[1] "a" "b"

##

$class

[1] "qualitative"

attr(,"package")

[1] ".GlobalEnv"

10 S3 CLASSES 219

10.5.2 Accessing slots
Readingorwriting slot contents canbedone via the `@` operator and the slot function
or their replacement versions.

z@data # or slot(z, "data")

[1] 1 2 2 1 1

z@levels <- c("A", "B")

Note The `@` operator can only be used on S4 objects, and some sanity checks are
automatically performed:

z@unknown <- "spam"

Error in (function (cl, name, valueClass) : 'unknown' is not a slot in

class "qualitative"

z@data <- "spam"

Error in (function (cl, name, valueClass) : assignment of an object of

class "character" is not valid for @'data' in an object of class

"qualitative"; is(value, "integer") is not TRUE

10.5.3 Definingmethods
For the S4 counterparts of the S3 generics (Section 10.2), see help("setGeneric").
Luckily, there is a reasonable degree of interoperability between the S3 and S4 sys-
tems.

Let us start by introducing a new method for the well-known as.character generic.
Instead of defining as.character.qualitative, we need to register a new routinewith
setMethod.

setMethod(

"as.character", # name of the generic

"qualitative", # class of 1st arg; or: signature=c(x="qualitative")

function(x, ...) # method definition

x@levels[x@data]

)

Testing:

as.character(z)

[1] "A" "B" "B" "A" "A"

show is the S4 counterpart of print:

setMethod(

(continues on next page)

220 II DEEPER

(continued from previous page)

"show",

"qualitative",

function(object)

{

x <- as.character(object)

print(x) # calls `print.default`

cat(sprintf("Categories: %s\n",

paste(object@levels, collapse=", ")))

}

)

Interestingly, it is involved automatically on a call to print:

print(z) # calls `show` for `qualitative`

[1] "A" "B" "B" "A" "A"

Categories: A, B

Methods that dispatch on the type of multiple arguments are also possible. For ex-
ample:

setMethod(

"split",

c(x="ANY", f="qualitative"),

function (x, f, drop=FALSE, ...)

split(x, as.character(f), drop=drop, ...)

)

It permits the first argument to be of any type (like a default method). Moreover, here
is its version tailored for matrices (see Chapter 11).

setMethod(

"split",

c(x="matrix", f="qualitative"),

function (x, f, drop=FALSE, ...)

lapply(

split(seq_len(NROW(x)), f, drop=drop, ...), # calls the above

function(i) x[i, , drop=FALSE])

)

Some tests:

A <- matrix(1:35, nrow=5) # whatever

split(A, z) # matrix, qualitative

$A

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

(continues on next page)

10 S3 CLASSES 221

(continued from previous page)

[1,] 1 6 11 16 21 26 31

[2,] 4 9 14 19 24 29 34

[3,] 5 10 15 20 25 30 35

##

$B

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 2 7 12 17 22 27 32

[2,] 3 8 13 18 23 28 33

split(1:5, z) # ANY, qualitative

$A

[1] 1 4 5

##

$B

[1] 2 3

Exercise 10.28 Overload the `[` operator for the qualitative class.

10.5.4 Defining constructors
We can also overload the initializemethod, which is automatically called by new:

setMethod(

"initialize", # note the American spelling

"qualitative",

function(.Object, x)

{ # the method itself

if (!is.character(x))

x <- as.character(x) # see above

xu <- unique(sort(x)) # drops NAs

.Object@data <- match(x, xu)

.Object@levels <- xu

.Object # return value - a modified object

}

)

This constructor yields instances of the class qualitative based on an object coercible
to a character vector. For example:

w <- new("qualitative", c("a", "c", "a", "a", "d", "c"))

print(w)

[1] "a" "c" "a" "a" "d" "c"

Categories: a, c, d

Exercise 10.29 Set up a validatingmethod for our class; see help("setValidity").

222 II DEEPER

10.5.5 Inheritance
New S4 classes can be derived from existing ones. For instance:

setClass("binary", contains="qualitative")

It is a child class that inherits all slots from its parent.Wecanoverload its initialisation
method:

setMethod(

"initialize",

"binary",

function(.Object, x)

{

if (!is.logical(x))

x <- as.logical(x)

x <- as.character(as.integer(x))

xu <- c("0", "1")

.Object@data <- match(x, xu)

.Object@levels <- xu

.Object

}

)

Testing:

new("binary", c(TRUE, FALSE, TRUE, FALSE, NA, TRUE))

[1] "1" "0" "1" "0" NA "1"

Categories: 0, 1

We can still use the showmethod of the parent class.

10.6 Exercises
Exercise 10.30 Answer the following questions.

• How to display the source code of the default methods for head and tail?

• Can there be, at the same time, one object of the class c("A", "B") and another one of the
class c("B", "A")?

• If f is a factor, what are the relationships between as.character(f), as.numeric(f), as.
character(as.numeric(f)), and as.numeric(as.character(f))?

• If x is a named vector and f is a factor, is x[f] equivalent to x[as.character(f)] or rather
x[as.numeric(f)]?

10 S3 CLASSES 223

Exercise 10.31 A user calls:

plot(x, y, col="red", ylim=c(1, max(x)), log="y")

where x and y are numeric vectors. Consult help("plot") for the meaning of the ylim and log
arguments.Was that straightforward?

Exercise 10.32 Explain why the two following calls return significantly different results.

c(Sys.Date(), "1970-01-01")

[1] "2023-06-28" "1970-01-01"

c("1970-01-01", Sys.Date())

[1] "1970-01-01" "19536"

Propose a workaround.

Exercise 10.33 Write methods head and tail for our example categorical class.

Exercise 10.34 (*)Write an R package that defines S3 class categorical. Add a fewmethods
for this class. Note the need to use the S3method directive in the NAMESPACE file; see [63].

Exercise 10.35 Inspect the result of a call to binom.test(79, 100) and to rle(c(1, 1, 1,

4, 3, 3, 3, 3, 3, 2, 2)). Find themethods responsible for such objects’ pretty-printing.

Exercise 10.36 Read more about the connection class. In particular, see the Value section of
help("connections").

Exercise 10.37 Readabout the subsetting operators overloaded for the package_version class;
see help("numeric_version").

Exercise 10.38 There are xtfrm methods overloaded for classes such as numeric_version,
difftime, Date, and factor. Find out how they work and where they might be of service (es-
pecially in relation to order and sort; see also Section 12.3.1).

Exercise 10.39 Give an example where split(x, list(y1, y2)) (with default arguments)
will fail to generate the correct result.

Exercise 10.40 Write a function that determines the mode, i.e., the most frequently occurring
value in a given object of the class factor. If the mode is not unique, return a randomly chosen
one (each with the same probability).

Exercise 10.41 Implement your version of the gl function.

11
Matrices and other arrays

Whenwe equip an atomic or generic vectorwith the dim attribute, it automatically be-
comes an object of the S3 class array. In particular, two-dimensional arrays (primary
S3 class matrix) allow us to represent tabular data where items are aligned into rows
and columns:

structure(1:6, dim=c(2, 3)) # a matrix with two rows and three columns

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Combinedwith the fact that there aremany functions overloaded for the matrix class,
we have just opened up a whole world of new possibilities, which we explore in this
chapter.

In particular, we discuss how to perform basic algebraic operations such as matrix
multiplication, transpose, finding eigenvalues, and performing various decomposi-
tions. We also cover data wrangling operations such as array subsetting and column-
and rowwise aggregation.

Important Oftentimes, a numeric matrix with 𝑛 rows and𝑚 columns is used to rep-
resent𝑛points (samples) in an𝑚-dimensional space (with𝑚numeric features or vari-
ables),ℝ𝑚.

Furthermore, in the next chapter, we will introduce data frames: matrix-like objects
whose columns can be of any (not necessarily the same) type.

11.1 Creating arrays
11.1.1 matrix and array
Amatrix can be conveniently created using the following function.

(A <- matrix(1:6, byrow=TRUE, nrow=2))

[,1] [,2] [,3]

(continues on next page)

226 II DEEPER

(continued from previous page)

[1,] 1 2 3

[2,] 4 5 6

It converted an atomic vector of length six to a matrix with two rows. The number
of columns was determined automatically (ncol=3 could have been passed to get the
same result).

Important By default, the elements of the input vector are read column by column:

matrix(1:6, ncol=3) # byrow=FALSE

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Amatrix can be equippedwith an attribute that defines dimension names, being a list
of two character vectors of appropriate sizes which label each row and column:

matrix(1:6, byrow=TRUE, nrow=2, dimnames=list(c("x", "y"), c("a", "b", "c")))

a b c

x 1 2 3

y 4 5 6

Alternatively, to create amatrix,we canuse the array function. It requires the number
of rows and columns to be specified explicitly.

array(1:6, dim=c(2, 3))

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

The elements were consumed in the column-major order.

Arrays of other dimensionalities are also possible. Let us define a one-dimensional
array:

array(1:6, dim=6)

[1] 1 2 3 4 5 6

When printed, it is indistinguishable from an atomic vector (but the class attribute is
still set to array).

Andnowfor somethingcompletelydifferent: a three-dimensional arrayof size3×4×2:

array(1:24, dim=c(3, 4, 2))

, , 1

(continues on next page)

11 MATRICES AND OTHER ARRAYS 227

(continued from previous page)

##

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

##

, , 2

##

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

It can be thought of as twomatrices of size 3 × 4 (because how else can we print out a
3D object on a 2D console?).

The array function can be fedwith the dimnames argument too. For instance, the above
three-dimensional hypertable would require a list of three character vectors of sizes
3, 4, and 2, respectively.

Exercise 11.1 Verify that 5-dimensional arrays can also be created.

11.1.2 Promoting and stacking vectors
We can promote an ordinary vector to a column vector, i.e., a matrix with one column,
by calling:

as.matrix(1:2)

[,1]

[1,] 1

[2,] 2

cbind(1:2)

[,1]

[1,] 1

[2,] 2

and to a row vector:

t(1:3) # transpose

[,1] [,2] [,3]

[1,] 1 2 3

rbind(1:3)

[,1] [,2] [,3]

[1,] 1 2 3

Actually, cbind and rbind stand for column- and row-bind.They permit multiple vec-
tors andmatrices to be stacked one after/below another:

228 II DEEPER

rbind(1:4, 5:8, 9:10, 11) # row-bind

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 9 10

[4,] 11 11 11 11

cbind(1:4, 5:8, 9:10, 11) # column-bind

[,1] [,2] [,3] [,4]

[1,] 1 5 9 11

[2,] 2 6 10 11

[3,] 3 7 9 11

[4,] 4 8 10 11

cbind(1:2, 3:4, rbind(11:13, 21:23)) # vector, vector, 2x3 matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 11 12 13

[2,] 2 4 21 22 23

and so forth. Unfortunately, the generalised recycling rule is not implemented in full:

cbind(1:4, 5:8, cbind(9:10, 11)) # different from cbind(1:4, 5:8, 9:10, 11)

Warning in cbind(1:4, 5:8, cbind(9:10, 11)): number of rows of result is

not a multiple of vector length (arg 1)

[,1] [,2] [,3] [,4]

[1,] 1 5 9 11

[2,] 2 6 10 11

Note that the first two arguments were of length four.

11.1.3 Simplifying lists
simplify2array is an extension of the unlist function. Given a list of atomic vectors,
each of length one, it will return a flat atomic vector. However, if longer vectors of the
same lengths are given, they will be converted to a matrix.

simplify2array(list(1, 11, 21)) # each of length one

[1] 1 11 21

simplify2array(list(1:3, 11:13, 21:23, 31:33)) # each of length three

[,1] [,2] [,3] [,4]

[1,] 1 11 21 31

[2,] 2 12 22 32

[3,] 3 13 23 33

simplify2array(list(1, 11:12, 21:23)) # no can do (without warning!)

[[1]]

[1] 1

##

[[2]]
(continues on next page)

11 MATRICES AND OTHER ARRAYS 229

(continued from previous page)

[1] 11 12

##

[[3]]

[1] 21 22 23

In the secondexample, eachvector becomesa separate columnof the resultingmatrix,
which can easily be justified by the fact that matrix elements are stored in a column-
wise order.

Example 11.2 Quite a few functions call the above automatically; compare the simplify argu-
ment to apply, sapply, tapply, or replicate, and the SIMPLIFY (sic!) argument to mapply. For
instance, sapply combines lapplywith simplify2array:

min_mean_max <- function(x) c(Min=min(x), Mean=mean(x), Max=max(x))

sapply(split(iris[["Sepal.Length"]], iris[["Species"]]), min_mean_max)

setosa versicolor virginica

Min 4.300 4.900 4.900

Mean 5.006 5.936 6.588

Max 5.800 7.000 7.900

Take note of what constitutes the columns of the returnmatrix.

Exercise 11.3 Inspect thebehaviour ofas.matrix on list arguments.Write your versionofsim-
plify2array named as.matrix.list that always returns a matrix. If a list of non-equisized
vectors is given, fill the missing cells with NAs and generate a warning.

Important Sometimes a call to do.call(cbind, x)might be a better idea than a re-
ferral to simplify2array. Provided that x is a list of atomic vectors, it always returns a
matrix: shorter vectors are recycled (which might be welcome, but not necessarily).

do.call(cbind, list(a=c(u=1), b=c(v=2, w=3), c=c(i=4, j=5, k=6)))

Warning in (function (..., deparse.level = 1) : number of rows of result

is not a multiple of vector length (arg 2)

a b c

i 1 2 4

j 1 3 5

k 1 2 6

Example 11.4 Consider a toy named list of numeric vectors:

x <- list(a=runif(10), b=rnorm(15))

Compare the results generated by sapply (which calls simplify2array):

230 II DEEPER

sapply(x, function(e) c(Mean=mean(e)))

a.Mean b.Mean

0.57825 0.12431

sapply(x, function(e) c(Min=min(e), Max=max(e)))

a b

Min 0.045556 -1.9666

Max 0.940467 1.7869

with its version based on do.call and cbind:

sapply2 <- function(...)

do.call(cbind, lapply(...))

sapply2(x, function(e) c(Mean=mean(e)))

a b

Mean 0.57825 0.12431

sapply2(x, function(e) c(Min=min(e), Max=max(e)))

a b

Min 0.045556 -1.9666

Max 0.940467 1.7869

Notice that sapplymay return an atomic vector with somewhat surprising names.

See Section 12.3.7 for a fewmore examples.

11.1.4 Beyond numeric arrays
Arrays based on non-numeric vectors are also possible. For instance, we will later
stress that matrix comparisons are performed elementwisely. They spawn logical
matrices:

A >= 3

[,1] [,2] [,3]

[1,] FALSE FALSE TRUE

[2,] TRUE TRUE TRUE

Matrices of character strings can be useful too:

matrix(strrep(LETTERS[1:6], 1:6), ncol=3)

[,1] [,2] [,3]

[1,] "A" "CCC" "EEEEE"

[2,] "BB" "DDDD" "FFFFFF"

And, of course, complex matrices:

A + 1i

[,1] [,2] [,3]
(continues on next page)

11 MATRICES AND OTHER ARRAYS 231

(continued from previous page)

[1,] 1+1i 2+1i 3+1i

[2,] 4+1i 5+1i 6+1i

We are not limited to atomic vectors. Lists can be a basis for arrays as well:

matrix(list(1, 11:21, "A", list(1, 2, 3)), nrow=2)

[,1] [,2]

[1,] 1 "A"

[2,] integer,11 list,3

Certain elements are not displayed correctly, but they are still there.

11.1.5 Internal representation
An object of the S3 class array is an atomic vector or a list equipped with the dims at-
tribute being a vector of nonnegative integers. Interestingly, we do not have to set
the class attribute explicitly: the accessor function classwill return an implicit1 class
anyway.

class(1) # atomic vector

[1] "numeric"

class(structure(1, dim=rep(1, 1))) # 1D array (vector)

[1] "array"

class(structure(1, dim=rep(1, 2))) # 2D array (matrix)

[1] "matrix" "array"

class(structure(1, dim=rep(1, 3))) # 3D array

[1] "array"

Note that a two-dimensional array is additionally of the matrix class.

Optional dimension names are represented bymeans of the dimnames attribute, which
is a list of 𝑑 character vectors, where 𝑑 is the array’s dimensionality.

(A <- structure(1:6, dim=c(2, 3), dimnames=list(letters[1:2], LETTERS[1:3])))

A B C

a 1 3 5

b 2 4 6

dim(A) # or attr(A, "dim")

[1] 2 3

dimnames(A) # or attr(A, "dimnames")

[[1]]

[1] "a" "b"

##

(continues on next page)

1 See Section 10.1. Interestingly, calling unclass on amatrix has no effect.

232 II DEEPER

(continued from previous page)

[[2]]

[1] "A" "B" "C"

Important Internally, elements in an array are stored in the column-major (Fortran)
order:

as.numeric(A) # drop all attributes to reveal the underlying numeric vector

[1] 1 2 3 4 5 6

Setting byrow=TRUE in a call to the matrix function only affects the order in which this
constructor reads a given source vector, not the resulting column/row-majorness.

(B <- matrix(1:6, ncol=3, byrow=TRUE))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

as.numeric(B)

[1] 1 4 2 5 3 6

The two said special attributes can be modified through the replacement functions
`dim<-` and `dimnames<-` (and, of course, `attr<-` as well). In particular, changing
dimdoes not alter the underlying atomic vector. It only affects howother functions, in-
cluding the corresponding printmethod, interpret their placement on a virtual grid:

`dim<-`(A, c(3, 2)) # not the same as the transpose of `A`

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

We obtained a different view of the same flat data vector. Also, the dimnames attribute
was dropped because its size became incompatible with the newly requested dimen-
sionality.

Exercise 11.5 Study the source code of the nrow, NROW, ncol, NCOL, rownames, row.names, and
colnames functions.

Interestingly, for one-dimensional arrays, the names function returns a reasonable
value (based on the dimnames attribute, which is a list with one character vector), des-
pite the names attribute’s not being set.

What is more, the dimnames attribute itself can be named:

names(dimnames(A)) <- c("ROWS", "COLUMNS")

print(A)

(continues on next page)

11 MATRICES AND OTHER ARRAYS 233

(continued from previous page)

COLUMNS

ROWS A B C

a 1 3 5

b 2 4 6

It is still a numeric matrix, but its presentation has been slightly prettified.

Exercise 11.6 outerapplies an elementwisely vectorised function on eachpair of elements from
two vectors, forming a two-dimensional result grid. Implement it yourself based on two calls to
rep. Some examples:

outer(c(x=1, y=10, z=100), c(a=1, b=2, c=3, d=4), "*") # multiplication

a b c d

x 1 2 3 4

y 10 20 30 40

z 100 200 300 400

outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"

[2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"

Exercise 11.7 Show how match(y, z) can be implemented using outer. Is its time and
memory complexity optimal, though?

Exercise 11.8 table creates a contingencymatrix/array that counts the number of unique ele-
ments or unique pairs of corresponding items from one ormore vectors of equal lengths.Write its
one- and two-argument version based on tabulate. For example:

tips <- read.csv(paste0("https://github.com/gagolews/teaching-data/raw/",

"master/other/tips.csv"), comment.char="#") # a data.frame (list)

table(tips[["day"]])

##

Fri Sat Sun Thur

19 87 76 62

table(tips[["smoker"]], tips[["day"]])

##

Fri Sat Sun Thur

No 4 45 57 45

Yes 15 42 19 17

234 II DEEPER

11.2 Array indexing
Array subsetting can be performed bymeans of the overloaded2 `[` method.

11.2.1 Arrays are built on basic vectors
Consider the two following example matrices:

(A <- matrix(1:12, byrow=TRUE, nrow=3))

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

(B <- `dimnames<-`(A, list(# copy of `A` with `dimnames` set

c("a", "b", "c"), # row labels

c("x", "y", "z", "w") # column labels

)))

x y z w

a 1 2 3 4

b 5 6 7 8

c 9 10 11 12

Subsetting based on one indexer (as in Chapter 5) will refer to the underlying flat vec-
tor. For instance:

A[6]

[1] 10

It is the element in the third row, second column. Recall that values are stored in the
column-major order.

11.2.2 Selecting individual elements
Our example 3 × 4 real matrix𝐀 ∈ ℝ3×4 is like:

𝐀 = ⎡⎢⎢
⎣

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12

⎤⎥⎥
⎦

.

Matrix elements are aligned in a two-dimensional grid. Hence, we can pinpoint a cell
using two indexes. In mathematical notation, 𝑎𝑖,𝑗 refers to the 𝑖-th row and the 𝑗-th
column. Similarly in R:

2 Hidden deeply at the C language level; see help("[").

11 MATRICES AND OTHER ARRAYS 235

A[3, 2] # the third row, the second column

[1] 10

B["c", "y"] # using dimnames == B[3, 2]

[1] 10

11.2.3 Selecting rows and columns
Some textbooks, and we are fond of this notation here as well, mark with 𝐚𝑖,⋅ a vector
that consists of all the elements in the 𝑖-th rowandwith𝐚⋅,𝑗 all items in the 𝑗-th column.
In R, this corresponds to one of the indexers being left out.

A[3,] # the third row

[1] 9 10 11 12

A[, 2] # the second column

[1] 2 6 10

B["c",] # or B[3,]

x y z w

9 10 11 12

B[, "y"] # or B[, 2]

a b c

2 6 10

Let us stress that A[1], A[1,], and A[, 1] have different meanings. Also, we see that
the results’ dimnames are adjusted accordingly; see also unname, which can take care of
them once and for all.

Exercise 11.9 Use duplicated to remove repeating rows in a given numeric matrix (see also
unique).

11.2.4 Dropping dimensions
Extracting an individual element or a single row/column from a matrix brings about
an atomic vector. If the resulting object’s dim attribute consists of 1s only, it will be
removed whatsoever; see also the drop function which removes the dimensions with
only one level.

In order to obtain proper row and column vectors, we can request the preservation of
the dimensionality of the output object (and, more precisely, the length of dim). This
can be done by passing drop=FALSE to `[`.

A[1, 2, drop=FALSE] # the first row, second column

[,1]

[1,] 2

A[1, , drop=FALSE] # the first row

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

(continues on next page)

236 II DEEPER

(continued from previous page)

A[, 2, drop=FALSE] # the second column

[,1]

[1,] 2

[2,] 6

[3,] 10

Important Unfortunately, the drop argument defaults to TRUE. Many bugs could be
avoided otherwise, primarily when the indexers are generated programmatically.

Note For list-based matrices, we can also use a multi-argument version of `[[` to
extract the individual elements.

C <- matrix(list(1, 11:12, 21:23, 31:34), nrow=2)

C[1, 2] # for `[`, input type is the same as the output type, hence a list

[[1]]

[1] 21 22 23

C[1, 2, drop=FALSE]

[,1]

[1,] integer,3

C[[1, 2]] # extract

[1] 21 22 23

11.2.5 Selecting submatrices
Indexing based on two vectors, both of length two or more, extracts a sub-block of a
givenmatrix.

A[1:2, c(1, 2, 4)] # rows 1 and 2, columns 1, 2, and 4

[,1] [,2] [,3]

[1,] 1 2 4

[2,] 5 6 8

B[c("a", "b"), -3] # some rows, omit the third column

x y w

a 1 2 4

b 5 6 8

Note again that we have drop=TRUE by default, which affects the operator’s behaviour
if one of the indexers is a scalar.

A[c(1, 3), 3]

[1] 3 11

(continues on next page)

11 MATRICES AND OTHER ARRAYS 237

(continued from previous page)

A[c(1, 3), 3, drop=FALSE]

[,1]

[1,] 3

[2,] 11

Exercise 11.10 Define the split method for the matrix class that returns a list of 𝑛 matrices
when given a matrix with 𝑛 rows and an object of the class factor of length 𝑛 (or a list of such
objects). For example:

split.matrix <- ...to.do...

A <- matrix(1:12, nrow=3) # matrix whose rows are to be split

s <- factor(c("a", "b", "a")) # determines a grouping of rows

split(A, s)

$a

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 3 6 9 12

##

$b

[,1] [,2] [,3] [,4]

[1,] 2 5 8 11

11.2.6 Selecting elements based on logical vectors
Logical vectors can also be used as indexers, with consequences that are not hard to
guess:

A[c(TRUE, FALSE, TRUE), -1] # select 1st and 3rd row, omit 1st column

[,1] [,2] [,3]

[1,] 4 7 10

[2,] 6 9 12

B[B[, "x"]>1 & B[, "x"]<=9,] # all rows where x's contents are in (1, 9]

x y z w

b 5 6 7 8

c 9 10 11 12

A[2, colMeans(A)>6, drop=FALSE] # 2nd row and the columns whose means > 6

[,1] [,2]

[1,] 8 11

Note Section 11.3 notes that comparisons involvingmatrices are performed in an ele-
mentwise manner. For example:

A>7

[,1] [,2] [,3] [,4]
(continues on next page)

238 II DEEPER

(continued from previous page)

[1,] FALSE FALSE FALSE TRUE

[2,] FALSE FALSE TRUE TRUE

[3,] FALSE FALSE TRUE TRUE

Such logical matrices can be used to subset other matrices of the same size.This kind
of indexing always gives rise to a (flat) vector:

A[A>7]

[1] 8 9 10 11 12

It is nothing else than the single-indexer subsetting involving two flat vectors (a nu-
meric and a logical one).The dim attributes are not considered here.

Exercise 11.11 Implement your versions of max.col, lower.tri, and upper.tri.

11.2.7 Selecting based on two-columnnumericmatrices
We can also index a matrix A by a two-column matrix of positive integers I. For in-
stance:

(I <- cbind(

c(1, 3, 2, 1, 2),

c(2, 3, 2, 2, 4)

))

[,1] [,2]

[1,] 1 2

[2,] 3 3

[3,] 2 2

[4,] 1 2

[5,] 2 4

Now A[I] gives easy access to:

• A[I[1, 1], I[1, 2]],

• A[I[2, 1], I[2, 2]],

• A[I[3, 1], I[3, 2]],

• …

and so forth. In other words, each row of I gives the coordinates of the elements to
extract.The result is always a flat vector.

A[I]

[1] 4 9 5 4 11

This is exactly A[1, 2], A[3, 3], A[2, 2], A[1, 2], A[2, 4].

11 MATRICES AND OTHER ARRAYS 239

Note which can also return a list of index matrices:

which(A>7, arr.ind=TRUE)

row col

[1,] 2 3

[2,] 3 3

[3,] 1 4

[4,] 2 4

[5,] 3 4

Moreover, arrayInd converts flat indexes to multidimensional ones.

Exercise 11.12 Implement your version of arrayInd and a function performing the inverse op-
eration.

Exercise 11.13 Write your version of diag.

11.2.8 Higher-dimensional arrays
For 𝑑-dimensional arrays, indexing can involve up to 𝑑 indexes. It is particularly valu-
able for arrays with the dimnames attribute set representing contingency tables over a
Cartesian product of multiple factors. The datasets::Titanic object is an exemplary
four-dimensional table:

str(dimnames(Titanic)) # for reference (note that dimnames are named)

List of 4

$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"

$ Sex : chr [1:2] "Male" "Female"

$ Age : chr [1:2] "Child" "Adult"

$ Survived: chr [1:2] "No" "Yes"

Here is the number of adult male crewmembers who survived the accident:

Titanic["Crew", "Male", "Adult", "Yes"]

[1] 192

Moreover, let us fetch a slice corresponding to adults travelling in the premium class:

Titanic["1st", , "Adult",]

Survived

Sex No Yes

Male 118 57

Female 4 140

Exercise 11.14 Check if the above four-dimensional array can be indexed using matrices with
four columns.

240 II DEEPER

11.2.9 Replacing elements
Generally, subsetting drops all attributes except names, dim, and dimnames (unless it
does notmake sense otherwise).The replacement variant of the index operatormodi-
fies vector values but generally preserves all the attributes.This enables transforming
matrix elements like:

B[B<10] <- A[B<10]^2 # `A` has no `dimnames` set

print(B)

x y z w

a 1 16 49 100

b 4 25 64 121

c 9 10 11 12

B[] <- rep(seq_len(NROW(B)), NCOL(B)) # NOT the same as B <- ...

print(B) # `dim` and `dimnames` were preserved

x y z w

a 1 1 1 1

b 2 2 2 2

c 3 3 3 3

Exercise 11.15 Given a character matrix with entities that can be interpreted as numbers like:

(X <- rbind(x=c(a="1", b="2"), y=c("3", "4")))

a b

x "1" "2"

y "3" "4"

convert it to a numeric matrix with a single line of code. Preserve all attributes.

11.3 Common operations
11.3.1 Matrix transpose
Thematrix transpose, mathematically denoted with𝐀𝑇, is available via a call to t:

(A <- matrix(1:6, byrow=TRUE, nrow=2))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

t(A)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

11 MATRICES AND OTHER ARRAYS 241

Hence, if 𝐁 = 𝐀𝑇, then it is a matrix such that 𝑏𝑖,𝑗 = 𝑎𝑗,𝑖. In other words, in the
transposedmatrix, rows become columns, and columns become rows.

Forhigher-dimensional arrays, ageneralised transpose canbeobtained through aperm
(try permuting thedimensions of Titanic). Also, the conjugate transpose of a complex
matrix𝐀 is done via Conj(t(A)).

11.3.2 Vectorisedmathematical functions
Vectorised functions such as sqrt, abs, round, log, exp, cos, sin, etc., operate on each
array element3.

A <- matrix(1/(1:6), nrow=2)

round(A, 2) # rounds every element in A

[,1] [,2] [,3]

[1,] 1.0 0.33 0.20

[2,] 0.5 0.25 0.17

Exercise 11.16 Usingasingle call tomatplot,whichallows theyargument tobeamatrix, draw
a plot of sin(𝑥), cos(𝑥), | sin(𝑥)|, and | cos(𝑥)| for 𝑥 ∈ [−2𝜋, 6𝜋]; see Section 13.3 for more
details.

11.3.3 Aggregating rows and columns
Whenwe call an aggregation functiononanarray, itwill reduce all elements to a single
number:

(A <- matrix(1:12, byrow=TRUE, nrow=3))

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

mean(A)

[1] 6.5

The apply functionmay be used to summarise individual rows or columns in amatrix:

• apply(A, 1, f) applies a given function f on each row of a matrix A (over the first
axis),

• apply(A, 2, f) applies f on each column of A (over the second axis).

For instance:

apply(A, 1, mean) # synonym: rowMeans(A)

[1] 2.5 6.5 10.5

(continues on next page)

3Theyare simply appliedoneach element of theunderlying flat vector. Section 5.5mentioned that unary
functions preserve all attributes of their inputs, hence also dim and dimnames.

242 II DEEPER

(continued from previous page)

apply(A, 2, mean) # synonym: colMeans(A)

[1] 5 6 7 8

The function being applied does not have to return a single number:

apply(A, 2, range) # min and max

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 9 10 11 12

apply(A, 1, function(row) c(Min=min(row), Mean=mean(row), Max=max(row)))

[,1] [,2] [,3]

Min 1.0 5.0 9.0

Mean 2.5 6.5 10.5

Max 4.0 8.0 12.0

Take note of the columnwise order of the output values.

apply also works on higher-dimensional arrays:

apply(Titanic, 1, mean) # over the first axis, "Class" (dimnames work too)

1st 2nd 3rd Crew

40.625 35.625 88.250 110.625

apply(Titanic, c(1, 3), mean) # over c("Class", "Age")

Age

Class Child Adult

1st 1.50 79.75

2nd 6.00 65.25

3rd 19.75 156.75

Crew 0.00 221.25

11.3.4 Binary operators
In Section 5.5,we stated that binary elementwise operations, such as addition ormul-
tiplication, preserve the attributes of the longer input or both (with the first argument
preferred to the second) if they are of equal sizes. Taking into account that:

• an array is simply a flat vector equipped with the dim attribute, and

• we refer to the respective defaultmethods when applying binary operators,

we can deduce how `+`, `<=`, `&`, etc. behave in several different contexts.

Array-array. First, let us note what happens when we operate on two arrays of
identical dimensionalities.

11 MATRICES AND OTHER ARRAYS 243

(A <- rbind(c(1, 10, 100), c(-1, -10, -100)))

[,1] [,2] [,3]

[1,] 1 10 100

[2,] -1 -10 -100

(B <- matrix(1:6, byrow=TRUE, nrow=2))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

A + B # elementwise addition

[,1] [,2] [,3]

[1,] 2 12 103

[2,] 3 -5 -94

A * B # elementwise multiplication (not: algebraic matrix multiply)

[,1] [,2] [,3]

[1,] 1 20 300

[2,] -4 -50 -600

They are simply the addition andmultiplication of the corresponding elements of two
givenmatrices.

Array-scalar. Second, we can apply matrix-scalar operations:

(-1)*B

[,1] [,2] [,3]

[1,] -1 -2 -3

[2,] -4 -5 -6

A^2

[,1] [,2] [,3]

[1,] 1 100 10000

[2,] 1 100 10000

Theymultiplied each element in B by -1 and squared every element in A, respectively.

The behaviour of relational operators is of course similar:

A >= 1 & A <= 100

[,1] [,2] [,3]

[1,] TRUE TRUE TRUE

[2,] FALSE FALSE FALSE

Array-vector. Next, based on the recycling rule and the fact that matrix elements are
ordered columnwisely, we have that:

B * c(10, 100)

[,1] [,2] [,3]

(continues on next page)

244 II DEEPER

(continued from previous page)

[1,] 10 20 30

[2,] 400 500 600

It multiplied every element in the first row by 10 and each element in the second row
by 100.

If we wish to multiply each element in the first, second, …, etc. column by the first,
second, …, etc. value in a vector, we should not call:

B * c(1, 100, 1000)

[,1] [,2] [,3]

[1,] 1 2000 300

[2,] 400 5 6000

but rather:

t(t(B) * c(1, 100, 1000))

[,1] [,2] [,3]

[1,] 1 200 3000

[2,] 4 500 6000

or:

t(apply(B, 1, `*`, c(1, 100, 1000)))

[,1] [,2] [,3]

[1,] 1 200 3000

[2,] 4 500 6000

Exercise 11.17 Write a function that standardises the values in each column of a givenmatrix:
for all elements in each column, subtract their mean and then divide them by the standard devi-
ation. Try to implement it in a few different ways, including via a call to apply, sweep, scale, or
based solely on arithmetic operators.

Note Some sanity checks are done on the dim attributes, so not every configuration is
possible. Notice the following peculiarities:

A + t(B) # `dim` equal to c(2, 3) vs c(3, 2)

Error in A + t(B): non-conformable arrays

A * cbind(1, 10, 100) # this is too good to be true

Error in A * cbind(1, 10, 100): non-conformable arrays

A * rbind(1, 10) # but A * c(1, 10) works...

Error in A * rbind(1, 10): non-conformable arrays

A + 1:12 # `A` has six elements

Error in eval(expr, envir, enclos): dims [product 6] do not match the

length of object [12]

(continues on next page)

11 MATRICES AND OTHER ARRAYS 245

(continued from previous page)

A + 1:5 # partial recycling is okay

Warning in A + 1:5: longer object length is not a multiple of shorter

object length

[,1] [,2] [,3]

[1,] 2 13 105

[2,] 1 -6 -99

11.4 Numericalmatrix algebra (*)
Many data analysis andmachine learning algorithms, in their essence, involve rather
straightforwardmatrix algebra andnumericalmathematics. Suffice it to say that any-
one serious about data science and scientific computing should learn the necessary
theory; see, for example, [30] and [31].

R is a convenient interface to the stable and well-tested algorithms from, amongst
others, LAPACK and BLAS4. Below wemention a few of them. External packages imple-
ment hundreds of algorithms tackling differential equations, constrained and uncon-
strained optimisation, etc.; CRAN Task Views5 provide a good overview.

11.4.1 Matrixmultiplication
`*` performs elementwisemultiplication. For what we call the (algebraic) matrix mul-
tiplication, we use the `%*%` operator. It can only be performed on two matrices of
compatible sizes: the number of columns in the left matrix must match the number of
rows in the right operand.

Given 𝐀 ∈ ℝ𝑛×𝑝 and 𝐁 ∈ ℝ𝑝×𝑚, their multiply is a matrix 𝐂 = 𝐀𝐁 ∈ ℝ𝑛×𝑚 such
that 𝑐𝑖,𝑗 is the dot product of the 𝑖-th row in𝐀 and the 𝑗-th column in𝐁:

𝑐𝑖,𝑗 = 𝐚𝑖,⋅ ⋅ 𝐛⋅,𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗,

for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚. For instance:

(A <- rbind(c(0, 1, 3), c(-1, 1, -2)))

[,1] [,2] [,3]

[1,] 0 1 3

[2,] -1 1 -2

(continues on next page)

4 (*) We can select the underlying implementation of BLAS at R’s compile time; see Section A.3 of [65].
Some of them are faster than others.

5 https://cran.r-project.org/web/views

https://cran.r-project.org/web/views

246 II DEEPER

(continued from previous page)

(B <- rbind(c(3, -1), c(1, 2), c(6, 1)))

[,1] [,2]

[1,] 3 -1

[2,] 1 2

[3,] 6 1

A %*% B

[,1] [,2]

[1,] 19 5

[2,] -14 1

Note When applying `%*%` on one or more flat vectors, their dimensionality will be
promoted automatically to make the operation possible. However, c(a, b) %*% c(c,

d) gives a scalar 𝑎𝑐 + 𝑏𝑑, and not a 2 × 2matrix.

Further, crossprod(A, B) yields 𝐀𝑇𝐁 and tcrossprod(A, B) determines 𝐀𝐁𝑇 more
efficiently than relying on `%*%`. We can omit the second argument and get𝐀𝑇𝐀 and
𝐀𝐀𝑇, respectively.

crossprod(c(2, 1)) # Euclidean norm squared

[,1]

[1,] 5

crossprod(c(2, 1), c(-1, 2)) # dot product of two vectors

[,1]

[1,] 0

crossprod(A) # same as t(A) %*% A, i.e., dot products of all column pairs

[,1] [,2] [,3]

[1,] 1 -1 2

[2,] -1 2 1

[3,] 2 1 13

Recall that if the dot product of two vectors equals 0, we say that they are orthogonal
(perpendicular).

Exercise 11.18 (*)Write your versions of cov and cor: functions to compute the covariance and
correlation matrices. Make use of the fact that the former can be determined with crossprod

based on a centred version of an input matrix.

11.4.2 Solving systems of linear equations
The solve function can be used to determine the solution to 𝑚 systems of 𝑛 linear
equations of the form 𝐀𝐗 = 𝐁, where 𝐀 ∈ ℝ𝑛×𝑛 and 𝐗,𝐁 ∈ ℝ𝑛×𝑚 (via the LU
decomposition with partial pivoting and row interchanges).

11 MATRICES AND OTHER ARRAYS 247

11.4.3 Norms andmetrics
Given an 𝑛 × 𝑚matrix 𝐀, calling norm(A, "1"), norm(A, "2"), and norm(A, "I"), we
can compute the operator norms:

‖𝐀‖1 = max𝑗=1,…,𝑚 ∑𝑛
𝑖=1 |𝑎𝑖,𝑗|,

‖𝐀‖2 = 𝜎1(𝐀) = sup𝟎≠𝐱∈ℝ𝑚
‖𝐀𝐱‖2
‖𝐱‖2

‖𝐀‖𝐼 = max𝑖=1,…,𝑛 ∑𝑚
𝑗=1 |𝑎𝑖,𝑗|,

where 𝜎1 gives the largest singular value (see below).

Also, passing "F" as the second argument yields the Frobenius norm, ‖𝐀‖𝐹 =
√∑𝑛

𝑖=1 ∑𝑚
𝑗=1 𝑎2

𝑖,𝑗, and "M" computes the maximum norm, ‖𝐀‖𝑀 = max 𝑖=1,…,𝑛
𝑗=1,…,𝑚

|𝑎𝑖,𝑗|.

If 𝐀 is a column vector, then ‖𝐀‖𝐹 and ‖𝐀‖2 are equivalent. They are referred to as
the Euclidean norm. Moreover, ‖𝐀‖𝑀 = ‖𝐀‖𝐼 gives the supremum norm and ‖𝐀‖1
outputs the Manhattan (taxicab) one.

Exercise 11.19 Givenan𝑛×𝑚matrix𝐀, normalise eachcolumnso that it becomesaunit vector,
i.e., whose Euclidean norm equals 1.

Further, distdetermines all pairwise distances between a set of𝑛 vectors inℝ𝑚,writ-
ten as an 𝑛 × 𝑚matrix. For example, let us consider three vectors inℝ2:

(X <- rbind(c(1, 1), c(1, -2), c(0, 0)))

[,1] [,2]

[1,] 1 1

[2,] 1 -2

[3,] 0 0

as.matrix(dist(X, "euclidean"))

1 2 3

1 0.0000 3.0000 1.4142

2 3.0000 0.0000 2.2361

3 1.4142 2.2361 0.0000

Thus, the Euclidean distance between the first and the third vector, ‖𝐱1,⋅ − 𝐱3,⋅‖2 =
√(𝑥1,1 − 𝑥3,1)2 + (𝑥1,2 − 𝑥3,2)2, is roughly 1.41421. The maximum, Manhattan, and
Canberra distances/metrics are also available, amongst others.

Exercise 11.20 dist returns an object of the S3 class dist. Inspect how it is represented.

Example 11.21 adist implements a couple of stringmetrics. For example:

x <- c("spam", "bacon", "eggs", "spa", "spams", "legs")

names(x) <- x

(d <- adist(x))

spam bacon eggs spa spams legs

spam 0 5 4 1 1 4

bacon 5 0 5 5 5 5

(continues on next page)

248 II DEEPER

(continued from previous page)

eggs 4 5 0 4 4 2

spa 1 5 4 0 2 4

spams 1 5 4 2 0 4

legs 4 5 2 4 4 0

It gave the Levenshtein distances between each pair of strings. In particular, we need two edit
operations (character insertions, deletions, or replacements) to turn "eggs" into "legs" (add l
and remove g).

Example 11.22 Objects of the class dist can be used to find a hierarchical clustering of a data-
set. For example:

h <- hclust(as.dist(d), method="average") # see also: plot(h, labels=x)

cutree(h, 3)

spam bacon eggs spa spams legs

1 2 3 1 1 3

It determined three clusters using the average linkage strategy ("legs" and "eggs" are grouped
together, "spam", "spa", "spams" form another cluster, and "bacon" is a singleton).

11.4.4 Eigenvalues and eigenvectors
eigen returnsa sequenceof eigenvalues (𝜆1, … , 𝜆𝑛)orderednondecreasinglyw.r.t. |𝜆𝑖|,
and a matrix 𝐕 whose columns define the corresponding eigenvectors (scaled to the
unit length) of a givenmatrix𝐗. By definition, for all 𝑗, it holds that𝐗𝐯⋅,𝑗 = 𝜆𝑗𝐯⋅,𝑗.

Example 11.23 (*) Here are the eigenvalues and the corresponding eigenvectors of the matrix
defining the rotation in the xy-plane about the origin (0, 0) by the counterclockwise angle𝜋/6:

(R <- rbind(c(cos(pi/6), sin(pi/6)),

c(-sin(pi/6), cos(pi/6))))

[,1] [,2]

[1,] 0.86603 0.50000

[2,] -0.50000 0.86603

eigen(R)

eigen() decomposition

$values

[1] 0.86603+0.5i 0.86603-0.5i

##

$vectors

[,1] [,2]

[1,] 0.70711+0.00000i 0.70711+0.00000i

[2,] 0.00000+0.70711i 0.00000-0.70711i

The complex eigenvalues are 𝑒−𝜋/6𝑖 and 𝑒𝜋/6𝑖 and we have |𝑒−𝜋/6𝑖| = |𝑒𝜋/6𝑖| = 1.
Example 11.24 (*) Consider a pseudorandom sample that we depict in Figure 11.1:

11 MATRICES AND OTHER ARRAYS 249

S <- rbind(c(sqrt(5), 0),

c(0 , sqrt(2)))

mu <- c(10, -3)

Z <- matrix(rnorm(2000), ncol=2) # each row is a standard normal 2-vector

X <- t(t(Z %*% S %*% R)+mu) # scale, rotate, shift

plot(X, asp=1) # scatter plot

draw principal axes:

A <- t(t(matrix(c(0,0, 1,0, 0,1), ncol=2, byrow=TRUE) %*% S %*% R)+mu)

arrows(A[1, 1], A[1, 2], A[-1, 1], A[-1, 2], col="red", lwd=1, length=0.1)

0 5 10 15 20

-8
-6

-4
-2

0
2

X[,1]

X[
,2

]

Figure 11.1. A sample from a bivariate normal distribution and its principal axes.

𝐗was created by generating a realisation of a two-dimensional standard normal vector𝐙, scal-
ing it by (√5, √2), rotating by the counterclockwise angle 𝜋/6, and shifting by (10, −3),
which we denote with 𝐗 = 𝐙𝐒𝐑 + 𝝁𝑇. It can be shown that 𝐗 follows a bivariate6 normal
distribution centred at𝝁 = (10, −3) and with the covariance matrix𝜮 = (𝐒𝐑)𝑇(𝐒𝐑):

crossprod(S %*% R) # covariance matrix

[,1] [,2]

[1,] 4.250 1.299

[2,] 1.299 2.750

cov(X) # compare: sample covariance matrix (estimator)

[,1] [,2]

[1,] 4.1965 1.2386

[2,] 1.2386 2.7973

6 For drawing random samples from any multivariate distribution, refer to the theory of copulas, e.g.,
[49].There are a few R packages on CRAN that implement the most popular models.

250 II DEEPER

It is known that eigenvectors of the covariance matrix correspond to the principal components of
the original dataset. Furthermore, its eigenvalues give the variances explained by each of them.

eigen(cov(X))

eigen() decomposition

$values

[1] 4.9195 2.0744

##

$vectors

[,1] [,2]

[1,] -0.86366 0.50408

[2,] -0.50408 -0.86366

It roughly corresponds to the principal directions (cos𝜋/6, sin𝜋/6) ≃ (0.866, 0.5) and
the thereto-orthogonal (− sin𝜋/6, cos𝜋/6) ≃ (−0.5, 0.866) (up to an orientation inverse)
with the corresponding variances of 5 and 2 (i.e., standard deviations of √5 and √2), respect-
ively.Note that thismethod of performingprincipal component analysis, i.e., recreating the scale
androtation transformationappliedon𝐙basedonlyon𝐗, isnotparticularlynumerically stable;
see below for an alternative.

11.4.5 QR decomposition
We say that a real 𝑛 × 𝑚matrix𝐐, 𝑛 ≥ 𝑚, is orthogonal, whenever𝐐𝑇𝐐 = 𝐈 (identity
matrix). This is equivalent to𝐐’s columns’ being orthogonal unit vectors. Also, if𝐐 is
a square matrix, then𝐐𝑇 = 𝐐−1 if and only if𝐐𝑇𝐐 = 𝐐𝐐𝑇 = 𝐈.
Let 𝐀 be a real7 𝑛 × 𝑚 matrix with 𝑛 ≥ 𝑚. Then 𝐀 = 𝐐𝐑 is its QR decomposition
(in the so-called narrow form), if𝐐 is an orthogonal 𝑛 × 𝑚matrix and 𝐑 is an upper
triangular𝑚 × 𝑚 one.

The qr function returns an object of the S3 class qr fromwhich we can extract the two
components; see the qr.Q and qr.R functions.

Example 11.25 Let 𝐗 be an 𝑛 × 𝑚 data matrix, representing 𝑛 points in ℝ𝑚, and a vector
𝐲 ∈ ℝ𝑛 of the desired outputs corresponding to each input. For fitting a linear model 𝐱𝑇𝜽,
where𝜽 is a vector of𝑚 parameters, we can use the method of least squares, whichminimises:

ℒ(𝜽) =
𝑛

∑
𝑖=1

(𝐱𝑇
𝑖,⋅𝜽 − 𝑦𝑖)

2
= ‖𝐗𝜽 − 𝐲‖2

2.

It might be shown that if 𝐗 = 𝐐𝐑, then 𝜽 = (𝐗𝑇𝐗)−1 𝐗𝑇𝐲 = 𝐑−1𝐐𝑇𝐲, which can
conveniently be determined via a call to qr.coef.

In particular, we can fit a simple linear regressionmodel𝑦 = 𝑎𝑥 + 𝑏 by considering𝐗 = (𝑥, 1)
and𝜽 = (𝑎, 𝑏). For instance (see Figure 11.2):

7 If𝐀 is a complex matrix, its QR decomposition spawns𝐐 that is a unitary matrix.

11 MATRICES AND OTHER ARRAYS 251

x <- cars[["speed"]]

y <- cars[["dist"]]

X1 <- cbind(x, 1) # the model is theta[1]*x + theta[2]*1

qrX1 <- qr(X1)

(theta <- solve(qr.R(qrX1)) %*% t(qr.Q(qrX1)) %*% y) # or: qr.coef(qrX1, y)

[,1]

x 3.9324

-17.5791

plot(x, y, xlab="speed", ylab="dist") # scatter plot

abline(theta[2], theta[1], lty=2) # add the regression line

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Figure 11.2.The cars dataset and the fitted regression line.

solve with one argument determines the inverse of a given matrix. The fitted model is 𝑦 =
3.93241𝑥 − 17.5791.
The same approach is used by lm.fit, the workhorse behind the lmmethod accepting an R for-
mula (which some readers might be familiar with; compare Section 17.6).

lm.fit(cbind(x, 1), y)[["coefficients"]] # also: lm(dist~speed, data=cars)

x

3.9324 -17.5791

11.4.6 SVD decomposition
Given a real 𝑛 × 𝑚matrix 𝐗, its singular value decomposition (SVD) is given by 𝐗 =
𝐔𝐃𝐕𝑇, where𝐃 is a 𝑝 × 𝑝 diagonal matrix (with the singular values of𝐗, 𝑑1,1 ≥ … ≥

252 II DEEPER

𝑑𝑝,𝑝 ≥ 0, 𝑝 = min{𝑛, 𝑚}), and𝐔 and𝐕 are orthogonal matrices of dimensions 𝑛 × 𝑝
and𝑚 × 𝑝, respectively.
svd may not only be used to determine the solution to linear regression8 but also to
perform theprincipal component analysis9.Namely,𝐕gives the eigenvectors of𝐗𝑇𝐗.
Assuming that𝐗 is centred at 0, the latter is precisely its scaled covariance matrix.
Example 11.26 (*) Continuing the example featuring a bivariate normal sample, we can de-
termine the principal directions also by calling:

Xc <- t(t(X)-colMeans(X)) # centred version of X

svd(Xc)[["v"]]

[,1] [,2]

[1,] -0.86366 -0.50408

[2,] -0.50408 0.86366

11.4.7 A note on the Matrix package
The Matrix package is perhaps the most widely known showcase of the S4 object ori-
entation (Section 10.5). It defines classes andmethods for dense and sparsematrices,
including rectangular, symmetric, triangular, band, and diagonal ones.

For instance, large graph (e.g., in network sciences) or preference (e.g., in recom-
mender systems) data can be represented using sparsematrices, i.e., thosewithmany
zeroes. After all, it ismuchmore likely for two vertices in a network not to be joined by
an edge than to be connected. For example:

library("Matrix")

(D <- Diagonal(x=1:5))

5 x 5 diagonal matrix of class "ddiMatrix"

[,1] [,2] [,3] [,4] [,5]

[1,] 1

[2,] . 2 . . .

[3,] . . 3 . .

[4,] . . . 4 .

[5,] 5

We created a real diagonal matrix of size 5 × 5; 20 elements equal to zero are specially
marked. Moreover:

S <- as(D, "sparseMatrix")

S[1, 2] <- 7

S[4, 1] <- 42

print(S)

(continues on next page)

8 As the pseudoinverse 𝐗+ = (𝐗𝑇𝐗)−1 𝐗𝑇 = 𝐕𝐃+𝐔𝑇 = 𝐑−1𝐐𝑇 , with 𝐗+𝐗 = 𝐈. Here, 𝐃+ is a
transposed version of𝐃 carrying the reciprocals of its non-zero elements.

9 See the source code of getS3method("prcomp", "default").

11 MATRICES AND OTHER ARRAYS 253

(continued from previous page)

5 x 5 sparse Matrix of class "dgCMatrix"

##

[1,] 1 7 . . .

[2,] . 2 . . .

[3,] . . 3 . .

[4,] 42 . . 4 .

[5,] 5

It yielded a general sparse real matrix in the CSC (compressed, sparse, column-
orientated) format.

For more information on this package, see vignette(package="Matrix").

11.5 Exercises
Exercise 11.27 Let X be amatrix with dimnames set. For instance:

X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix

dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names

print(X)

a b c d

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

Explain the meaning of the following expressions involving matrix subsetting. Note that a few
of them are invalid.

• X[1,],

• X[, 3],

• X[, 3, drop=FALSE],

• X[3],

• X[, "a"],

• X[, c("a", "b", "c")],

• X[, -2],

• X[X[,1] > 5,],

• X[X[,1]>5, c("a", "b", "c")],

• X[X[,1]>=5 & X[,1]<=10,],

254 II DEEPER

• X[X[,1]>=5 & X[,1]<=10, c("a", "b", "c")],

• X[, c(1, "b", "d")].

Exercise 11.28 Assuming that X is an array, what is the difference between the following oper-
ations involving indexing?

• X["1",] vs X[1,],

• X[, "a", "b", "c"] vs X["a", "b", "c"] vs X[, c("a", "b", "c")] vs X[c("a", "b",

"c")],

• X[1] vs X[, 1] vs X[1,],

• X[X>0] vs X[X>0,] vs X[, X>0],

• X[X[, 1]>0] vs X[X[, 1]>0,] vs X[,X[,1]>0],

• X[X[, 1]>5, X[1,]<10] vs X[X[1,]>5, X[, 1]<10].

Exercise 11.29 Give a fewways to create amatrix like:

[,1] [,2]

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 2 1

[5,] 2 2

[6,] 2 3

and one like:

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 2

[3,] 1 2 1

[4,] 1 2 2

[5,] 1 3 1

[6,] 1 3 2

[7,] 2 1 1

[8,] 2 1 2

[9,] 2 2 1

[10,] 2 2 2

[11,] 2 3 1

[12,] 2 3 2

Exercise 11.30 For a given real𝑛 × 𝑚matrix𝐗, encoding𝑛 input points in an𝑚-dimensional
space, determine their bounding hyperrectangle, i.e., return a 2 × 𝑚 matrix 𝐁 with 𝑏1,𝑗 =
min𝑖 𝑥𝑖,𝑗 and 𝑏2,𝑗 = max𝑖 𝑥𝑖,𝑗.

Exercise 11.31 Let 𝐭 be a vector of 𝑛 integers in {1, … , 𝑘}. Write a function to one-hot encode

11 MATRICES AND OTHER ARRAYS 255

each 𝑡𝑖. Return a 0–1matrix𝐑 of size𝑛 × 𝑘 such that 𝑟𝑖,𝑗 = 1 if and only if 𝑗 = 𝑡𝑖. For example,
if 𝐭 = [1, 2, 3, 2, 4] and 𝑘 = 4, then:

𝐑 =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

On a side note, such a representation is beneficial when solving, e.g., a multiclass classification
problem bymeans of 𝑘 binary classifiers.
Then, compose another function, but this time setting 𝑟𝑖,𝑗 = 1 if and only if 𝑗 ≥ 𝑡𝑖, e.g.:

𝑅 =
⎡
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 1 1
0 0 1 1
0 1 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Important As usual, try to solve all the exercises without using explicit for and while

loops (provided that it is possible).

Exercise 11.32 Given an 𝑛 × 𝑘 real matrix, apply the softmax function on each row, i.e., map
𝑥𝑖,𝑗 to

exp(𝑥𝑖,𝑗)

∑𝑘
𝑙=1 exp(𝑥𝑖,𝑙)

. Then, one-hot decode the values in each row, i.e., find the column number

with the greatest value. Return a vector of size 𝑛with elements in {1, … , 𝑘}.
Exercise 11.33 Assume that an 𝑛 × 𝑚 real matrix𝐗 represents𝑛 points inℝ𝑚.Write a func-
tion (but do not refer to dist) that determines the pairwise Euclidean distances between all the𝑛
points and a given 𝐲 ∈ ℝ𝑚. Return a vector 𝐝 of length 𝑛with 𝑑𝑖 = ‖𝐱𝑖,⋅ − 𝐲‖2.

Exercise 11.34 Let𝐗 and𝐘 be two real-valuedmatrices of sizes𝑛 × 𝑚 and 𝑘 × 𝑚, respectively,
representing two sets of points inℝ𝑚.Returnan integer vector𝐫 of length𝑘 such that 𝑟𝑖 indicates
the index of the point in𝐗with the least distance to (the closest to) the 𝑖-th point in𝐘, i.e., 𝑟𝑖 =
argmin𝑗 ‖𝐱𝑗,⋅ − 𝐲𝑖,⋅‖2.

Exercise 11.35 Write your version of utils::combn.

Exercise 11.36 Timeseriesarevectorsormatricesof the classts equippedwith thetspattribute,
amongst others. Refer to help("ts") for more information about how they are represented and
what S3methods have been overloaded for them.

Exercise 11.37 (*) Numeric matrices can be stored in a CSV file, amongst others. Usually, we
will be loading them via read.csv, which returns a data frame (see Chapter 12). For example:

X <- as.matrix(read.csv(

paste0(

"https://github.com/gagolews/teaching-data/",

(continues on next page)

256 II DEEPER

(continued from previous page)

"raw/master/marek/eurxxx-20200101-20200630.csv"

),

comment.char="#",

sep=","

))

Write a function read_numeric_matrix(file_name, comment, sep)which is based on a few
calls to scan instead. Use file to establish a file connection so that you can ignore the comment
lines and fetch the column names before reading the actual numeric values.

Exercise 11.38 (*) Using readBin, read the t10k-images-idx3-ubyte.gz from the MNIST
database homepage10.The output object should be a three-dimensional, 10000 × 28 × 28 array
with real elements between 0 and 255. Refer to the File Formats section therein formore details.

Exercise 11.39 (**) Circular convolution of discrete-valued multidimensional signals can be
performed by means of fft and matrix multiplication, whereas affine transformations require
only the latter. Apply various image transformations such as sharpening, shearing, and rotating
on theMNIST digits and plot the results using the image function.

Exercise 11.40 (*) Using constrOptim, find the minimum of the Constrained Betts Function
𝑓 (𝑥1, 𝑥2) = 0.01𝑥2

1 +𝑥2
2 −100with linear constraints2 ≤ 𝑥1 ≤ 50,−50 ≤ 𝑥2 ≤ 50, and

10𝑥1 ≥ 10 + 𝑥2. (**) Also, use solve.QP from the quadprog package to find theminimum.

10 https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist

https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist
https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist

12
Data frames

Most matrices are built on top of atomic vectors. Hence, only items of the same type
can be arranged into rows and columns. On the other hand, data frames (objects of
the S3 class data.frame, first introduced in [13]) are collections of vectors of the same
lengths ormatrices with identical row counts. Hence, they represent structured1 data
of possibly heterogeneous types. For instance:

class(iris) # `iris` is an example data frame

[1] "data.frame"

iris[c(1, 51, 101),] # three chosen rows from `iris`

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

101 6.3 3.3 6.0 2.5 virginica

It is a mix of numeric and factor-type data.

The good news is that not only are data frames built on named lists (e.g., to extract a
column, we can refer to `[[`), but alsomany functions consider themmatrix-like (e.g.,
to select specific rows and columns, two indexes can be passed to `[` like in the ex-
ample above).Hence, itwill soon turn out thatwe already knowa lot about performing
basic data wrangling activities, even if we do not fully realise it now.

12.1 Creating data frames
12.1.1 data.frame and as.data.frame
Most frequently, we create data frames based on a series of logical, numeric, or char-
acter vectors of identical lengths. In such a scenario, the data.frame function is par-
ticularly worthwhile.

(x <- data.frame(

a=c(TRUE, FALSE),
(continues on next page)

1We are already highly skilled in dealing with unstructured data and turning them into something that
is much more regular. The numerous functions, which we have covered in the first part of this book, let us
extract meaningful data from text, handle missing values, engineer features, and so forth.

258 II DEEPER

(continued from previous page)

b=1:6,

c=runif(6),

d=c("spam", "spam", "eggs")

))

a b c d

1 TRUE 1 0.77437 spam

2 FALSE 2 0.19722 spam

3 TRUE 3 0.97801 eggs

4 FALSE 4 0.20133 spam

5 TRUE 5 0.36124 spam

6 FALSE 6 0.74261 eggs

The shorter vectors were recycled. We can verify that the diverse column types were
retained and no coercion was made by calling:

str(x)

'data.frame': 6 obs. of 4 variables:

$ a: logi TRUE FALSE TRUE FALSE TRUE FALSE

$ b: int 1 2 3 4 5 6

$ c: num 0.774 0.197 0.978 0.201 0.361 ...

$ d: chr "spam" "spam" "eggs" "spam" ...

Important For many reasons (see, e.g., Section 12.1.5 and Section 12.1.6), we recom-
mendhaving the type of each columnalways checked, e.g., by calling the str function.

Many objects, such as matrices, can easily be coerced to data frames using particular
as.data.framemethods. Here is an example matrix:

(A <- matrix(1:6, nrow=3,

dimnames=list(

NULL, # no row labels

c("u", "v") # some column labels

)))

u v

[1,] 1 4

[2,] 2 5

[3,] 3 6

Let us convert it to a data frame:

as.data.frame(A) # as.data.frame.matrix

u v

1 1 4

(continues on next page)

12 DATA FRAMES 259

(continued from previous page)

2 2 5

3 3 6

Note that a matrix with no row labels is printed slightly differently than a data frame
with (as it will soon turn out) the default row.names.

Named lists are amongst other aspirants to ameaningful conversion. Consider an ex-
ample list where all elements are vectors of the same length:

(l <- Map(

function(x) {

c(Min=min(x), Median=median(x), Mean=mean(x), Max=max(x))

},

split(iris[["Sepal.Length"]], iris[["Species"]])

))

$setosa

Min Median Mean Max

4.300 5.000 5.006 5.800

##

$versicolor

Min Median Mean Max

4.900 5.900 5.936 7.000

##

$virginica

Min Median Mean Max

4.900 6.500 6.588 7.900

Each list element will be turned into a separate column:

as.data.frame(l) # as.data.frame.list

setosa versicolor virginica

Min 4.300 4.900 4.900

Median 5.000 5.900 6.500

Mean 5.006 5.936 6.588

Max 5.800 7.000 7.900

Sadly, as.data.frame.list is not particularly fond of lists of vectors of incompatible
lengths:

as.data.frame(list(a=1, b=11:12, c=21:23))

Error in (function (..., row.names = NULL, check.rows = FALSE, check.names

= TRUE, : arguments imply differing number of rows: 1, 2, 3

The above vectors could have been recycled with a warning. But they were not.

260 II DEEPER

as.data.frame(list(a=1:4, b=11:12, c=21)) # recycling rule okay

a b c

1 1 11 21

2 2 12 21

3 3 11 21

4 4 12 21

The method for the S3 class table (mentioned in Chapter 11) can be helpful as well.
Here is an example contingency table together with its unstacked (wide) version.

(t <- table(mtcars[["vs"]], mtcars[["cyl"]]))

##

4 6 8

0 1 3 14

1 10 4 0

as.data.frame(t) # as.data.frame.table; see the stringsAsFactors note below!

Var1 Var2 Freq

1 0 4 1

2 1 4 10

3 0 6 3

4 1 6 4

5 0 8 14

6 1 8 0

as.data.frame.table is sohandy thatwemightwant to call it directly onanyarray.This
way, we can convert it from thewide format to the long (tall) one; see Section 12.3.6 for
more details.

Note The abovemethod is based on expand.grid, which determines all combinations
of a given series of vectors.

expand.grid(1:2, c("a", "b", "c")) # see the stringsAsFactors note below!

Var1 Var2

1 1 a

2 2 a

3 1 b

4 2 b

5 1 c

6 2 c

Overall, many classes of objects can be included2 in a data frame.The popular choices
include Date, POSIXct, and factor.

2The attributes of objects stored as columns will generally be preserved (even if they are not displayed
by print; see str though).

12 DATA FRAMES 261

Example 12.1 It is worth noting that format is used whilst printing the columns. Here is its
custommethod for what we would like to call from now on the S3 class spam:

format.spam <- function(x, ...)

paste0("<", x, ">")

Testing data frame printing:

data.frame(

a=structure(c("lovely", "yummy", "delicious"), class="spam"),

b=factor(c("spam", "bacon", "spam")),

c=Sys.Date()+1:3

)

a b c

1 <lovely> spam 2023-06-29

2 <yummy> bacon 2023-06-30

3 <delicious> spam 2023-07-01

12.1.2 cbind.data.frame and rbind.data.frame
There are data frame-specific versions of cbind or rbind (which we discussed
in the context of stacking matrices; Section 11.1.2). They are used quite eagerly:
help("cbind") states that they will be referred to if at least3 one of its arguments is
a data frame, and the other arguments are atomic vectors or lists (possibly with the
dim attribute). For example:

x <- iris[c(1, 51, 101), c("Sepal.Length", "Species")] # whatever

cbind(Yummy=c(TRUE, FALSE, TRUE), x)

Yummy Sepal.Length Species

1 TRUE 5.1 setosa

51 FALSE 7.0 versicolor

101 TRUE 6.3 virginica

It added a new column to a data frame x. Moreover:

rbind(x, list(42, "virginica"))

Sepal.Length Species

1 5.1 setosa

51 7.0 versicolor

101 6.3 virginica

11 42.0 virginica

It added anew row.Note that columns are of different types.Hence, the values to row-
bind had to be provided as a list.

3This is a clear violation of the rule that an S3 generic dispatches on the type of only one argument
(usually: the first). It is an exception made for the sake of the questionable user convenience. Also, note that
there is no cbind.defaultmethod available: it is hardcoded at the C language level.

262 II DEEPER

The generic vector used as a new row specifier can also be named. It can consist of
sequences of length greater than one that are given in any order:

rbind(x, list(

Species=c("virginica", "setosa"),

Sepal.Length=c(42, 7)

))

Sepal.Length Species

1 5.1 setosa

51 7.0 versicolor

101 6.3 virginica

11 42.0 virginica

2 7.0 setosa

A direct referral to cbind.data.frame and rbind.data.framewill sometimes be neces-
sary. Consider an example list of atomic vectors:

x <- list(a=1:3, b=11:13, c=21:23)

First, we call the generic, which dispatches to the default method:

do.call(cbind, x)

a b c

[1,] 1 11 21

[2,] 2 12 22

[3,] 3 13 23

It created a matrix. If we want to ensure we garner a data frame, we need to write:

do.call(cbind.data.frame, x)

a b c

1 1 11 21

2 2 12 22

3 3 13 23

This is useful for fetching outputs from Map et al., as they are wrapped inside a list.
Here is a fancy way to obtain an illustrative list:

l <- unname(Map(

function(x) list(# objects are of different types, hence a list

Sepal.Length=mean(x[["Sepal.Length"]]),

Sepal.Width=mean(x[["Sepal.Width"]]),

Species=x[["Species"]][1] # all are the same, so the first will do

),

split(iris, iris[["Species"]]) # split.data.frame; see below

))

(continues on next page)

12 DATA FRAMES 263

(continued from previous page)

str(l)

List of 3

$:List of 3

..$ Sepal.Length: num 5.01

..$ Sepal.Width : num 3.43

..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1

$:List of 3

..$ Sepal.Length: num 5.94

..$ Sepal.Width : num 2.77

..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 2

$:List of 3

..$ Sepal.Length: num 6.59

..$ Sepal.Width : num 2.97

..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 3

Wemay now turn it into a data frame by calling:

do.call(rbind.data.frame, l)

Sepal.Length Sepal.Width Species

1 5.006 3.428 setosa

2 5.936 2.770 versicolor

3 6.588 2.974 virginica

On the other hand, do.call(rbind, l) does not return an amiable object type:

do.call(rbind, l)

Sepal.Length Sepal.Width Species

[1,] 5.006 3.428 setosa

[2,] 5.936 2.77 versicolor

[3,] 6.588 2.974 virginica

Despite the pretty face, it is a matrix… over a list:

str(do.call(rbind, l))

List of 9

$: num 5.01

$: num 5.94

$: num 6.59

$: num 3.43

$: num 2.77

$: num 2.97

$: Factor w/ 3 levels "setosa","versicolor",..: 1

$: Factor w/ 3 levels "setosa","versicolor",..: 2

$: Factor w/ 3 levels "setosa","versicolor",..: 3

- attr(*, "dim")= int [1:2] 3 3

(continues on next page)

264 II DEEPER

(continued from previous page)

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:3] "Sepal.Length" "Sepal.Width" "Species"

12.1.3 Reading data frames
Structureddata canbe imported fromexternal sources, suchasCSV/TSV (comma/tab-
separated values) or HDF5 files, relational databases supporting SQL (see Sec-
tion 12.1.4), web APIs (e.g., through the curl and jsonlite packages), spreadsheets
[64], and so on.

In particular, read.csv and the like fetch data from plain text files consisting of re-
cords, where commas, semicolons, tabs, etc. separate the fields. For instance:

x <- data.frame(a=runif(3), b=c(TRUE, FALSE, TRUE)) # example data frame

f <- tempfile() # temporary file name

write.csv(x, f, row.names=FALSE) # export

It created a CSV file that looks like:

cat(readLines(f), sep="\n") # print file contents

"a","b"

0.287577520124614,TRUE

0.788305135443807,FALSE

0.4089769218117,TRUE

The above can be read by calling:

read.csv(f)

a b

1 0.28758 TRUE

2 0.78831 FALSE

3 0.40898 TRUE

Exercise 12.2 Check out help("read.table") for a long list of tunable parameters, especially:
sep, dec, quote, header, comment.char, and row.names. Further, note that reading from com-
pressed files and interned URLs is supported directly.

Important CSV is themost portable anduser-friendly format for exchangingmatrix-
like objects between different programs and computing languages (Python, Julia, Lib-
reOffice Calc, etc.). Such files can be opened in any text editor.

Also, as mentioned in Section 8.3.5, we can process data frames chunk by chunk.This
is beneficial especiallywhendatadonotfit intomemory (compare the nrows argument
to read.csv).

12 DATA FRAMES 265

12.1.4 Interfacing relational databases and queryingwith SQL (*)
The DBI package provides a universal interface for many database management sys-
tems whose drivers are implemented in add-ons such as RSQLite, RMariaDB, RPostgr-
eSQL, etc., or, more generally, RODBC or odbc. For more details, see Section 4 of [64].

Example 12.3 Let us play with an in-memory (volatile) instance of an SQLite database.

library("DBI")

con <- dbConnect(RSQLite::SQLite(), ":memory:")

It returned an object representing a database connectionwhichwe can refer to in further commu-
nication. An easy way to create a database table is to call:

dbWriteTable(con, "mtcars", mtcars) # `mtcars` is a toy data frame

Alternatively, dbExecute could have been called to send SQL statements such as “CREATE TABLE

...” followed by a series of “INSERT INTO ...”. Some data retrieval can now follow:

dbGetQuery(con, "

SELECT cyl, vs, AVG(mpg) AS mpg_ave, AVG(hp) AS hp_ave

FROM mtcars

GROUP BY cyl, vs

")

cyl vs mpg_ave hp_ave

1 4 0 26.000 91.00

2 4 1 26.730 81.80

3 6 0 20.567 131.67

4 6 1 19.125 115.25

5 8 0 15.100 209.21

It gave us an ordinary R data frame.We can process it in the same fashion as any other object of
this kind.

At the end, the database connectionmust be closed.

dbDisconnect(con)

Exercise 12.4 Database passwordsmust never be stored in plain text files, let alone in R scripts
in version-controlled repositories. Consider a fewways to fetch credentials programmatically:

• using environment variables (see help("Sys.getenv")),

• using the keyring package,

• callingsystem2 (Section 7.3.2) to retrieve it from the systemkeyring (e.g., thekeyringpack-
age for Python provides a platform-independent command-line utility).

266 II DEEPER

12.1.5 Strings as factors?
Some functions related to data frames automatically convert character vectors to
factors. This behaviour is frequently controlled by and argument named stringsAs-

Factors. It can be particularly problematic because, when printed, factor and charac-
ter columns look identical:

(x <- data.frame(a=factor(c("U", "V")), b=c("U", "V")))

a b

1 U U

2 V V

Werecall fromSection 10.3.2 that factors can be nasty. For example, passing factors as
indexers in `[` or converting them with as.numericmight give counterintuitive res-
ults. Also, when we want to extend factors by previously unobserved data, new levels
must be addedmanually.This can cause unexpected behaviour in contexts such as:

rbind(x, c("W", "W"))

Warning in `[<-.factor`(`*tmp*`, ri, value = "W"): invalid factor level,

NA generated

a b

1 U U

2 V V

3 <NA> W

Therefore, always having the data types checked is a praiseworthy habit. For instance:

str(x)

'data.frame': 2 obs. of 2 variables:

$ a: Factor w/ 2 levels "U","V": 1 2

$ b: chr "U" "V"

Before R 4.0, certain functions, including data.frame and read.csv had the string-

sAsFactors argument defaulting to TRUE. It is no longer the case. However, exceptions
to this rule still exist, e.g., including as.data.frame.table and expand.grid. Besides,
some example data frames continue to enjoy factor-typed columns, e.g.:

class(iris[["Species"]])

[1] "factor"

In particular, adding a new flower variety might be oblique:

iris2 <- iris[c(1, 101),] # example subset

rbind(iris2, c(6, 3, 3, 2, "croatica"))

Warning in `[<-.factor`(`*tmp*`, ri, value = "croatica"): invalid factor

level, NA generated

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
(continues on next page)

12 DATA FRAMES 267

(continued from previous page)

101 6.3 3.3 6 2.5 virginica

3 6 3 3 2 <NA>

Compare the above to:

levels(iris2[["Species"]])[nlevels(iris2[["Species"]])+1] <- "croatica"

rbind(iris2, c(6, 3, 3, 2, "croatica"))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

101 6.3 3.3 6 2.5 virginica

3 6 3 3 2 croatica

12.1.6 Internal representation
Objects of the S3 class data.frame are erected on lists of vectors of the same length
or matrices with identical row counts. Each list element defines a column or column
group.

Apart from class, data framesmust be equippedwith the following special attributes:

• names–a character vector (as usual in any named list) that gives the column labels,

• row.names – a character or integer vector with no duplicates nor missing values,
doing what is advertised.

Therefore, a data frame can be created from scratch by calling, for example:

structure(

list(a=11:13, b=21:23), # sets the `names` attribute

row.names=1:3,

class="data.frame"

)

a b

1 11 21

2 12 22

3 13 23

Here is a data frame based on a list of length five, a matrix with five rows, and a nu-
meric vector with five items.We added some fancy row names on top:

structure(

list(

a=list(1, 1:2, 1:3, numeric(0), -(4:1)),

b=cbind(u=11:15, v=21:25),

c=runif(5)

),

row.names=c("spam", "bacon", "eggs", "ham", "aubergine"),
(continues on next page)

268 II DEEPER

(continued from previous page)

class="data.frame"

)

a b.u b.v c

spam 1 11 21 0.28758

bacon 1, 2 12 22 0.78831

eggs 1, 2, 3 13 23 0.40898

ham 14 24 0.88302

aubergine -4, -3, -2, -1 15 25 0.94047

In general, the columns of the type list can contain anything, e.g., other lists or R
functions. Including atomic vectors of varying lengths, just like above, permits us to
create something à la ragged arrays.

The issue with matrix entries, on the other hand, is that they appear as if they were
many columns. Still, as it will turn out in the sequel, they are often treated as a
single complex column, e.g., by the index operator (see Section 12.2).Therefore, from
this perspective, the above data frame has three columns, not four. Such compound
columns can be output by aggregate (see Section 12.3), amongst others.They are valu-
able in certain contexts: the column groups can be easily accessed as a whole and batch-
processed in the same way.

Important Alas, data frames with list or matrix columns cannot be created with the
data.frame nor cbind functions.Thismight explainwhy they are less popular.This be-
haviour is dictated by the underlying as.data.framemethods, which they both call. As
a curiosity, see help("I"), though.

Exercise 12.5 Verify that if a data frame carries a matrix column, this matrix does not need to
have any column names (the second element of dimnames).

The names and row.names attributes are special in the sense of Section 4.4.3. In partic-
ular, they can be accessed or modified via the dedicated functions.

It is worth noting that row.names(df) always returns a character vector, even when
attr(df, "row.names") is integer. Further, calling “row.names(df) <- NULL” will reset4
this attribute to themost commonly desired case of consecutive natural numbers. For
example:

(x <- iris[c(1, 51, 101),]) # comes with some sad row names

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

101 6.3 3.3 6.0 2.5 virginica

(continues on next page)

4 `attr<-`(df, "row.names", value) does not run the same sanity checks as `row.names<-`(df, value).
For instance, it is easy to corrupt a data frame by setting too short a row.names attribute.

12 DATA FRAMES 269

(continued from previous page)

`row.names<-`(x, NULL) # reset to seq_len(NROW(x))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 7.0 3.2 4.7 1.4 versicolor

3 6.3 3.3 6.0 2.5 virginica

Exercise 12.6 Implement your version of expand.grid.

Exercise 12.7 Write a version of xtabs that does not rely on a formula interface (compare Sec-
tion 10.3.4). Allow three parameters: a data frame, the name of the “counts” column, and the
names of the cross-classifying factors. Hence, my_xtabs(x, "Freq", c("Var1", "Var2"))

should be equivalent to xtabs(Freq~Var1+Var2, x).

12.2 Data frame subsetting
12.2.1 Data frames are lists
A data frame is a named list whose elements represents individual columns. There-
fore5, length yields the number of columns and names gives their respective labels.

Let us play with the following data frame:

(x <- data.frame(

a=runif(6),

b=rnorm(6),

c=LETTERS[1:6],

d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),

d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)

))

a b c d1 d2

1 0.287578 0.070508 A FALSE FALSE

2 0.788305 0.129288 B TRUE TRUE

3 0.408977 1.715065 C FALSE FALSE

4 0.883017 0.460916 D NA TRUE

5 0.940467 -1.265061 E FALSE FALSE

6 0.045556 -0.686853 F NA TRUE

typeof(x) # each data frame is a list

[1] "list"

length(x) # the number of columns

(continues on next page)

5This is a strong word. This implication relies on an implicit assumption that the primitive functions
length and names have not been contaminated by treating data frames differently fromnamed lists. Luckily,
that is indeed not the case. Even thoughwehave the index operators specially overloaded for the data.frame
class, they behave quite reasonably. As we will see, they support a mix of list- andmatrix-like behaviours.

270 II DEEPER

(continued from previous page)

[1] 5

names(x) # column labels

[1] "a" "b" "c" "d1" "d2"

The one-argument versions of extract and index operators behave as expected. `[[`
fetches (looks inside) the contents of a given column:

x[["a"]] # or x[[1]]

[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

`[` returns a data frame (a list with extras):

x["a"] # or x[1]; a data frame with one column

a

1 0.287578

2 0.788305

3 0.408977

4 0.883017

5 0.940467

6 0.045556

x[c(TRUE, TRUE, FALSE, TRUE, FALSE)]

a b d1

1 0.287578 0.070508 FALSE

2 0.788305 0.129288 TRUE

3 0.408977 1.715065 FALSE

4 0.883017 0.460916 NA

5 0.940467 -1.265061 FALSE

6 0.045556 -0.686853 NA

Just like with lists, the replacement versions of these operators can add new columns
or modify existing ones.

(y <- head(x, 1)) # example data frame

a b c d1 d2

1 0.28758 0.070508 A FALSE FALSE

y[["a"]] <- round(y[["a"]], 1) # replaces the column with new content

y[["b"]] <- NULL # removes the column, like, totally

y[["e"]] <- 10*y[["a"]]^2 # adds a new column at the end

print(y)

a c d1 d2 e

1 0.3 A FALSE FALSE 0.9

Example 12.8 Some spam for thought to showhowmuchwealready know.Here are a few com-
mon scenarios involving indexing.

12 DATA FRAMES 271

(y <- head(x, 1)) # example data frame

a b c d1 d2

1 0.28758 0.070508 A FALSE FALSE

Move the column a to the end:

y[unique(c(names(y), "a"), fromLast=TRUE)]

b c d1 d2 a

1 0.070508 A FALSE FALSE 0.28758

Remove the columns a and c:

y[-match(c("a", "c"), names(y))] # or y[setdiff(names(y), c("a", "c"))]

b d1 d2

1 0.070508 FALSE FALSE

Select all columns between a and c:

y[match("a", names(y)):match("c", names(y))]

a b c

1 0.28758 0.070508 A

Fetch the columns with names starting with d:

y[grep("^d", names(y), perl=TRUE)]

d1 d2

1 FALSE FALSE

Change the name of column c to z:

names(y)[names(y) == "c"] <- "z"

print(y) # `names<-`(y, `[<-`(names(y), names(y) == "c", "z"))

a b z d1 d2

1 0.28758 0.070508 A FALSE FALSE

Change names: d2 to u and d1 to v:

names(y)[match(c("d2", "d1"), names(y))] <- c("v", "u")

print(y)

a b z u v

1 0.28758 0.070508 A FALSE FALSE

Note Some users prefer the `$` operator over `[[`, but we do not. By default, the
former supports partial matching of column names which might be appealing when
R is used interactively. Nonetheless, it does not work on matrices nor it allows for

272 II DEEPER

programmatically generated names. It is also trickier to use on not syntactically valid
labels; compare Section 9.3.1.

Exercise 12.9 Write a function rename that changes the names of columns based on a transla-
tion table given in a from=to fashion (we have already solved a similar exercise in Chapter 9).
For instance:

rename <- function(x, ...) ...to.do...

rename(head(x, 1), c="new_c", a="new_a")

new_a b new_c d1 d2

1 0.28758 0.070508 A FALSE FALSE

12.2.2 Data frames arematrix-like
Data frames can be considered “generalised” matrices. They store data of any kind
(possiblymixed) organised in a tabular fashion. A few functionsmentioned in the pre-
vious chapter are overloaded for the data frame case. They include: dim (despite the
lack of the dim attribute), NROW, NCOL, and dimnames (which is, of course, based on row.

names and names). For example:

(x <- data.frame(

a=runif(6),

b=rnorm(6),

c=LETTERS[1:6],

d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),

d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)

))

a b c d1 d2

1 0.287578 0.070508 A FALSE FALSE

2 0.788305 0.129288 B TRUE TRUE

3 0.408977 1.715065 C FALSE FALSE

4 0.883017 0.460916 D NA TRUE

5 0.940467 -1.265061 E FALSE FALSE

6 0.045556 -0.686853 F NA TRUE

dim(x) # the number of rows and columns

[1] 6 5

dimnames(x) # row and column labels

[[1]]

[1] "1" "2" "3" "4" "5" "6"

##

[[2]]

[1] "a" "b" "c" "d1" "d2"

In addition to the list-like behaviour, which only allows for dealing with particular
columns or their groups, the `[` operator can also take two indexers:

12 DATA FRAMES 273

x[1:2,] # first two rows

a b c d1 d2

1 0.28758 0.070508 A FALSE FALSE

2 0.78831 0.129288 B TRUE TRUE

x[x[["a"]] >= 0.3 & x[["a"]] <= 0.8, -2] # or use x[, "a"]

a c d1 d2

2 0.78831 B TRUE TRUE

3 0.40898 C FALSE FALSE

Recall the drop argument to `[` and its effects on matrix indexing (Section 11.2.4). In
the current case, its behaviour will be similar with regard to the operations on indi-
vidual columns:

x[, 1] # synonym: x[[1]] because drop=TRUE

[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

x[, 1, drop=FALSE] # synonym: x[1]

a

1 0.287578

2 0.788305

3 0.408977

4 0.883017

5 0.940467

6 0.045556

When we extract a single row and more than one column, drop does not apply. It is
because columns (unlike in matrices) can potentially be of different types:

x[1, 1:2] # two numeric columns but the result is still a numeric

a b

1 0.28758 0.070508

However:

x[1, 1] # a single value

[1] 0.28758

x[1, 1, drop=FALSE] # a data frame with one row and one column

a

1 0.28758

Note Once again, let us takenote of logical indexing in thepresence ofmissing values:

x[x[["d1"]],] # `d1` is of the type logical

a b c d1 d2

2 0.78831 0.12929 B TRUE TRUE

(continues on next page)

274 II DEEPER

(continued from previous page)

NA NA NA <NA> NA NA

NA.1 NA NA <NA> NA NA

x[which(x[["d1"]]),] # `which` drops missing values

a b c d1 d2

2 0.78831 0.12929 B TRUE TRUE

Thedefault behaviour is consistentwithmany otherR functions. It explicitly indicates
that something is missing. After all, when we select a “don’t know”, the result is un-
known as well. Regretfully, this comes with no warning. As we rarely manually check
missing values in the outputs, our absent-mindedness can lead to code bugs.

By far, we might have already noted that the index operator adjusts (not: resets) the
row.names attribute. For instance:

(xs <- x[order(x[["a"]], decreasing=TRUE)[1:3],])

a b c d1 d2

5 0.94047 -1.26506 E FALSE FALSE

4 0.88302 0.46092 D NA TRUE

2 0.78831 0.12929 B TRUE TRUE

It is a version of x comprised of the top three values in the a column. Indexing by
means of character vectors will refer to row.names and names:

xs["5", c("a", "b")]

a b

5 0.94047 -1.2651

It is not the same as xs[5, c("a", "b")], even though row.names is formally an integer
vector here.

Regarding the replacement version of the two-indexer variant of the `[` operator, it is
a quite flexible tool. It permits the new content to be a vector, a data frame, a list, or
even a matrix. Verifying this is left as an exercise.

Note If a data frame carries amatrix, to access a specific sub-column, we need to use
the index/extract operator twice:

(x <- aggregate(iris[1], iris[5], function(x) c(Min=min(x), Max=max(x))))

Species Sepal.Length.Min Sepal.Length.Max

1 setosa 4.3 5.8

2 versicolor 4.9 7.0

3 virginica 4.9 7.9

x[["Sepal.Length"]][, "Min"]

[1] 4.3 4.9 4.9

12 DATA FRAMES 275

Inotherwords,neither x[["Sepal.Length.Min"]]norx[, "Sepal.Length.Min"]works.

Exercise 12.10 Write tworeplacement functions6.First, authorset_row_nameswhichreplaces
the row.names of a data frame with the contents of a specific column. For example:

(x <- aggregate(iris[1], iris[5], mean)) # an example data frame

Species Sepal.Length

1 setosa 5.006

2 versicolor 5.936

3 virginica 6.588

set_row_names(x) <- "Species"

print(x)

Sepal.Length

setosa 5.006

versicolor 5.936

virginica 6.588

Second, implement reset_row_names which converts row.names to a standalone column of a
given name. For instance:

reset_row_names(x) <- "Type"

print(x)

Sepal.Length Type

1 5.006 setosa

2 5.936 versicolor

3 6.588 virginica

These two functions may be handy for they enable writing x[something,] instead of
x[x[["column"]] %in% something,].

12.3 Common operations
Below we review the most commonly applied operations related to data frame
wrangling. We have a few dedicated functions or methods overloaded for the data.
frame class. However, we have already mastered most skills to deal with such objects
effectively. Let us repeat: data frames are just lists exhibiting matrix-like behaviour.

12.3.1 Ordering rows
Ordering rows in a data framewith respect to different criteria can be easily achieved
through the order function and the two-indexer version of `[`.

6 (*) Compare pandas.DataFrame.set_index and pandas.DataFrame.reset_index in Python.

276 II DEEPER

For instance, here are the six fastest cars from mtcars in terms of the time (in seconds)
to complete a 402-metre race:

mtcars6 <- mtcars[order(mtcars[["qsec"]])[1:6], c("qsec", "cyl", "gear")]

(mtcars6 <- `row.names<-`(cbind(model=row.names(mtcars6), mtcars6), NULL))

model qsec cyl gear

1 Ford Pantera L 14.50 8 5

2 Maserati Bora 14.60 8 5

3 Camaro Z28 15.41 8 3

4 Ferrari Dino 15.50 6 5

5 Duster 360 15.84 8 3

6 Mazda RX4 16.46 6 4

orderuses a stable sorting algorithm.Therefore, any sortingwith respect to adifferent
criterion will not break the relative ordering of qsec in row groups with ties:

mtcars6[order(mtcars6[["cyl"]]),]

model qsec cyl gear

4 Ferrari Dino 15.50 6 5

6 Mazda RX4 16.46 6 4

1 Ford Pantera L 14.50 8 5

2 Maserati Bora 14.60 8 5

3 Camaro Z28 15.41 8 3

5 Duster 360 15.84 8 3

qsec is still increasing in each of the two cyl groups.

Example 12.11 Notice the difference between ordering by cyl and gear:

mtcars6[order(mtcars6[["cyl"]], mtcars6[["gear"]]),]

model qsec cyl gear

6 Mazda RX4 16.46 6 4

4 Ferrari Dino 15.50 6 5

3 Camaro Z28 15.41 8 3

5 Duster 360 15.84 8 3

1 Ford Pantera L 14.50 8 5

2 Maserati Bora 14.60 8 5

vs gear and cyl:

mtcars6[order(mtcars6[["gear"]], mtcars6[["cyl"]]),]

model qsec cyl gear

3 Camaro Z28 15.41 8 3

5 Duster 360 15.84 8 3

6 Mazda RX4 16.46 6 4

4 Ferrari Dino 15.50 6 5

1 Ford Pantera L 14.50 8 5

2 Maserati Bora 14.60 8 5

12 DATA FRAMES 277

Note Mixing increasing and decreasing ordering is tricky as the decreasing argu-
ment to order currently does not accept multiple flags in all the contexts. Perhaps the
easiest way to change the ordering direction is to use the unaryminus operator on the
column(s) to be sorted decreasingly.

mtcars6[order(mtcars6[["gear"]], -mtcars6[["cyl"]]),]

model qsec cyl gear

3 Camaro Z28 15.41 8 3

5 Duster 360 15.84 8 3

6 Mazda RX4 16.46 6 4

1 Ford Pantera L 14.50 8 5

2 Maserati Bora 14.60 8 5

4 Ferrari Dino 15.50 6 5

For factor and character columns, xtfrm can convert them to sort keys first.

mtcars6[order(mtcars6[["cyl"]], -xtfrm(mtcars6[["model"]])),]

model qsec cyl gear

6 Mazda RX4 16.46 6 4

4 Ferrari Dino 15.50 6 5

2 Maserati Bora 14.60 8 5

1 Ford Pantera L 14.50 8 5

5 Duster 360 15.84 8 3

3 Camaro Z28 15.41 8 3

Both of the above behave like the unsupported decreasing=c(FALSE, TRUE).

Exercise 12.12 Write a method sort.data.frame that orders a data frame with respect to a
given set of columns.

sort.data.frame <- function(x, decreasing=FALSE, cols) ...to.do...

sort(mtcars6, cols=c("cyl", "model"))

model qsec cyl gear

4 Ferrari Dino 15.50 6 5

6 Mazda RX4 16.46 6 4

3 Camaro Z28 15.41 8 3

5 Duster 360 15.84 8 3

1 Ford Pantera L 14.50 8 5

2 Maserati Bora 14.60 8 5

Unfortunately, that decreasingmust be of length one and be placed as the second argument is
imposed by the sort S3 generic.

278 II DEEPER

12.3.2 Handling duplicated rows
duplicated, anyDuplicated, and unique have methods overloaded for the data.frame
class.They can be used to indicate, get rid of, or replace the repeating rows.

sum(duplicated(iris)) # how many duplicated rows are there?

[1] 1

iris[duplicated(iris),] # show the duplicated rows

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

143 5.8 2.7 5.1 1.9 virginica

12.3.3 Joining (merging) data frames
The merge function canperform the join operation that some readersmight know from
SQL7. It matches the items in the columns that two given data frames somewhat
share.Then, it returns the combination of the corresponding rows.

Example 12.13 Two calls tomerge could beused tomatchdata onprogrammers (each identified
by developer_id and giving such details as their name, location, main skill, etc.) with the in-
formationabout the open-source projects (each identified byproject_idand informingus about
its title, scope, website, and so forth) they are engaged in (based on a third data frame defining
developer_id and project_id pairs).

As a simple illustration, consider the two following objects:

A <- data.frame(

u=c("b0", "b1", "b2", "b3"),

v=c("a0", "a1", "a2", "a3")

)

B <- data.frame(

v=c("a0", "a2", "a2", "a4"),

w=c("c0", "c1", "c2", "c3")

)

The two common columns, i.e., storing data of similar nature (a-something strings),
are both named v.

First is the inner (natural) join, where we list only the matching pairs:

merge(A, B) # x=A, y=B, by="v", all.x=FALSE, all.y=FALSE

v u w

1 a0 b0 c0

(continues on next page)

7 Join is the reverse operation to data normalisation from relational database theory. It reduces data re-
dundancy and increases their integrity. What data scientists need in data analysis, visualisation, and pro-
cessing activities is sometimes the opposite of what the art of data management focuses on, i.e., efficient
collection and storage of information. The readers are encouraged to learn about various normalisation
forms from, e.g., [16] or any other course covering this topic.

12 DATA FRAMES 279

(continued from previous page)

2 a2 b2 c1

3 a2 b2 c2

The common column is included in the result only once.

Next, the left join guarantees that all elements in the first data frame will be included
in the result:

merge(A, B, all.x=TRUE) # by="v", all.y=FALSE

v u w

1 a0 b0 c0

2 a1 b1 <NA>

3 a2 b2 c1

4 a2 b2 c2

5 a3 b3 <NA>

The right join includes all records in the second argument:

merge(A, B, all.y=TRUE) # by="v", all.x=FALSE

v u w

1 a0 b0 c0

2 a2 b2 c1

3 a2 b2 c2

4 a4 <NA> c3

Lastly, the full outer join is their set-theoretic union:

merge(A, B, all.x=TRUE, all.y=TRUE) # by="v"

v u w

1 a0 b0 c0

2 a1 b1 <NA>

3 a2 b2 c1

4 a2 b2 c2

5 a3 b3 <NA>

6 a4 <NA> c3

Joining onmore than one common column is also supported.

Exercise 12.14 Show how match (Section 5.4.1) can help author a very basic version of merge.

Exercise 12.15 Implement a version of match that allows the x and table arguments to be data
frames with the same number of columns so that also the matching of pairs, triples, etc. is pos-
sible.

12.3.4 Aggregating and transforming columns
It might be tempting to try aggregating data frames with apply. Sadly, currently, this
function coerces its argument to a matrix. Hence, we should refrain from applying it

280 II DEEPER

on data frames whose columns are of mixed types. However, taking into account that
data frames are special lists, we can always call Map and its relatives.

Example 12.16 Let us consider an example data frame:

(iris_sample <- iris[sample(NROW(iris), 6),])

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

28 5.2 3.5 1.5 0.2 setosa

80 5.7 2.6 3.5 1.0 versicolor

101 6.3 3.3 6.0 2.5 virginica

111 6.5 3.2 5.1 2.0 virginica

137 6.3 3.4 5.6 2.4 virginica

133 6.4 2.8 5.6 2.2 virginica

To get the class of each column, we can call:

sapply(iris_sample, class) # or unlist(Map(class, iris))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

"numeric" "numeric" "numeric" "numeric" "factor"

Next, here is a way to compute some aggregates of the numeric columns:

unlist(Map(mean, Filter(is.numeric, iris_sample)))

Sepal.Length Sepal.Width Petal.Length Petal.Width

6.0667 3.1333 4.5500 1.7167

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width

6.0667 3.1333 4.5500 1.7167

We can also fetchmore than a single summary of each column:

as.data.frame(Map(

function(x) c(Min=min(x), Max=max(x)),

Filter(is.numeric, iris_sample)

))

Sepal.Length Sepal.Width Petal.Length Petal.Width

Min 5.2 2.6 1.5 0.2

Max 6.5 3.5 6.0 2.5

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], quantile, c(0, 1))

Sepal.Length Sepal.Width Petal.Length Petal.Width

0% 5.2 2.6 1.5 0.2

100% 6.5 3.5 6.0 2.5

12 DATA FRAMES 281

The latter called simplify2array automatically.Thus, the result is a matrix.

On the other hand, the standardisation of all numeric features can be performed, e.g., via a call:

iris_sample[] <- Map(function(x) {

if (!is.numeric(x)) x else (x-mean(x))/sd(x)

}, iris_sample)

print(iris_sample)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

28 -1.70405 1.03024 -1.76004 -1.65318 setosa

80 -0.72094 -1.49854 -0.60591 -0.78117 versicolor

101 0.45878 0.46829 0.83674 0.85384 virginica

111 0.85202 0.18732 0.31738 0.30884 virginica

137 0.45878 0.74927 0.60591 0.74484 virginica

133 0.65540 -0.93659 0.60591 0.52684 virginica

12.3.5 Handlingmissing values
The is.na method for objects of the class data.frame returns a logical matrix of the
same dimensionality8, indicating whether the corresponding items are missing or
not. Of course, the default method can still be called on individual columns.

Further, na.omit gets rid of rowswith missing values.

Exercise 12.17 Given a data frame, use is.na and other functions such as apply or approx to:

1. remove all rows that bear at least onemissing value,

2. remove all rows that only consist of missing values,

3. remove all columns that carry at least onemissing value,

4. for each column, replace all missing values with the column averages,

5. for each column, replace all missing values with values that linearly interpolate between
the preceding and succeeding well-defined observations (which is of use in time series pro-
cessing), e.g., the blanks in c(0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be filled to
obtain c(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

12.3.6 Reshaping data frames
Consider an example matrix:

A <- matrix(round(runif(6), 2), nrow=3,

dimnames=list(

c("X", "Y", "Z"), # row labels

c("u", "v") # column labels

))

(continues on next page)

8 Provided that a data frame does not carry a matrix column.

282 II DEEPER

(continued from previous page)

names(dimnames(A)) <- c("Row", "Col")

print(A)

Col

Row u v

X 0.29 0.88

Y 0.79 0.94

Z 0.41 0.05

The as.data.framemethod for the table class can be called directly on any array-like
object:

as.data.frame.table(A, responseName="Val", stringsAsFactors=FALSE)

Row Col Val

1 X u 0.29

2 Y u 0.79

3 Z u 0.41

4 X v 0.88

5 Y v 0.94

6 Z v 0.05

It is an instance of array reshaping. More precisely, we call it stacking. We converted
from awide (okay, in this example, not so wide, as we only have two columns) to a long
(tall) format.

The above can also be achieved bymeans of the reshape functionwhich ismore flexible
and operates directly on data frames (but is harder to use):

(df <- `names<-`(

data.frame(row.names(A), A, row.names=NULL),

c("Row", "Col.u", "Col.v")))

Row Col.u Col.v

1 X 0.29 0.88

2 Y 0.79 0.94

3 Z 0.41 0.05

(stacked <- reshape(df, varying=2:3, direction="long"))

Row time Col id

1.u X u 0.29 1

2.u Y u 0.79 2

3.u Z u 0.41 3

1.v X v 0.88 1

2.v Y v 0.94 2

3.v Z v 0.05 3

Maybe the default column names are not superb, but we can adjust them manually
afterwards.

The reverse operation is called unstacking:

12 DATA FRAMES 283

reshape(stacked, idvar="Row", timevar="time", drop="id", direction="wide")

Row Col.u Col.v

1.u X 0.29 0.88

2.u Y 0.79 0.94

3.u Z 0.41 0.05

Exercise 12.18 Given a named numeric vector, convert it to a data framewith two columns. For
instance:

convert <- function(x) ...to.do...

x <- c(spam=42, eggs=7, bacon=3)

convert(x)

key value

1 spam 42

2 eggs 7

3 bacon 3

Exercise 12.19 Stack the WorldPhones dataset. Then, unstack it back. Furthermore, unstack
the stacked set but first remove9 five random rows from it and then randomly permute all the
remaining rows. Fill in the missing entries with NAs.

Exercise 12.20 Implement a basic version of as.data.frame.table manually (using rep

etc.). Also, write a function as.table.data.frame that computes its reverse. Make sure both
functions are compatible with each other.

Exercise 12.21 Titanic is a four-dimensional array. Convert it to a long data frame.

Exercise 12.22 Performwhat follows on the data frame defined below:

1. convert the second column to a list of character vectors (split at ",");

2. extract the first elements from each of such vectors;

3. extract the last elements;

4. (*) unstack the split data frame;

5. (*) stack it back to a data frame that carries a list;

6. convert the list back to a character column (concatenate with "," as separator).

(x <- data.frame(

name=c("Kat", "Ron", "Jo", "Mary"),

food=c("buckwheat", "spam,bacon,spam", "", "eggs,spam,spam,lollipops")

))

name food

1 Kat buckwheat

2 Ron spam,bacon,spam
(continues on next page)

9The original dataset can be thought of as representing a fully crossed design experiment (all combina-
tions of two grouping variables are present). Its truncated version is like an incomplete crossed design.

284 II DEEPER

(continued from previous page)

3 Jo

4 Mary eggs,spam,spam,lollipops

Exercise 12.23 Write a function that converts all matrix-based columns in a given data frame
to separate atomic columns. Furthermore, author a function that does the opposite, i.e., groups
all columns with similar prefixes and turns them intomatrices.

12.3.7 Aggregating data in groups
We can straightforwardly apply various transforms on data groups determined by
a factor-like variable or their combination thanks to the split.data.frame method,
which returns a list of data frames. For example:

x <- data.frame(

a=c(10, 20, 30, 40, 50),

u=c("spam", "spam", "eggs", "spam", "eggs"),

v=c(1, 2, 1, 1, 1)

)

split(x, x["u"]) # i.e., split.data.frame(x, x["u"]) or x[["u"]]

$eggs

a u v

3 30 eggs 1

5 50 eggs 1

##

$spam

a u v

1 10 spam 1

2 20 spam 2

4 40 spam 1

It split x with respect to the u column, which served as the grouping variable. On the
other hand:

split(x, x[c("u", "v")]) # sep="."

$eggs.1

a u v

3 30 eggs 1

5 50 eggs 1

##

$spam.1

a u v

1 10 spam 1

4 40 spam 1

##

$eggs.2

(continues on next page)

12 DATA FRAMES 285

(continued from previous page)

[1] a u v

<0 rows> (or 0-length row.names)

##

$spam.2

a u v

2 20 spam 2

It partitioned with respect to a combination of two factor-like sequences. A nonexist-
ent level pair (eggs, 2) resulted in an empty data frame.

Exercise 12.24 split.data.frame (when called directly) can also be used to break a matrix
into a list of matrices (rowwisely). Given amatrix, perform its train-test split: allocate, say, 70%
of the rows at random into onematrix and the remaining 30% into another.

sapply is quite convenient if we need to aggregate grouped numeric data. To recall,
it is a combination of lapply (one-vector version of Map) and simplify2array (Sec-
tion 11.1.3).

sapply(split(iris[1:2], iris[5]), sapply, mean)

setosa versicolor virginica

Sepal.Length 5.006 5.936 6.588

Sepal.Width 3.428 2.770 2.974

If the function to apply returns more than a single value, sapply will not return too
informative a result. The list of matrices converted to a matrix will not have the row.
names argument set:

MinMax <- function(x) c(Min=min(x), Max=max(x))

sapply(split(iris[1:2], iris[5]), sapply, MinMax)

setosa versicolor virginica

[1,] 4.3 4.9 4.9

[2,] 5.8 7.0 7.9

[3,] 2.3 2.0 2.2

[4,] 4.4 3.4 3.8

As aworkaround,we either call simplify2array explicitly, or pass simplify="array" to
sapply:

(res <- sapply(

split(iris[1:2], iris[5]),

sapply,

MinMax,

simplify="array"

)) # or simplify2array(lapply(...) or Map(...) etc.)

, , setosa

##

(continues on next page)

286 II DEEPER

(continued from previous page)

Sepal.Length Sepal.Width

Min 4.3 2.3

Max 5.8 4.4

##

, , versicolor

##

Sepal.Length Sepal.Width

Min 4.9 2.0

Max 7.0 3.4

##

, , virginica

##

Sepal.Length Sepal.Width

Min 4.9 2.2

Max 7.9 3.8

It produced a three-dimensional array, which is particularly handy if we now wish to
access specific results by name:

res[, "Sepal.Length", "setosa"]

Min Max

4.3 5.8

The previously mentioned as.data.frame.table method will work on it like a charm
(up to the column names, which we can change):

as.data.frame.table(res, stringsAsFactors=FALSE)

Var1 Var2 Var3 Freq

1 Min Sepal.Length setosa 4.3

2 Max Sepal.Length setosa 5.8

3 Min Sepal.Width setosa 2.3

4 Max Sepal.Width setosa 4.4

5 Min Sepal.Length versicolor 4.9

6 Max Sepal.Length versicolor 7.0

7 Min Sepal.Width versicolor 2.0

8 Max Sepal.Width versicolor 3.4

9 Min Sepal.Length virginica 4.9

10 Max Sepal.Length virginica 7.9

11 Min Sepal.Width virginica 2.2

12 Max Sepal.Width virginica 3.8

Note If the grouping (by) variable is a list of two or more factors, the combined
levels will be concatenated to a single string.This behaviour yields a result thatmay be
deemed convenient in some contexts but not necessarily so in other ones.

12 DATA FRAMES 287

as.data.frame.table(as.array(sapply(

split(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], sep="_"),

sapply, # but check also: function(...) as.matrix(sapply(...)),

mean

)), stringsAsFactors=FALSE)

Var1 Freq

1 OJ_0.5.len 13.23

2 VC_0.5.len 7.98

3 OJ_1.len 22.70

4 VC_1.len 16.77

5 OJ_2.len 26.06

6 VC_2.len 26.14

Thenameof the aggregated column (len) has been included, because sapply simplifies
the result to a flat vector too eagerly.

aggregate can assist us when a single function is to be applied on all columns in a data
frame.

aggregate(iris[-5], iris[5], mean) # neither iris[[5]] nor iris[, 5]

Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.006 3.428 1.462 0.246

2 versicolor 5.936 2.770 4.260 1.326

3 virginica 6.588 2.974 5.552 2.026

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean)

supp dose len

1 OJ 0.5 13.23

2 VC 0.5 7.98

3 OJ 1.0 22.70

4 VC 1.0 16.77

5 OJ 2.0 26.06

6 VC 2.0 26.14

Thesecondargument, by,must be list-like (this includesdata frames).Neither a factor
nor an atomic vector is acceptable. Also, if the function being applied returns many
values, they will be wrapped into a matrix column:

(x <- aggregate(iris[2], iris[5], function(x) c(Min=min(x), Max=max(x))))

Species Sepal.Width.Min Sepal.Width.Max

1 setosa 2.3 4.4

2 versicolor 2.0 3.4

3 virginica 2.2 3.8

class(x[["Sepal.Width"]])

[1] "matrix" "array"

x[["Sepal.Width"]] # not: Sepal.Width.Max, etc.

(continues on next page)

288 II DEEPER

(continued from previous page)

Min Max

[1,] 2.3 4.4

[2,] 2.0 3.4

[3,] 2.2 3.8

It is actually handy: by referring to x[["Sepal.Width"]], we access all the stats for this
column. Further, if many columns are being aggregated simultaneously, we can pro-
cess all the summaries in the same way.

Exercise 12.25 Check out the by function, which supports basic split-apply-bind use cases.
Note the particularly peculiar behaviour of the printmethod for the by class.

The most flexible scenario involves applying a custom function returning any set of
aggregates in the formofa list and then row-binding the results toobtainadata frame.

Example 12.26 The following implements an R version of what we would express in SQL as:

SELECT supp, dose, AVG(len) AS ave_len, COUNT(*) AS count

FROM ToothGrowth

GROUP BY supp, dose

Ad rem:

do.call(rbind.data.frame, lapply(

split(ToothGrowth, ToothGrowth[c("supp", "dose")]),

function(df) list(

supp=df[1, "supp"],

dose=df[1, "dose"],

ave_len=mean(df[["len"]]),

count=NROW(df)

)

))

supp dose ave_len count

OJ.0.5 OJ 0.5 13.23 10

VC.0.5 VC 0.5 7.98 10

OJ.1 OJ 1.0 22.70 10

VC.1 VC 1.0 16.77 10

OJ.2 OJ 2.0 26.06 10

VC.2 VC 2.0 26.14 10

Exercise 12.27 Many aggregation functions are idempotent, which means that when they are
fed with a vector with all the elements being identical, the result is exactly that unique element:
min, mean, median, and max behave this way.

Overload the mean and medianmethods for character vectors and factors.They should return NA
and give awarning for sequenceswhere not all elements are the same.Otherwise, they are expec-
ted to output the unique value.

12 DATA FRAMES 289

mean.character <- function(x, na.rm=FALSE, ...) ...to.do...

mean.factor <- function(x, na.rm=FALSE, ...) ...to.do...

This way, we can also aggregate the grouping variables conveniently:

do.call(rbind.data.frame,

lapply(split(ToothGrowth, ToothGrowth[c("supp", "dose")]), lapply, mean))

len supp dose

OJ.0.5 13.23 OJ 0.5

VC.0.5 7.98 VC 0.5

OJ.1 22.70 OJ 1.0

VC.1 16.77 VC 1.0

OJ.2 26.06 OJ 2.0

VC.2 26.14 VC 2.0

Example 12.28 As an exercise, let us study a function that takes a named list x (can be a data
frame) and a sequence of col=f pairs and applies the function f (or each function from a list of
functions f) on the element named col in x:

napply <- function(x, ...)

{

fs <- list(...)

cols <- names(fs)

stopifnot(is.list(x), !is.null(names(x)))

stopifnot(all(cols %in% names(x)))

do.call(

c, # concatenates lists

lapply(

structure(seq_along(fs), names=cols),

function(i)

{ # always returns a list

y <- x[[cols[i]]]

if (is.function(fs[[i]]))

list(fs[[i]](y))

else

lapply(fs[[i]], function(f) f(y))

}

)

)

}

For example:

first <- function(x, ...) head(x, n=1L, ...) # helper function

napply(ToothGrowth,

supp=first, dose=first, len=list(ave=mean, count=length)

(continues on next page)

290 II DEEPER

(continued from previous page)

)

$supp

[1] VC

Levels: OJ VC

##

$dose

[1] 0.5

##

$len.ave

[1] 18.813

##

$len.count

[1] 60

It applied first on both ToothGrowth[["supp"]] and ToothGrowth[["dose"]] as well as
mean and length on ToothGrowth[["len"]]. We included list names for a more dramatic ef-
fect. And now:

do.call(

rbind.data.frame,

lapply(

split(ToothGrowth, ToothGrowth[c("supp", "dose")]),

napply,

supp=first, dose=first, len=list(ave=mean, count=length)

)

)

supp dose len.ave len.count

OJ.0.5 OJ 0.5 13.23 10

VC.0.5 VC 0.5 7.98 10

OJ.1 OJ 1.0 22.70 10

VC.1 VC 1.0 16.77 10

OJ.2 OJ 2.0 26.06 10

VC.2 VC 2.0 26.14 10

or even:

gapply <- function(x, by, ...)

do.call(rbind.data.frame, lapply(

split(x, x[by]),

function(x, ...)

do.call(napply, c(# add all by=first calls

x=list(x),

`names<-`(rep(list(first), length(by)), by),

list(...)

)),

(continues on next page)

12 DATA FRAMES 291

(continued from previous page)

...

))

And now:

gapply(iris, "Species", Sepal.Length=mean, Sepal.Width=list(min, max))

Species Sepal.Length Sepal.Width1 Sepal.Width2

setosa setosa 5.006 2.3 4.4

versicolor versicolor 5.936 2.0 3.4

virginica virginica 6.588 2.2 3.8

gapply(ToothGrowth, c("supp", "dose"), len=list(ave=mean, count=length))

supp dose len.ave len.count

OJ.0.5 OJ 0.5 13.23 10

VC.0.5 VC 0.5 7.98 10

OJ.1 OJ 1.0 22.70 10

VC.1 VC 1.0 16.77 10

OJ.2 OJ 2.0 26.06 10

VC.2 VC 2.0 26.14 10

This brings fun back to R programming in the sad times when many things are given to us on a
plate (the thorough testing of the above is left as an exercise).

Example 12.29 In Section 10.4, we mentioned (without giving the implementation) the
group_by function returning a list of the class list_dfs. It splits a data frame into a list of data
frames with respect to a combination of levels in given named columns:

group_by <- function(df, by)

{

stopifnot(is.character(by), is.data.frame(df))

df <- droplevels(df) # factors may have unused levels

structure(

split(df, df[names(df) %in% by]),

class="list_dfs",

by=by

)

}

The next function applies a set of aggregates on every column of each data frame in a given list
(two nested lapplys plus cosmetic additions):

aggregate.list_dfs <- function(x, FUN, ...)

{

aggregates <- lapply(x, function(df) {

is_by <- names(df) %in% attr(x, "by")

res <- lapply(df[!is_by], FUN, ...)

res_mat <- do.call(rbind, res)

(continues on next page)

292 II DEEPER

(continued from previous page)

if (is.null(dimnames(res_mat)[[2]]))

dimnames(res_mat)[[2]] <- paste0("f", seq_len(NCOL(res_mat)))

cbind(

`row.names<-`(df[1, is_by, drop=FALSE], NULL),

x=row.names(res_mat),

`row.names<-`(res_mat, NULL)

)

})

combined_aggregates <- do.call(rbind.data.frame, aggregates)

`row.names<-`(combined_aggregates, NULL)

}

aggregate(group_by(ToothGrowth, c("supp", "dose")), range)

supp dose x f1 f2

1 OJ 0.5 len 8.2 21.5

2 VC 0.5 len 4.2 11.5

3 OJ 1.0 len 14.5 27.3

4 VC 1.0 len 13.6 22.5

5 OJ 2.0 len 22.4 30.9

6 VC 2.0 len 18.5 33.9

We really want our API to be bloated. Hence, let us introduce a convenience function, which is
a specialised version of the above:

mean.list_dfs <- function(x, ...)

aggregate.list_dfs(x, function(y) c(Mean=mean(y, ...)))

mean(group_by(iris[51:150, c(2, 3, 5)], "Species"))

Species x Mean

1 versicolor Sepal.Width 2.770

2 versicolor Petal.Length 4.260

3 virginica Sepal.Width 2.974

4 virginica Petal.Length 5.552

12.3.8 Transforming data in groups
Variables will sometimes need to be transformed relative to what is happening in a
dataset’s subsets.This is the case, e.g., where we decide thatmissing values should be
replaced by the corresponding within-group averages or want to compute the relative
ranks or z-scores.

If the loss of theoriginal orderingof rows isnot an issue, the standard split-apply-bind
will suffice. Here is an example data frame:

(x <- data.frame(

a=c(10, 1, NA, NA, NA, 4),

b=c(-1, 10, 40, 30, 1, 20),

(continues on next page)

12 DATA FRAMES 293

(continued from previous page)

c=runif(6),

d=c("v", "u", "u", "u", "v", "u")

))

a b c d

1 10 -1 0.52811 v

2 1 10 0.89242 u

3 NA 40 0.55144 u

4 NA 30 0.45661 u

5 NA 1 0.95683 v

6 4 20 0.45333 u

Some operations:

fill_na <- function(x) `[<-`(x, is.na(x), value=mean(x[!is.na(x)]))

standardise <- function(x) (x-mean(x))/sd(x)

And now:

x_groups <- lapply(

split(x, x["d"]),

function(df) {

df[["a"]] <- fill_na(df[["a"]])

df[["b"]] <- rank(df[["b"]])

df[["c"]] <- standardise(df[["c"]])

df

}

)

do.call(rbind.data.frame, x_groups)

a b c d

u.2 1.0 1 1.46357 u

u.3 2.5 4 -0.17823 u

u.4 2.5 3 -0.63478 u

u.6 4.0 2 -0.65057 u

v.1 10.0 1 -0.70711 v

v.5 10.0 2 0.70711 v

Only the relative ordering of rows within groups has been retained. Overall, the rows
are in a different order. If this is an issue, we can use the unsplit function:

unsplit(x_groups, x["d"])

a b c d

1 10.0 1 -0.70711 v

2 1.0 1 1.46357 u

3 2.5 4 -0.17823 u

4 2.5 3 -0.63478 u

(continues on next page)

294 II DEEPER

(continued from previous page)

5 10.0 2 0.70711 v

6 4.0 2 -0.65057 u

Exercise 12.30 Show howwe can do the above also via the replacement version of split.

Example 12.31 (*) Recreating the previous ordering can be donemanually too. It is because the
split operation behaves as if we first ordered the data frame with respect to the grouping vari-
able(s) (using a stable sorting algorithm). Here is a transformation of an example data frame
split by a combination of two factors:

(x <- `row.names<-`(ToothGrowth[sample(NROW(ToothGrowth), 10),], NULL))

len supp dose

1 23.0 OJ 2.0

2 23.3 OJ 1.0

3 29.4 OJ 2.0

4 14.5 OJ 1.0

5 11.2 VC 0.5

6 20.0 OJ 1.0

7 24.5 OJ 2.0

8 10.0 OJ 0.5

9 9.4 OJ 0.5

10 7.0 VC 0.5

(y <- do.call(rbind.data.frame, lapply(

split(x, x[c("dose", "supp")]), # two grouping variables

function(df) {

df[["len"]] <- df[["len"]] * 100^df[["dose"]] * # whatever

ifelse(df[["supp"]] == "OJ", -1, 1) # do not overthink it

df

}

)))

len supp dose

0.5.OJ.8 -100 OJ 0.5

0.5.OJ.9 -94 OJ 0.5

1.OJ.2 -2330 OJ 1.0

1.OJ.4 -1450 OJ 1.0

1.OJ.6 -2000 OJ 1.0

2.OJ.1 -230000 OJ 2.0

2.OJ.3 -294000 OJ 2.0

2.OJ.7 -245000 OJ 2.0

0.5.VC.5 112 VC 0.5

0.5.VC.10 70 VC 0.5

Section 5.4.4mentioned that by calling order, we can determine the inverse of a given permuta-
tion. Hence, we can call:

12 DATA FRAMES 295

y[order(order(x[["supp"]], x[["dose"]])),] # not: dose, supp

len supp dose

2.OJ.1 -230000 OJ 2.0

1.OJ.2 -2330 OJ 1.0

2.OJ.3 -294000 OJ 2.0

1.OJ.4 -1450 OJ 1.0

0.5.VC.5 112 VC 0.5

1.OJ.6 -2000 OJ 1.0

2.OJ.7 -245000 OJ 2.0

0.5.OJ.8 -100 OJ 0.5

0.5.OJ.9 -94 OJ 0.5

0.5.VC.10 70 VC 0.5

Additionally, we canmanually restore the original row.names, et voilà.

12.3.9 Metaprogramming-based techniques (*)
Section 9.4.7 mentioned a few functions that provide convenient interfaces to some
common data frame operations. These include transform, subset, with, and basically
every procedure accepting a formula.The popular data.table and dplyr packages also
belong to this class (Section 12.3.10).

Unfortunately, eachmethod relyingonmetaprogrammingmust be studied separately
because it is free to interpret the formof thepassed arguments arbitrarily,without tak-
ing into account their realmeaning. Aswe are interested in developing amore univer-
sal skill set, we avoid10 them in this course.They do not offer anythingmore thanwhat
we have learnt so far.

Withal, theyare thought-provokingon their own.Furthermore, theyarequitepopular
in other users’ code.Thus, after all, they deserve the honourable mention.

Example 12.32 Let us consider an example call to the subset function:

subset(iris, Sepal.Length<4.5, -(Sepal.Width:Petal.Width))

Sepal.Length Species

9 4.4 setosa

14 4.3 setosa

39 4.4 setosa

43 4.4 setosa

Neither the second nor the third argument makes sense as a standalone R expression. We have
not defined the named variables used there:

10We are not alone in our calling to refrain from using them. help("subset") warns (and
help("transform") quite similarly):This is a convenience function intended for use interactively. For programming,
it is better to use the standard subsetting functions like `[`, and in particular the nonstandard evaluation of argument
subset can have unanticipated consequences.The same in help("with"): For interactive use, this is very effective
and nice to read. For programming however, i.e., in one’s functions, more care is needed, and typically one should refrain
from using with, as, e.g., variables in datamay accidentally override local variables.

296 II DEEPER

Sepal.Length<4.5 # utter nonsense

Error in eval(expr, envir, enclos): object 'Sepal.Length' not found

-(Sepal.Width:Petal.Width) # gibberish

Error in eval(expr, envir, enclos): object 'Sepal.Width' not found

Only from help("subset") we can learn that this tool assumes that the expression passed as
the second argument plays the role of a row selector. Moreover, the third one is meant to remove
all the columns between the two given ones.

In our course,wepayattention to developing transferable skills.Webelieve thatR is not the only
language we will learn during our long and happy lives. It is much more likely that in the next
environment, we will become used to writing something of the more basic form:

between <- function(x, from, to) match(from, x):match(to, x)

iris[iris[["Sepal.Length"]]<4.5,

-between(names(iris), "Sepal.Width", "Petal.Width")]

Sepal.Length Species

9 4.4 setosa

14 4.3 setosa

39 4.4 setosa

43 4.4 setosa

Example 12.33 With transform, we can add, modify, and remove columns in a data frame.
Existing features can be referred to as if they were ordinary variables:

(mtcars4 <- mtcars[sample(seq_len(NROW(mtcars)), 4), c("hp", "am", "mpg")])

hp am mpg

Maserati Bora 335 1 15.0

Cadillac Fleetwood 205 0 10.4

Honda Civic 52 1 30.4

Merc 450SLC 180 0 15.2

transform(mtcars4, log_hp=log(hp), am=2*am-1, hp=NULL, fcon=235/mpg)

am mpg log_hp fcon

Maserati Bora 1 15.0 5.8141 15.6667

Cadillac Fleetwood -1 10.4 5.3230 22.5962

Honda Civic 1 30.4 3.9512 7.7303

Merc 450SLC -1 15.2 5.1930 15.4605

Similarly, attach adds any named list to the search path (see Section 16.2.6) but it does not sup-
port altering their contents. As an alternative, withinmay be called:

within(mtcars4, {

log_hp <- log(hp)

fcon <- 235/mpg

am <- factor(am, levels=c(0, 1), labels=c("no", "yes"))

hp <- NULL

(continues on next page)

12 DATA FRAMES 297

(continued from previous page)

})

am mpg fcon log_hp

Maserati Bora yes 15.0 15.6667 5.8141

Cadillac Fleetwood no 10.4 22.5962 5.3230

Honda Civic yes 30.4 7.7303 3.9512

Merc 450SLC no 15.2 15.4605 5.1930

Those who find writing mtcars4[["name"]] instead of name too exhausting, can save a few key-
strokes.

Example 12.34 Asmentioned in Section 10.3.4 (see Section 17.6 formore details), formulae are
special objects that consist of two unevaluated expressions separated by a tilde, `~`. Functions
can support formulae and do what they please with them. However, a popular approach is to
allow them to express “something grouped by something else” or “one thing as a function of other
things”.

do.call(rbind.data.frame, lapply(split(ToothGrowth, ~supp+dose), head, 1))

len supp dose

OJ.0.5 15.2 OJ 0.5

VC.0.5 4.2 VC 0.5

OJ.1 19.7 OJ 1.0

VC.1 16.5 VC 1.0

OJ.2 25.5 OJ 2.0

VC.2 23.6 VC 2.0

aggregate(cbind(mpg, log_hp=log(hp))~am:cyl, mtcars, mean)

am cyl mpg log_hp

1 0 4 22.900 4.4186

2 1 4 28.075 4.3709

3 0 6 19.125 4.7447

4 1 6 20.567 4.8552

5 0 8 15.050 5.2553

6 1 8 15.400 5.6950

head(model.frame(mpg+hp~log(hp)+I(1/qsec), mtcars))

mpg + hp log(hp) I(1/qsec)

Mazda RX4 131.0 4.7005 0.060753....

Mazda RX4 Wag 131.0 4.7005 0.058754....

Datsun 710 115.8 4.5326 0.053734....

Hornet 4 Drive 131.4 4.7005 0.051440....

Hornet Sportabout 193.7 5.1648 0.058754....

Valiant 123.1 4.6540 0.049455....

If these examples seem esoteric, it is because it is precisely the case.We need to consult the corres-
ponding functions’ manuals to discover what they do. And, as we do not recommend their use by
beginner programmers, we will not explain them here. Don’t trip.

298 II DEEPER

Exercise 12.35 In the last example, the peculiar printing of the last column is due to which
method’s being overloaded?

In the third part of this book, wewill return to these functions for they will serve as an
amusing illustration of how to indite our own procedures that rely on metaprogram-
ming techniques.

12.3.10 A note on the dplyr (tidyverse) and data.table packages (*)
data.table and dplyr are very popular packages that implement common data frame
transformations. Inparticular, the latter is part of an immerse systemof interdepend-
ent extensions called tidyverse which became quite invasive over the last few years.
They both heavily rely onmetaprogramming.

They introduce entirely new APIs featuring hundreds of functions for the operations
we already know well how to perform (the calamity of superabundance). Still, their
usersmust remember that theywill need to rely on base functionswhen the processing
of other prominent data structures is required, e.g., of fancy lists andmatrices.

Base R (and its predecessor, S) has long ago proven to be a versatile tool for rapid pro-
totyping, calling specialised procedures written in C or Java, and wrangling data that
fit into memory. Even though some operations from the mentioned packages may be
much faster for larger datasets, the speed is less often an issue in practice than what
most users might think.

For larger problems, techniques forworkingwith batches of data, samplingmethods,
or aggregating data stored elsewhere are often theway to go, especially when building
machine learning models or visualisation11 is required. Usually, the most recent data
will be stored in external, normalised databases, and we will need to join a few tables
to fetch something interesting from the perspective of the current task’s context.

Thus, we cannot stress enough that, in many situations, SQL, not the other tools, is
the most powerful interface to more considerable amounts of data. Learning it will
give us the skills we can use later in other programming environments.

Note Of course, certain functions from tidyverse and related packages we will find
very helpful after all. Quite annoyingly, they tend to return objects of the class tibble
(tbl_df) (e.g., haven::read.xpt that reads SAS data files). Luckily, they are subclasses
of data.frame; we can always use as.data.frame to get our favourite objects back.

11 For example, drawing scatter plots of billions of pointsmakes little sense as theymay result in unread-
able images of large file sizes. The points need to be sampled or summarised somehow (e.g., binned); see
Chapter 13.

12 DATA FRAMES 299

12.4 Exercises
Exercise 12.36 Answer the following questions.

• What attributes a data frame is equipped with?

• If row.names is an integer vector, how to access rows labelled 1, 7, and 42?

• How to create a data frame that carries a column that is a list of character vectors of different
lengths?

• How to create a data frame that includes amatrix column?

• How to convert all numeric columns in a data frame to a numeric matrix?

• Assuming that x is an atomic vector, what is the difference between as.data.frame(x), as.
data.frame(as.list(x)), as.data.frame(list(a=x)), and data.frame(a=x)?

Exercise 12.37 Assuming that x is a data frame, what is themeaning of/difference between the
following:

• x["u"] vs x[["u"]] vs x[, "u"]?

• x["u"][1] vs x[["u"]][1] vs x[1, "u"] vs x[1, "u", drop=FALSE]?

• x[which(x[[1]] > 0),] vs x[x[[1]] > 0,]?

• x[grep("^foo", names(x))]?

Exercise 12.38 We have a data frame with columns named like: ID (character), checked (lo-
gical, possiblywithmissingvalues),category (factor),x0,…,x9 (ten separatenumeric columns),
y0, …, y9 (ten separate numeric columns), coords (numericmatrixwith two columnsnamed lat
and long), and features (list of character vectors of different lengths).

• How to extract the rows where checked is TRUE?

• How to extract the rows forwhich ID is like three letters and thenfive digits (e.g., XYZ12345)?

• How to select all the numeric columns in one go?

• How to extract a subset comprised only of the ID and x-something columns?

• How to get rid of all the columns between x3 and y7?

• Assuming that the IDs are like three letters and then five digits, how to add two columns: ID3
(the letters) and ID5 (the five digits)?

• How to check where both lat and long in coords are negative?

• How to add the column indicating the number of features?

• How to extract the rows where "spam" is amongst the features?

• How to convert it to a long data frame with two columns: ID and feature (individual
strings)?

300 II DEEPER

• How to change the name of the ID column to id?

• How tomake the y-foo columns appear before the x-bar ones?

• How to order the rows with respect to checked (FALSE first, then TRUE) and IDs (decreas-
ingly)?

• How to remove rows with duplicate IDs?

• How to determine howmany entries correspond to each category?

• How to compute the average lat and long in each category?

• How to compute the average lat and long for each category and checked combined?

Exercise 12.39 Consider the flights12 dataset. Give some ways to select all rows between
March andOctober (regardless of the year).

Exercise 12.40 In this task, youwill be workingwith a version of a dataset on 70k+Melbourne
trees (urban_forest13).

1. Load the downloaded dataset by calling the read.csv function.

2. Fetch the IDs (CoM.ID) and trunk diameters (Diameter.Breast.Height) of the horse chest-
nutswithfive smallest diameters at breast height.Theoutput data framemust be sortedwith
respect to Diameter.Breast.Height, decreasingly.

3. Create a new data frame that gives the number of trees planted in each year.

4. Compute theaverageage (inyears,basedonYear.Planted) of the treesofgenera (eachgenus
separately): Eucalyptus, Platanus, Ficus, Acer, and Quercus.

Exercise 12.41 (*) Consider the historic data dumps of Stack Exchange14 available here15. Ex-
port these CSV files to an SQLite database. Then, write some R code that corresponds to the fol-
lowing SQL queries. Use dbGetQuery to verify your results.

First:

SELECT

Users.DisplayName,

Users.Age,

Users.Location,

SUM(Posts.FavoriteCount) AS FavoriteTotal,

Posts.Title AS MostFavoriteQuestion,

MAX(Posts.FavoriteCount) AS MostFavoriteQuestionLikes

FROM Posts

JOIN Users ON Users.Id=Posts.OwnerUserId

WHERE Posts.PostTypeId=1

GROUP BY OwnerUserId

(continues on next page)

12 https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
13 https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
14 https://travel.stackexchange.com/
15 https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
https://travel.stackexchange.com/
https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

12 DATA FRAMES 301

(continued from previous page)

ORDER BY FavoriteTotal DESC

LIMIT 10

Second:

SELECT

Posts.ID,

Posts.Title,

Posts2.PositiveAnswerCount

FROM Posts

JOIN (

SELECT

Posts.ParentID,

COUNT(*) AS PositiveAnswerCount

FROM Posts

WHERE Posts.PostTypeID=2 AND Posts.Score>0

GROUP BY Posts.ParentID

) AS Posts2

ON Posts.ID=Posts2.ParentID

ORDER BY Posts2.PositiveAnswerCount DESC

LIMIT 10

Third:

SELECT

Posts.Title,

UpVotesPerYear.Year,

MAX(UpVotesPerYear.Count) AS Count

FROM (

SELECT

PostId,

COUNT(*) AS Count,

STRFTIME('%Y', Votes.CreationDate) AS Year

FROM Votes

WHERE VoteTypeId=2

GROUP BY PostId, Year

) AS UpVotesPerYear

JOIN Posts ON Posts.Id=UpVotesPerYear.PostId

WHERE Posts.PostTypeId=1

GROUP BY Year

Fourth:

SELECT

Questions.Id,

(continues on next page)

302 II DEEPER

(continued from previous page)

Questions.Title,

BestAnswers.MaxScore,

Posts.Score AS AcceptedScore,

BestAnswers.MaxScore-Posts.Score AS Difference

FROM (

SELECT Id, ParentId, MAX(Score) AS MaxScore

FROM Posts

WHERE PostTypeId==2

GROUP BY ParentId

) AS BestAnswers

JOIN (

SELECT * FROM Posts

WHERE PostTypeId==1

) AS Questions

ON Questions.Id=BestAnswers.ParentId

JOIN Posts ON Questions.AcceptedAnswerId=Posts.Id

WHERE Difference>50

ORDER BY Difference DESC

Fifth:

SELECT

Posts.Title,

CmtTotScr.CommentsTotalScore

FROM (

SELECT

PostID,

UserID,

SUM(Score) AS CommentsTotalScore

FROM Comments

GROUP BY PostID, UserID

) AS CmtTotScr

JOIN Posts ON Posts.ID=CmtTotScr.PostID

AND Posts.OwnerUserId=CmtTotScr.UserID

WHERE Posts.PostTypeId=1

ORDER BY CmtTotScr.CommentsTotalScore DESC

LIMIT 10

Sixth:

SELECT DISTINCT

Users.Id,

Users.DisplayName,

Users.Reputation,

Users.Age,

(continues on next page)

12 DATA FRAMES 303

(continued from previous page)

Users.Location

FROM (

SELECT

Name, UserID

FROM Badges

WHERE Name IN (

SELECT

Name

FROM Badges

WHERE Class=1

GROUP BY Name

HAVING COUNT(*) BETWEEN 2 AND 10

)

AND Class=1

) AS ValuableBadges

JOIN Users ON ValuableBadges.UserId=Users.Id

Seventh:

SELECT

Posts.Title,

VotesByAge2.OldVotes

FROM Posts

JOIN (

SELECT

PostId,

MAX(CASE WHEN VoteDate = 'new' THEN Total ELSE 0 END) NewVotes,

MAX(CASE WHEN VoteDate = 'old' THEN Total ELSE 0 END) OldVotes,

SUM(Total) AS Votes

FROM (

SELECT

PostId,

CASE STRFTIME('%Y', CreationDate)

WHEN '2017' THEN 'new'

WHEN '2016' THEN 'new'

ELSE 'old'

END VoteDate,

COUNT(*) AS Total

FROM Votes

WHERE VoteTypeId=2

GROUP BY PostId, VoteDate

) AS VotesByAge

GROUP BY VotesByAge.PostId

HAVING NewVotes=0

) AS VotesByAge2 ON VotesByAge2.PostId=Posts.ID
(continues on next page)

304 II DEEPER

(continued from previous page)

WHERE Posts.PostTypeId=1

ORDER BY VotesByAge2.OldVotes DESC

LIMIT 10

Exercise 12.42 (*)GenerateaCSVfile that stores somerandomdataarranged ina fewcolumns
of a size at least two times larger thanyouravailableRAM.Then, export theCSVfile to anSQLite
database.Use file connections (Section 8.3.5) and the nrow argument to read.table to process it
chunk by chunk. Determine whether setting colClasses in read.table speeds up the reading
of large CSV files significantly or not.

Exercise 12.43 (*) Export the whole XML data dump of StackOverflow16 published at https:
//archive.org/details/stackexchange (see also https://data.stackexchange.com/) to an SQLite
database.

16 https://stackoverflow.com/

https://stackoverflow.com/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://data.stackexchange.com/

13
Graphics

The R project homepage advertises our free software as an environment for statistical
computing and graphics. Hence, had we not dealt with the latter use case, our course
would have been incomplete.

R is nowadays equipped with the two following independent (incompatible, yet coex-
isting) systems for graphics generation; see Figure 13.1.

1. The (historically) newer one, grid (e.g., [48]), is very flexible but might seem quite
complicated. Some readers might have come across the lattice [53] and ggplot2

[58, 61] packages before.They are built on top of grid.

2. On the other hand, its traditional (S-style) counterpart, base graphics (e.g., [7]), is
much easier to master. It still gives their users complete control over the drawing
process. It is simple, fast, andminimalist, whichmakes it very attractive from the
perspective of this course’s philosophy.

This is why we only cover the second system here.

Note Allfigures in this bookwere generated using graphics and its dependants.They
are sufficiently aesthetic, aren’t they? Form precedes essence.

13.1 Graphics primitives
In graphics, we do not choose from a superfluity of virtual objects to be placed on an
abstract canvas, letting some algorithm decide how and when to delineate them. We
just draw. We do so by calling functions that plot the following graphics primitives (see,
e.g., [36, 44]):

• symbols (e.g., pixels, circles, stars) of different shapes and colours,

• line segments of different styles (e.g., solid, dashed, dotted),

• polygons (optionally filled),

• text (using available fonts),

• raster images (bitmaps).

306 II DEEPER

higher-level functions (graphics)

higher-level functions (grid)

graphics subsystems

graphics devices
(abstraction layer)

particular devices

graphics

plot.default
boxplot
hist
barplot
image
...

stats

plot.ecdf
plot.hclust
qqplot
...

lattice

...

ggplot2

...

graphics

plot.new
plot.window
plot.xy
polygon
text.default
rasterImage
...

grid

...

grDevices

dev.new
dev.o�f
par
...

grDevices::cairo_pdf

grDevices::svggrDevices::pngtikzDevice::tikz

grDevices::x11

Figure 13.1. Relation between the graphics subsystems.

13 GRAPHICS 307

That’s it. It will turn out that all other shapes (smooth curves, circles) may be easily
approximated using the above.

Of course, in practice, we do not always have to be so low-level. There are many func-
tions that provide themost popular chart types: histograms, bar plots, dendrograms,
etc.They will suit our basic needs. We will review them in Section 13.3.

Themore basic routines we discuss next will still be of service for fine-tuning our fig-
ures and adding further details. However, if the prefabricated components are not
what we are after, we will be able to create any drawing from scratch.

Important In graphics, most of the function calls have immediate effects. Objects
are drawn on the active plot one by one, and their state cannot be modified later.

Example 13.1 Figure 13.2 depicts some graphics primitives, which we plotted using the follow-
ing program.Wewill detail themeaning of all the functions in the next sections, but they should
be self-explanatory enough for us to be able to find the corresponding shapes in the plot.

par(mar=rep(0.5, 4)) # small plot margins (bottom, left, top, right)

plot.new() # start a new plot

plot.window(c(0, 6), c(0, 2), asp=1) # x range: 0–6, y: 0–2; proportional

x <- c(0, 0, NA, 1, 2, 3, 4, 4, 5, 6)

y <- c(0, 2, NA, 2, 1, 2, 2, 1, 0.25, 0)

points(x[-(1:6)], y[-(1:6)]) # symbols

lines(x, y) # line segments

text(c(0, 6), c(0, 2), c("(0, 0)", "(6, 2)"), col="red") # two text labels

rasterImage(

matrix(c(1, 0, # 2x3 pixel "image"; 0=black, 1=white

0, 1,

0, 0), byrow=TRUE, ncol=2),

5, 0.5, 6, 2, # position: xleft, ybottom, xright, ytop

interpolate=FALSE

)

polygon(

c(4, 5, 5.5, 4), # x coordinates of the vertices

c(0, 0, 1, 0.75), # y coordinates

lty="dotted", # border style

col="#ffff0044" # fill colour: semi-transparent yellow

)

13.1.1 Symbols (points)
The points function can draw a series of symbols (by default, circles) on the two-
dimensional plot region, relative to the user coordinate system.

We specify the points’ coordinates using the x and y arguments (two vectors of equal
lengths; no recycling). Alternatively, we may give a matrix or a data frame with two

308 II DEEPER

(0, 0)

(6, 2)

Figure 13.2. Graphics primitives: plotting symbols, line segments, polygons, text la-
bels, and bitmaps. Objects are added one after another, with newer ones drawn over
the already existing shapes.

columns: its first column (regardless of how and if it is named) defines the abscissae,
and the second column determines the ordinates.

This function permits us to plot each point differently if this is whatwe desire.Thus, it
is ideal for drawing scatter plots, possibly for grouped data (see Figure 13.17 below). It
is vectorised with respect to, amongst others, the col (colour; see Section 13.2.1), cex
(scale, defaults to 1), and pch (plotting character or symbol, defaults to 1, i.e., a circle)
arguments.

Example 13.2 Figure 13.3 gives an overview of the plotting symbols available. The most often
used ones are:

• NA_integer_ – no symbol,

• 0, …, 14 and 15, …, 18 – unfilled and filled symbols, respectively;

• 19, …, 25 – filled symbols with a border of width lwd; for codes 21, …, 25, the fill colour is
controlled separately by the bg parameter,

• "." – a tiny point (a “pixel”),

• "a", "1", etc. – a single character (not all Unicode characters can be drawn); strings longer
than one will be truncated.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0.9, 9.1), c(0.9, 4.1))

points(

cbind(1:9, 1), # or x=1:9, y=rep(1, 9); bottom row

col="red",

pch=c("A", "B", "a", "b", "Spanish Inquisition", "*", "!", ".", "9")

)

xy <- expand.grid(1:9, 4:2)

text(xy, labels=0:(NROW(xy)-1), pos=1, cex=0.89, offset=0.75, col="darkgray")

points(xy, pch=0:(NROW(xy)-1), bg="yellow")

Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch

value '26'

13 GRAPHICS 309

A B a b S * ! 9

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

Figure 13.3. Plotting characters and symbols (pch).

13.1.2 Line segments
lines candrawconnected line segmentswhosemid- andendpoints are given in a sim-
ilar manner as in the points function. A series of segments can be interrupted by de-
fining an endpoint whose coordinate is a missing value; compare Figure 13.2.

Actually, points and lines are wrappers around the same function, plot.xy, which
we usually do not call directly. Their type arguments determine the object to draw;
the only difference is that by default the former uses type="p" whilst the latter relies
on type="l" . Changing these to type="b" (both) or type="o" (overplot) will give their
combination.Moreover, type="s" and type="S" creates step functions (with post- and
pre-increments, respectively), and type="h" draws bar plot-like vertical lines. See Fig-
ure 13.4 for an illustration (implement something similar yourself as an exercise).

type="h"

type="p"

type="l"

type="b"

type="o"

type="s"

type="S"

Figure 13.4. Different type argument settings in lines or points.

The col argument controls the line colour (see Section 13.2.1), and lwd determines the
line width (1 by default). Six named line types (lty) are available, which can also be
specified via their respective numeric identifiers, lty=1, …, lty=6; see Figure 13.5 (im-
plementing a similar plot is left as an exercise). Additionally, custom dashes can be
defined using strings of up to eight hexadecimal digits. Consecutive digits give the
lengths of the dashes and blanks (alternating). For instance, lty="1343" yields a dash
of length 1, followed by a space of length 3, then a dash of length 4, followed by a blank
of length 3.The whole sequence will be recycled for as long as necessary.

310 II DEEPER

"solid" or 1 "dashed", "44", or 2

"dotted", "13", or 3 "dotdash", "1343", or 4

"longdash", "73", or 5 "twodash", "2262", or 6

"5515" "9515"

"19" "4484C4"

Figure 13.5. Line types (lty).

Example 13.3 lines can be used for plotting empirical cumulative distribution functions (we
will suggest it asanexercise later), regressionmodels (e.g., lines, splines of differentdegrees), time
series, and any othermathematical functions, even when they are smooth and curvy.The naked
eye cannot tell the difference between a densely sampled piecewise linear approximation of an
object and its original version.The code below illustrates this (sad for the high-hearted idealists)
truth using the sine function; see Figure 13.6.

ns <- c(seq(3, 25, by=2), 50, 100)

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, length(ns)*pi), c(-1, 1))

for (i in seq_along(ns)) {

x <- seq((i-1)*pi, i*pi, length.out=ns[i])

lines(x, sin(x))

text((i-0.5)*pi, 0, ns[i], cex=0.89)

}

3 5 7 9 11 13 15 17 19 21 23 25 50 100

Figure 13.6. The sine function approximated with line segments. Sampling more
densely gives the illusion of smoothness.

Exercise 13.4 Implement your version of the segments function using a call to lines.

Exercise 13.5 (*) Implement a simplified version of the arrows function, where the length
of edges of the arrowhead is given in user coordinates (and not inches; you will be equipped
with skills to achieve this later; see Section 13.2.4). Use the ljoin and lend arguments (see
help("par") for admissible values) to change the line end and join styles (from the default roun-
ded caps).

13.1.3 Polygons
polygon draws a polygon with a border of specified colour and line type (border, lty,
lwd). If the col argument is notmissing, the polygon is filled (or hatched; cf. the dens-
ity and angle arguments).

13 GRAPHICS 311

Example 13.6 Let us draw a few regular (equilateral and equiangular) polygons; see Fig-
ure 13.7. By increasing the number of sides, we can obtain an approximation to a circle.

regular_poly <- function(x0, y0, r, n=101, ...)

{

theta <- seq(0, 2*pi, length.out=n+1)[-1]

polygon(x0+r*cos(theta), y0+r*sin(theta), ...)

}

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9.5), c(-1, 1), asp=1)

regular_poly(1, 0, 1, n=3)

regular_poly(3.5, 0, 1, n=7, density=15, angle=45, col="tan", border="red")

regular_poly(6, 0, 1, n=10, density=8, angle=-60, lty=3, lwd=2)

regular_poly(8.5, 0, 1, n=100, border="brown", col="lightyellow")

Figure 13.7. Regular polygons drawn using polygon.

Note the asp=1 argument to the plot.window function (which we detail below) that guarantees
the same scaling of the x- and y-axes.This way, the circle looks like one and not an oval.

Notice that the last vertex adjoins the first one. Also, if we are absent-minded (or par-
ticularly creative), we can produce self-intersecting or otherwise degenerate shapes.

Exercise 13.7 Implement your version of the rect function using a call to polygon.

13.1.4 Text
A call to text draws arbitrary strings (newlines and tabs are supported) centred at the
specified points. Moreover, by setting the pos argument, the labels may be placed be-
low, to the left of, etc., the pivots. Some further position adjustments are also possible
(adj, offset); see Figure 13.8.

default

pos=1

pos=2
pos=3

pos=4

pos=1

o�fset=1.5

srt
=45

srt
=45

adj=
0

Figure 13.8.The positioning of text with text (plotting symbols added for reference).

312 II DEEPER

col specifies the colour, cex affects the size, and srt changes the rotation of the text.

Onmanygraphics devices,wehave little but crude control over the font face used: fam-
ily chooses a generic font family ("sans", "serif", "mono"), and font selects between
the normal variant (1), bold (2), italic (3), or bold italic (4). See, however, Section 13.2.6
for some workarounds.

Note (*) There is limited support for basic mathematical symbols and formu-
lae. It relies on some quirky syntax that we enter using unevaluated R expres-
sions (Chapter 15). Still, it should be enough to meet our most basic needs. For in-
stance, passing quote(beta[i]^j) as the labels argument to textwill output “𝛽𝑗

𝑖”. See
help("plotmath") for more details.

For more sophisticatedmathematical typesetting, see the tikzDevice graphics device
mentioned in Section 13.2.6. It outputs plot specifications that can be rendered by the
LaTeX typesetting system.

13.1.5 Raster images (bitmaps) (*)
Raster images are encoded in the form of bitmaps, i.e., matrices whose elements rep-
resent pixels (see Figure 13.2 for an example).They can be used for drawing heatmaps
or backgrounds of contour plots; see Section 13.3.4.

Example 13.8 Optionally, bilinear interpolation can be applied if the drawing area is larger
than the true bitmap size, and we would like to smoothen the colour transitions out. Figure 13.9
presents a very stretched 4 × 3 pixel image, with and without interpolation.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9), c(0, 1))

I <- matrix(nrow=4, byrow=TRUE,

c("red", "yellow", "white",

"yellow", "yellow", "orange",

"yellow", "orange", "orange",

"white", "orange", "red")

)

rasterImage(I, 0, 0, 4, 1) # interpolate=TRUE; left subplot

rasterImage(I, 5, 0, 9, 1, interpolate=FALSE) # right subplot

Figure 13.9. Example bitmaps drawn with rasterImage, with (left) and without (right)
colour interpolation.

13 GRAPHICS 313

13.2 Graphics settings
par can be used to query and modify (as long as they are not read-only) many graph-
ics options. For instance, we have several parameters related to the current page or
device settings, e.g., the plot’s margins (see Section 13.2.2) or user coordinates (see
Section 13.2.3). The reference list of available parameters is given in help("par"). Be-
low we discuss the most noteworthy ones.

Moreover, some functions source1 the values of their default arguments by querying
par. This is the case of, e.g., col, pch, lty in the points and lines function.

Exercise 13.9 Study the following pseudocode.

lines(x, y) # use the default `lty`, i.e., par("lty") == "solid"

old_settings <- par(lty="dashed") # change setting, save old for reference

lines(x, y) # use the new default `lty`, i.e., par("lty") == "dashed"

lines(x, y, lty=3) # use the given `lty`, but only for this call

lines(x, y) # default lty="dashed" again

par(old_settings) # restore the previous settings

lines(x, y) # lty="solid" now

13.2.1 Colours
Many functions allow for customising colours of the plotted objects or their parts;
compare, e.g., col and border arguments to polygon, or col and bg to points.

There are a few ways to specify colours (see the Colour Specification section of
help("par") for more details).

• We can use a "colour name" string, being one of the 657 predefined tags known to
the colours function:

sample(colours(), 8) # this is just a sample

[1] "grey23" "darksalmon" "tan3" "violetred4"

[5] "lightblue1" "darkorchid3" "darkseagreen1" "slategray3"

• We can pass a"#rrggbb" string,which specifies a position in theRGB colour space:
three series of hexadecimal numbers of two digits each, i.e., between 00hex = 0
(off) and FFhex = 255 (full on), giving the intensity of the red, green, and blue
channels2.

1 Alas, it is not as straightforward as that. For instance, polygon is unaffected by the col setting, axis
uses col.axis instead, etc. We should always consult the documentation.

2 From school, we probably know the subtractive CMY (cyan, magenta, yellow) model, where we obtain,
e.g., a green colour by using blue-ish and yellow crayons (subtracting certainwavelengths fromwhite light).
The RGBmodel, on the other hand, corresponds to the three photoreceptor/cone cells in the retinas of the
human eyes. Nonetheless, it is additive and, therefore, less intuitive: total darkness emerges when we emit
no light, yellow emerges whenmixing red and green beams, etc.

314 II DEEPER

In practice, the col2rgb and rgb functions can convert between the decimal and
hexadecimal representations:

C <- c("black", "red", "green", "blue", "cyan", "magenta",

"yellow", "grey", "lightgrey", "pink") # example colours

(M <- structure(col2rgb(C), dimnames=list(c("R", "G", "B"), C)))

black red green blue cyan magenta yellow grey lightgrey pink

R 0 255 0 0 0 255 255 190 211 255

G 0 0 255 0 255 0 255 190 211 192

B 0 0 0 255 255 255 0 190 211 203

structure(rgb(M[1,], M[2,], M[3,], maxColorValue=255), names=C)

black red green blue cyan magenta yellow

"#000000" "#FF0000" "#00FF00" "#0000FF" "#00FFFF" "#FF00FF" "#FFFF00"

grey lightgrey pink

"#BEBEBE" "#D3D3D3" "#FFC0CB"

• An "#rrggbbaa" string is similar, but has the added alpha channel (two additional
hexadecimal digits): from 00hex = 0 denoting fully transparent, to FFhex = 255
indicating fully visible (lit) colour; see Figure 13.2 for an example.

Semi-transparency (translucency) can significantly enhance the expressivity of
our data visualisations; see Figure 13.18 and Figure 13.19.

• We can rely on an integer index to select an item from the current palette (with re-
cycling), which we can get or set by a call to palette. Moreover, 0 identifies the
background colour, par("bg").

Integer colour specifiers are particularly valuable when plotting data in groups
defined by factor objects. The underlying integer level codes can be mapped to
consecutive colours from any palette; see Figure 13.17 below for an example.

Example 13.10 We recommendmemorising the colours in the default palette:

palette() # default palette

[1] "#000000F0" "#DF536BF0" "#61D04FF0" "#2297E6F0" "#28E2E5F0"

[6] "#CD0BBCF0" "#F5C710F0" "#999999F0"

These are3, in order: black, red, green, blue, cyan, magenta, yellow, and grey; see4 Figure 13.10.

k <- length(palette())

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, k+1), c(0, 1))

points(1:k, rep(0.5, k), col=1:k, pch=16, cex=3)

(continues on next page)

3 Actually, red-ish, green-ish, etc.The choice ismore aesthetic thanwhen pure red, green, etc. was used
(before R 4.0.0). It is also expected to be more friendly to people who have colour vision deficiencies. We
know that roughly every 1 in 12 men (8%) and 1 in 200 women (0.5%), especially in the red-green or blue-
yellow spectrum; see [50] for more details.

4The readers of the printed version of this book should know that its online version displays this figure
(and all others) in full colour. See you there.

13 GRAPHICS 315

(continued from previous page)

text(1:k, 0.5, palette(), pos=rep(c(1, 3), length.out=k), col=1:k, offset=1)

text(1:k, 0.5, 1:k, pos=rep(c(3, 1), length.out=k), col=1:k, offset=1)

#000000F0

#DF536BF0

#61D04FF0

#2297E6F0

#28E2E5F0

#CD0BBCF0

#F5C710F0

#999999F01

2

3

4

5

6

7

8

Figure 13.10.The default colour palette.

Choosing usable colours requires talents that most programmers lack. Therefore, we
will find ourselves relying on the built-in colour sets. palette.pals and hcl.pals re-
turn thenames of the available discrete (qualitative) palettes.Then, palette.colors and
hcl.colors (note the American spelling) can generate a given number of colours from
a particular named set.

Continuous (quantitative) palettes arealsoavailable, seerainbow,heat.colors,terrain.
colors, topo.colors, cm.colors, and gray.colors. They transition smoothly between
predefinedpivot colours, e.g., fromblue throughgreen to brown (like in a topographic
map with elevation colouring).Theymay be of use, e.g., when drawing contour plots;
compare Figure 13.27.

Exercise 13.11 Create a demo of the aforementioned palettes in a similar (or nicer) style to that
in Figure 13.11.

13.2.2 Plotmargins and clipping regions
A device (page) region represents a single plot window, one raster image file, or a page
in a PDF document (see Section 13.2.6 for more information on graphics devices). As
we will learn from Section 13.2.5, it is capable of holding many figures.

Usually, however,wedraw onefigureperpage. In sucha case, thedevice region isdivided
into the following parts:

1) outer margins, which can be set via, e.g., the oma graphics parameter (in text lines,
based on the height of the default font); by default, they are equal to 0;

2) figure region:

a) inner (plot) margins, by default mar=c(5.1, 4.1, 4.1, 2.1) text lines (bottom,
left, top, right, respectively); this is where we usually emplace the figure title, axes
labels, etc.

b) plot region, where we draw graphics primitives positioned relative to the user
coordinates.

316 II DEEPER

Alphabet

Polychrome 36

Classic Tableau

Tableau 10

Set 3

Set 2

Set 1

Pastel 2

Pastel 1

Paired

Dark 2

Accent

Okabe-Ito

ggplot2

R4

R3

Figure 13.11. Qualitative colour palettes in palette.pals; R4 is the default one, as seen
in Figure 13.10.

Note Typically, all drawings are clipped to the plot region, but this can be changedwith
the xpd parameter; see also the more flexible clip function.

Example 13.12 Figure 13.12 shows the default page layout. In the code chunk below, note the
use of mtext to print a text line in the inner margins, box to draw a rectangle around the plot or
figure region, axis to add the two axes (labels and tickmarks), and title to print the descriptive
labels.

plot.new(); plot.window(c(-2, 2), c(-1, 1)) # whatever

for (i in 1:4) { # some text lines on the inner margins

for (j in seq_len(par("mar")[i]))

mtext(sprintf("Text line %d on inner margin %d", j, i),

side=i, line=j-1, col="lightgray")

}

title(main="Main", sub="sub", xlab="xlab", ylab="ylab")

box("figure", lty="dashed") # a box around the figure region

box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

(continues on next page)

13 GRAPHICS 317

(continued from previous page)

rect(-10, -10, 10, 10, col="lightgray") # rectangle (clipped to plot region)

text(0, 0, "Plot region")

lines(c(-3, 0, 3), c(-2, 2, -2)) # standard clipping (plot region)

lines(c(-3, 0, 3), c(-2, 1.25, -2), xpd=TRUE, lty=3) # clip to figure region

Text line 1 on inner margin 1

Text line 2 on inner margin 1

Text line 3 on inner margin 1

Text line 4 on inner margin 1

Text line 5 on inner margin 1

Te
xt

 li
n

e
 1

 o
n

 in
n

e
r

m
a

rg
in

 2

Te
xt

 li
n

e
 2

 o
n

 in
n

e
r

m
a

rg
in

 2

Te
xt

 li
n

e
 3

 o
n

 in
n

e
r

m
a

rg
in

 2

Te
xt

 li
n

e
 4

 o
n

 in
n

e
r

m
a

rg
in

 2 Text line 1 on inner margin 3

Text line 2 on inner margin 3

Text line 3 on inner margin 3

Text line 4 on inner margin 3

Te
xt

 li
n

e
 1

 o
n

 in
n

e
r

m
a

rg
in

 4

Te
xt

 li
n

e
 2

 o
n

 in
n

e
r

m
a

rg
in

 4

Main

sub

xlab

yl
a

b

-2 -1 0 1 2

-1
.0

0
.0

0
.5

1.
0

Plot region

Figure 13.12. Figure layout with default inner and outer margins (mar=c(5.1, 4.1, 4.

1, 2.1) and oma=c(0, 0, 0, 0) text lines, respectively). We see that a lot of space is
wasted and hence some tweaking might be necessary to suit our needs better. Note
the clipping of the solid line to the grey plot region.

13.2.3 User coordinates and axes
plot.window sets the user coordinates. It accepts the following parameters:

• xlim, ylim – vectors of length two giving the minimal andmaximal ranges on the
respective axes; by default, they are extended by 4% in each direction for aesthetic
reasons (see, e.g., Figure 13.12) but we can disable this behaviour by setting the
xaxs and yaxs graphics parameters;

• asp– aspect ratio (𝑦/𝑥); defaults to NA, i.e., no adjustment; use asp=1 for circles to
look like ones, and not ovals;

• log – logarithmic scaling on particular axes: "" (none; default), "x", "y", or "xy".

Example 13.13 Thegraphics parameterusr canbeused to read (and set) the extremes of theuser
coordinates in the form (𝑥1, 𝑥2, 𝑦1, 𝑦2).

plot.new()

(continues on next page)

318 II DEEPER

(continued from previous page)

plot.window(c(-1, 1), c(1, 1000), log="y", yaxs="i")

par("usr")

[1] -1.08 1.08 0.00 3.00

Indeed, the x-axis range was extended by 4% in each direction (xaxs="r"). We have turned this
behaviour off for the y-axis (yaxs="i"), which uses the base-10 logarithmic scale. In this case, its
actual range is 10^par("usr")[3:4] because log10 1 = 0 and log10 1000 = 3.
Exercise 13.14 Implement your version of the abline function using lines.

Even though axes (labels and tickmarks) can be drawnmanually using the aforemen-
tioned graphics primitives, it is usually too tedious a work.

This is why we tend to rely on the axis function, which draws the object on one of the
plot sides (as usual, 1=bottom, …, 4=right).

Once plot.window is called, axTicks can be called to guesstimate the tasteful (round)
locations for the tickmarks relative to the current plot size. By default, they are based
on the xaxp and yaxp graphics parameters, which give the axis ranges and the number
of intervals between the tick marks.

plot.new(); plot.window(c(-0.9, 1.05), c(1, 11))

par("usr") # (x1, x2, y1, y2)

[1] -0.978 1.128 0.600 11.400

par("yaxp") # (y1, y2, n)

[1] 2 10 4

axTicks(2) # left y-axis

[1] 2 4 6 8 10

par("xaxp") # (x1, x2, n)

[1] -0.5 1.0 3.0

axTicks(1) # bottom x-axis

[1] -0.5 0.0 0.5 1.0

par(xaxp=c(-0.9, 1.0, 5)) # change

axTicks(1)

[1] -0.90 -0.52 -0.14 0.24 0.62 1.00

axis relies on the samealgorithmas axTicks. Alternatively,we canprovide customtick
locations and labels.

Example 13.15 Most of the plots in this book use the following graphics settings (except las=1
to axis(2)); see Figure 13.13. Check out help("par"), help("axis"), etc. and tune them up to
suit your needs.

par(mar=c(2.2, 2.2, 1.2, 0.6))

par(tcl=0.25) # the length of the tick marks (fraction of text line height)

par(mgp=c(1.1, 0.2, 0)) # axis title, axis labels, and axis line location

(continues on next page)

13 GRAPHICS 319

(continued from previous page)

par(cex.main=1, font.main=2) # bold, normal size - main in title

par(cex.axis=0.8889)

par(cex.lab=1, font.lab=3) # bold italic, normal size

plot.new(); plot.window(c(0, 1), c(0, 1))

a "grid":

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],

col="#00000010")

abline(v=axTicks(2), col="white", lwd=1.5, lty=1)

abline(h=seq(0, 1, length.out=4), col="white", lwd=1.5, lty=1)

set up axes:

axis(2, at=seq(0, 1, length.out=4), c("0", "1/3", "2/3", "1"), las=1)

axis(1)

title(xlab="xlab", ylab="ylab", main="main (use sparingly)")

box()

0

1/3

2/3

1

0.0 0.2 0.4 0.6 0.8 1.0

main (use sparingly)

xlab

yl
ab

Figure 13.13. Custom axes and other settings.

13.2.4 Plot dimensions (*)
Certain sizes can be read or specified in inches (1” is exactly 25.4 mm):

• pin – plot dimensions (width, height),

• fin – figure region dimensions,

• din – page (device) dimensions,

• mai – plot (inner) margin size,

320 II DEEPER

• omi – outer margins,

• cin – the size of the “default” character (width, height).

If thefigure is scaled, the virtual inch (theone reportedbyR)will notmatch thephysical
one (e.g., the actual size in the printed versionof this bookor on the computer screen).

Important Most objects’ positions are specified in virtualuser coordinates, as givenby
usr. They are automatically mapped to the physical device region, taking into account
the page size, outer and inner margins, etc.

Knowing the above, some basic scaling can be used to convert between the user
and physical sizes (in inches). It is based on the ratios (usr[2]-usr[1])/pin[1] and
(usr[4]-usr[3])/pin[2]; compare the xinch and yinch functions.

Example 13.16 (*) Figure 13.14 shows how we can pinpoint the edges of the figure and device
region in user coordinates.

(usr[1], usr[3])=(-2.00, -1.00)

(usr[1]-mai[2]*xinch, usr[3]-mai[1]*yinch)=(-2.20, -1.20)

(usr[1]-(mai[2]+omi[2])*xinch, usr[3]-(mai[1]+omi[1])*yinch)=(-2.36, -1.35)

(usr[2], usr[4])=(2.00, 1.00)

(usr[2]+mai[4]*xinch, usr[4]+mai[3]*yinch)=(2.20, 1.20)

(usr[2]+(mai[4]+omi[4])*xinch, usr[4]+(mai[3]+omi[3])*yinch)=(2.36, 1.35)

page (device) width, din[1]=5.94"

figure width, fin[1]=5.54"

plot width, usr[2]-usr[1]=4, pin[1]=5.04"

xinch = (usr[2]-usr[1])/pin[1] = 0.79 p
ag

e
(d

ev
ic

e)
 h

ei
g

h
t,

 d
in

[2
]=

3.
4

6
"

fi
g

u
re

 h
ei

g
h

t,
 fi

n
[2

]=
3.

0
6

"

p
lo

t
h

ei
g

h
t,

 u
sr

[4
]-

u
sr

[3
]=

2,
 p

in
[2

]=
2.

56
"

yi
n

ch
 =

 (u
sr

[4
]-

u
sr

[3
])

/p
in

[2
] =

 0
.7

8
usr=(-2, 2, -1, 1)

mai=(0.25, 0.25, 0.25, 0.25)

omi=(0.2, 0.2, 0.2, 0.2)

Figure 13.14.User vsdevice coordinates.Note that the virtual inchdoesnot correspond
to the physical one, as some scaling was applied.

Exercise 13.17 (*) We cannot use mtext to print text on the right inner margin rotated by 180
degrees compared to what we see in Figure 13.12. Write your version of this function that will
allow you to do so. Hint: use text, the cin graphics parameter, and what you can read from Fig-
ure 13.14.

13.2.5 Many figures on one page (subplots)
It is possible to create many figures on one page. In such a case, each subplot has its
own inner margins and plot region.

13 GRAPHICS 321

A call to par(mfrow=c(nr, nc)) or par(mfcol=c(nr, nc)) splits the page into a regular
grid with nr rows and nc columns. Each invocation of plot.new starts a new figure.
Consecutive figures are either placed in a rowwise manner (mfrow) or the columnwise
one (mfcol). Alternatively, the mfg parameter can enforce a custom order.

Example 13.18 Figure 13.15 depicts an example page with four figures aligned on a 2 × 2 grid.

par(oma=rep(1.2, 4)) # outer margins (default 0)

par(mfrow=c(2, 2)) # a 2x2 plot grid

for (i in 1:4) {

plot.new()

par(mar=c(3, 3, 2, 2)) # each subplot will have the same inner margins

plot.window(c(i-1, i+1), c(-1, 1)) # separate user coordinates for each

text(i, 0, sprintf("Plot region (plot %d)\n(%d, %d)", i,

par("mfg")[1], par("mfg")[2]))

box("figure", lty="dashed") # a box around the figure region

box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

}

box("outer", lty="dotdash") # a box around the whole page

for (i in 1:4)

mtext(sprintf("Outer margin %d", i), side=i, outer=TRUE)

Thanks to mfrow and mfcol, we can create a scatter plotmatrix or different trellis plots.
If an irregular grid is required,we can call the slightlymore sophisticated layout func-
tion (which is incompatible with mfrow and mfcol). Examples will follow later; see Fig-
ure 13.24 and Figure 13.26.

Certain grid sizes might affect the mex and cex parameters and hence the default font
sizes (amongst others). Refer to the documentation of par for more details.

13.2.6 Graphics devices
Where our plots are displayed depends on our development environment (Section 1.2).
Users of JupyterLab see the plots embedded into the current notebook, consumers
of RStudio display them in a dedicated Plots pane, working from the console opens a
newgraphicswindow (unlesswework ina text-only environment),whereas compiling
utils::Sweave or knitrmarkup files brings about an image file that will be included
in the output document.

In practice, wemight be interested in exercising our creative endeavours on different
devices. For instance, to draw something in a PDF file, we can call:

322 II DEEPER

Plot region (plot 1)

(1, 1)

0.0 0.5 1.0 1.5 2.0

-1
.0

0
.0

1.
0

Plot region (plot 2)

(1, 2)

1.0 1.5 2.0 2.5 3.0

-1
.0

0
.0

1.
0

Plot region (plot 3)

(2, 1)

2.0 2.5 3.0 3.5 4.0

-1
.0

0
.0

1.
0

Plot region (plot 4)

(2, 2)

3.0 3.5 4.0 4.5 5.0

-1
.0

0
.0

1.
0

Outer margin 1

O
u

te
r

m
a

rg
in

 2

Outer margin 3

O
u

te
r

m
a

rg
in

 4

Figure 13.15. A page with four figures created using par(mfrow=c(2, 2)).

cairo_pdf("figure.pdf", width=6, height=3.5) # open "device"

... calls to plotting functions...

dev.off() # save file, close device

Similarly, a call to png or svg creates a PNG or a SVG file. In both cases, as we rely on
the Cairo library, we can customise the font family by calling Cairo::CairoFonts.

Note Typically, web browsers can display JPEG, PNG, and SVGfiles. PDF is a popular
choice in printed publications (e.g., articles or books).

It is worth knowing that PNG and JPEG are raster graphics formats, i.e., they store
figures as bitmaps (pixel matrices). They are fast to render, but the file sizes might
become immense ifwewantdecent imagequality (high resolution).Most importantly,
they shouldnot be scaled: it is best todisplay themat their originalwidths andheights.
However, JPEGuses lossy compression.Therefore, it is not a particularly fortunate file
format for data visualisations. It does not support transparency either.

On the other hand, SVG and PDF files store vector graphics, where all primitives are
described geometrically.This way, the image can be redrawn at any size and is always
expected to be aesthetic.Unfortunately, scatter plotswithmillions of pointswill result
in considerable files size and relatively slow rendition times (but there are tricks to
remedy this).

13 GRAPHICS 323

UsersofTeXmightbe interested in tikzDevice::tikz,which createsTikZfiles that can
be rendered as standalone PDF files or embedded in LaTeX documents (and its vari-
ants). It allows for typesetting beautiful equations using the standard "$...$" syntax
within any R string.

Many other devices are listed in help("Devices").

Note (*) The opened graphics devices form a stack. Calling dev.offwill return to the
last opened device (if any). See dev.list and other functions listed in its help page for
more information.

Each device has separate graphics parameters. When opening a new device, we start
with default settings in place.

Also, dev.hold and dev.flush can suppress the immediate display of the plotted ob-
jects, which might increase the drawing speed on certain interactive devices.

The current plot can be copied to another device (e.g., a PDF file) using dev.print.

Exercise 13.19 (*) Create an animated PNG displaying a large point sliding along the sine
curve. Generate a series of video frames like in Figure 13.16. Store each frame in a separate PNG
file.Then, use ImageMagick5 (compare Section 7.3.2 or rely on another tool) to combine these files
as a single animated PNG.

frame 1 frame 11 frame 21 frame 31

Figure 13.16. Selected frames of an example animation.They can be stored in separate
files and then combined as a single animated PNG.

13.3 Higher-level functions
Higher-level plotting commands call plot.new, plot.window, axis, box, title, etc.,
and draw graphics primitives on our behalf. They provide ready-to-use implement-
ations of themost common data visualisation tools, e.g., box-and-whisker plots, his-
tograms, pairs plots, etc.

Below we review a few of them. We also show how they can be customised or even
rewritten from scratch if we are not completely happy with them.They will inspire us
to practice lower-level graphics programming.

5 https://imagemagick.org/

https://imagemagick.org/

324 II DEEPER

Exercise 13.20 Check out themeaning of the ask, new, xaxt, yaxt, and ann graphics paramet-
ers and how they affect plot.new, axis, title, and so forth.

13.3.1 Scatter and function plots with plot.default and matplot
Thedefaultmethod for the S3 generic plot is a convenientwrapper around points and
lines.

Example 13.21 plot.default can draw a scatter plot of a set of points inℝ2 possibly grouped
by another categorical variable. From Section 10.3.2 we know that a factor is represented as a
vector of small natural numbers.Therefore, its underlying level codes can be used directly as col
or pch specifiers; see Figure 13.17 for a demonstration. Take note of a call to the legend function.

plot(

jitter(iris[["Sepal.Length"]]), # x (it is a numeric vector)

jitter(iris[["Petal.Width"]]), # y (it is a numeric vector)

col=as.numeric(iris[["Species"]]), # colours (integer codes)

pch=as.numeric(iris[["Species"]]), # plotting symbols (integer codes)

xlab="Sepal length", ylab="Petal width",

asp=1 # y/x aspect ratio

)

legend(

"bottomright",

legend=levels(iris[["Species"]]),

col=seq_along(levels(iris[["Species"]])),

pch=seq_along(levels(iris[["Species"]])),

bg="white"

)

Exercise 13.22 Pass ann=FALSE and axes=FALSE to plot to suppress the addition of axes and
labels.Then, draw themmanually using the functions discussed in the previous section.

Exercise 13.23 Draw a plot of the 𝑦 = sin 𝑥 function using plot.Then, call lines to add 𝑦 =
cos 𝑥. Later, do the same using a single reference to matplot. Include a legend.
Example 13.24 Semi-transparency may convey additional information. Figure 13.18 shows
two scatter plots of adult females’ weights vs heights. If the points are fully opaque, we cannot
judge the density around them. On the other hand, translucent symbols somewhat imitate the
two-dimensional histograms that we will later depict in Figure 13.29.

nhanes <- read.csv(# see https://github.com/gagolews/teaching-data

file="~/Projects/teaching-data/marek/nhanes_adult_female_bmx_2020.csv",

comment.char="#", col.names=c("weight", "height", "armlen", "leglen",

"armcirc", "hipcirc", "waistcirc"))

par(mfrow=c(1, 2))

for (col in c("black", "#00000010"))

plot(nhanes[["height"]], nhanes[["weight"]], col=col,

pch=16, xlab="Height", ylab="Weight")

13 GRAPHICS 325

4 5 6 7 8

0.
0

0.
5

1.0
1.5

2.
0

2.
5

Sepal length

Pe
ta

l w
id

th

setosa
versicolor
virginica

Figure 13.17. as.numeric can define different plotting styles for each factor level.

130 140 150 160 170 180 190

5
0

10
0

15
0

Height

W
ei

gh
t

130 140 150 160 170 180 190

5
0

10
0

15
0

Height

W
ei

gh
t

Figure 13.18. Semi-transparent symbols can reflect the points’ distribution density.

326 II DEEPER

Example 13.25 Figure 13.19 depicts the average monthly temperatures in your next holiday
destination: Warsaw, Poland (a time series). Note that the translucent ribbon representing the
low-high average temperature intervals was added using a call to polygon.

Warsaw monthly temperatures; source: https://en.wikipedia.org/wiki/Warsaw

high <- c(0.6, 1.9, 6.6, 13.6, 19.5, 21.9,

24.4, 23.9, 18.4, 12.7, 5.9, 1.6)

mean <- c(-1.8, -0.6, 2.8, 8.7, 14.2, 17.0,

19.2, 18.3, 13.5, 8.5, 3.3, -0.7)

low <- c(-4.2, -3.6, -0.6, 3.9, 8.9, 11.8,

13.9, 13.1, 9.1, 4.8, 0.6, -3.0)

matplot(1:12, cbind(high, mean, low), type="o", col=c(2, 1, 4), lty=1,

xlab="month", ylab="temperature [°C]", xaxt="n", pch=16, cex=0.5)

axis(1, at=1:12, labels=month.abb, line=-0.25, lwd=0, lwd.ticks=1)

polygon(c(1:12, rev(1:12)), c(high, rev(low)), border=NA, col="#ffff0033")

legend("bottom", c("average high", "mean", "average low"),

lty=1, col=c(2, 1, 4), bg="white")

-5
0

5
10

15
20

25

month

te
m

pe
ra

tu
re

 [°
C]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

average high
mean
average low

Figure 13.19. Example time series. A semi-transparent ribbon was added by calling
polygon to highlight the area between the low-high ranges (intervals).

Example 13.26 Figure 13.20 depicts a scatter plot similar to Figure 13.18, but now with the
points’ hue being a function of a third variable.

midpoints <- function(x) 0.5*(x[-1]+x[-length(x)])

z <- nhanes[["waistcirc"]]

breaks <- seq(min(z), max(z), length.out=10)

zf <- cut(z, breaks, include.lowest=TRUE)

(continues on next page)

13 GRAPHICS 327

(continued from previous page)

col <- hcl.colors(nlevels(zf), "Viridis", alpha=0.5)

layout(matrix(c(1, 2), nrow=1), # two plots in one page

widths=c(1, lcm(3))) # second one is of width "3cm" (scaled)

first subplot:

plot(nhanes[["height"]], nhanes[["weight"]], col=col[as.numeric(zf)],

pch=16, xlab="Height", ylab="Weight")

second subplot:

par(mar=c(2.2, 0.6, 2.2, 0.6))

plot.new(); plot.window(c(0, 1), c(0, nlevels(zf)))

rasterImage(as.matrix(rev(col)), 0, 0, 1, nlevels(zf), interpolate=FALSE)

text(0.5, 1:nlevels(zf)-0.5, sprintf("%3.0f", midpoints(breaks)))

mtext("Waist Ø", side=3)

Figure 13.20. A 2D scatter plot with a third variable represented by colours.

Exercise 13.27 Implement your version of pairs, being the function to drawa scatter plotmat-
rix (a pairs plot).

Exercise 13.28 ecdf returnsanobject of theS3 classesecdfandstepfun.Thereareplotmeth-
ods overloaded for them. Inspect their source code. Then, inspired by this, create a function to
compute anddisplay the empirical cumulative distribution function corresponding to agivennu-
meric vector.

Exercise 13.29 spline performs cubic spline interpolation, whereas smooth.spline de-
termines a smoothing spline of a given two-dimensional dataset. Plot different splines for
cars[["dist"]] as a function of cars[["speed"]]. Which of these two functions is more ap-
propriate for depicting this dataset?

328 II DEEPER

13.3.2 Bar plots and histograms
A bar plot is drawn using a series of rectangles (i.e., certain polygons) of different
heights (or widths, if we request horizontal alignment).

Example 13.30 Let us visualise the dataset6 listing the most frequent causes of medication er-
rors (data are fabricated):

cat_med = c(

"Unauthorised drug", "Wrong IV rate", "Wrong patient", "Dose missed",

"Underdose", "Wrong calculation","Wrong route", "Wrong drug",

"Wrong time", "Technique error", "Duplicated drugs", "Overdose"

)

counts_med = c(1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59)

A Pareto chart combines a bar plot featuring bars of decreasing heights with a cumulative per-
centage curve; see Figure 13.21.

o <- order(counts_med)

cato_med <- cat_med[o]

pcto_med <- counts_med[o]/sum(counts_med)*100

cumpcto_med <- rev(cumsum(rev(pcto_med)))

bar plot of percentages

par(mar=c(2.2, 0.6, 2.2, 6.6)) # wide left margin

midp <- barplot(pcto_med, horiz=TRUE, xlab="%",

col="white", xlim=c(0, 25), xaxs="r", yaxs="r", yaxt="n",

width=3/4, space=1/3)

text(pcto_med, midp, sprintf("%.1f%%", pcto_med), pos=4, cex=0.89)

axis(4, at=midp, labels=cato_med, las=1)

box()

cumulative percentage curve in a new coordinate system

par(usr=c(-4, 104, par("usr")[3], par("usr")[4])) # 0-100 with 4% addition

lines(cumpcto_med, midp, type="o", col=4, pch=18)

axis(3, col=4)

mtext("cumulative %", side=3, line=1.2, col=4)

text(cumpcto_med, midp, sprintf("%.1f%%", cumpcto_med), cex=0.89, col=4,

pos=c(4, 2)[(cumpcto_med>80)+1], offset=0.5)

Note that barplot returned the midpoints of the bars, which we put in good use. By default, it
sets the xaxs="i" graphics parameter and thus does not extend the x-axis range by 4% on both
sides.This would not make us happy here, therefore we needed to change it manually.

Exercise 13.31 Draw a bar plot summarising, for each passenger class and sex, the number of
adults who did not survive the sinking of the deadliest 1912 cruise; see Figure 13.22 and the Ti-
tanic dataset.

6 https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

13 GRAPHICS 329

%
0 5 10 15 20 25

0.2%
0.7%
0.9%

1.6%
2.1%

3.7%
6.3%

12.3%
13.7%

17.7%
19.3%

21.4%

Unauthorised drug
Technique error
Wrong IV rate
Underdose
Duplicated drugs
Wrong calculation
Wrong route
Wrong patient
Overdose
Wrong drug
Wrong time
Dose missed

0 20 40 60 80 100
cumulative %

100.0%
99.8%
99.1%

98.1%
96.5%

94.4%
90.7%

84.4%
72.1%

58.4%
40.7%

21.4%

Figure 13.21. An example Pareto chart (a fancy bar plot). Double axes have a general
tendency to confuse the reader.

Male Female
Sex

N
on

-s
ur

vi
vo

rs
0

10
0

20
0

30
0

40
0

50
0

60
0

Class
1st
2nd
3rd
Crew

Figure 13.22. An example bar plot representing a two-way contingency table.

330 II DEEPER

Exercise 13.32 Implement your version of barplot, but where the bars are placed precisely at
the positions specified by the user, e.g., allowing the barmidpoints to be consecutive integers.

We will definitely not cover the (in)famous pie charts in our book. The human brain
is not very skilled at judging the relative differences between the areas of geometric
objects. Also, they are ugly.

Moving on: a histogram is a simple density estimator for continuous data. It can be
thought of as a bar plot with bars of heights proportional to the number of observa-
tions falling into the corresponding disjoint intervals. Most often, there is no space
between the bars to emphasise that the intervals cover the whole data range.

A histogram can be computed and drawn using the high-level function hist; see Fig-
ure 13.23.

par(mfrow=c(1, 2))

for (breaks in list("Sturges", 25)) {

Sturges (a heuristic) is the default; any value is merely a suggestion

hist(iris[["Sepal.Length"]], probability=TRUE, xlab="Sepal length",

main=NA, breaks=breaks, col="white")

box() # weirdly, we need to add it manually

}

Sepal length

D
en

sit
y

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

Sepal length

D
en

sit
y

5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 13.23. Example histograms for the same dataset.

Exercise 13.33 Study the source code of hist.default. Note the invisibly-returned list of the
S3 class histogram. Then, study graphics:::plot.histogram. Implement similar functions
yourself.

13 GRAPHICS 331

Exercise 13.34 Modifyyour function todrawascatterplotmatrix so that it gives thehistograms
of the marginal distributions on its diagonal.

Example 13.35 Usinglayoutmentioned inSection 13.2.5,we candrawascatterplotwithmar-
ginal histograms; see Figure 13.24. Note that we split the page into four plots of unequal sizes,
but the upper right part of the grid is unused.We use hist for binning only (plot=FALSE).Then,
barplot is utilised for drawing as it gives greater control over the process (e.g., supports vertical
layout).

layout(matrix(

c(1, 1, 1, 0, # first row: first plot of width 3 and nothing

3, 3, 3, 2, # three rows: square third plot and a tall second

3, 3, 3, 2,

3, 3, 3, 2), nrow=4, byrow=TRUE))

par(mex=1, cex=1) # the layout function changed this!

x <- jitter(iris[["Sepal.Length"]])

y <- jitter(iris[["Sepal.Width"]])

first subplot (top)

par(mar=c(0.2, 2.2, 0.6, 0.2), ann=FALSE)

hx <- hist(x, plot=FALSE, breaks=seq(min(x), max(x), length.out=20))

barplot(hx[["density"]], space=0, axes=FALSE, col="#00000011")

second subplot (right)

par(mar=c(2.2, 0.2, 0.2, 0.6), ann=FALSE)

hy <- hist(y, plot=FALSE, breaks=seq(min(y), max(y), length.out=20))

barplot(hy[["density"]], space=0, axes=FALSE, horiz=TRUE, col="#00000011")

third subplot (square)

par(mar=c(2.2, 2.2, 0.2, 0.2), ann=TRUE)

plot(x, y, xlab="Sepal length", ylab="Sepal width",

xlim=range(x), ylim=range(y)) # default xlim, ylim

Example 13.36 (*) Kernel density estimators (KDEs) are another way to guesstimate the data
distribution.The density function, for a given numeric vector, returns a list with, amongst oth-
ers, the x and y coordinates of the points that we can pass directly to the lines function. Below
we depict the KDEs of data split into three groups; see Figure 13.25.

adjust_transparency <- function(col, alpha)

rgb(t(col2rgb(col)/255), alpha=alpha) # alpha in [0, 1]

pal <- adjust_transparency(palette(), 0.2)

kdes <- lapply(split(iris[["Sepal.Length"]], iris[["Species"]]), density)

matplot(sapply(kdes, `[[`, "x"), sapply(kdes, `[[`, "y"),

type="l", xlab="Sepal length", ylab="density", lwd=1.5)

for (i in seq_along(kdes))

polygon(kdes[[i]][["x"]], kdes[[i]][["y"]], col=pal[i], border=NA)

legend("topright", legend=levels(iris[["Species"]]), bg="white", lwd=1.5,

col=seq_along(levels(iris[["Species"]])),

lty=seq_along(levels(iris[["Species"]])))

332 II DEEPER

5 6 7 8

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal length

Se
pa

l w
id

th

Figure 13.24. A scatter plot with marginal histograms: three (four) plots on one page,
but on a nonuniform grid created using layout.

Exercise 13.37 (*) Implement a function that draws kernel density estimators for a given nu-
meric variable split by a combination of three factor levels; see Figure 13.26 for an example.

grid_kde <- function(data, values, x, y, hue) ...to.do...

tips <- read.csv("~/Projects/teaching-data/other/tips.csv", comment.char="#",

stringsAsFactors=TRUE) # see https://github.com/gagolews/teaching-data

head(tips, 3) # preview an example dataset

total_bill tip sex smoker day time size

1 16.99 1.01 Female No Sun Dinner 2

2 10.34 1.66 Male No Sun Dinner 3

3 21.01 3.50 Male No Sun Dinner 3

grid_kde(tips, values="tip", x="smoker", y="time", hue="sex")

13 GRAPHICS 333

4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.0
1.2

Sepal length

de
ns

ity

setosa
versicolor
virginica

Figure 13.25. Kernel density estimators of sepal length split by species in the irisdata-
set. Note the semi-transparent polygons (again).

0.
0

0.
2

0.
4

tim
e

=
D

in
ne

r

0.
0

0.
2

0.
4

0.
0

0.
2

0.
4

tim
e

=
Lu

nc
h

0 2 4 6 8 10 12
smoker = No

0.
0

0.
2

0.
4

0 2 4 6 8 10 12
smoker = Yes

sex
Female
Male

Figure 13.26. An example grid plot (also known as a trellis, panel, conditioning, or lat-
tice plot) with kernel density estimators for a numeric variable (amount of tip in a US
restaurant) split by a combination of three factor levels (smoker, time, sex).

334 II DEEPER

13.3.3 Box-and-whisker plots
Wehavealready seena chart generatedby the boxplot function inFigure 5.1. Tinkering
with it will give us robust practice, which in turn shall make us perfect.

Exercise 13.38 Modify the code generating Figure 5.1 so that:

1. same doses are grouped together (more space between different doses added; also, on the x-
axis, only unique doses are printed),

2. different supps have different colours (add a legend explaining them).

Exercise 13.39 Write a function for drawing box plots using graphics primitives.

Exercise 13.40 (*) Write a function for drawing violin plots. They are similar to box plots but
use kernel density estimators.

Exercise 13.41 (*) Implement a bag plot, which is a two-dimensional version of a box plot. Use
chull to compute the convex hull of a point set.

13.3.4 Contour plots and heatmaps
When plotting a function of two variables like 𝑧 = 𝑓 (𝑥, 𝑦), the magnitude of the 𝑧
component can be expressed using colour brightness or hue.

image is a convenient wrapper around rasterImage, which can draw contour plots,
two-dimensional histograms, heatmaps, etc.

Example 13.42 Figure 13.27 presents a filled contour plot ofHimmelblau’s function, 𝑓 (𝑥, 𝑦) =
(𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2, for 𝑥 ∈ [−5, 5] and 𝑦 ∈ [−4, 4]. A call to contour adds
labelled contour lines (which is actually a nontrivial operation).

x <- seq(-5, 5, length.out=250)

y <- seq(-4, 4, length.out=200)

z <- outer(x, y, function(xg, yg) (xg^2 + yg - 11)^2 + (xg + yg^2 - 7)^2)

image(x, y, z, col=grey(seq(1, 0, length.out=16)))

contour(x, y, z, nlevels=16, add=TRUE)

In image, the number of rows in z matches the length of x, whereas the number of
columns is equal to the size of y. This might be counterintuitive; if z is printed, the
image is its 90-degree rotated version.

Example 13.43 Figure 13.28 presents an example heatmap depicting Pearson’s correlations
between all pairs of variables in the nhanes data frame which we loaded some time ago.

o <- c(6, 5, 1, 7, 4, 2, 3) # order of rows/cols (by similarity)

R <- cor(nhanes[o, o])

par(mar=c(2.8, 7.6, 1.2, 7.6), ann=FALSE)

image(1:NROW(R), 1:NCOL(R), R,

ylim=c(NROW(R)+0.5, 0.5),

zlim=c(-1, 1),

(continues on next page)

13 GRAPHICS 335

-4 -2 0 2 4

-
4

-
2

0
2

4

x

y

 150 200
 300

Figure 13.27. A filled contour plot with labelled contour lines.

(continued from previous page)

col=hcl.colors(20, "BluGrn", rev=TRUE),

xlab=NA, ylab=NA, asp=1, axes=FALSE)

axis(1, at=1:NROW(R), labels=dimnames(R)[[1]], las=2, line=FALSE, tick=FALSE)

axis(2, at=1:NCOL(R), labels=dimnames(R)[[2]], las=1, line=FALSE, tick=FALSE)

text(arrayInd(seq_along(R), dim(R)),

labels=sprintf("%.2f", R),

col=c("white", "black")[abs(R<0.8)+1],

cex=0.89)

Exercise 13.44 Check out the heatmap function, which uses hierarchical clustering to find an
aesthetic reordering of the matrix’s items.

Example 13.45 Figure 13.29 depicts a two-dimensional histogram. It approaches the idea of
reflecting the points’ density quite differently from the semi-transparent symbols in Figure 13.18.

histogram_2d <- function(x, y, k=25, ...)

{

breaksx <- seq(min(x), max(x), length.out=k)

fx <- cut(x, breaksx, include.lowest=TRUE)

breaksy <- seq(min(y), max(y), length.out=k)

fy <- cut(y, breaksy, include.lowest=TRUE)

C <- table(fx, fy)

image(midpoints(breaksx), midpoints(breaksy), C,

xaxs="r", yaxs="r", ...)

}

(continues on next page)

336 II DEEPER

h
ip

ci
rc

a
rm

ci
rc

w
e

ig
h

t

w
a

is
tc

ir
c

le
g

le
n

h
e

ig
h

t

a
rm

le
n

armlen

height

leglen

waistcirc

weight

armcirc

hipcirc 1.00 0.88 0.94 0.83 0.24 -0.15 -0.44

0.88 1.00 0.94 0.82 0.21 0.12 -0.29

0.94 0.94 1.00 0.92 0.45 0.16 -0.24

0.83 0.82 0.92 1.00 0.63 0.35 -0.00

0.24 0.21 0.45 0.63 1.00 0.66 0.36

-0.15 0.12 0.16 0.35 0.66 1.00 0.80

-0.44 -0.29 -0.24 -0.00 0.36 0.80 1.00

Figure 13.28. A correlation heatmap drawn using image.

(continued from previous page)

par(mfrow=c(1, 2))

for (k in c(25, 50))

histogram_2d(nhanes[["height"]], nhanes[["weight"]], k=k,

xlab="Height", ylab="Weight",

col=c("#ffffff00", hcl.colors(25, "Viridis", rev=TRUE))

)

Exercise 13.46 (*) Implement some two-dimensional kernel density estimator andplot it using
contour.

13.4 Exercises
Exercise 13.47 Answer the following questions.

• Can functions from the graphics package be used to adjust the plots generated by lattice
and ggplot2?

• What are the most common graphics primitives?

• Canall high-level functions be implementedusing low-level ones?Asan example, discuss the
key ingredients used in barplot.

13 GRAPHICS 337

130 140 150 160 170 180 190

50
10

0
15

0

Height

W
eig

ht

130 140 150 160 170 180 190
50

10
0

15
0

Height

W
eig

ht

Figure 13.29. Two-dimensional histograms with different numbers of bins, where the
bin count is reflected by the colour.

• Somehigh-level functions discussed in this chapter carry theaddparameter.What is its pur-
pose?

• Whatare the admissible values ofpchandlty?Also, in the default palette,what is themean-
ing of colours 1, 2, …, 16? Can their meaning be changed?

• Can all graphics parameters be changed?

• What is the difference between passing xaxt="n" to plot.default vs setting it with par,
and then calling plot.default?

• Which graphics parameters are set by plot.window?

• What is the meaning of the usr parameter when using the logarithmic scale on the x-axis?

• (*)How to place a plotting symbol exactly 1 centimetre from the top-left corner of the current
page (following the page’s diagonal)?

• Semi-transparent polygons are nice, right?

• Can an ellipse be drawn using polygon?

• What happens when we set the graphics parameter mfrow=c(2, 2)?

• How to export the current plot to a PDF file?

Exercise 13.48 Draw the 2022 BTC-to-USD close rates7 time series. Then, add the 7- and
30-day moving averages. (*) Also, fit a local polynomial (moving) regression model using the
Savitzky–Golay filter (see loess).

7 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv

https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv

338 II DEEPER

Exercise 13.49 (*) Draw (from scratch) a candlestick plot for the 2022 BTC-to-USD rates8.

Exercise 13.50 (*) Create a function to draw a normal quantile-quantile (Q-Q) plot, i.e., for
inspecting whether a numeric sample might come from a normal distribution.

Exercise 13.51 (*) Draw a map of the world, where each country is filled with a colour whose
brightness or hue is linked to its Gini index of income inequality. You can easily find the data
onWikipedia. Try to find an open dataset that gives the borders of each country as vertices of a
polygon (e.g., in the form of a (geo)JSONfile).

Exercise 13.52 Next time you see a pleasant data visualisation somewhere, try to reproduce it
using base graphics.

For further information on graphics generation in R, see, e.g., Chapter 12 of [57], [48],
and [52]. In this chapter, we were only interested in static graphics, e.g., for use in
printed publications or plain websites. Interactive plots that a user might tinker with
in a web browser are a different story.

And so the second part of our mind-blowing course is ended.

8 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

Part III

Deepest

14
Interfacing compiled code (**)

R is an effective glue language. It is suitable for composing whole data wrangling
pipelines: fromdata import through processing, analysis, and visualisation to export.
It makes using and connecting larger building blocks very convenient.

R is also a competent tool for developing quick and dirty prototypes of standalone,
general-purpose algorithms, especially if they are of numerical nature. Nevertheless,
for performance reasons, we may consider rewriting computing-intensive tasks in C
or C++1. Such a move can be beneficial if we need a method that:

• has higher memory or time complexity when programmed using vectorised R
functions than its straightforward implementation,

• has an iterative or recursive nature, e.g., involving unvectorisable for or while loops,

• relies on complicated dynamic data structures (e.g., hash maps, linked lists, or
trees),

• needs methods provided elsewhere and not available in R (e.g., other C or C++
libraries).

In the current chapter, we will demonstrate that R works very well as a user-friendly
interface to compiled code.

This topic is overall very technical. The definitive reference is theWriting R Extensions
manual [63], but see also Chapter 11 of [10]. Furthermore, R’s source code provides
many working examples of how to deal with R objects in C.

Here, we will only cover the most important basics. We will focus on writing or inter-
facing portable2 function libraries that only rely on simple3 data structures (e.g., arrays
of the type double and int). Thanks to this, we will be able to reuse them in other en-
vironments such as Python (e.g., via Cython) or Julia. Let us remember that R is one
ofmany languages out there.

1 Plain C and C++ are as fast as we can get without applying fancy CPU-specific optimisations or sim-
ilar hacks. Fortran is also supported but will not be covered in this book because of its smaller popularity.
Additionally, certain external packages are gateways to other languages, such as Java.
Nevertheless, D.E. Knuth once said: “The real problem is that programmers have spent far toomuch time

worrying about efficiency in the wrong places and at the wrong times; premature optimisation is the root
of all evil (or at least most of it) in programming” [39].

2 Hence, we are not interested in the overall very convenient Rcpp or cpp11 packages. They define C++
classes that make interacting with R objects more pleasant for some users.

3Thus, we will not discuss the ALTREP [55] representation of objects, ways to deal with environments
or pairlists, etc.

342 III DEEPEST

We assume basic knowledge of the C language; see [38]. The reader can skip this
chapter now and return to it later. The remaining material is not contingent on the
current one.

From now on, we take for granted that our environment can successfully build a
source package with C code, as mentioned in Section 7.3.1. In particular, W****ws
andm**OS should install, respectively, RTools and Xcode.

Note To avoid ambiguity, in the main text, calls to C functions will be denoted with
the “C::” prefix, e.g., C::spanish_inquisition().

14.1 C and C++ code in R
14.1.1 Source files for compiled code in R packages
Perhaps the most versatile way to interact with portable C code is via standalone R
packages. For the purpose of the current chapter, we created a demo project available
at https://github.com/gagolews/cpackagedemo.

Exercise 14.1 Inspect the structure of cpackagedemo. Note that C source files are located in the
src/ subdirectory. Build and install the package using install.packages or the “R CMD IN-

STALL” command. Then, load the package in R and call my_sum defined there on some numeric
vector.

The package provides an R interface to one C function, C::my_c_sum, written in the
most portable fashion possible. Its declaration is included in the src/cfuns.h file:

#ifndef __CFUNS_H

#define __CFUNS_H

#include <stddef.h>

double my_c_sum(const double* x, size_t n);

#endif

The function accepts a pointer to the start of a numeric sequence and its size, which
is a standard4 way of representing an array of doubles.

Its definition is given in src/cfuns.c.We see that it is nothingmore than a simple sum
of all the elements in an array:

4 (*) A slightly more sophisticated representation (used, e.g., in GNU GSL and numpy) deals with a sliced
array, where we additionally store the so-called stride. Instead of inspecting elements one after another, we
advance the iterator by a given step size. This way, we could apply the same function on selected rows of a
matrix (if it is in the column-major order).

https://github.com/gagolews/cpackagedemo

14 INTERFACING COMPILED CODE (**) 343

#include "cfuns.h"

/* computes the sum of all elements in an array x of size n */

double my_c_sum(const double* x, size_t n)

{

double s = 0.0;

for (size_t i = 0; i < n; ++i) {

/* this code does not treat potential missing values specially

(they are kinds of NaNs); to fix this, add:

if (ISNA(x[i])) return NA_REAL; // #include <R.h> */

s += x[i];

}

return s;

}

Tomake C::my_c_sum available in R, wewill have to introduce awrapper around it that
works with the data structures from the first part of this jolly book. We know that an
R function accepts objects of any kind on input and yields anything as a result. In the
next section, we will explain that we get access to R objects via special pointers of the
type SEXP (S expressions).

And so we declare our R-callable wrapper in src/rfuns.h:

#ifndef __RFUNS_H

#define __RFUNS_H

#include <R.h>

#include <Rinternals.h>

#include <Rmath.h>

SEXP my_c_sum_wrapper(SEXP x);

#endif

The actual definition is included in src/rfuns.c:

#include "rfuns.h"

#include "cfuns.h"

/* a wrapper around my_c_sum callable from R */

SEXP my_c_sum_wrapper(SEXP x)

{

double s;

if (!Rf_isReal(x)) {

/* the caller is expected to prepare the arguments

(continues on next page)

344 III DEEPEST

(continued from previous page)

(doing it at the C level is tedious work) */

Rf_error("`x` should be a vector of the type 'double'");

}

s = my_c_sum(REAL(x), (size_t)XLENGTH(x));

return Rf_ScalarReal(s);

}

The arguments could be, technically speaking, prepared at the C level. For instance, if
x turned out to be an integer vector, we could have converted it to the double one (they
are twodifferent types; see Section 6.4.1). Nevertheless, overall, it is very burdensome.
It is easier to use pure R code to ensure that the arguments are of the correct form as
well as to beautify the outputs.

This explainswhyweonly assert the enjoyment of C::Rf_isReal(x). It guarantees that
the C::REAL and C::XLENGTH functions correctly return the pointer to the start of the
sequence and its length, respectively.

Once C::my_c_sum is called, wemust convert it to an R object so that it can be returned
to our environment. Here, it is a newly allocated numeric vector of length one.We did
this by calling C::Rf_ScalarReal.

Although optional (see Section 5.4 of [63]), we will register C::my_c_sum_wrapper as
a callable function explicitly. This way, R will not be struggling to find the specific
entry point in the resulting dynamically linked library (DLL). We do this in src/

cpackagedemo.c:

#include <R_ext/Rdynload.h>

#include "rfuns.h"

/* the list of functions available in R via a call to .Call():

each entry is like {exported_name, fun_pointer, number_of_arguments} */

static const R_CallMethodDef cCallMethods[] = {

{"my_c_sum_wrapper", (DL_FUNC)&my_c_sum_wrapper, 1},

{NULL, NULL, 0} // the end of the list (sentinel)

};

/* registers the list of callable functions */

void R_init_cpackagedemo(DllInfo *dll)

{

R_registerRoutines(dll, NULL, cCallMethods, NULL, NULL);

R_useDynamicSymbols(dll, FALSE);

}

The function can be invoked fromR using .Call. Here are the contents of R/my_sum.R:

14 INTERFACING COMPILED CODE (**) 345

my_sum <- function(x)

{

prepare input data:

if (!is.double(x))

x <- as.double(x)

s <- .Call("my_c_sum_wrapper", x, PACKAGE="cpackagedemo")

some rather random postprocessing:

attr(s, "what") <- deparse(substitute(x))

s

}

And, finally, here is the package NAMESPACEfile responsible for registering the exported
R names and indicating the DLL to use:

export(my_sum)

useDynLib(cpackagedemo)

Once the package is built and installed (e.g., by running “R CMD INSTALL <pkgdir>” in
the terminal or calling install.packages), we can test it by calling:

library("cpackagedemo")

my_sum(runif(100)/100)

[1] 0.49856

attr(,"what")

[1] "runif(100)/100"

Exercise 14.2 Extend the package by adding a function to compute the index of the greatest ele-
ment in anumeric vector.Note thatCuses 0-based array indexingwhereas inR, thefirst element
is at index 1. Compare its run time against which.max using proc.time.

14.1.2 R CMD SHLIB

The “R CMD SHLIB <files>” shell command compiles one or more source files without
the need for turning them into standalone packages; see [63].Then, dyn.load loads the
resulting DLL.

Exercise 14.3 (*) Compile src/cfuns.c and src/rfuns.c from our demo package us-
ing “R CMD SHLIB”. Call dyn.load. Write an R function that uses .Call to invoke
C::my_c_sum_wrapper from the second source file.

The direct SHLIB approach is convenient for learning C programming, including run-
ning simple examples. We will thus use it for didactic reasons in this chapter. The
inst/examples/csource.Rfile in our demo package includes the implementation of an
R function called csource. It compiles a given C source file, and loads the resulting

346 III DEEPEST

DLL. It also extracts and executes a designated R code chunk preferably defining a
function that refers to .Call.

Here is an example source file, inst/examples/helloworld.c in the cpackagedemo

source code repository:

// the necessary header files are automatically included by `csource`

SEXP C_hello()

{

Rprintf("The mill's closed. There's no more work. We're destitute.\n"

"I'm afraid I've no choice but to sell you all "

"for scientific experiments.\n");

return R_NilValue;

}

/* R

this chunk will be extracted and executed by `csource`.

hello <- function()

invisible(.Call("C_hello", PACKAGE="helloworld"))

R */

Let us compile it and call the R function defined above.

source("~/R/cpackagedemo/inst/examples/csource.R") # defines csource

csource("~/R/cpackagedemo/inst/examples/helloworld.c")

hello()

The mill's closed. There's no more work. We're destitute.

I'm afraid I've no choice but to sell you all for scientific experiments.

Exercise 14.4 (*) C++ is also supported. It can be thought of as a superset of the C language,
but the devil is in the detail. Change the name of the above file to helloworld2.cpp, add extern
"C" before the function declaration, and compile it.

Exercise 14.5 (*) Verify that C and C++ source files can coexist in R packages.

Example 14.6 (*) It might be very educative to study the implementation of csource. We
should be able to author such functions ourselves now (a few hours’ worth of work), let alone read
with understanding.

compiles a C or C++ source file using R CMD SHLIB,

loads the resulting DLL, and executes the embedded R code

csource <- function(

fname,

libname=NULL, # defaults to the base name of `fname` without extension

(continues on next page)

14 INTERFACING COMPILED CODE (**) 347

(continued from previous page)

shlibargs=character(),

headers=paste0(

"#include <R.h>\n",

"#include <Rinternals.h>\n",

"#include <Rmath.h>\n"

),

R=file.path(R.home(), "bin/R")

)

{

stopifnot(file.exists(fname))

stopifnot(is.character(shlibargs))

stopifnot(is.character(headers))

stopifnot(is.character(R), length(R) == 1)

if (is.null(libname))

libname <- regmatches(basename(fname),

regexpr("[^.]*(?=\\..*)", basename(fname), perl=TRUE))

stopifnot(is.character(libname), length(libname) == 1)

read the source file:

f <- paste(readLines(fname), collapse="\n")

set up output file names:

tmpdir <- normalizePath(tempdir(), winslash="/") # tempdir on Win uses \

dynlib_ext <- .Platform[["dynlib.ext"]]

libpath <- file.path(tmpdir, sprintf("%s%s", libname, dynlib_ext))

cfname <- file.path(tmpdir, basename(fname))

rfname <- sub("\\..*?$", ".R", cfname, perl=TRUE) # .R extension

separate the /* R ... <R code> ... R */ chunk from the source file:

rpart <- regexec("(?smi)^/* R\\s?(.*)R */$", f, perl=TRUE)[[1]]

rpart_start <- rpart

rpart_len <- attr(rpart, "match.length")

if (rpart_start[1] < 0 || rpart_len[1] < 0)

stop("enclose R code between /* R ... and ... R */")

rcode <- substr(f, rpart_start[2], rpart_start[2]+rpart_len[2]-1)

cat(rcode, file=rfname, append=FALSE)

write the C/C++ file:

ccode <- paste(

headers,

substr(f, 1, rpart_start[1]-1),

(continues on next page)

348 III DEEPEST

(continued from previous page)

substr(f, rpart_start[1]+rpart_len[1], nchar(f)),

collapse="\n"

)

cat(ccode, file=cfname, append=FALSE)

prepare the "R CMD SHLIB ..." command:

shlibargs <- c(

"CMD", "SHLIB",

sprintf("-o %s", libpath),

cfname,

shlibargs

)

compile and load the DLL, run the extracted R script:

retval <- FALSE

oldwd <- setwd(tmpdir)

tryCatch({

if (libpath %in% sapply(getLoadedDLLs(), `[[`, "path"))

dyn.unload(libpath)

stopifnot(system2(R, shlibargs) == 0) # 0 == success

dyn.load(libpath)

source(rfname)

retval <- TRUE

}, error=function(e) {

cat(as.character(e), file=stderr())

})

setwd(oldwd)

if (!retval) stop("error compiling file or executing R code therein")

invisible(TRUE)

}

14.2 Handling basic types
14.2.1 SEXPTYPEs
All R objects are stored as instances of the C language structure SEXPREC. Usually, we
access them via pointers, which are of the type SEXP (S expression).

A C function referred to via .Call takes the very generic SEXPs on input. It outputs
another SEXP. Importantly, one of the said structure’s fields represents the actual R
object type (SEXPTYPE numbers); see Table 14.1 for a selection.

14 INTERFACING COMPILED CODE (**) 349

Table 14.1. Basic R types in C.

SEXPTYPE Type in R (typeof) Test in C

NILSXP NULL Rf_isNull(x) (true for R_NilValue only)
RAWSXP raw TYPEOF(x) == RAWSXP

LGLSXP logical Rf_isLogical(x)

INTSXP integer Rf_isInteger(x)

REALSXP double Rf_isReal(x)

CPLXSXP complex Rf_isComplex(x)

STRSXP character Rf_isString(x)

VECSXP list Rf_isVectorList(x)

CHARSXP char (scalar string; internal) TYPEOF(x) == CHARSXP

EXTPTRSXP externalptr (internal) TYPEOF(x) == EXTPTRSXP

Example 14.7 To illustrate that any R object is available as a SEXP, let us consider the inst/
examples/sexptype.c file from cpackagedemo:

SEXP C_test_sexptype(SEXP x)

{

Rprintf("type of x: %s (SEXPTYPE=%d)\n",

Rf_type2char(TYPEOF(x)),

(int)TYPEOF(x)

);

return R_NilValue;

}

/* R

test_sexptype <- function(x)

invisible(.Call("C_test_sexptype", x, PACKAGE="sexptype"))

R */

Example calls:

csource("~/R/cpackagedemo/inst/examples/sexptype.c")

test_sexptype(1:10)

type of x: integer (SEXPTYPE=13)

test_sexptype(NA)

type of x: logical (SEXPTYPE=10)

test_sexptype("spam")

type of x: character (SEXPTYPE=16)

Weshould refer to particularSEXPTYPEs via their descriptivenames (constants; e.g.,STRSXP), not
their numeric identifiers (e.g., 16); see Section 1.1 of [66] for the complete list5.

5 src/include/Rinternals.h in R’s source code repository; see, e.g., https://svn.r-project.org/R/trunk.

https://svn.r-project.org/R/trunk

350 III DEEPEST

14.2.2 Accessing elements in simple atomic vectors
Table 14.2 gives the most important vector-like SEXPTYPEs (atomic and generic), the C
types of their elements, and the functions to access the underlying array pointers. A
call to C::XLENGTH returns the length of a given sequence.

We have already seen an example function that processes a numeric vector; see
C::my_c_sum_wrapper above.

Let us stress that writing functions that accept only int and double array pointers and
their lengthsmakes themeasily reusable inother environments. Inmanydata analysis
applications, we do not needmuchmore.

Table 14.2. Basic array-like R types and their elements in C.

SEXPTYPE Array element type Pointer access

RAWSXP typedef unsigned char Rbyte; RAW(x)

LGLSXP int (use the FALSE, TRUE, and NA_LOGICAL constants) LOGICAL(x)

INTSXP int INTEGER(x)

REALSXP double REAL(x)

CPLXSXP typedef struct { double r; double i; } Rcomplex; COMPLEX(x)

STRSXP SEXP (array of SEXPs of the type CHARSXP) (not directly)
VECSXP SEXP (array of SEXPs of any SEXPTYPE) (not directly)
CHARSXP const char* (read-only; trailing 0; check encoding) CHAR(x)

Important With raw, logical, integer, floating-point, and complex vectors,weget dir-
ect access todata thatmightbe sharedamongstmanyobjects (compareSection 16.1.4).
SEXPRECs are simply passed by pointers (since SEXPs are exactly them). We must thus
refrain6 frommodifying the objects passed as function arguments. See below forways
to create new vectors, e.g., for storing auxiliary or return values.

Example 14.8 Consider inst/examples/sharedmem.c:

SEXP C_test_sharedmem(SEXP x)

{

if (!Rf_isReal(x) || XLENGTH(x) == 0)

Rf_error("`x` should be a non-empty vector of the type 'double'");

REAL(x)[0] = REAL(x)[0]+1; // never do it; always make a copy;

// the underlying array `x` may be shared by many objects

return R_NilValue;

}

(continues on next page)

6 (*) Unless we know what we are doing, e.g., we are certain that we deal with a local variable in an R
function that invokes our .Call.

14 INTERFACING COMPILED CODE (**) 351

(continued from previous page)

/* R

test_sharedmem <- function(x)

invisible(.Call("C_test_sharedmem", x, PACKAGE="sharedmem"))

R */

Calling the above function on an example vector:

csource("~/R/cpackagedemo/inst/examples/sharedmem.c")

y <- 1

z <- y

test_sharedmem(y)

print(c(y, z))

[1] 2 2

modifies y and z in place! It is not the same semantics as the one we got used to when interacting
with R. Hence, wemust alwaysmake a copy.

14.2.3 Representation ofmissing values
Most languages do not support the notion ofmissing values out of the box.Therefore,
in R, they have to be emulated. Table 14.3 lists the relevant constants and the conven-
tional ways for testing for missingness.

Table 14.3. Representation of missing values.

SEXPTYPE Missing value Testing

RAWSXP (none) (none)
LGLSXP NA_LOGICAL (equal to INT_MIN) el == NA_LOGICAL

INTSXP NA_INTEGER (equal to INT_MIN) el == NA_INTEGER

REALSXP NA_REAL (a special NaN) ISNA(el)

CPLXSXP a pair of NA_REALs ISNA(el.r)

STRSXP NA_STRING (a CHARSXP object) el == NA_STRING

In logical and integer vectors, NAs are representedas the smallest 32-bit signed integer.
Thus, we need to be careful when performing any operations on these types: testing
for missingness must be performed first.

The case of doubles is slightly less irksome, for a missing value is represented as a
special not-a-number. Many arithmetic operations on NaNs return NaNs as well, albeit
there is no guarantee7 that they will be of precisely the same type as NA_REAL. Thus,
manual testing for missingness is also advised.

7 (**) Namely, NAs are encoded as un-signalling NaNs 0x7ff00000000007A2 of the type double (the lower 32
payload bits are equal to 1954, decimally); see src/arithmetic.c in R’s source code.The payload propagation
is not fully covered by the current IEEE 754 floating point standard; see [22] for discussion. Reliance on

352 III DEEPEST

Example 14.9 The inst/examples/mean_naomit.c file defines a function to compute the
arithmetic mean of an int or a double vector:

SEXP C_mean_naomit(SEXP x)

{

double ret = 0.0;

size_t k = 0;

if (Rf_isInteger(x)) {

const int* xp = INTEGER(x);

size_t n = XLENGTH(x);

for (size_t i=0; i<n; ++i)

if (xp[i] != NA_INTEGER) { // NOT: ISNA(xp[i])

ret += (double)xp[i];

k++;

}

}

else if (Rf_isReal(x)) {

const double* xp = REAL(x);

size_t n = XLENGTH(x);

for (size_t i=0; i<n; ++i)

if (!ISNA(xp[i])) { // NOT: xp[i] == NA_REAL

ret += xp[i];

k++;

}

}

else

Rf_error("`x` should be a numeric vector");

return Rf_ScalarReal((k>0)?(ret/(double)k):NA_REAL);

}

/* R

mean_naomit <- function(x)

{

if (!is.numeric(x)) # neither integer nor double

x <- as.numeric(x) # convert to double (the same as as.double)

.Call("C_mean_naomit", x, PACKAGE="mean_naomit")

}

R */

There is some inherent code duplication but int and double are distinct types.Thus, they need to
be handled separately (we could have convert them to doubles at the R level too). Some tests:

such behaviour will thus make our code platform-dependent. R itself sometimes does that; theoretically,
this may cause NAs to be converted to (other) NaNs.

14 INTERFACING COMPILED CODE (**) 353

csource("~/R/cpackagedemo/inst/examples/mean_naomit.c")

mean_naomit(c(1L, NA_integer_, 3L, NA_integer_, 5L))

[1] 3

mean_naomit(rep(NA_real_, 10))

[1] NA

Exercise 14.10 Implement all and any in C. Add the na.rm argument.

14.2.4 Memory allocation
R implements a simple yet effective garbage collector that relies on reference count-
ing. Occasionally8, memory blocks that can no longer be reached are either freed or
marked as reusable.

To allocate a new vector of length one and set its only element, we can call
C::ScalarLogical, C::ScalarInteger, C::ScalarReal, etc. We have already used these
functions for returning R “scalars”.

Vectors of arbitrary lengths can be createdusing C::Rf_allocVector(sexptype, size).
Note that this function does not initialise the elements of logical and numeric se-
quences (amongst others). They will need to be set manually after creation.

Important All allocated vectors must be manually protected from garbage col-
lection. To guard against premature annihilation, R maintains a stack9 of ob-
jects. C::PROTECT(sexp) pushes a given object pointer onto the top of the list.
C::UNPROTECT(n) pops the last n elements therefrom (in a last-in-first-out manner).
At the end of a .Call, R checks if the number of protects matches that of unprotects.
If it is not the case, a warning is generated.

Protection is not needed:

• for arguments to functions referred to by .Call, as they are already in use and
hence protected;

• for objects assigned as list or character vectors’ elements using C::SET_VECTOR_ELT
and C::SET_STRING_ELT (see below); when the container is protected, so are its
components;

• when we return the allocated vector to R immediately after creating it (like in re-

turn Rf_ScalarReal(val) in a C function invoked by .Call).

Example 14.11 Here is a function to compute the square of each element in a numeric vector.
Note that thenewvectormust be protected fromgarbage collectionwhile dataare beingprepared.

8 A safe strategy is to assume that any call to a function fromR’s APImay trigger thememory cleanup.On
a side note, wemay call the gc function in R to enforce rubbish removal. It also reports the currentmemory
usage.

9 (**) C::R_PreserveObject protects an arbitrary SEXP until C::R_ReleaseObject is calledmanually.With
this mechanism, objects are not automatically released at the end of a .Call.

354 III DEEPEST

SEXP C_square1(SEXP x)

{

// no need to call PROTECT(x), it is already in use

if (!Rf_isReal(x)) Rf_error("`x` should be of the type 'double'");

size_t n = XLENGTH(x);

const double* xp = REAL(x);

SEXP y = PROTECT(Rf_allocVector(REALSXP, n)); // won't be GC'd

double* yp = REAL(y);

for (size_t i=0; i<n; ++i) {

if (ISNA(xp[i])) yp[i] = xp[i]; // NA_REAL

else yp[i] = xp[i]*xp[i];

}

UNPROTECT(1); // pops one object from the protect stack;

// does not trigger garbage collection, so we can return `y` now

return y; // R will retrieve and protect it

}

/* R

square1 <- function(x)

{

if (!is.double(x)) x <- as.double(x)

.Call("C_square1", x, PACKAGE="square1")

}

R */

As an alternative, in this case, wemay use C::Rf_duplicate:

SEXP C_square2(SEXP x)

{

if (!Rf_isReal(x)) Rf_error("`x` should be of the type 'double'");

x = PROTECT(Rf_duplicate(x)); // OK; just replaces the pointer (address)

size_t n = XLENGTH(x);

double* xp = REAL(x);

for (size_t i=0; i<n; ++i)

if (!ISNA(xp[i])) xp[i] = xp[i]*xp[i];

UNPROTECT(1);

return x;

}

(continues on next page)

14 INTERFACING COMPILED CODE (**) 355

(continued from previous page)

/* R

square2 <- function(x)

{

if (!is.double(x)) x <- as.double(x)

.Call("C_square2", x, PACKAGE="square2")

}

R */

Some tests:

csource("~/R/cpackagedemo/inst/examples/square1.c")

square1(c(-2, -1, 0, 1, 2, 3, 4, NA_real_))

[1] 4 1 0 1 4 9 16 NA

csource("~/R/cpackagedemo/inst/examples/square2.c")

square2(c(-2, -1, 0, 1, 2, 3, 4, NA_real_))

[1] 4 1 0 1 4 9 16 NA

We can claim auxiliary memory from the heap during a function’s runtime using the
well-known C::malloc (or new in C++).We are of course fully responsible for releasing
it via C::free (or delete).

Example 14.12 Here is our version of the which function.

SEXP C_which1(SEXP x)

{

if (!Rf_isLogical(x)) Rf_error("`x` should be of the type 'logical'");

size_t n = XLENGTH(x), i, k;

const int* xp = LOGICAL(x);

size_t* d = (size_t*)malloc(n*sizeof(size_t)); // conservative size

if (!d) Rf_error("memory allocation error");

for (i=0, k=0; i<n; ++i)

if (xp[i] != NA_LOGICAL && xp[i])

d[k++] = i;

// Rf_allocVector can longjmp, memory leak possible...

SEXP y = PROTECT(Rf_allocVector(REALSXP, k));

double* yp = REAL(y); // yes, the type is double; ready for long vectors

for (i=0; i<k; ++i)

yp[i] = (double)d[i]+1; // R uses 1-based indexing

free(d);
(continues on next page)

356 III DEEPEST

(continued from previous page)

UNPROTECT(1);

return y;

}

/* R

which1 <- function(x)

{

if (!is.logical(x)) x <- as.logical(x)

.Call("C_which1", x, PACKAGE="which1")

}

R */

Some tests:

csource("~/R/cpackagedemo/inst/examples/which1.c")

which1(c(TRUE, FALSE, TRUE, NA, TRUE))

[1] 1 3 5

Exercise 14.13 R’s which returns either an int or a double vector, depending on the size of the
input vector (whether it is shorter than 231 − 1). Rewrite the above to take that into account:
integer arithmetic is slightly faster.

Note (*) R’s exception handling uses a long jump10. Therefore, when calling
C::Rf_error (whether directly or not) normal stack unwinding will not occur. This is
particularly important when using C++ objects which deallocate memory in their de-
structors as they might not be invoked whatsoever.

In the above example, a call to C::Rf_allocVectormay trigger a long jump, e.g., if we
run out of available memory. In such a case, dwill not be freed.

Thus, care shouldbe taken tomake sure there arenomemory leaks.Wecan sometimes
switch to C::R_alloc(n, size) which allocates n*size bytes. The memory it requests
will automatically be garbage-collected at the end of a .Call.

Otherwise, we should ensure that blocks relying on manual memory allocation are
not mixed with the calls to R API functions. In our C::which1, it would be better to
determine the desired size of y and allocate it before calling C::malloc.

Example 14.14 (*) Ifwe donot like thatwe are potentiallywastingmemory in the case of sparse
logical vectors, we can rely on dynamically growable arrays. Below is a C++ rewrite of the above
function using deque (double-ended queue) from the language’s standard library.

#include <deque>

(continues on next page)

10 https://en.wikipedia.org/wiki/Setjmp.h

https://en.wikipedia.org/wiki/Setjmp.h

14 INTERFACING COMPILED CODE (**) 357

(continued from previous page)

extern "C" SEXP C_which2(SEXP x)

{

if (!Rf_isLogical(x)) Rf_error("`x` should be of the type 'logical'");

size_t n = XLENGTH(x), i, k=0;

const int* xp = LOGICAL(x);

// precompute k, Rf_allocVector can do a longjmp

for (i=0; i<n; ++i) if (xp[i] != NA_LOGICAL && xp[i]) k++;

SEXP y = PROTECT(Rf_allocVector(REALSXP, k));

double* yp = REAL(y); // ready for long vectors

std::deque<size_t> d; // allocates memory

for (i=0; i<n; ++i)

if (xp[i] != NA_LOGICAL && xp[i])

d.push_back(i);

i=0;

for (size_t e : d)

yp[i++] = (double)e+1; // R uses 1-based indexing

UNPROTECT(1);

return y; // d's destructor will be called automatically

}

/* R

which2 <- function(x)

{

if (!is.logical(x)) x <- as.logical(x)

.Call("C_which2", x, PACKAGE="which2")

}

R */

Example calls:

csource("~/R/cpackagedemo/inst/examples/which2.cpp")

x <- (runif(10) > 0.5)

stopifnot(which(x) == which1(x))

stopifnot(which(x) == which2(x))

Alternatively, we could have used C::realloc to extend an initially small buffer created using
C::malloc by, say, 50%whenever it is about to overflow.

358 III DEEPEST

14.2.5 Lists
For safety reasons11, we do not get access to the underlying pointers in lists and char-
acter vectors. List items can be read by calling C::VECTOR_ELT(x, index) and can be set
with C::SET_VECTOR_ELT(x, index, newval).

Note that lists (VECSXPs) are comprised of SEXPs of any type. Hence, after extracting an
element, its SEXPTYPE needs to be tested using one of the functions listed in Table 14.1.
This can be tiresome.

Example 14.15 Here is a rather useless function that fetches the first and the last element in a
given numeric vector or a list. However, if the latter case, we apply the function recursively on all
its elements.

SEXP C_firstlast(SEXP x)

{

if (!Rf_isVector(x) || XLENGTH(x) == 0)

Rf_error("`x` must be a non-empty vector (atomic or generic)");

else if (Rf_isReal(x)) {

SEXP y = PROTECT(Rf_allocVector(REALSXP, 2));

REAL(y)[0] = REAL(x)[0]; // first

REAL(y)[1] = REAL(x)[XLENGTH(x)-1]; // last

UNPROTECT(1);

return y;

}

else if (Rf_isVectorList(x)) {

SEXP y = PROTECT(Rf_allocVector(VECSXP, 2));

// VECTOR_ELT(x, i) is PROTECTed by the container;

// SET_VECTOR_ELT does not trigger GC; no need to call PROTECT

// on the result of C_firstlast(...) in this context

SET_VECTOR_ELT(y, 0, C_firstlast(VECTOR_ELT(x, 0)));

SET_VECTOR_ELT(y, 1, C_firstlast(VECTOR_ELT(x, XLENGTH(x)-1)));

UNPROTECT(1);

return y;

}

else

Rf_error("other cases left as an exercise");

return R_NilValue; // avoid compiler warning

}

/* R

firstlast <- function(x)

.Call("C_firstlast", x, PACKAGE="firstlast")

R */

11 To get the object reference counting right, C::SET_VECTOR_ELT needs to unprotect the old element and
start protecting the new one.

14 INTERFACING COMPILED CODE (**) 359

Testing:

csource("~/R/cpackagedemo/inst/examples/firstlast.c")

firstlast(c(1, 2, 3))

[1] 1 3

firstlast(list(c(1, 2, 3), c(4, 5), 6))

[[1]]

[1] 1 3

##

[[2]]

[1] 6 6

firstlast(list(c(1, 2, 3), 4, 5, list(6, c(7, 8), c(9, 10, 11))))

[[1]]

[1] 1 3

##

[[2]]

[[2]][[1]]

[1] 6 6

##

[[2]][[2]]

[1] 9 11

Exercise 14.16 Implement a C function that returns the longest vector in a given list. Use
C::Rf_isVector to check whether a given object is an atomic or a generic vector, and hence if
C::XLENGTH can be called thereon.

Exercise 14.17 Inscribe your version of unlist. Consider scanning the input list twice. First,
determine the size of the output vector. Second, fill the return object with the un-listed values.

Exercise 14.18 Write a C function that takes a list of numeric vectors of identical lengths. Re-
turn their elementwise sum: the first element of the output should be the sum of the first elements
in every input vector, and so forth.

14.2.6 Character vectors and individual strings (*)
Character vectors (STRSXPs) are similar to VECSXPs except that theyonly carry individual
strings which are represented using a separate data type, CHARSXP. C::STRING_ELT(x,
index) and C::SET_STRING_ELT(x, index, newval) play the role of the element getters
and setters.

Important Ifwe arenot interested in text processing but rather in handling categorical
data or defining grouping variables, we should consider converting character vectors
to factors before issuing a .Call. Comparing small integers ismuch faster than strings;
see below for more details.

Because of R’s string cache, there are no duplicate strings in the memory. However,
this feature could only be guaranteed by making data in CHARSXPs read-only. We can

360 III DEEPEST

access the underlying const char* pointer by calling C::CHAR(s). As typical in C, a
string is terminated by byte 0.

Note R strings may be of different encodings; compare Section 6.1.1. For portability
and peace of mind, it is best to preprocess the arguments to .Call using enc2utf8,
which converts all strings to UTF-812.

Despite being themost universal encoding, UTF-8 does not represent each code point
using a fixed number of bytes. For instance, computing the string length requires it-
erating over all its elements. For CHARSXPs, C::XLENGTH returns the number of bytes, not
including the trailing 0.

It is thus best to leave the processing of strings to the dedicated libraries, e.g., ICU13
or rely on functions from the stringi package [27] at the R level.

C strings can be converted to CHARSXPs by calling C::Rf_mkCharCE(stringbuf, CE_UTF8)

or C::Rf_mkCharLenCE(stringbuf, buflen, CE_UTF8). If we are sure that a string is in
ASCII (a subset of UTF-8), we can also call C::Rf_mkChar(stringbuf).

We should never return CHARSXPs as results to R. They are for internal use only. They
must be wrapped inside a character vector, e.g., using C::Rf_ScalarString.

14.2.7 Calling R functions fromC (**)
Section 5.11 of [63] discusses ways to call R functions in C. To understand them, we
will first need to study the material from the remaining chapters of our book, i.e.,
environments and the related evaluationmodel.They can be useful, e.g., when calling
optimisation algorithms implemented in C on objective functions written in R.

14.2.8 External pointers (**)
For storing arbitrary C pointers, there is a separate basic R type named externalptr

(SEXPTYPE of EXTPTRSXP); see Section 5.13 of [63] for more details.

We can use them to maintain dynamic data structures or resource handlers between
calls to R functions. The problem with these is that pointers are passed as… pointers.
They can easily break R’s pass-by-value-like semantics, where changes to the state of
the referenced object will be visible outside the call.

Furthermore, pointers are not serialisable. They cannot be saved for use in another R
session.

Example 14.19 (**) inst/examples/stack.cpp provides a C++ implementation of the stack
data structure, being a last-in-first-out container of arbitrary R objects:

12 Take care when calling C::Rprintf, though. It should only be used to output messages in the native
encoding,whichdoesnotnecessarily have to beUTF-8, although this landscape is slowly changing. Sticking
to ASCII is a safe choice.

13 https://icu.unicode.org/

https://icu.unicode.org/

14 INTERFACING COMPILED CODE (**) 361

#include <deque>

class S : public std::deque<SEXP>

{

public: ~S()

{ // destructor: release all SEXPs so that they can be GC'd

while (!this->empty()) {

SEXP obj = this->front();

this->pop_front();

R_ReleaseObject(obj);

}

}

};

S* get_stack_pointer(SEXP s, bool check_zero=true) // internal function

{

if (TYPEOF(s) != EXTPTRSXP)

Rf_error("not an external pointer");

SEXP tag = R_ExternalPtrTag(s); // our convention, this can be anything

if (TYPEOF(tag) != CHARSXP || strcmp(CHAR(tag), "stack") != 0)

Rf_error("not a stack");

S* sp = (S*)R_ExternalPtrAddr(s);

if (check_zero && !sp)

Rf_error("address is 0");

return sp;

}

void stack_finaliser(SEXP s) // internal function

{

// called during garbage collection

S* sp = get_stack_pointer(s, false);

if (sp) {

delete sp; // destruct S, release SEXPs

R_ClearExternalPtr(s);

}

}

extern "C" SEXP C_stack_create()

{

S* sp = new S(); // stack pointer

SEXP s = PROTECT(

R_MakeExternalPtr((void*)sp, /*tag*/mkChar("stack"), R_NilValue)

(continues on next page)

362 III DEEPEST

(continued from previous page)

);

R_RegisterCFinalizerEx(s, stack_finaliser, TRUE); // auto-called on GC

UNPROTECT(1);

return s;

}

extern "C" SEXP C_stack_empty(SEXP s)

{

S* sp = get_stack_pointer(s);

return Rf_ScalarLogical(sp->empty());

}

extern "C" SEXP C_stack_push(SEXP s, SEXP obj)

{

S* sp = get_stack_pointer(s);

R_PreserveObject(obj);

sp->push_front(obj);

return R_NilValue;

}

extern "C" SEXP C_stack_pop(SEXP s)

{

S* sp = get_stack_pointer(s);

if (sp->empty())

Rf_error("stack is empty");

SEXP obj = sp->front();

sp->pop_front();

R_ReleaseObject(obj);

return obj;

}

/* R

stack_create <- function()

.Call("C_stack_create", PACKAGE="stack")

stack_empty <- function(s)

.Call("C_stack_empty", s, PACKAGE="stack")

stack_push <- function(s, obj)

.Call("C_stack_push", s, obj, PACKAGE="stack")

stack_pop <- function(s)

.Call("C_stack_pop", s, PACKAGE="stack")

R */

14 INTERFACING COMPILED CODE (**) 363

Note howwe preserve R objects from garbage collection. Some tests:

csource("~/R/cpackagedemo/inst/examples/stack.cpp")

s <- stack_create()

print(s)

<pointer: 0x556ded58c520>

typeof(s)

[1] "externalptr"

for (i in c("one", "two", "Spanish Inquisition"))

stack_push(s, i)

while (!stack_empty(s))

print(stack_pop(s))

[1] "Spanish Inquisition"

[1] "two"

[1] "one"

14.3 Dealingwith compound types
14.3.1 Reading and setting attributes
From Chapter 10, we know that compound types such as matrices, factors, or data
frames are represented using basic data structures. Usually, they are atomic vectors
or lists organised in a predefinedmanner.

C::Rf_getAttrib(x, attrname) and C::Rf_setAttrib(x, attrname, newval) gets
and sets specific attributes of an object x. Their second argument, attrname,
should be a one-element STRSXP. For convenience, the constants R_ClassSymbol,
R_DimNamesSymbol,R_DimSymbol,R_LevelsSymbol,R_NamesSymbol, andR_RowNamesSymbol
can be used instead of the STRSXP versions of the "class", "dimnames", "dim", "levels",
"names", and "row.names" strings.

Example 14.20 Consider a function for testing whether an object is of a given class:

#include <string.h>

SEXP C_isofclass(SEXP x, SEXP class)

{

if (!Rf_isString(class) && XLENGTH(class) != 1)

Rf_error("`class` must be a single string");

if (!OBJECT(x)) // is the class attribute set at all?

return Rf_ScalarLogical(FALSE);

SEXP xclass = Rf_getAttrib(x, R_ClassSymbol); // STRSXP (guaranteed)

(continues on next page)

364 III DEEPEST

(continued from previous page)

const char* c = CHAR(STRING_ELT(class, 0)); // class arg as a C string

size_t n = XLENGTH(xclass);

for (size_t i=0; i<n; ++i)

if (strcmp(CHAR(STRING_ELT(xclass, i)), c) == 0)

return Rf_ScalarLogical(TRUE);

return Rf_ScalarLogical(FALSE);

}

/* R

isofclass <- function(x, class)

.Call("C_isofclass", x, class, PACKAGE="isofclass")

R */

Some tests:

csource("~/R/cpackagedemo/inst/examples/isofclass.c")

isofclass(Sys.time(), "POSIXct")

[1] TRUE

isofclass(cbind(1:5, 11:15), "matrix")

[1] FALSE

Note that amatrix has an implicit class (reported by the class function), but its class attribute
does not have to be set. Hence the negative result.

Example 14.21 Write a function that fetches a particular named element in a list.

14.3.2 Factors
Factors (Section 10.3.2) are represented as integer vectors with elements in the set {1,
2, …, k, NA_integer_} for some k. They are equipped with the levels attribute, being a
character vector of length k. Their class attribute is set to factor.

Example 14.22 Anexample implementationofa function to compute thenumberof occurrences
of each factor level is given below.

SEXP C_table1(SEXP x)

{

if (!Rf_isFactor(x)) Rf_error("`x` is not a 'factor' object");

size_t n = XLENGTH(x);

const int* xp = INTEGER(x); // `x` is INTSXP

SEXP levels = Rf_getAttrib(x, R_LevelsSymbol); // `levels` is a STRSXP

size_t k = XLENGTH(levels);

(continues on next page)

14 INTERFACING COMPILED CODE (**) 365

(continued from previous page)

SEXP y = PROTECT(Rf_allocVector(REALSXP, k));

double* yp = REAL(y);

for (size_t i=0; i<k; ++i)

yp[i] = 0.0;

for (size_t j=0; j<n; ++j) {

if (xp[j] != NA_INTEGER) {

if (xp[j] < 1 || xp[j] > k)

Rf_error("malformed factor"); // better safe than sorry

yp[xp[j]-1] += 1.0; // levels are 1..k, but C needs 0..k-1

}

}

Rf_setAttrib(y, R_NamesSymbol, levels); // set names attribute

UNPROTECT(1);

return y;

}

/* R

table1 <- function(x)

{

if (!is.factor(x)) x <- as.factor(x)

.Call("C_table1", x, PACKAGE="table1")

}

R */

Testing:

csource("~/R/cpackagedemo/inst/examples/table1.c")

table1(c("spam", "bacon", NA, "spam", "eggs", "bacon", "spam", "spam"))

bacon eggs spam

2 1 4

Exercise 14.23 Create a function to compute the most frequently occurring value (mode) in a
given factor.Returna character vector. If amode is ambiguous, returnall the possible candidates.

14.3.3 Matrices
Matrices (Chapter 11) are flat atomic vectors or lists with the dim attribute being a vec-
tor of length two. The class attribute does not have to be set (but the class function
returns matrix and array).

Matrices are so important in data analysis that they have been blessedwith a few ded-
icated functions available at the C level. C::Rf_isMatrix tests if a given object meets
the criteria mentioned above.

R relies on the Fortran order of matrix elements, i.e., it uses the column-major

366 III DEEPEST

alignment. Let A be a matrix with n rows and m columns (compare C::Rf_nrows and
C::Rf_ncols). Then, the element in the i-th row and the j-th column is at A[i+n*j].

C::Rf_allocMatrix(sexptype, n, m) allocates a new matrix. The dimnames attributes
must be handled manually, though.

Example 14.24 Here is a function to compute the transpose of a numeric matrix:

SEXP C_transpose(SEXP x)

{

if (!Rf_isMatrix(x) || !Rf_isReal(x))

Rf_error("`x` must be a real matrix");

size_t n = Rf_nrows(x);

size_t m = Rf_ncols(x);

const double* xp = REAL(x);

SEXP y = PROTECT(Rf_allocMatrix(REALSXP, m, n));

double* yp = REAL(y);

for (size_t i=0; i<n; ++i)

for (size_t j=0; j<m; ++j)

yp[j+m*i] = xp[i+n*j];

SEXP dimnames = Rf_getAttrib(x, R_DimNamesSymbol);

if (!Rf_isNull(dimnames)) {

SEXP tdimnames = PROTECT(Rf_allocVector(VECSXP, 2));

SET_VECTOR_ELT(tdimnames, 0, VECTOR_ELT(dimnames, 1));

SET_VECTOR_ELT(tdimnames, 1, VECTOR_ELT(dimnames, 0));

Rf_setAttrib(y, R_DimNamesSymbol, tdimnames); // set dimnames

UNPROTECT(1);

// dimnames may have the names attribute too (left as an exercise)

}

UNPROTECT(1);

return y;

}

/* R

transpose <- function(x)

{

if (!is.matrix(x)) x <- as.matrix(x)

if (!is.double(x)) x[] <- as.double(x) # preserves attributes

.Call("C_transpose", x, PACKAGE="transpose")

}

R */

Testing:

14 INTERFACING COMPILED CODE (**) 367

csource("~/R/cpackagedemo/inst/examples/transpose.c")

transpose(cbind(c(1, 2, 3, 4), c(5, 6, 7, 8)))

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

transpose(Titanic[, "Male", "Adult",])

1st 2nd 3rd Crew

No 118 154 387 670

Yes 57 14 75 192

Exercise 14.25 AuthoraC functionnamedtable2 that computesa two-waycontingency table.

14.3.4 Data frames
Data frames (Chapter 12) are lists of m vectors of identical lengths n or matrices of n
rows for some n andm.The character vectors stored in the row.names and names attrib-
utes give the n row andm column labels.They are objects of the S3 class data.frame.

We process data frames as ordinary lists. However, assuming we only want to process
numeric data, we can extract the columns of interest and put them inside a matrix at
the R level. If element grouping is required, they can be accompanied by a factor or
a list of factor variables. In many applications, this is a good-enough strategy. Let us
not complicate our lives beyond what is necessary.

14.4 Using existing function libraries
14.4.1 Checking for user interrupts
Long computations may lead to R’s becoming unresponsive. The user may always re-
quest to cancel the evaluation of the current expression by pressing Ctrl+C.

To process the event queue, we should occasionally call C::R_CheckUserInterrupt(),
e.g., in every iteration of a complex for loop. Note that Rmight decide never to return
to our function.Thus,wehave to preventmemory leaks, e.g., by preferring C::R_alloc
over C::malloc.

14.4.2 Generating pseudorandomnumbers
C::unif_rand returns a single pseudorandom deviate from the uniform distribution
on the unit interval. It is the basis for generating numbers from all other supported
distributions (Section 6.7.1 of [63]).

It uses the same pseudorandom generator as we described in Section 2.1.5. To read
andmemorise its seed (the `.Random.seed` object in the global environment), we have

368 III DEEPEST

to call C::GetRNGstate() and C::PutRNGstate() at the beginning and the end of our
function, respectively.

Example 14.26 Below is a function to generate a pseudorandom bit sequence:

SEXP C_randombits(SEXP n)

{

if (!Rf_isInteger(n) || XLENGTH(n) != 1)

Rf_error("`n` should be a single integer");

int _n = INTEGER(n)[0];

if (_n == NA_INTEGER || _n < 1)

Rf_error("incorrect `n`");

SEXP y = PROTECT(Rf_allocVector(INTSXP, _n));

int* yp = INTEGER(y);

GetRNGstate();

for (int i=0; i<_n; ++i)

yp[i] = (int)(unif_rand()>0.5); // not the best way to sample bits

PutRNGstate();

UNPROTECT(1);

return y;

}

/* R

randombits <- function(n)

{

if (!is.integer(n)) n <- as.integer(n)

.Call("C_randombits", n, PACKAGE="randombits")

}

R */

Let us play with the above:

csource("~/R/cpackagedemo/inst/examples/randombits.c")

set.seed(123); randombits(10)

[1] 0 1 0 1 1 0 1 1 1 0

randombits(10)

[1] 1 0 1 1 0 1 0 0 0 1

set.seed(123); randombits(20)

[1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1

set.seed(123); as.integer(runif(20)>0.5) # it's the same "algorithm"

[1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1

14 INTERFACING COMPILED CODE (**) 369

Exercise 14.27 Create a function to compute the most frequently occurring value (mode) in a
given factor object. In the case of ambiguity, return a randomly chosen candidate.

14.4.3 Mathematical functions from the RAPI
Section 6.7 of [63] lists the available statistical distribution functions, mathematical
routines and constants, and other numerical utilities.

14.4.4 Header files fromother R packages (*)
A package may use header files from another package. For this to be possible, it must
include the dependency name in the LinkingTo field of its DESCRIPTION file; see [63] for
discussion.

Exercise 14.28 The BH package on CRAN gives access to Boost, the header-only C++ librar-
ies that define many useful algorithms and data structures. Create an R package that calls
C++::boost::math::gcd after issuing the #include <boost/math/common_factor.hpp> dir-
ective.

14.4.5 Specifying compiler and linker flags (**)
We can pass arbitrary flags to the compiler or linker, e.g., to use any library installed
on our system.

Basic configuration can be set via Makevars (or Makevars.win on W****ws), e.g., by
setting PKG_CFLAGS or PKG_LIBS variables.

For maximum portability across different platforms, which is overall challenging to
ensure if we do not wish to exclude W****ws users, we might be required to author
custom configure (and configure.win) scripts.

Formore information, see [63]. In particular, it discusses how to use OpenMP14 in our
projects.

14.5 Exercises
Exercise 14.29 Answer the following questions about the C language API for R.

• What are the most common SEXPTYPEs?

• How aremissing values represented?

14 Most R functions are single-threaded by design. It is up to the user to decide whether and how they
would like their code to be parallelised. More often than not, computations in the data science domain
are naïvely parallelisable (e.g., Monte Carlo simulations, exhaustive grid search, etc.). In such cases, the R
package parallel might be helpful: it defines parallel versions of lapply and apply. However, for serious
jobs, runningmultiple single-threaded R instances via, e.g., the slurmworkloadmanager might be a better
idea than starting a process that spawnsmany child threads.

370 III DEEPEST

• How can we check if an int is a missing value?What about a double?

• How to prevent SEXPs from being garbage-collected?

• How are character vectors represented? What is the difference between a CHARSXP and a
STRSXP?

• Why is it better to handle factor objects rather than raw character vectors if wemerelywould
like to define grouping variables?

• How are Rmatrices represented in C?Does R use the C or Fortran order of matrix elements?

• How are R data frames handled in C?

Exercise 14.30 Implement the C versions of the rep, seq, rle, match, findInterval, sample,
order, unique, and split functions.

Exercise 14.31 (*) ReadWriting R Extensions [63] in its entirety.

Exercise 14.32 (*) Download R’s source code fromCRAN15 or its Subversion16 (SVN) reposit-
ory. Explore the header files in the src/include subdirectory.They are part of the callable API.

15 https://stat.ethz.ch/R/daily
16 https://svn.r-project.org/R/trunk

https://stat.ethz.ch/R/daily
https://svn.r-project.org/R/trunk

15
Unevaluated expressions (*)

In this and the remaining chapters, we will learn some hocus-pocus that should only
be of interest to the advanced-to-be1 and open-minded R programmers who would
like to understand what is going on under our language’s bonnet. In particular, we
will inspect the mechanisms behind why certain functions act differently from what
we would expect them to do if a standard evaluation scheme was followed (compare
subset and transformmentioned in Section 12.3.9).

Namely, in normal programming languages, when we execute something like:

plot(x, exp(x))

the expression exp(x), is evaluated first and its value2 (in this case: probably a numeric
vector) is only then passed to the plot function as the actual parameter. Thus, if x is
set to be seq(0, 10, length.out=1001), the above never means anything else than:

plot(c(0.00, 0.01, 0.02, 0.03, ...), c(1.0000, 1.0101, 1.0202, 1.0305, ...))

ButRwas heavily inspired by the S language fromwhich it has taken the notion of lazy
arguments (Chapter 17). It is thus equippedwith the ability to apply a set of techniques
referred to as metaprogramming (computing on the language, reflection). With it, we
can define functions that do not take their arguments for granted and clearly see the
code fragments passed to them. Having access to such unevaluated expressions, we can
do to them whatever we please: print, modify, evaluate on different data, or ignore
whatsoever.

In theory, this enables implementing many potentially helpful3, beginner-friendly fea-
tures and express certain requests in a more concise manner. For instance, that the
y-axis labels in Figure 2.2 could be generated automatically is precisely because plot
was able to see not only a vector like c(1.0000, 1.0101, 1.0202, 1.0305, ...) but also
the expression that generated it, exp(x).

1 Remember that this book is supposed to be read from the beginning to the end. Also, if you have not
tested yourself against all the 300-odd exercises suggested so far, please do it before proceeding with the
material presented here. Only practice makes perfect, and nothing is built in a day. Give yourself time: you
can always come back later.

2 Or a reference/pointer to an object that stores the said value.
3The original authors of R (R. Ihaka and R. Gentleman), in [37], mention: “A policy of lazy arguments is

very useful because it means that, in addition to the value of an argument, its symbolic form can be made
available in the function being called.This can be very useful for specifying functions ormodels in symbolic
form.”

372 III DEEPEST

Nonetheless, as a form of untamed freedom of expression4, metaprogramming has the
endless potential to arouse chaos, confusion, and division in the user community. In
particular,wecan introduceadialectwithinour language thatpeopleoutsideour circle
will not be able to understand. Once it becomes a dominant one, other users will feel
excluded.

Cursed be us, for we are about to start eating from the tree of the knowledge of good
and evil. But remember: with great power comes great fun (and responsibility).

15.1 Expressions at a glance
At themost general level, expressions (statements) in a language like R can be classified
into two groups:

• simple expressions:

– constants (e.g., 3.14, 2i, 42L, NA_real_, Inf, NaN, NA, FALSE, TRUE, "character
string", NULL, -1.3e-16, and 0x123abc),

– names (symbols, identifiers; e.g., x, iris, sum, data.frame, spam, `+`, `[<-`,
and spanish_inquisition),

• compound expressions – combinations of 𝑛 + 1 expressions (simple or compound)
of the form:

(𝑓 , 𝑒1, 𝑒2, … , 𝑒𝑛).

As we will soon see, compound expressions represent a call to 𝑓 (an operator) on a se-
quence of arguments 𝑒1, 𝑒2, … , 𝑒𝑛 (operands). It is why, equivalently, we denote them
with 𝑓 (𝑒1, 𝑒2, … , 𝑒𝑛).
On the other hand, nameshave nomeaningwithout an explicitly stated context, which
we will explore in Chapter 16. Prior to that, we treat them asmeaning-less.

Hence, for the time being, we are only interested in the syntax or grammar of
our language, not the semantics. We are abstract in the sense that, in the ex-
pression mean(rates)+2, which we know from Section 9.3.5 that we can equival-
ently express as `+`(mean(rates), 2), neither mean, x, nor even `+` have the
usual sense. Therefore, we should treat them as equivalent to, say, f(g(x), 2) or
nobody(expects(spanish_inquisition), 2).

4 In the current author’s opinion, R (as awhole, in the sense ofR(GNUS)as a language andan environment)
would be better off if an ordinary programmer was not exposed so much to functions heavily relying on
metaprogramming. A healthy user can perfectly manage without (and thus refrain from using) them.The
fact thatwe call them advancedwill notmake us cool if we start horsing aroundwith nonstandard evaluation.
Perverse is perhaps a better label.

15 UNEVALUATED EXPRESSIONS (*) 373

15.2 Language objects
There are three types of language objects in R:

• name (symbol) represents object names in the sense of simple expressions: names in
Section 15.1;

• call stores unevaluated function calls in the sense of compound expressions above;

• expression, quite confusingly, represents a sequence of simple or compound ex-
pressions (constants, names, or calls).

One way to create a simple or compound expression is by quoting, where the R inter-
preter is asked to refrain from evaluating a given command:

quote(spam) # name (symbol)

spam

quote(f(x)) # call

f(x)

quote(1+2+3*pi) # another call

1 + 2 + 3 * pi

None of the above was executed. In particular, spam has no sense in the current context
(whichever that is). It is not the meaning that we are after now.

Single strings can be converted to names by calling:

as.name("spam")

spam

Calls can be built programmatically by invoking:

call("sin", pi/2)

sin(1.5707963267949)

Sometimes we would rather have the arguments quoted:

call("sin", quote(pi/2))

sin(pi/2)

call("c", 1, exp(1), quote(exp(1)), pi, quote(pi))

c(1, 2.71828182845905, exp(1), 3.14159265358979, pi)

Objects of the type expression can be thought of as list-like sequences that consist of
simple or compound expressions.

(exprs <- expression(1, spam, mean(x)+2))

expression(1, spam, mean(x) + 2)

374 III DEEPEST

All arguments were quoted. We can select or subset the individual statements using
the extraction or index operators:

exprs[-1]

expression(spam, mean(x) + 2)

exprs[[3]]

mean(x) + 2

Exercise 15.1 Check the type of the object returned by a call to c(1, "two", sd, list(3,

4:5), expression(3+3)).

There is also an option to parse a given text fragment or a whole source file:

parse(text="mean(x)+2")

expression(mean(x) + 2)

parse(text=" # two code lines (comments are ignored by the parser)

x <- runif(5, -1, 1)

print(mean(x)+2)

")

expression(x <- runif(5, -1, 1), print(mean(x) + 2))

parse(text="2+") # syntax error - unfinished business

Error in parse(text = "2+"): <text>:2:0: unexpected end of input 1: 2+ ^

Important The deparse function converts language objects to character vectors, e.g.:

deparse(quote(mean(x+2)))

[1] "mean(x + 2)"

This function has the nice side effect of tidying up the code formatting:

exprs <- parse(text=

"`+`(x, 2)->y; if(y>0) print(y**10|>log()) else { y<--y; print(y)}")

Let us print them out:

for (e in exprs)

cat(deparse(e), sep="\n")

y <- x + 2

if (y > 0) print(log(y^10)) else {

y <- -y

print(y)

}

15 UNEVALUATED EXPRESSIONS (*) 375

Note Calling classonobjects of the three aforementioned types yields name, call, and
expression, whereas typeof returns symbol, language, and expression, respectively.

15.3 Calls as combinations of expressions
We have mentioned that calls (compound expressions) are combinations of simple or
compound expressions of the form (𝑓 , 𝑒1, … , 𝑒𝑛). The first expression on the list, de-
noted above with 𝑓 , plays a special role. It is precisely seen in the following examples:

as.call(expression(f, x))

f(x)

as.call(expression(`+`, 1, x)) # `+`(1, x)

1 + x

as.call(expression(`while`, i < 10, i <- i + 1))

while (i < 10) i <- i + 1

as.call(expression(function(x) x**2, log(exp(1))))

(function(x) x^2)(log(exp(1)))

as.call(expression(1, x, y, z)) # utter nonsense, but syntactically valid

1(x, y, z)

Recall from Section 9.3 that operators and language constructs such as if and while

are ordinary functions.

Furthermore, keyword arguments will result in the underlying sequence’s being
named:

expr <- quote(f(1+2, a=1, b=2))

length(expr) # three arguments –> length-4 sequence

[1] 4

names(expr) # NULL if no arguments are named

[1] "" "" "a" "b"

15.3.1 Browsing parse trees
Square brackets give us access to the individual expressions constituting an object of
the type call. For example:

expr <- quote(1+x)

expr[[1]]

`+`

expr[c(1, 3, 2)]

(continues on next page)

376 III DEEPEST

(continued from previous page)

x + 1

expr[c(2, 3, 1, 3)]

1(x, `+`, x)

A compound expression was defined recursively: it may consist of other compound
expressions. For instance, the following statement:

expr <- quote(

while (i < 10) {

cat("i = ", i, "\n", sep="")

i <- i+1

}

)

can be rewritten5 using the 𝑓 (...) notation like:

quote(

`while`(

`<`(i, 10),

`{`(cat("i = " , i, "\n", sep=""), `<-`(i, `+`(i, 1)))

)

)

We can dig into all the subexpressions using a series of extractions:

expr[[2]][[1]] # expr[[c(2, 1)]]

`<`

expr[[3]][[3]][[3]] # expr[[c(3, 3, 3)]]

i + 1

expr[[3]][[3]][[3]][[1]] # expr[[c(3, 3, 3, 1)]]

`+`

5 (*) Equivalently, in the fully parenthesised Polish notation (𝑓 , ...) (the prefix notation; traditionally
used in source code s-expressions in Lisp), we would express it like:

(this is not valid R syntax)

(

`while`,

(`<`, i, 10),

(

`{`,

(cat, "i = ", i, "\n", sep=""),

(

`<-`,

i,

(`+`, i, 1)

)

)

)

15 UNEVALUATED EXPRESSIONS (*) 377

Example 15.2 We can even compose a recursive function to traverse the whole parse tree:

recapply <- function(expr)

{

if (is.call(expr)) lapply(expr, recapply)

else expr

}

str(recapply(expr))

List of 3

$: symbol while

$:List of 3

..$: symbol <

..$: symbol i

..$: num 10

$:List of 3

..$: symbol {

..$:List of 5

.. ..$: symbol cat

.. ..$: chr "i = "

.. ..$: symbol i

.. ..$: chr "\n"

.. ..$ sep: chr ""

..$:List of 3

.. ..$: symbol <-

.. ..$: symbol i

.. ..$:List of 3

..$: symbol +

..$: symbol i

..$: num 1

15.3.2 Manipulating calls
TheR language is homoiconic: it can treat code as data.This includes the ability to ma-
nipulate it on the fly. This is because, just like on lists, we can freely use the replace-
ment versions of `[` and `[[` on objects of the type call.

expr[[2]][[1]] <- as.name("<=") # was: `<`

expr[[3]] <- quote(i <- i * 2) # was: {...}

print(expr)

while (i <= 10) i <- i * 2

Weare only limited by our imagination.We should spend some time and contemplate
how powerful this is, knowing that soon we will become able to evaluate any expres-
sion in different contexts.

378 III DEEPEST

15.4 Inspecting function definition and usage
15.4.1 Getting the body and formal arguments
Consider the following function:

test <- function(x, y=1)

x+y # whatever

We know from the first part of this book that calling print on a function reveals its
source code. But there is more. We can fetch its formal parameters in the form of a
named list6:

formals(test)

$x

##

##

$y

[1] 1

Note that the expressions corresponding to the default arguments are stored as or-
dinary list elements (for more details, see Section 17.2).

Furthermore, we can access the function’s body:

body(test)

x + y

It is anobject of thenowwell-knownclass call.Thus,we can customise it asweplease:

body(test)[[1]] <- as.name("*") # change `+` to `*`

body(test) <- as.call(list(

as.name("{"), quote(cat("spam\n")), body(test)

))

print(test)

function (x, y = 1)

{

cat("spam\n")

x * y

}

6 (*) Actually, a special internal datatype called pairlist, which is rarely seen at the R level; see [66] and
[63] for information on how to deal with them in C. In the current context, seeing pairlists as named lists is
perfectly fine.

15 UNEVALUATED EXPRESSIONS (*) 379

15.4.2 Getting the expression passed as an actual argument
A call to substitute reveals the expression passed as a function’s argument.

test <- function(x) substitute(x)

Some examples:

test(1)

[1] 1

test(2+spam)

2 + spam

test(test(test(!!7)))

test(test(!!7))

test() # it is not an error

Chapter 17 notes that arguments are evaluated only on demand (lazily): substitute
triggers no computations.This opens the possibility to author functions that interpret
their input whichever way they like; see Section 9.4.7, Section 12.3.9, and Section 17.5
for examples.

Example 15.3 library (see Section 7.3.1) specifies the name of the package to be loaded both in
the form of a character string and a name:

library("gsl") # preferred

library(gsl) # discouraged; via as.character(substitute(package))

A user saves two keystrokes at the cost of not being able to prepare the package name program-
matically before the call:

which_package <- "gsl"

library(which_package) # library("which_package")

Error in library(which_package): there is no package called

'which_package'

In order to make the above possible, we need to alter the function’s character.only argument
(which defaults to FALSE):

library(which_package, character.only=TRUE) # OK

Exercise 15.4 In many functions, we can see a call like deparse(substitute(arg)) or as.
character(substitute(arg)). Study the source code of plot.default, hist.default, prop.
test, wilcox.test.default and the aforementioned library. Explain why they do that. Pro-
pose a solution to achieve the same functionality without using reflection techniques.

15.4.3 Checking if an argument ismissing
missing checks whether an argument was provided:

380 III DEEPEST

test <- function(x) missing(x)

test(1)

[1] FALSE

test()

[1] TRUE

Exercise 15.5 Study the source code of sample, seq.default, plot.default, matplot, and t.
test.default. Determine the role of a call to missing. Would introducing a default argument
NULL and testing its value with is.null constitute a reasonable alternative?

15.4.4 Determining how a functionwas called
Even though this somewhat touches on the topics discussed in the two following
chapters, it is worth knowing that sys.call can look at the call stack and determine
how the current function was invoked.

Moreover, match.call takes us a step further: it returns a call with argument names
matched to a function’s formal parameters list. For instance:

test <- function(x, y, ..., a="yes", b="no")

{

print(sys.call()) # sys.call(0)

print(match.call())

}

x <- "maybe"

test("spam", "bacon", "eggs", u = "ham"<"jam", b=x)

test("spam", "bacon", "eggs", u = "ham" < "jam", b = x)

test(x = "spam", y = "bacon", "eggs", u = "ham" < "jam", b = x)

In both cases, the results are objects of the type call. We know how to manipulate
them already.

Another example where we see that we can access the call stack muchmore deeply:

f <- function(x)

{

g <- function(y)

{

cat("g:\n")

print(sys.call(0))

print(sys.call(-1)) # go back one frame

y

}

cat("f:\n")
(continues on next page)

15 UNEVALUATED EXPRESSIONS (*) 381

(continued from previous page)

print(sys.call(0))

g(x+1)

}

f(1)

f:

f(1)

g:

g(x+1)

f(1)

[1] 2

Note Let us formalise the order ofmatching function parameters to the passed argu-
ments. As described in Section 4.3 of [67], it proceeds as follows.

1. First, keyword argumentswithnames arematched exactly. Eachname ismatched
at most once.

2. Then, we take the remaining keyword arguments, but with the partial matching
of names listed before the ellipsis, `...`. Eachmatch must be unambiguous.

3. Third, we apply the positional matching to the remaining parameters.

4. Last, the ellipsis (if present) consumes all the remaining arguments (named or
not).

For instance:

test <- function(spam, jasmine, jam, ..., option=NULL)

print(match.call())

Example calls:

test(1, 2, 3, 4, option="yes")

test(spam = 1, jasmine = 2, jam = 3, 4, option = "yes")

test(1, 2, jasmine="no", sp=4, ham=7)

Warning in test(1, 2, jasmine = "no", sp = 4, ham = 7): partial argument

match of 'sp' to 'spam'

Warning in match.call(definition, call, expand.dots, envir): partial

argument match of 'sp' to 'spam'

test(spam = 4, jasmine = "no", jam = 1, 2, ham = 7)

test(1, 2, ja=7) # ambiguous match

Warning in test(1, 2, ja = 7): partial argument match of 'ja' to 'jasmine'

Error in test(1, 2, ja = 7): argument 3 matches multiple formal arguments

test(o=7) # partial matching of `option` failed - `option` is after `...`

test(o = 7)

382 III DEEPEST

Note again that our environment uses options(warnPartialMatchArgs=TRUE).

Exercise 15.6 A function can7 see how it was defined by its maker. Call sys.function inside
its body to reveal that.

Exercise 15.7 Execute match.call(sys.function(-1), sys.call(-1)) in the g function
above.

15.5 Exercises
Exercise 15.8 Answer the following questions.

• What is a simple expression?What is a compound expression? Give a few examples.

• What is the difference between an object of the type call and that of the type expression?

• What do formals and body return when called on a function object?

• How to test if an argument to a function was given? Provide a use case for such a verification
step.

• Give a fewways to create an unevaluated call.

• What is the purpose of deparse(substitute(...))? Give a few examples of functions that
use this technique.

• What is the difference between sys.call and match.call?

Exercise 15.9 Write a function that takes the dot-dot-dot argument. Using match.call

(amongst others), determine the list of all the expressions passed via `...`. Allow some of them
to be named (just like in one of the above examples).The solution will be given in Section 17.3.

Exercise 15.10 Writea functioncheck_if_calls(f, fun_list) that takesanother functionf
on input.Then, it verifies iff callsanyof the functions (referred toby theirnames) fromacharacter
vector fun_list.

7Therefore, it is possible to have a function that returns a modified version of itself.

16
Environments and evaluation (*)

In the first part of our book, we discussed themost crucial basic object types: numeric,
logical, and character vectors, lists (generic vectors), and functions.

In this chapter, we introduce another basic type: environments. Like lists, they can be
classified as recursive data structures; compare the diagram in Figure 17.2.

Important Each object of the type environment consists of:

• a frame1 (Section 16.1), which stores a set of bindings that associate variable names
with their corresponding values; it can be thought of as a container of named R
objects of any type;

• a reference to an enclosing environment2 (Section 16.2.2), whichmight be inspected
(recursively!) when a requested named variable is not found in the current frame.

Even though we rarely interact with them directly (unless we need a hash table-like
data structure with a quick by-name element lookup), they are crucial for the R in-
terpreter itself. Namely, we shall soon see that they form the basis of the environment
model of evaluation, which governs how expressions are computed (Section 16.2).

16.1 Frames: Environments as object containers
To create a new, empty environment, we can call the new.env function:

e1 <- new.env()

typeof(e1)

[1] "environment"

In this section, we treat environments merely as containers for named objects of any
kind, i.e., we deal with the frame part thereof.

1 Not to be confused with a data frame, i.e., an object (list) of the S3 class data.frame; see Chapter 12.
2 Some also call it a parent environment, but we will not. We will try following the nomenclature estab-

lished in Section 3.2 of [1].Note that there is a bit of amess in theRdocumentation regarding howenclosing
environments are referred to.

384 III DEEPEST

Let us insert a few elements into e1:

e1[["x"]] <- "x in e1"

e1[["y"]] <- 1:3

e1[["z"]] <- NULL # unlike in the case of lists, creates a new element

The `[[` operator provides us with a named list-like behaviour also in the case of ele-
ment extraction:

e1[["x"]]

[1] "x in e1"

e1[["spam"]] # does not exist

NULL

(e1[["y"]] <- e1[["y"]]*10) # replace with new content

[1] 10 20 30

16.1.1 Printing
Printing an environment leads to a quite awkward result:

print(e1) # same with str(e1)

<environment: 0x557efb009ab8>

It is the address where e1 is stored in the computer’s memory. It can serve as the en-
vironment’s unique identifier.

As we have said, these objects are of rather internal interest. Thus, such an esoteric
messagewas perhaps a good design choice; it wards off novices.However, we can eas-
ily get the list of objects stored inside the container by calling names:

names(e1) # but attr(e1, "names") is not set

[1] "x" "y" "z"

Moreover, length gives the number of bindings in the frame:

length(e1)

[1] 3

16.1.2 Environments vs named lists
Environment frames, in some sense, can be thought of as named lists, but the set
of admissible operations is severely restricted. In particular, we cannot extract more
than one element at the same time using the index operator:

e1[c("x", "y")] # but see the `mget` function

Error in e1[c("x", "y")]: object of type 'environment' is not subsettable

nor can we refer to the elements by position:

16 ENVIRONMENTS AND EVALUATION (*) 385

e1[[1]] <- "bad key"

Error in e1[[1]] <- "bad key": wrong args for environment subassignment

Exercise 16.1 Check if lapply and Map can be applied directly on environments. Also, can we
iterate over their elements using a for loop?

Still, named lists can be converted to environments and vice versa using as.list and
as.environment.

as.list(e1)

$x

[1] "x in e1"

##

$y

[1] 10 20 30

##

$z

NULL

as.environment(list(u=42, whatever="it's not going to be printed anyway"))

<environment: 0x557efabc2a18>

as.list(as.environment(list(x=1, y=2, x=3))) # no duplicates allowed

$y

[1] 2

##

$x

[1] 3

16.1.3 Hashmaps: Fast element lookup by name
Environment frames are internally implemented using hash tables (hash maps; see,
e.g., [14, 41]) with character string keys.

Important A hash table is a data structure that implements a very quick3 lookup and
insertion of individual elements by name.

The above comes at a price, including what we have already observed above:

• the elements are not ordered in any particular way: they cannot be referred to via
a numeric index;

• all element names must be unique.

Note A listmaybeconsidereda sequence, but anenvironment frame isonly, in fact, a set
(a bag) of key-value pairs. In most numerical computing applications, we would rather

3 In hash tables, element lookup, insertion, and deletion take amortised𝑂(1) time.

386 III DEEPEST

store, iterate over, andprocess all the elements in order, hence the greater prevalence of
the former. Lists still implement the element lookupbyname, even though it is slightly
slower4. However, they are muchmore universal.

Example 16.2 Anatural use case ofmanually-created environment framesdealswithgrouping
a series of objects identified by character string keys. Consider a simple pseudocode for counting
the number of occurrences of objects in a given container:

for (key in some_container) {

if (!is.null(counter[["key"]]))

counter[["key"]] <- counter[["key"]]+1

else

counter[["key"]] <- 1

}

Let us assume that some_container is large, e.g., it is generated on the fly by reading a data
stream of size 𝑛. The runtime of the above algorithm will depend on the data structure used. If
the counter is a list, then, theoretically, theworst-case performancewill be𝑂(𝑛2) (if all keys are
unique). On the other hand, for environments, it will be faster by one order magnitude: down to
amortised𝑂(𝑛).
Exercise 16.3 Implement a test function according to the above pseudocode and benchmark the
two data structures using proc.time on example data.

Exercise 16.4 (*) Determine the number of unique text lines in a huge file (assuming that the
set of unique text lines fits into memory, but the file itself does not). Also, determine the five most
frequently occurring text lines.

16.1.4 Call by value, copy on demand: Not for environments
Given any object x, when we issue:

y <- x

its copy5 is made so that y and x are independent. In other words, any change to the
state of x (or y) is not reflected in y (or x). For instance:

x <- list(a=1)

y <- x

y[["a"]] <- y[["a"]]+1

print(y)

$a

[1] 2

(continues on next page)

4 Accessing elements by position (numeric index) in lists takes𝑂(1) time. The worst-case scenario for
the element lookup by name is linear with respect to the container size (when the item is not found). Also,
inserting new elements at the end takes amortised𝑂(1) time.

5 Delayed (on demand); see below.

16 ENVIRONMENTS AND EVALUATION (*) 387

(continued from previous page)

print(x) # not affected: `x` and `y` are independent

$a

[1] 1

The same happens with arguments that we pass to the functions:

mod <- function(y, key) # it is like: local_y <- passed_argument

{

y[[key]] <- y[[key]]+1

y

}

mod(x, "a")[["a"]] # returns a modified copy of `x`

[1] 2

x[["a"]] # not affected

[1] 1

We can thus say that R imitates the pass-by-value strategy here.

Important Environments are the only6 objects that follow the assign- and pass-by-
reference strategies.

In other words, if we perform:

x <- as.environment(x)

y <- x

then the names x and y are bound to the same object in the computer’s memory:

print(x)

<environment: 0x557efa2bd1b8>

print(y)

<environment: 0x557efa2bd1b8>

Therefore:

y[["a"]] <- y[["a"]]+1

print(y[["a"]])

[1] 2

print(x[["a"]]) # `x` is `y`, `y` is `x`

[1] 2

6We do not count all the tricks we can do at the C language level (Chapter 14). In R, the distinction
between pass-by-value and pass-by-reference is slightly more complicated because of the lazy evaluation
of arguments (the call-by-need strategy; Chapter 17). We are making an idealisation for didactic purposes
here.

388 III DEEPEST

The same happens when we pass an environment to a function:

mod(y, "a")[["a"]] # pass-by-reference (`y` is `x`, remember?)

[1] 3

x[["a"]] # `x` has changed

[1] 3

Thus, any changes we make to an environment passed as an argument to a function
will be visible outside the call. This minimises time and memory use in certain situ-
ations.

Note (*) For efficiency reasons, when we write “y <- x” , a copy of x (unless it is an
environment) is created only if it is absolutely necessary.

Here is some benchmarking of the copy-on-demandmechanism.

n <- 100000000 # like, a lot

Creation of a new large numeric vector:

t0 <- proc.time(); x <- numeric(n); proc.time() - t0

user system elapsed

0.853 1.993 2.852

Creation of a (delayed) copy is instant:

t0 <- proc.time(); y <- x; proc.time() - t0

user system elapsed

0 0 0

We definitely did not duplicate the n data cells.

Copy-on-demand is implemented using some simple reference counting; compare Sec-
tion 14.2.4.Wecan inspect that x and ypoint to the sameaddress inmemoryby calling:

.Internal(inspect(x)) # internal function - do not use it

@7efba1134010 14 REALSXP g0c7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...

.Internal(inspect(y))

@7efba1134010 14 REALSXP g0c7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...

The actual copying is only triggered when we try to modify x or y. This is when they
need to be separated.

t0 <- proc.time(); y[1] <- 1; proc.time() - t0

user system elapsed

1.227 1.910 3.142

Now x and y are different objects.

16 ENVIRONMENTS AND EVALUATION (*) 389

.Internal(inspect(x))

@7efba1134010 14 REALSXP g0c7 [MARK,REF(1)] (len=1000000000, tl=0) 0,0,...

.Internal(inspect(y))

@7ef9c43ce010 14 REALSXP g0c7 [MARK,REF(1)] (len=1000000000, tl=0) 1,0,...

The elapsed time is similar to that needed to create x from scratch. Further modifica-
tions will already be quick:

t0 <- proc.time(); y[2] <- 2; proc.time() - t0

user system elapsed

0.000 0.001 0.000

16.1.5 A note on reference classes (**)
In Section 10.5, we briefly mentioned the S4 system for object-orientated program-
ming.We also have access to its variant, called reference classes7, which was first intro-
duced in R version 2.12.0. Reference classes are implemented using S4 classes, with
the data part being of the type environment.They give amore typical OOP experience,
where methods canmodify the data they act on in place.

They are theoretically interesting concepts on their own and may be quite appealing
to package developers with C++ or Java background. Nevertheless, in the current au-
thor’s opinion, such classes are alien citizens of our environment, violating its func-
tional nature.Therefore, we will not be discussing them here.

A curious reader is referred to help("ReferenceClasses") and Chapters 9 and 11 of [11]
for more details.

16.2 The environmentmodel of evaluation
In Chapter 15, we said that there are three types of expressions: constants (e.g., 1 and
"spam"), names (e.g., x, `+`, and spam), and calls (like f(x, 1)).

Important Names (symbols) have nomeaning by themselves.Themeaning of a name
always depends on the context, which is specified by an environment.

Consider a simple expression that merely consists of the name x:

expr_x <- quote(x)

7 Some call them R5, but we will not.

390 III DEEPEST

Let us define two environments that bind the name x to two different constants.

e1 <- as.environment(list(x=1))

e2 <- as.environment(list(x="spam"))

Important An expression is evaluated within a specific environment.

Let us call eval on the above.

eval(expr_x, envir=e1) # evaluate `x` within environment e1

[1] 1

eval(expr_x, envir=e2) # evaluate the same `x` within environment e2

[1] "spam"

The very same expression has two different meanings, depending on the context. This
is quite like in the so-called real life: “I’m good” can mean “I don’t need anything” but
also “My virtues are plentiful”. It all depends onwho andwhen is asking, i.e., inwhich
environment we evaluate the said sentence.

We call this the environment model of evaluation, a notion that R authors have borrowed
from a Lisp-like language called Scheme8 (see Section 3.2 of [1] and Section 6 of [67]).

16.2.1 Getting the current environment
By default, expressions are evaluated in the current environment, which can fetch by
calling:

sys.frame(sys.nframe()) # get the current environment

<environment: R_GlobalEnv>

Weareworking on the R console. Hence, the current one is the global environment (user
workspace). We can access it from anywhere by calling globalenv or referring to the
`.GlobalEnv` object.

Example 16.5 Calling any operation, for instance9:

x <- "spammity spam"

means evaluating itwithin the current environment:

eval(quote(x <- "spammity spam"), envir=sys.frame(sys.nframe()))

8That iswhyeveryone seriousaboutRprogrammingshouldadd theStructureandInterpretationofComputer
Programs [1] to their reading list. Also, R is not the only known marriage between statistics and Lisp-like
languages; see also LISP-STAT [54].

9 Let us, for now, take for granted that `<-` is accessible from the current context and denotes the as-
signment.

16 ENVIRONMENTS AND EVALUATION (*) 391

Here, we bound the name x to the string "spammity spam" in the current environment’s frame:

sys.frame(sys.nframe())[["x"]] # yes, `x` is in the current environment now

[1] "spammity spam"

globalenv()[["x"]] # because the global environment is the current one here

[1] "spammity spam"

Therefore, when we now refer to x (fromwithin the current environment):

x # eval(quote(x), envir=sys.frame(sys.nframe()))

[1] "spammity spam"

precisely the above named object is fetched.

Exercise 16.6 save.image saves the currentworkspace, i.e., theglobal environment, bydefault,
to the file named .Rdata. Test this function in combination with load.

Note Names startingwith a dot are hidden. ls, a function to fetch all names registered
within a given environment, does not list them by default.

.test <- "spam"

ls() # list all names in the current environment, i.e., the global one

[1] "e1" "e2" "expr_x" "mod" "x" "y"

Compare the above with:

ls(all.names=TRUE)

[1] ".Random.seed" ".test" "e1" "e2"

[5] "expr_x" "mod" "x" "y"

On a side note, `.Random.seed` stores the current pseudorandom number generator’s
seed; compare Section 2.1.5.

16.2.2 Enclosures, enclosures thereof, etc.
To show that there is much more to the environment model of evaluation than what
wementioned above, let us try to evaluate an expression featuring two names:

e2 <- as.environment(list(x="spam")) # once again (a reminder)

expr_comp <- quote(x < "eggs")

eval(expr_comp, envir=e2) # "spam" < "eggs"

Error in x < "eggs": could not find function "<"

Themeaning of any constant (here, "spam") is context-independent.The environment
provided specifies the name x but does not define `<`. Hence the error.

Nonetheless, we feel that we know themeaning of `<`. It is a relational operator, obvi-

392 III DEEPEST

ously, isn’t it? To increase the confusion, let us highlight that our experience-grounded
intuition is true in the following context:

e3 <- new.env()

e3[["x"]] <- "bacon"

eval(expr_comp, envir=e3) # "bacon" < "eggs"

[1] TRUE

So where does the name `<` come from? It is neither included in e2 nor e3:

e2[["<"]]

NULL

e3[["<"]]

NULL

Is `<` hardcoded somewhere? Or is it also dependent on the context? Why is it visible
when evaluating an expression within e3 but not in e2?

Studying help("[[") (see theEnvironments section),wediscover that e3[["<"]] is equi-
valent to a call to get("<", envir=e3, inherits=FALSE). In help("get"), we read that
if the inherits argument is set to TRUE (which is the default in get), then the enclosing
frames of the given environment are searched as well.

Continuing the example from the previous subsection:

get("<", envir=e2) # inherits=TRUE

Error in get("<", envir = e2): object '<' not found

get("<", envir=e3) # inherits=TRUE

function (e1, e2) .Primitive("<")

And indeed,we see that `<` is reachable from e3 but not from e2. Itmeans that e3 points
to another environment where further information should be sought if the current
container is left empty-handed.

Important The reference (pointer) to the enclosing environment is integral to each en-
vironment (alongside a frameof objects). It canbe fetched and set using the parent.env
function.

16.2.3 Missing names are sought in enclosing environments
To understand the idea of enclosing environments better, let us create two new envir-
onments whose enclosures are explicitly set as follows:

(e4 <- new.env(parent=e3))

<environment: 0x557efa536b20>

(continues on next page)

16 ENVIRONMENTS AND EVALUATION (*) 393

(continued from previous page)

(e5 <- new.env(parent=e4))

<environment: 0x557efa4af9e8>

To verify that everything is in order, let us inspect the following:

print(e3) # this is the address of e3

<environment: 0x557efac569f0>

parent.env(e4) # e3 is the enclosing environment of e4

<environment: 0x557efac569f0>

parent.env(e5) # e4 is the enclosing environment of e5

<environment: 0x557efa536b20>

Also, let us bind two different objects to the name y in e5 and e3.

e5[["y"]] <- "spam"

e3[["y"]] <- function() "a function `y` in e3"

The current state of matters is depicted in Figure 16.1.

e5

y = "spam"

e4

e3

x = "bacon"
y = function...

???

Figure 16.1. Example environments and their enclosures (original setting).

Let us evaluate the y name in the above environments:

expr_y <- quote(y)

eval(expr_y, envir=e3)

function() "a function `y` in e3"

eval(expr_y, envir=e5)

[1] "spam"

No surprises yet. However, evaluating it in e4, which does not define y, yields:

eval(expr_y, envir=e4)

function() "a function `y` in e3"

It returned y from e4’s enclosure, e3.

Letusplayaboutwith the enclosuresof e5and e4 so thatweobtain the settingdepicted
in Figure 16.2:

394 III DEEPEST

parent.env(e5) <- e3

parent.env(e4) <- e5

e5

y = "spam"

e4

e3

x = "bacon"
y = function...

???

Figure 16.2. Example environments and their enclosures (after the change made).

Evaluating y again in the same e4 nourishes a very different result:

eval(expr_y, envir=e4)

[1] "spam"

Important Names referred to in an expression but missing in the current environ-
ment will be sought in their enclosure(s) until successful.

Note Here are the functions related to searchingwithin andmodifying environments
that optionally allow for continuing explorations in the enclosures until successful:

• inherits=TRUE by default:

– exists,

– get,

• inherits=FALSE by default:

– assign,

– rm (remove).

16.2.4 Looking for functions
Interestingly, if a name is used instead of a function to be called, the object sought is
always10 of the mode function.

Consider an expression similar to the above, but this time including the name y play-
ing a different role:

10This is why we can write “c <- c(1, 2)” and then still be able to call c to create another vector.

16 ENVIRONMENTS AND EVALUATION (*) 395

expr_y2 <- quote(y()) # a call to something named `y`

eval(expr_y2, envir=e4)

[1] "a function `y` in e3"

In other words, what we used here was not:

get("y", envir=e4)

[1] "spam"

but:

get("y", envir=e4, mode="function")

function() "a function `y` in e3"

Note name(), "name"(), and `name`() are synonymous. However, the first expression
is acceptable only if name is syntactically valid.

16.2.5 Inspecting the search path
Going back to our expression involving a relational operator:

expr_comp

x < "eggs"

Why does the following work as expected?

eval(expr_comp, envir=e3) # "bacon" < "eggs"

[1] TRUE

Well, we have gathered all the bits to understand it now.Namely, `<` is a function that
is looked up in the following way:

get("<", envir=e3, inherits=TRUE, mode="function")

function (e1, e2) .Primitive("<")

It is reachable from e3, which means that e3 also has an enclosing environment.

parent.env(e3)

<environment: R_GlobalEnv>

This is our global namespace, which was the current environment when e3 was cre-
ated. Still, we did not define `<` there. It means that the global environment also has
an enclosure.

We can explore the whole search path by starting at the global environment and follow-
ing the enclosures recursively.

396 III DEEPEST

ecur <- globalenv() # starting point

repeat {

cat(paste0(format(ecur), " (", attr(ecur, "name"), ")")) # pretty-print

if (exists("<", envir=ecur, inherits=FALSE)) # look for `<`

cat(strrep(" ", 25), "`<` found here!")

cat("\n")

ecur <- parent.env(ecur) # advance to its enclosure

}

<environment: R_GlobalEnv> ()

<environment: 0x557efae53ac0> (.marekstuff)

<environment: package:stats> (package:stats)

<environment: package:graphics> (package:graphics)

<environment: package:grDevices> (package:grDevices)

<environment: package:utils> (package:utils)

<environment: package:datasets> (package:datasets)

<environment: package:methods> (package:methods)

<environment: 0x557ef8ebd960> (Autoloads)

<environment: base> () `<` found here!

<environment: R_EmptyEnv> ()

Error in parent.env(ecur): the empty environment has no parent

Underneath the global environment, there is a whole list of attached packages:

1. packages attached by the user (.marekstuff is used internally in the process of
evaluating code in this book),

2. default packages (Section 7.3.1),

3. (**) Autoloads (for the promises-to-load R packages; compare help("autoload");
it is a technicality wemay safely ignore here),

4. the base package, which we can access directly by calling baseenv; it is wheremost
of the fundamental functions from the previous chapters reside,

5. the empty environment (emptyenv), which is the only one followed by nil (the loop
would turn out endless otherwise).

It comes at no surprise that the `<` operator has been found in the base package.

Note On a side note, the reason why this operation failed:

e2 <- as.environment(list(x="spam")) # to recall

eval(expr_comp, envir=e2)

Error in x < "eggs": could not find function "<"

is because as.environment sets the enclosing environment to:

16 ENVIRONMENTS AND EVALUATION (*) 397

parent.env(e2)

<environment: R_EmptyEnv>

See also list2envwhich gives greater control over this (cf. its parent argument).

16.2.6 Attaching to and detaching from the search path
In Section 7.3.1, we mentioned that we can access the objects exported by a package
without attaching them to the search path by using the pkg::object syntax, which
loads the package if necessary. For instance:

tools::toTitleCase("`tools` not attached to the search path")

[1] "`tools` not Attached to the Search Path"

However:

toTitleCase("nope")

Error in toTitleCase("nope"): could not find function "toTitleCase"

It did not work because toTitleCase is not reachable from the current environment.

Let us inspect the current search path:

search()

[1] ".GlobalEnv" ".marekstuff" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

Somemight find writing “pkg::” inconvenient.Thus, we can call library to attach the
package to the search path immediately below the global environment.

library("tools")

The search path becomes (see Figure 16.3 for an illustration):

search()

[1] ".GlobalEnv" "package:tools" ".marekstuff"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Therefore, what follows, now works as expected:

toTitleCase("Nobody expects the Spanish Inquisition")

[1] "Nobody Expects the Spanish Inquisition"

398 III DEEPEST

packages attached by the user

default packages

package:tools

...

.marekstu�f

...

package:stats

...

package:graphics

...

package:grDevices

...

package:utils

...

package:datasets

...

package:methods

...

global

...

Autoloads

...

package:base

...

Figure 16.3.The search path after attaching the tools package.

We can use detach11 to remove an item from the search path.

head(search()) # before detach

[1] ".GlobalEnv" "package:tools" ".marekstuff"

[4] "package:stats" "package:graphics" "package:grDevices"

detach("package:tools")

head(search()) # not there anymore

[1] ".GlobalEnv" ".marekstuff" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

11Which does not unload the package from memory, though; see unload (possibly combined with
library.dynam.unload).

16 ENVIRONMENTS AND EVALUATION (*) 399

Note Wecan also plug arbitrary environments12 andnamed lists into the search path.
Recalling that data frames are built on the latter (Section 12.1.6), some users rely on
this technique save a few keystrokes.

attach(iris)

head(search(), 3)

[1] ".GlobalEnv" "iris" ".marekstuff"

The iris list was converted to an environment, and the necessary enclosures were set
accordingly:

str(parent.env(globalenv()))

<environment: 0x557efafd2db8>

- attr(*, "name")= chr "iris"

str(parent.env(parent.env(globalenv())))

<environment: 0x557efae53ac0>

- attr(*, "name")= chr ".marekstuff"

We can nowwrite:

head(Petal.Width/Sepal.Width) # iris[["Petal.Width"]]/iris[["Sepal.Width"]]

[1] 0.057143 0.066667 0.062500 0.064516 0.055556 0.102564

Overall, attachingdata frames is discouraged, especially outside the interactivemode.
Let us not be too lazy.

detach(iris) # such a relief

16.2.7 Masking (shadowing) objects fromdown under
Anassignment via `<-` creates a binding in the current environment.Therefore, even if
thename tobindexists somewhereon the searchpath, itwill notbemodified. Instead,
a new name will be created.

eval(quote("spam" < "eggs"))

[1] FALSE

Here, we rely on `<` from the base environment.Withal, we can create an object of the
same name in the current (global) context:

12 Orwe should rather say, environment frames.When an environment is attached to the search path, it
is duplicated so that the changes made to the original environment are not reflected in the copy. Then, its
previous enclosure is discarded. After all, wewant a series of recursive calls to parent.env to form thewhole
search path.

400 III DEEPEST

`<` <- function(e1, e2)

{

warning("This is not the base `<`, mate.")

NA

}

Nowwe have two different functions of the same name.Whenwe evaluate an expres-
sion within the current environment or any of its descendants, the new name shadows
the base one:

"spam" < "eggs" # evaluate in the global environment

Warning in "spam" < "eggs": This is not the base `<`, mate.

[1] NA

eval(quote("spam" < "eggs"), envir=e5) # its enclosure's enclosure is global

Warning in "spam" < "eggs": This is not the base `<`, mate.

[1] NA

But we can still call the original function directly:

base::`<`("spam", "eggs")

[1] FALSE

It is also reachable fromwithin the current environment’s ancestors:

eval(quote("spam" < "eggs"), envir=parent.env(globalenv()))

[1] FALSE

Before proceeding any further, let us clean up after ourselves. Otherwise, we will be
asking for trouble.

rm("<") # removes `<` from the global environment

An attached package may introduce some object names that are also available else-
where. For instance:

library("stringx")

Attaching package: 'stringx'

The following objects are masked from 'package:base': casefold, chartr,

endsWith, gregexec, gregexpr, grep, grepl, gsub, ISOdate, ISOdatetime,

nchar, nzchar, paste, paste0, regexec, regexpr, sprintf, startsWith,

strftime, strptime, strrep, strsplit, strtrim, strwrap, sub, substr,

substr<-, substring, substring<-, Sys.time, tolower, toupper, trimws,

xtfrm, xtfrm.default

Therefore, in the current context, we have what follows:

16 ENVIRONMENTS AND EVALUATION (*) 401

toupper("Groß") # stringx::toupper

[1] "GROSS"

base::toupper("Groß")

[1] "GROß"

Sometimes13,we canuse assign(..., inherits=TRUE)or its synonym, `<<-`, tomodify
the existing binding. A new binding is only created if necessary.

Note Let us attach the iris data frame (named list) to the search path again:

attach(iris)

Sepal.Length[1] <- 0

We did not modify the original iris nor its converted-to-an-environment copy that
we can find in the search path. Instead, a new vector named Sepal.Lengthwas created
in the current environment:

exists("Sepal.Length", envir=globalenv(), inherits=FALSE) # it is in global

[1] TRUE

Sepal.Length[1] # global

[1] 0

We can verify the above statement as follows:

rm("Sepal.Length") # removes the one in the global environment

Sepal.Length[1] # `iris` from the search path

[1] 5.1

iris[["Sepal.Length"]][1] # the original `iris`

[1] 5.1

However, we can write:

Sepal.Length[1] <<- 0 # uses assign(..., inherits=TRUE)

We changed the state of the environment on the search path.

exists("Sepal.Length", envir=globalenv(), inherits=FALSE) # not in global

[1] FALSE

Sepal.Length[1] # `iris` from the search path

[1] 0

Yet, the original iris object is left untouched. There is no mechanism in place that
would synchronise the original data frameand its independent copy on the searchpath.

13We normally cannot modify package namespaces. As we will mention in Section 16.3.5, they are auto-
matically locked.

402 III DEEPEST

iris[["Sepal.Length"]][1] # the original `iris`

[1] 5.1

It is best to avoid attach to avoid confusion.

16.3 Closures
So far, we have only covered the rules of evaluating standalone R expressions. In this
section, we look at what happens inside the invoked functions.

16.3.1 Local environment
When we call a function, a new temporary environment is created. It is where all ar-
gument values14 and local variables are emplaced.This environment is the current one
while the function is being evaluated. After the call, it ceases to exist, and we return
to the previous environment from the call stack.

Consider the following function:

test <- function(x)

{

print(ls()) # list object names in the current environment

y <- x^2 # creates a new variable

print(sys.frame(sys.nframe())) # get the ID of the current environment

str(as.list(sys.frame(sys.nframe()))) # display its contents

}

First call:

test(2)

[1] "x"

<environment: 0x557efb2e7fb8>

List of 2

$ y: num 4

$ x: num 2

Second call:

test(3)

[1] "x"

<environment: 0x557efbb35898>

(continues on next page)

14 Function arguments are initially unevaluated; see Chapter 17.

16 ENVIRONMENTS AND EVALUATION (*) 403

(continued from previous page)

List of 2

$ y: num 9

$ x: num 3

Each time, the current environment isdifferent.This iswhywedonot see theyvariable
at the start of the second call. It is a brilliantly simple implementation of the storage
for local variables.

16.3.2 Lexical scope and function closures
Wewere able to access the print function (amongst others) in the above example.This
shouldmake us wonder what the enclosing environment of that local environment is.

print_enclosure <- function()

print(parent.env(sys.frame(sys.nframe())))

print_enclosure()

<environment: R_GlobalEnv>

It is the global environment. Let us invoke the same function from another one:

call_print_enclosure <- function()

print_enclosure()

call_print_enclosure()

<environment: R_GlobalEnv>

It is the global environment again. If R used the so-called dynamic scoping, we would
see the local environment of the function that invoked the one above. If this was true,
we would have access to the caller’s local variables from within the callee. But this is
not the case.

Important Objects of the type closure, i.e., user-defined15 functions, consist of three
components:

• a list of formal arguments (compare formals in Section 15.4.1);

• an expression (see body in Section 15.4.1);

• a reference to the associated environment where the function might store data for
further use (see environment).

By default, the associated environment is set to the current environment where the
function was created.

15There are two other types of functions: a special is an internal function that does not necessarily eval-
uate its arguments (e.g., switch, if, or quote; compare also Chapter 17), whereas a builtin always evaluates
its actual parameters, e.g., sum.

404 III DEEPEST

A local environment created during a function’s call has this associated environment
as its closure.

Due to this, we say that R has lexical (static) scope.

Thence, in the above example, we have:

environment(print_enclosure) # print the associated environment

<environment: R_GlobalEnv>

Example 16.7 Consider the following function that prints out x defined outside of its scope:

test <- function() print(x)

Now:

x <- "x in global"

test()

[1] "x in global"

It printed out x from the user workspace as it is precisely the environment associated with the
function.However, setting the associated environment to another one that also happens to define
xwill give a different result:

environment(test) <- e3 # defined some time ago

test()

[1] "bacon"

Example 16.8 Consider the following example:

test <- function()

{

cat(sprintf("test: current env: %s\n", format(sys.frame(sys.nframe()))))

subtest <- function()

{

e <- sys.frame(sys.nframe())

cat(sprintf("subtest: enclosing env: %s\n", format(parent.env(e))))

cat(sprintf("x = %s\n", x))

}

x <- "spam"

subtest()

environment(subtest) <- globalenv()

subtest()

}

(continues on next page)

16 ENVIRONMENTS AND EVALUATION (*) 405

(continued from previous page)

x <- "bacon"

test()

test: current env: <environment: 0x557efaf317f8>

subtest: enclosing env: <environment: 0x557efaf317f8>

x = spam

subtest: enclosing env: <environment: R_GlobalEnv>

x = bacon

Here is what happened.

1. A call to test creates a local function subtest, whose associated environment is set to the
local frame of the current call. It is precisely the current environment where subtest was
created (because R has lexical scope).

2. The above explains why subtest can access the local variable x inside its maker.

3. Thenwe change the environment associated with subtest to the global one.

4. In the next call to subtest, unsurprisingly, we gain access to x in the user workspace.

Note In lexical (static) scoping,which variables a function refers to can be deduced by
reading the function’s body only and not how it is called in other contexts. This is the
theory. Nevertheless, the fact that we can freely modify the associated environment
anywhere can complicate the program analysis greatly.

If we find the rules of lexical scoping complicated, we should refrain from referring to
objects outside of the current scope (“global” or “non-local” variables”) except for the
functions defined as top-level ones or imported from external packages. It is what we
have been doing most of the time anyway.

16.3.3 Application: Function factories
As closures are functionswith associated environments, and the role of environments
is to store information, we can consider closures = functions + data. We have already
seen that in Section 9.4.3, where wementioned approxfun. To recall:

x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x^2)

print(f1)

function (v)

.approxfun(x, y, v, method, yleft, yright, f, na.rm)

<environment: 0x557efb3b24b8>

The variables x, y, etc., that f1’s source code refers to, are stored in its associated en-
vironment:

406 III DEEPEST

ls(envir=environment(f1))

[1] "f" "method" "na.rm" "x" "y" "yleft" "yright"

Important Routines that return functions whose non-local variables are memorised
in their associated environments are referred to as function factories.

Example 16.9 Consider the following function factory:

gen_power <- function(p)

function(x) x^p # p references a non-local variable

Acall togen_power createsa local environment thatdefines onevariable,p,where theargument’s
value is stored.Then, we create a function whose associated environment (remember that R uses
lexical scoping) is that local one. It is where the reference to the non-local p in its body will be re-
solved.This new function is returned by gen_power to the caller.Normally, the local environment
would be destroyed, but it is still used after the call.Thus, it will not be garbage-collected.

Example calls:

(square <- gen_power(2))

function(x) x^p

<environment: 0x557efa995f20>

(cube <- gen_power(3))

function(x) x^p

<environment: 0x557efa9f64b8>

square(2)

[1] 4

cube(2)

[1] 8

The underlying environment can, of course, be modified:

assign("p", 7, envir=environment(cube))

cube(2) # so much for the cube

[1] 128

Example 16.10 Negate is another example of a function factory. The function it returns stores
f passed as an argument.

notall <- Negate(all)

notall(c(TRUE, TRUE, FALSE))

[1] TRUE

Study its source code:

16 ENVIRONMENTS AND EVALUATION (*) 407

print(Negate)

function (f)

{

f <- match.fun(f)

function(...) !f(...)

}

<environment: namespace:base>

Example 16.11 In [37], the following example is given:

account <- function(total)

list(

balance = function() total,

deposit = function(amount) total <<- total+amount,

withdraw = function(amount) total <<- total-amount

)

Robert <- account(1000)

Ross <- account(500)

Robert$deposit(100)

Ross$withdraw(150)

Robert$balance()

[1] 1100

Ross$balance()

[1] 350

Wecannow fully understandwhy theabove codedoeswhat it does.The return list consists of three
functions whose enclosing environment is the same. account somewhat resembles the definition
of a classwith threemethods and one data field.Nowonderwhy reference classes (Section 16.1.5)
were introduced at some point: they are based on the same concept.

Exercise 16.12 Write a function factory named gen_counter which implements a simple
counter that is increased by one on each call thereto.

gen_counter <- function() ...to.do...

c1 <- gen_counter()

c2 <- gen_counter()

c(c1(), c1(), c2(), c1(), c2())

[1] 1 2 1 3 2

Moreover, compose a function that resets a given counter to zero.

reset_counter <- function(counter_fun) ...to.do...

reset_counter(c1)

c1()

[1] 1

408 III DEEPEST

16.3.4 Accessing the calling environment
We know that the environment associated with a function is not necessarily the same
as the environment fromwhich the function was called, sometimes quite confusingly
referred to as the parent frame.

R maintains a whole frame stack. The global environment is assigned the number 0.
Each call to a function increases the stack by one frame, whereas returning from a call
decreases the counter. To get the current frame number, we call sys.nframe. This is
why sys.frame(sys.nframe()) returns the current environment.

We can fetch the calling environment by referring to parent.frame() or sys.

frame(sys.parent()), amongst others16.Thanks to parent.frame, wemay evaluate ar-
bitrary expressions in (on behalf of) the calling environment. Normally, we should
never be doing that. However, a few functions rely on this feature, hence our avid in-
terest in this possibility.

16.3.5 Package namespaces (*)
An R package pkg defines two environments:

• namespace:pkg is where all objects are defined (functions, vectors, etc.); it is the
enclosing environment of all closures in the package;

• package:pkg contains selected17 objects from namespace:pkg that can be accessed
by the user; it can be attached to the search path.

As an illustration, we will use the example package discussed in Section 7.3.1.

library("rpackagedemo") # https://github.com/gagolews/rpackagedemo/

Loading required package: tools

Here is its DESCRIPTION file:

Package: rpackagedemo

Type: Package

Title: Just a Demo R Package

Version: 1.0.2

Date: 1970-01-01

Author: Anonymous Llama

Maintainer: Unnamed Kangaroo <roo@inthebush.au>

Description: Provides a function named bamboo(), just give it a shot.

License: GPL (>= 2)

Imports: stringx

Depends: tools

16 In help("sys.parent"), we read that the parent frame number, as returned by sys.parent(), is not
necessarily equal to sys.nframe()-1. It is certainly true if we are at the top (global) level.

17 Exported using the export or exportPattern directive in the package’s NAMESPACE file; see Section 1 of
[63].

16 ENVIRONMENTS AND EVALUATION (*) 409

The Import and Depends fields specify which packages (apart from base) ours depends
on. As we can see above, all items in the latter list are attached to the search path on a
call to library.

The NAMESPACE file specifies the names imported from other packages and those that
are expected to be visible to the user:

importFrom(stringx, sprintf)

importFrom(tools, toTitleCase)

S3method(print, koala)

S3method(print, kangaroo, .a_hidden_method_to_print_a_roo)

export(bamboo)

Thus, our package exports one object, a function named bamboo (we will discuss the S3
methods in the next section). It is included in the package:rpackagedemo environment
attached to the search path:

ls(envir=as.environment("package:rpackagedemo")) # ls("package:rpackagedemo")

[1] "bamboo"

Let us give it a shot:

bamboo("spanish inquisition") # rpackagedemo::bamboo

G'day, Spanish Inquisition!

We did not expect this at all, nor that its source code looks like:

print(bamboo)

function (x = "world")

cat(prepare_message(toTitleCase(x)))

<environment: namespace:rpackagedemo>

We see a call to toTitleCase (most likely from tools, and this is indeed the case).
Also, prepare_message is invoked but it is not listed in the package’s imports (see the
NAMESPACE file). We definitely cannot access it directly:

prepare_message

Error in eval(expr, envir, enclos): object 'prepare_message' not found

It is the package’s internal function, which is included in the namespace:rpackagedemo
environment.

(e <- environment(rpackagedemo::bamboo)) # or getNamespace("rpackagedemo")

<environment: namespace:rpackagedemo>

ls(envir=e)

[1] "bamboo" "prepare_message" "print.koala"

We can fetch it via the `:::` operator:

410 III DEEPEST

print(rpackagedemo:::prepare_message)

function (x)

sprintf("G'day, %s!\n", x)

<environment: namespace:rpackagedemo>

All functions defined in a package have the corresponding namespace as their associ-
ated environment. As a consequence, bamboo can refer to prepare_message directly.

It will be educative to inspect the enclosure of namespace:rpackagedemo:

(e <- parent.env(e))

<environment: 0x557efaf66b38>

attr(,"name")

[1] "imports:rpackagedemo"

ls(envir=e)

[1] "sprintf" "toTitleCase"

It is the environment carrying the bindings to all the imported objects.This is why our
package can also refer to stringx::sprintf and tools::toTitleCase. Its enclosure is
the namespace of the base package (not to be confused with package:base):

(e <- parent.env(e))

<environment: namespace:base>

The next enclosure is, interestingly, the global environment:

(e <- parent.env(e))

<environment: R_GlobalEnv>

Then, of course, the whole search path follows; see Figure 16.4 for an illustration.

Note (**) All environments related to packages are locked, whichmeans that we can-
not change any bindings inside their frames; compare help("lockEnvironment"). In
the extremely rare event of our needing to patch an existing functionwithin an already
loaded package, we can call unlockBinding followed by assign to change its definition.

new_message <- function (x) sprintf("Nobody expects %s!\n", x)

e <- getNamespace("rpackagedemo")

environment(new_message) <- e # set enclosing environment (very important!)

unlockBinding("prepare_message", e)

assign("prepare_message", new_message, e)

rm("new_message")

bamboo("the spanish inquisition")

Nobody expects The Spanish Inquisition!

R is indeed a quite hackable language (except in the cases where it is not).

16 ENVIRONMENTS AND EVALUATION (*) 411

(user's) search path

global

...

package:rpackagedemo

bamboo

package:base

...

namespace:stringx

sprintf
...

imports:rpackagedemo

sprintf
toTitleCase

namespace:base

cat
...

namespace_rpackagedemo

bamboo
prepare_message
...

namespace:tools

toTitleCase
...

imports:stringx

...

imports:tools

...

... and many more ...

Figure 16.4. A search path for an example package. Dashed lines represent envir-
onments associated with closures, whereas solid lines denote enclosing environ-
ments. References to objects within each package are resolved inside their respective
namespaces.

412 III DEEPEST

Exercise 16.13 (**) A function or a package might register certain functions (hooks) to be
called on various events, e.g., attaching a package to the search patch; see help("setHook") and
help(".onAttach").

1. Inspect the source code of plot.new and notice a reference to a hook named "before.plot.
new". Try setting such a hook yourself (e.g., one that changes some of the graphics paramet-
ers discussed in Section 13.2) and see what happens on each call to a plotting function.

2. Define the .onLoad, .onAttach, .onUnload, and .onDetach functions in your own R pack-
age and take note of when they are invoked.

Exercise 16.14 (**) For the purpose of this book, we have registered a custom "before.plot.

new" hook that sets our favourite graphics parameters that we listed in Section 13.2.3.Moreover,
to obtain a white grid on a grey background, e.g., in Figure 13.13, we modified plot.window

slightly. Apply similar hacks to the graphics package so that its outputs suit your taste better.

16.3.6 S3method lookup by UseMethod (*)
Let us go back to the rpackagedemo example. Inspecting the NAMESPACE file, we see that
the package defines two printmethods for objects of the classes koala and kangaroo.

Thepackage is still attached to the searchpath.Therefore,wecanaccess thesemethods
via a call to the corresponding generic:

print(structure("Tiny Teddy", class="koala"))

This is a cute koala, Tiny Teddy

print(structure("Moike", class="kangaroo"))

This is a very naughty kangaroo, Moike

The package does not make the definitions of these S3 methods available to the user,
at least not directly. It is not the first timewhenwe have experienced such an obscura-
tion. In the first case, themethod is simply hidden in the package namespace because
it was not marked for exportation in the NAMESPACE file. However, it is still available
under the expected name:

rpackagedemo:::print.koala

function (x, ...)

cat(sprintf("This is a cute koala, %s\n", x))

<environment: namespace:rpackagedemo>

In the second case, the method appears under a very different identifier:

rpackagedemo:::.a_hidden_method_to_print_a_roo

function (x, ...)

cat(sprintf("This is a very naughty kangaroo, %s\n", x))

<environment: namespace:rpackagedemo>

Since the base UseMethod is still able to find them, we suspect that there must be a

16 ENVIRONMENTS AND EVALUATION (*) 413

global register of all S3 methods. And this is indeed the case. We can use getS3method
to get access to what is available via UseMethod:

getS3method("print", "kangaroo")

function (x, ...)

cat(sprintf("This is a very naughty kangaroo, %s\n", x))

<environment: namespace:rpackagedemo>

Important Overall, the search for methods is performed in two places:

1. in the environment where the generic is called (the current environment); this is
why defining print.kangaroo in the current scope will use this method instead of
the one from the package:

print.kangaroo <- function(x, ...) cat("Nobody expects", x, "\n")

print(structure("the Spanish Inquisition", class="kangaroo"))

Nobody expects the Spanish Inquisition

2. in the internal S3 methods table (registration database).

See help("UseMethod") for more details. Also, recall that in Section 10.2.3, we said
that UseMethod is not the only way to perform method dispatching. There are also
internal generics and group generic functions; see help("InternalMethods") and
help("groupGeneric").

Exercise 16.15 (*) Study the source code of getS3method. Note the reference to the base::`.
__S3MethodsTable__.` object which is for R’s internal use (we ought not to tinker with it dir-
ectly). Moreover, study the registerS3method function with which we can define new S3meth-
ods not necessarily following the generic.classname convention.

16.4 Exercises
Exercise 16.16 Asking too many questions is not very charismatic, but challenge yourself by
trying to find the answer to the following.

• What is the role of a frame in an environment?

• What is the role of an enclosing environment? How to read it or set it?

• What is the difference between a named list and an environment?

• What functions and operators work on named lists but cannot be applied on environments?

• What do wemean by saying that environments are not passed by value to R functions?

• What do wemean by saying that objects are sometimes copied on demand?

414 III DEEPEST

• What happens if a name listed in an expression to be evaluated is not found in the current
environment?

• How and what kind of objects can we attach to the search path?

• What happens if we have two identical object names on the search path?

• What do wemean by saying that package namespaces are locked when loaded?

• What is the current environment when we evaluate an expression “on the console”?

• What is the difference between `<-` and `<<-`?

• Do packages have their own search paths?

• What is a function closure?

• What is the difference between the dynamic and the lexical scope?

• When evaluating a function, how is the enclosure of the current (local) environment determ-
ined? Is it the same as the calling environment? How to get it/them programmatically?

• How and why function factories work?

• (*)What is the difference between the package:pkg and namespace:pkg environments?

• Howdowe fetch the definition of an S3method that does not seem to be available directly via
the standard accessor generic.classname?

• (*) base::print.data.frame calls base::format.data.frame (directly). Will the intro-
duction of print.data.frame in the current environment affect how data frames are prin-
ted?

• (*) On the other hand, base::format.data.frame calls the generic base::format on all
the input data frame’s columns. Will the overloading of the particular methods affect how
data frames are printed?

Exercise 16.17 Calling:

pkg <- available.packages()

pkg[, "Package"] # a list of the names of available packages

pkg[, "Depends"] # dependencies

gives the list of available packages and their dependencies. Convert the dependency lists to a list
of character vectors (preferably using regular expressions; see Section 6.2.4).

Then, generate a list of reverse dependencies: what packages depend on each given package.

Use an object of the type environment (a hash table) to map the package names to numeric IDs
(indexes). It will significantly speed up the whole process (compare it to a named list-based im-
plementation).

Exercise 16.18 According to [67], compare also Section 9.3.6, a call to:

add(x, f(x)) <<- v

16 ENVIRONMENTS AND EVALUATION (*) 415

translates to:

`*tmp*` <- get(x, envir=parent.env(), inherits=TRUE)

x <<- `add<-`(`*tmp*`, f(x), v) # note: not f(`*tmp*`)

rm(`*tmp*`)

Given:

`add<-` <- function(x, where=TRUE, value)

{

x[where] <- x[where] + value

x # the modified object that will replace the original one

}

y <- 1:5

f <- function() { y <- -(1:5); add(y, y==-3) <<- 1000; y }

explain why we get the following results:

f()

[1] -1 -2 -3 -4 -5

print(y)

[1] 1 2 1003 4 5

17
Lazy evaluation (**)

The ability to create, store, and manipulate unevaluated expressions so that they can
be computed later is not particularly special. Many languages enjoy such metapro-
gramming (computing on the language, reflection) capabilities, e.g., Lisp, Scheme,
Wolfram, Julia, amongst many others.

However, R inherited from its predecessor, the S language, a variation of lazy1 (non-
strict, noneager, delayed) evaluation of function arguments. They are only computed
when their values are first needed. As we can take the expressions used to generate
them (via substitute; see Section 15.4.2), we shall see that we can ignore their mean-
ing in the original (caller’s) context and compute them in a very different one.

17.1 Evaluation of function arguments
We know that calls such as `if`(test, ifyes, ifno), `||`(mustbe, maybe), or
`&&`(mustbe, maybe) do not have to evaluate all their arguments.

{cat(" first "); FALSE} && {cat(" second "); FALSE}

first

[1] FALSE

{cat(" first "); TRUE } && {cat(" Spanish Inquisition "); FALSE}

first Spanish Inquisition

[1] FALSE

We can compose such functions ourselves. For instance:

test <- function(a, b, c) a + c # b is unused

test({cat("spam\n"); 1}, {cat("eggs\n"); 10}, {cat("salt\n"); 100})

spam

salt

[1] 101

The second argument was not referred to in the function’s body.Therefore, it was not
evaluated (no printing of eggs occurred).

1 Call-by-need but without the memoisation of results generated by expressions which is available, e.g.,
in Haskell. In other words, in an expression like c(f(x), f(x)), the call f(x)will still be performed twice.

418 III DEEPEST

Example 17.1 Study the following very carefully.

test <- function(a, b, c)

{

cat("Arguments passed to `test` (expressions): \n")

cat("a = ", deparse(substitute(a)), "\n")

cat("b = ", deparse(substitute(b)), "\n")

cat("c = ", deparse(substitute(c)), "\n")

subtest <- function(x, y, z)

{

cat("Arguments passed to `subtest` (expressions): \n")

cat("x = ", deparse(substitute(x)), "\n")

cat("y = ", deparse(substitute(y)), "\n")

cat("z = ", deparse(substitute(z)), "\n")

cat("Using x and z... ")

retval <- x + z # does not refer to `y`

cat("Cheers!\n")

retval

}

cat("Using c... ")

c # force evaluation; we do not even have to be particularly creative

subtest(a, ~!~b*2 := headache ->> ha@x$y, c*10) # no evaluation yet!

}

environment(test) <- new.env() # to spice things up

test(

{testx <- "goulash"; cat("spam\n"); 1},

{testy <- "kabanos"; cat("eggs\n"); MeAn(egGs+whatever&!!weird[stuff])},

{testx <- "kransky"; cat("salt\n"); 100}

)

Arguments passed to `test` (expressions):

a = { testx <- "goulash" cat("spam\n") 1 }

b = { testy <- "kabanos" cat("eggs\n") MeAn(egGs + whatever …

c = { testx <- "kransky" cat("salt\n") 100 }

Using c... salt

Arguments passed to `subtest` (expressions):

x = a

y = `:=`(~!~b * 2, ha@x$y <<- headache)

z = c * 10

Using x and z... spam

Cheers!

[1] 1001

(continues on next page)

17 LAZY EVALUATION (**) 419

(continued from previous page)

print(testx)

[1] "goulash"

print(testy)

Error in eval(expr, envir, enclos): object 'testy' not found

Ona side note, the `~` (formula) operatorwill be discussed inSection 17.6. Furthermore, the `:=`
operatorwasused inanancient versionofR forassignments.Theparser still recognises it, yet now
it has no associatedmeaning.

Important We note what follows.

• Either the evaluation of an argument does not happen, or is triggered only once
(in which case the result is cached).

This is why, in our example, salt was printed once.

• Evaluation is delayed until the very first request for the underlying value.We call it
lazy evaluation.

It can be delayed forever; eggs is never printed and testy is undefined.

• Evaluation takes place in the calling environment (parent frame).

testx is equal to goulash after all.

• Merely passing arguments further to another function usuallydoes not trigger the
evaluation.

We wrote usually because functions of the type builtin (e.g., c, list, sum, `+`,
`&`, and `:`) always evaluate the arguments. There is no lazy evaluation in the
case of the arguments passed to group generics; see help("groupGeneric") and
Section 10.2.6. Furthermore, replacement functions’ values arguments (Sec-
tion 9.3.6) are computed eagerly.

• Fetching the expression passed as an argument using substitute (Section 15.4.2)
or checking if an argument was provided with missing (Section 15.4.3) does not
trigger the evaluation.

We see spam printed much later.

Exercise 17.2 Study the source code of system.time and notice the use of delayed evaluation
to measure the duration of the execution of a given expression. Note that on.exit (Section 17.4)
reacts to possible exceptions.

Example 17.3 It turns out that the role of substitute is broader than just getting the expres-
sion passed as an argument.We can actually replace each occurrence of every name from a given
dictionary (a named list or an environment). For instance:

420 III DEEPEST

test <- function(x)

{

subtest <- function(y)

{

ex <- substitute(x, env=parent.frame()) # substitute(x) is just `x`

ey <- substitute(y)

cat("ex =", deparse(ex), "\n")

cat("ey =", deparse(ey), "\n")

not: eval(substitute(ey, list(x=ex)))

eval(as.call(list(substitute, ey, list(x=ex))))

}

subtest(spam(!xx))

}

test(eels@hovercraft)

ex = eels@hovercraft

ey = spam(!xx)

spam(!eels@hovercrafteels@hovercraft)

We fetched the expression passed as the x argument to the calling function. Then, we replaced
every occurrence of x in the expression ey. On a side note, as substitute does not evaluate its
first argument, if we called substitute(ey, ...) in the last expression of subtest, we would
treat ey as a quoted name.

Exercise 17.4 Study the source code of replicate:

print(replicate)

function (n, expr, simplify = "array")

sapply(integer(n), eval.parent(substitute(function(...) expr)),

simplify = simplify)

<environment: namespace:base>

It creates a function that evaluates expr inside its local environment, which is new every time.
Note that eval.parent(expr) is a shorthand for eval(expr, parent.frame()).

Note (*) Internally, lazy evaluation of arguments is implemented using the so-called
promises, compare [67], which consist of:

• an expression (which we can access by calling substitute);

• an environment where the expression is to be evaluated (once this happens, it is
set to NULL);

• a cached value (computed on demand, once).

This interface is not really visible fromwithin R, but see help("delayedAssign").

17 LAZY EVALUATION (**) 421

Exercise 17.5 Inspect the definition of match.fun. Why is it called by, e.g., apply, Map, or
outer?Note that it uses eval.parent(substitute(substitute(FUN))) to fetch the expression
representing the argument passed by the calling function (but it is probably very rarely needed
there). Compare:

test <- function(x)

{

subtest <- function(y)

{

NOT: substitute(y)

NOT: eval.parent(substitute(y))

eval.parent(substitute(substitute(y)))

}

subtest(x*3)

}

test(1+2)

(1 + 2) * 3

Exercise 17.6 (*) Implement your version of the bquote function.

17.2 Evaluation of default arguments
Aswe know fromSection 9.4.4, default arguments are special expressions specified in
a function’s parameter list.

Important When a function’s body requires the value of an argument that the caller
didnot provide, the default expressionwill be evaluated in the current (local) environment
of the function.

It is thus different from the case of normally passed arguments,which are interpreted
in the context of the calling environment.

Example 17.7 Study the following very carefully.

x <- "banana"

test <- function(y={cat("spam\n"); x})

{

cat(deparse(substitute(y)), "\n")

cat("bacon\n")

x <- "rotten potatoes"
(continues on next page)

422 III DEEPEST

(continued from previous page)

cat(y, y, "\n")

}

test({cat("spam\n"); x})

{ cat("spam\n") x }

bacon

spam

banana banana

As usual, the evaluation is triggered only once, where it was explicitly requested, and only when
needed. ywas bound to the value of x from the calling environment (banana in the global one).

test()

{ cat("spam\n") x }

bacon

spam

rotten potatoes rotten potatoes

The expression for the default y was evaluated in the local environment. It happened after the
creation of the local x.

Example 17.8 Consider the following example from [37]:

sumsq <- function(y, about=mean(y), na.rm=FALSE)

{

if (na.rm)

y <- y[!is.na(y)]

sum((y - about)^2)

}

y <- c(1, NA_real_, NA_real_, 2)

sumsq(y, na.rm=TRUE)

[1] 0.5

In the case where we rely on the default argument, the computation of the mean may take into
account the request for missing value removal. Still, the following will not work as intended:

sumsq(y, mean(y), na.rm=TRUE) # we should rather pass mean(y, na.rm=TRUE)

[1] NA

However, as the idea of lazy evaluation of arguments is alien to most programmers (especially
those coming from different languages), it might be better to rewrite the above using a call to
missing (Section 15.4.3):

sumsq <- function(y, about, na.rm=FALSE)

{

(continues on next page)

17 LAZY EVALUATION (**) 423

(continued from previous page)

if (na.rm)

y <- y[!is.na(y)]

if (missing(about))

about <- mean(y)

sum((y - about)^2)

}

sumsq(y, na.rm=TRUE)

[1] 0.5

or better even:

sumsq <- function(y, about=NULL, na.rm=FALSE)

{

if (na.rm)

y <- y[!is.na(y)]

if (is.null(about))

about <- mean

sum((y - about(y))^2)

}

sumsq(y, na.rm=TRUE)

[1] 0.5

Exercise 17.9 The default arguments to do.call, list2env, and new.env are set to parent.
frame.What does that mean?

Exercise 17.10 Study the source code of the local function:

print(local)

function (expr, envir = new.env())

eval.parent(substitute(eval(quote(expr), envir)))

<environment: namespace:base>

17.3 Ellipsis revisited
If our function has the dot-dot-dot parameter, `...`, whatever we pass through it is
packed into a pairlist of promise expressions. Thus, we can relish the benefits of lazy
evaluation. In particular, we can redirect all `...`-fed arguments to another call as-is.

test <- function(...)

{

(continues on next page)

424 III DEEPEST

(continued from previous page)

subtest <- function(x, ...)

{

cat("x = "); str(x)

cat("... = "); str(list(...))

}

subtest(...)

}

test({cat("eggs! "); 1}, {cat("spam! "); 2}, z={cat("rice! "); 3})

x = eggs! num 1

... = spam! rice! List of 2

$: num 2

$ z: num 3

Exercise 17.11 In the documentation of lapply, we read that this function is called like lap-
ply(X, FUN, ...),where `...`areoptional arguments to FUN.Verify thatwhatever ispassed
via the ellipsis is evaluated only once and not on each application of FUN on the elements of X.

Example 17.12 Weknow fromChapter 13 thatmanyhigh-level graphics functions rely onmul-
tiple calls tomore primitive routines that allow for setting a variety of parameters (e.g., via par).
A common scenario is for a high-level function to pass all the arguments down. Each underlying
procedure can then decide by itself which items it is interested in.

test <- function(...)

{

subtest1 <- function(..., a=1) c(a=a)

subtest2 <- function(..., b=2) c(b=b)

subtest3 <- function(..., c=3) c(c=c)

c(subtest1(...), subtest2(...), subtest3(...))

}

test(a="A", b="B", d="D")

a b c

"A" "B" "3"

Here, for instance, subtest1 only consumes the value of a and ignores all other argumentswhat-
soever. plot.default (amongst others) relies on such a design pattern.

`...length` fetches the number of items passed via the ellipsis, `...names` retrieves
their names (in the case they are given as keyword arguments), and `...elt`(i) gives
the value of the 𝑖-th element. Furthermore, `..1`, `..2`, and so forth are synonymous
with `...elt`(1), `...elt`(2), etc.

test <- function(...)

(continues on next page)

17 LAZY EVALUATION (**) 425

(continued from previous page)

{

cat("length:", ...length(), "\n")

cat("names: ", paste(...names(), collapse=", "), "\n")

for (i in seq_len(...length()))

cat(i, ":", ...elt(i), "\n")

print(substitute(...elt(i)))

}

test(u={cat("honey! "); "a"}, {cat("gravy! "); "b"}, w={cat("bacon! "); "c"})

length: 3

names: u, , w

honey! 1 : a

gravy! 2 : b

bacon! 3 : c

...elt(3L)

Note that `...elt`(i) triggers the evaluation of the respective argument. Unfortu-
nately, we cannot use substitute to fetch the underlying expression. Instead, we can
rely on match.call discussed in Section 15.4.4:

test <- function(a, b, ..., z=1)

{

e <- match.call()[-1]

as.list(e[!(names(e) %in% names(formals(sys.function())))])

}

str(test(1+1, 2+2, 3+3, 4+4, a=2, z=8, w=4))

List of 4

$: language 2 + 2

$: language 3 + 3

$: language 4 + 4

$ w: num 4

Note Objects passed via `...`, even if they are specified as keyword arguments, can-
not be referred to by their name as if they were local variables:

test <- function(...) zzz

test(zzz=3)

Error in test(zzz = 3): object 'zzz' not found

In other words, no assignment in the local environment is triggered.

Exercise 17.13 Implement your version of the switch function.

Exercise 17.14 Write your version of the stopifnot function.

426 III DEEPEST

17.4 on.exit (*)
on.exit registers an expression to be evaluated at the very end of a call, regardless
of whether the function exited due to an error or not. It might be used to reset the
temporarily modified graphics parameters (see par) and system options (options) or
clean up the allocated resources (e.g., close all open file connections). For instance:

test <- function(reset=FALSE, error=FALSE)

{

on.exit(cat("eggs\n"))

on.exit(cat("bacon\n")) # replace

on.exit(cat("spam\n"), add=TRUE) # add

cat("roti canai\n")

if (reset)

on.exit() # cancels all (replace by nothing)

if (error)

stop("aaarrgh!")

cat("end\n")

"return value"

}

test()

roti canai

end

bacon

spam

[1] "return value"

test(reset=TRUE)

roti canai

end

[1] "return value"

test(error=TRUE)

roti canai

Error in test(error = TRUE): aaarrgh!

bacon

spam

We can always manage without on.exit, e.g., by applying exception handling tech-
niques; see Section 8.2.

Exercise 17.15 In the definition of scan, notice the call to:

17 LAZY EVALUATION (**) 427

on.exit(close(file))

Is its purpose to close the file on exit?

Exercise 17.16 Why does graphics::barplot.default call the following expressions?

dev.hold()

opar <- if (horiz) par(xaxs="i", xpd=xpd) else par(yaxs="i", xpd=xpd)

on.exit({

dev.flush()

par(opar)

})

17.5 Metaprogramming and laziness in action: Examples (*)
Due to lazy evaluation, we can define functions that permit any random syntactically
valid gibberish to be fed as their arguments. Nothing but basic decency stops us from
interpreting them in any way we want. Each such function can become a microverse
(a microlanguage?) by itself. This will surely confuse2 our users, as they will have to
analyse every procedure’s behaviour separately.

In this section, we extend on our notes from Section 9.4.7 and Section 12.3.9.We look
at a few functions relying on metaprogramming and laziness, mostly because study-
ing them is a good exercise. It can help extend our programming skills and deepen
our understanding of the concepts discussed in this part of the book. By no means is
it an invitation to use them in practice. Nevertheless, R’s computing on the language
capabilities might interest some advanced programmers (e.g., package developers).

17.5.1 match.arg

match.argwas mentioned in Section 9.4.7. When called normally, it matches a string
against a set of possible choices, similarly to pmatch:

choices <- c("spam", "bacon", "eggs")

match.arg("spam", choices)

[1] "spam"

match.arg("s", choices) # partial matching

[1] "spam"

match.arg("eggplant", choices) # no match

Error in match.arg("eggplant", choices): 'arg' should be one of "spam",

"bacon", "eggs"
(continues on next page)

2 Novices are prone to overgeneralising when they learn new material that they are still far from com-
fortable with. Such exceptions go against this natural coping strategy of theirs.

428 III DEEPEST

(continued from previous page)

match.arg(choices, choices) # match first

[1] "spam"

However, skipping the second argument, this function will fetch the choices from the
default argument of the function it is enclosed in!

test <- function(x=c("spam", "bacon", "eggs"))

match.arg(x)

test("spam")

[1] "spam"

test("s")

[1] "spam"

test("eggplant")

Error in match.arg(x): 'arg' should be one of "spam", "bacon", "eggs"

test()

[1] "spam"

Exercise 17.17 Inspect the source code of stats::binom.test, which looks like:

function(..., alternative = c("two.sided", "less", "greater"))

{

...

alternative <- match.arg(alternative)

...

}

Read the description of the alternative argument in the documentation.

Exercise 17.18 Study the source code of match.arg. In particular, notice the following frag-
ment:

if (missing(choices)) {

formal.args <- formals(sys.function(sysP <- sys.parent()))

choices <- eval(

formal.args[[as.character(substitute(arg))]],

envir=sys.frame(sysP)

)

}

17.5.2 curve

The curve function can be called, e.g., like:

curve(sin(1/x^2), 1/pi, 3, 1001, lty=2)

17 LAZY EVALUATION (**) 429

0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.0

x

sin
(1

/x
^2

)

Figure 17.1. An example plot generated by calling curve.

It results in Figure 17.1. Wait a minute… We did not define x as a sequence ranging
between about 0.3 and 3!

Exercise 17.19 Study the source code of curve. Take note of the following code fragment:

function(expr, from=NULL, to=NULL, n=101, xlab="x", type="l", ...)

{

...

expr <- substitute(expr)

ylab <- deparse(expr)

x <- seq.int(from, to, length.out=n)

ll <- list(x=x)

y <- eval(expr, envir=ll, enclos=parent.frame())

plot(x=x, y=y, type=type, xlab=xlab, ylab=ylab, ...)

...

}

17.5.3 with and within
Environments and named lists (and hence data frames) are similar (Section 16.1.2).
Due to this, the envir argument to eval can be set to either.Therefore, for instance:

eval(quote(head(Sepal.Length)), envir=iris)

[1] 5.1 4.9 4.7 4.6 5.0 5.4

It evaluates the given expression in something like list2env(iris, parent=parent.

430 III DEEPEST

frame()).Thus, even though Sepal.Length is not a standalone variable, it is treated as
one inside the iris data frame.

Moreover, the enclosure is set to the calling frame. Hence, we can successfully refer to
the head function located somewhere on the search path.This is somewhat similar to
attach (Section 16.2.6) but without modifying the search path.

The with function does exactly the above:

print(with.default)

function (data, expr, ...)

eval(substitute(expr), data, enclos = parent.frame())

<environment: namespace:base>

Example use:

with(iris, {

mean(Sepal.Length) # `Sepal.Length` is in `iris`

})

[1] 5.8433

As we evaluate the above in the local (temporary) environment, we cannot modify the
existing columns of the data frame this way. However, the within function includes a
way to detect and apply any changes made.

within(iris, {

Sepal.Length <- Sepal.Length/1000

Spam <- "yum!"

}) -> iris2

head(iris2, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species Spam

1 0.0051 3.5 1.4 0.2 setosa yum!

2 0.0049 3.0 1.4 0.2 setosa yum!

3 0.0047 3.2 1.3 0.2 setosa yum!

Exercise 17.20 Study the source code of within:

print(within.data.frame)

function (data, expr, ...)

{

parent <- parent.frame()

e <- evalq(environment(), data, parent)

eval(substitute(expr), e)

l <- as.list(e, all.names = TRUE)

l <- l[!vapply(l, is.null, NA, USE.NAMES = FALSE)]

nl <- names(l)

del <- setdiff(names(data), nl)

data[nl] <- l

(continues on next page)

17 LAZY EVALUATION (**) 431

(continued from previous page)

data[del] <- NULL

data

}

<environment: namespace:base>

Note that evalq(expr, ...) is equivalent toeval(quote(expr), ...). Also,vapply(X, FUN,

NA, ...) is like a call to sapply, but it guarantees that the result is a logical vector.

17.5.4 transform

We can call transform to modify/add columns in a data frame using vectorised func-
tions. For instance:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL), 3)

mpg cyl disp drat wt qsec vs am gear carb log_hp

Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005

Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005

Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326

If we suspect that this function evaluates all expressions passed as `...` within the
data frame,wearebrilliantly right. Furthermore, theremustbeamechanismtodetect
newly created variables so that new columns can be added.

Exercise 17.21 Study the source code of transform:

print(transform.data.frame)

function (`_data`, ...)

{

e <- eval(substitute(list(...)), `_data`, parent.frame())

tags <- names(e)

inx <- match(tags, names(`_data`))

matched <- !is.na(inx)

if (any(matched)) {

`_data`[inx[matched]] <- e[matched]

`_data` <- data.frame(`_data`)

}

if (!all(matched))

do.call("data.frame", c(list(`_data`), e[!matched]))

else `_data`

}

<environment: namespace:base>

In particular, note that e is a named list.

432 III DEEPEST

17.5.5 subset

The subset function selects rows and columns of a data frame that meet certain cri-
teria. For instance:

subset(airquality, Temp>95 | Temp<57, -(Month:Day))

Ozone Solar.R Wind Temp

5 NA NA 14.3 56

120 76 203 9.7 97

122 84 237 6.3 96

The second argument, the row selector, must definitely be evaluated within the data
frame.We expect it to reduce itself to a logical vector which can then be passed to the
index operator.

The “select all columns except those between the given ones” part can be implemented
by assigning each column a consecutive integer and then treating them as numeric
indexes.

Exercise 17.22 Study the source code of subset:

print(subset.data.frame)

function (x, subset, select, drop = FALSE, ...)

{

chkDots(...)

r <- if (missing(subset))

rep_len(TRUE, nrow(x))

else {

e <- substitute(subset)

r <- eval(e, x, parent.frame())

if (!is.logical(r))

stop("'subset' must be logical")

r & !is.na(r)

}

vars <- if (missing(select))

rep_len(TRUE, ncol(x))

else {

nl <- as.list(seq_along(x))

names(nl) <- names(x)

eval(substitute(select), nl, parent.frame())

}

x[r, vars, drop = drop]

}

<environment: namespace:base>

17 LAZY EVALUATION (**) 433

17.5.6 Forward pipe operator
Section 10.4mentioned the pipe operator, `|>`.We can compose its simplified version
manually:

`%>%` <- function(e1, e2)

{

e2 <- as.list(substitute(e2))

e2 <- as.call(c(e2[[1]], substitute(e1), e2[-1]))

eval(e2, envir=parent.frame())

}

This function imputes e1 as the first argument in a call e2 and then evaluates the new
expression.

Example calls:

x <- c(1, NA_real_, 2, 3, NA_real_, 5)

x %>% mean # mean(x)

[1] NA

x %>% `-`(1) # x-1

[1] 0 NA 1 2 NA 4

x %>% na.omit %>% mean # mean(na.omit(x))

[1] 2.75

x %>% mean(na.rm=TRUE) # mean(x, na.rm=TRUE)

[1] 2.75

Moreover, we canmemorise the value of e1 so that it can be referred to in the expres-
sion on the right side of the operator.This comes at a cost of forcing the evaluation of
the left-hand side argument and thus losing the potential benefits of laziness, includ-
ing access to the generating expression.

`%.>%` <- function(e1, e2)

{

env <- list2env(list(.=e1), parent=parent.frame())

e2 <- as.list(substitute(e2))

e2 <- as.call(c(e2[[1]], quote(.), e2[-1]))

eval(e2, envir=env)

}

This way, we can refer to the value of the left side multiple times in a single call. For
instance:

runif(5) %.>% `[`(.>0.5) # x[x>0.5] with x=runif(5)

[1] 0.78831 0.88302 0.94047

This is crazy, I know. I made this. Your author. Onemore then:

434 III DEEPEST

x[x >= 0.5 & x <= 0.9] <- NA_real_ with x=round(runif(5), 2):

runif(5) %.>% round(2) %.>% `[<-`(.>=0.5 & .<=0.9, value=NA_real_)

[1] 0.29 NA 0.41 NA 0.94

I cannot wait for someone to put this operator into a new R package (it is a brilliant
idea, by the way, isn’t it?) and then confuse thousands of users (“What is this thing?”).

17.5.7 Other ideas (**)
Whystopourselveshere?Wecancreatewaymore invasive functions that read the local
variables in the calling functions (unless they are primitive; in R, there are often ex-
ceptions to general rules…). Here is an operator which helps select a range of columns
in a data frame between two given labels:

`%:%` <- function(e1, e2)

{

get the `x` argument in the caller (hoping its `[`)

x <- get("x", envir=sys.frame(sys.nframe()-1))

n <- names(x)

from <- pmatch(substitute(e1), n)

to <- pmatch(substitute(e2), n)

from:to

}

head(iris[, Sepal.W%:%Petal.W])

Sepal.Width Petal.Length Petal.Width

1 3.5 1.4 0.2

2 3.0 1.4 0.2

3 3.2 1.3 0.2

4 3.1 1.5 0.2

5 3.6 1.4 0.2

6 3.9 1.7 0.4

This operator relies on the assumption that it is called in the expression passed as an
argument to a non-primitive function which also takes a named vector x as an actual
parameter. So ugly, but saves a few keystrokes.Wewill not be using it because it is not
good for us.

Exercise 17.23 Make the abovemore foolproof:

• if `%:%` is used outside of `[` or `[<-`, raise a polite error,

• permit x to be amatrix (is it possible?),

• prepare better for the case of less expected inputs.

Exercise 17.24 Modify the definition of the above operator so that both:

17 LAZY EVALUATION (**) 435

iris[, -Sepal.W%:%Petal.W]

iris[, -(Sepal.W%:%Petal.W)]

mean “select everything except”.

Exercise 17.25 Define `%:%` for data frames so that:

• x[%:%3,]means “select the first three rows”,

• x[3%:%,]means “select from the third to the end”,

• x[-3%:%,]means “select from the third last to the end”,

• x[%:%-10,]means “select all but the last nine”.

You can go one step further and redefine `[` entirely to support such kinds of indexers.

The ceiling is the limit. Please, do not use the above in production.

17.6 Processing formulae, `~` (*)
Formulae were introduced to S in the early 1990s [13]. Their original raison d’être was
to specify statistical models; compare Section 10.3.4.

From the language perspective, they aremerely unevaluated calls to the `~` (tilde) op-
erator. When creating them, we do not even have to apply quote explicitly. For in-
stance:

f <- (y ~ x1 + x2) # or: `~`(y, x1+x2)

mode(f)

[1] "call"

class(f)

[1] "formula"

Hence, formulae are compound objects in the sense given in Chapter 10. Usually, they
are equipped with an additional attribute:

attr(f, ".Environment") # environment active when the formula was created

<environment: R_GlobalEnv>

Exercise 17.26 Write a function that generates a list of formulae of the form “y ~ x1+x2+...

+xk”, for all possible combinations x1, x2, …, xk (of any cardinality) of elements in a given set of
xs. For instance:

formula_allcomb <- function(y, xs, env=parent.frame()) ...to.do...

str(formula_allcomb("len", c("supp", "dose")))

List of 3

(continues on next page)

436 III DEEPEST

(continued from previous page)

$:Class 'formula' language len ~ supp + dose

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

$:Class 'formula' language len ~ dose

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

$:Class 'formula' language len ~ supp

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

str(formula_allcomb(

"y",

c("x1", "x2", "x3"),

env=NULL

))

List of 7

$:Class 'formula' language y ~ x1 + x2 + x3

$:Class 'formula' language y ~ x2 + x3

$:Class 'formula' language y ~ x1 + x3

$:Class 'formula' language y ~ x3

$:Class 'formula' language y ~ x1 + x2

$:Class 'formula' language y ~ x2

$:Class 'formula' language y ~ x1

As they are unevaluated calls, functions can assign any fantastic meaning to formu-
lae. We cannot really do anything about this freedom of expression. However, many
functions, especially in the stats and graphics packages, rely on a call to model.frame
and related routines. Thanks to this, we can at least find a few behavioural patterns.
In particular, help("formula") lists the typicalmeanings of operators that can be used
in a formula.

Example 17.27 Here are a few examples (executing the expressions below is left as an exercise).

• Draw a box-and-whisker plot for iris[["Sepal.Length"]] split by iris[["Species"]]:

boxplot(Sepal.Length~Species, data=iris)

• Draw a box plot for ToothGrowth[["len"]] split by a combination of levels in Tooth-

Growth[["supp"]] and ToothGrowth[["dose"]]:

boxplot(len~supp:dose, data=ToothGrowth)

• Split the given data frame by a combination of values in two specified columns therein:

split(ToothGrowth, ~supp:dose)

• Fit a linear regressionmodel of the form 𝑦 = 𝑎 + 𝑏𝑥, where 𝑦 is iris[["Sepal.Length"]]
and 𝑥 is iris[["Petal.Length"]]:

17 LAZY EVALUATION (**) 437

lm(Sepal.Length~Petal.Length, data=iris)

• Fit a linear regression model without the intercept term of the form 𝑧 = 𝑎𝑥 + 𝑏𝑦, where
𝑧 is iris[["Sepal.Length"]], 𝑥 is iris[["Petal.Length"]], and 𝑦 is iris[["Sepal.
Width"]]:

lm(Sepal.Length~Petal.Length+Sepal.Width+0, data=iris)

• Fit a linear regressionmodel of the form 𝑧 = 𝑎+𝑏𝑥+𝑐𝑦 +𝑑𝑥𝑦, where 𝑧 is iris[["Sepal.
Length"]]+e (with e fetched from the associated environment), and 𝑥 and 𝑦 are like above:

e <- rnorm(length(iris[["Sepal.Length"]]), 0, 0.05)

lm(I(Sepal.Length+e)~Petal.Length*Sepal.Width, data=iris)

• Draw scatter plots of warpbreaks[["breaks"]] vs their indexes for data grouped by a com-
bination of warpbreaks[["wool"]] and warpbreaks[["tension"]]:

Index <- seq_len(NROW(warpbreaks))

coplot(breaks ~ Index | wool * tension, data=warpbreaks)

From the perspective of this book, which focuses on more universal aspects of the R
language, formulae are not interesting enough to describe them in any more detail.
However, the tender-hearted reader is nowequippedwith all thenecessary knowledge
to solve the following very educative exercises.

Exercise 17.28 Study the source code of graphics:::boxplot.formula, stats::lm, and
stats:::t.test.formula and notice how they prepare and process the calls to model.frame,
model.matrix, model.response, model.weights, etc. Note that their main aim is to prepare
data to be passed to boxplot.default, lm.fit (it is just a function with such a name, not an S3
method), and t.test.default

Exercise 17.29 Write a function similar tocurve, but one that lets us specify the function to plot
using a formula.

17.7 Exercises
Exercise 17.30 Answer the following questions.

• What is the role of promises?

• Why do we generally discourage the use of functions relying onmetaprogramming?

• How are default arguments evaluated?

• Is there anything special about formulae from the language perspective?

438 III DEEPEST

• Revaluates functionarguments lazily.Does itmeanthat “y[c(length(y)+1, length(y)+1,

length(y)+1)] <- list(1, 2, 3)” extends a list y by three elements? Or are there cases
where evaluation is eager?

Exercise 17.31 Why the two following calls yield different results?

test <- function(x, y=deparse(substitute(x)), force_first=FALSE)

{

if (force_first) y # just force the evaluation of `y` here

x <- x**2

print(y)

}

test(1:5)

[1] "c(1, 4, 9, 16, 25)"

test(1:5, force_first=TRUE)

[1] "1:5"

17.8 Outro
Recall our first approximation to the classification of R data types that we presented
in the Preface. To summarise what we have covered in this book, let us contemplate
Figure 17.2, which gives a much broader picture.

If we omitted something, it wasmost likely on purpose: either we can now study it on
our own easily, it is not really worth our attention, or it violates ourminimalist design
principles that we explained in the Preface.

Now that we have reached the end of this course, wemight be interested in reading:

• R Language Definition [67],

• R Internals [66],

• Writing R Extensions [63],

• R’s source code available at https://cran.r-project.org/src/base.

What is more, the NEWS files available at https://cran.r-project.org/doc/manuals/
r-release will keep us updated with fresh features, bug fixes, and newly deprecated
functionality; see also the news function.

Please spread the news about this book. Also, check out another open-access work by
yours truly,Minimalist DataWrangling with Python3 [26].Thank you.

Good luck with your further projects!

3 https://datawranglingpy.gagolewski.com/

https://cran.r-project.org/src/base
https://cran.r-project.org/doc/manuals/r-release
https://cran.r-project.org/doc/manuals/r-release
https://datawranglingpy.gagolewski.com/

17 LAZY EVALUATION (**) 439

R Data Types

Basic

Atomic

NULL
logical
raw

numeric
integer
double

complex
character

Recursive

list
pairlist

function
closure
primitive:
special/builtin

environment

Language Objects
symbol (name)
call
expression

Internal

promise
externalptr
S4
...

Compound

factor
matrix
array
data.frame
formula
Date
kmeans
...

Figure 17.2. R data types.

Changelog

Important Any bug/typo reports/fixes4 are appreciated.Themost up-to-date version
of this book can be found at https://deepr.gagolewski.com/.

Below is the list of the most noteworthy changes:

• 2023-06-28 (v1.0.0):

– Final proofreading and copyediting.

– Minor extensions.

• 2023-05-19 (v0.9.0):

– Chapter on interfacing compiled code drafted.

– Minor extensions.

• 2023-04-27 (v0.2.1):

– Chapter on graphics drafted.

• 2023-04-09 (v0.2.0):

– NewHTML theme (with light and dark modes).

– Chapter on unevaluated expressions drafted.

– Chapter on environments and evaluation drafted.

– Chapter on lazy evaluation drafted.

• 2022-12-29 (v0.1.12):

– First public release at https://deepr.gagolewski.com/.

– Chapters 1–12 (basic and compound types, functions, control flow, etc.)
drafted.

– Preface drafted.

– ISBN 978-0-6455719-2-9 reserved.

– Cover.

4 https://github.com/gagolews/deepr/issues

https://github.com/gagolews/deepr/issues
https://deepr.gagolewski.com/
https://deepr.gagolewski.com/

References

[1] Abelson, H., Sussman, G.J., and Sussman, J. (1996). Structure and Interpretation of
Computer Programs. MIT Press.

[2] Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover. URL: http://people.math.sfu.ca/
~cbm/aands.

[3] Becker, R.A. (1994). A Brief History of S. URL: https://sas.uwaterloo.ca/~rwoldfor/
software/R-code/historyOfS.pdf.

[4] Becker, R.A. and Chambers, J.M. (1984). Design of the S system for data analysis.
Communications of the ACM, 27(5):486–495. DOI: 10.1145/358189.358078.

[5] Becker, R.A. and Chambers, J.M. (1984). S: An Interactive Environment for Data Ana-
lysis and Graphics. Wadsworth.

[6] Becker, R.A. and Chambers, J.M. (1985). Extending the S System. Wadsworth.

[7] Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988).The New S Language: A Pro-
gramming Environment for Data Analysis and Graphics. Chapman &Hall.

[8] Burns, P. (2011).TheR Inferno. URL: https://www.burns-stat.com/pages/Tutor/R_
inferno.pdf.

[9] Chambers, J.M. (1998). Programmingwith Data. AGuide to the S Language. Springer.

[10] Chambers, J.M. (2008). Software for Data Analysis. Programming with R. Springer.

[11] Chambers, J.M. (2016). Extending R. Chapman &Hall.

[12] Chambers, J.M. (2020). S, R, and data science.The R Journal, 12(1):462–476. DOI:
10.32614/RJ-2020-028.

[13] Chambers, J.M. and Hastie, T.J. (1991). StatisticalModels in S. Chapman &Hall.

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Introduction to
Algorithms. MIT Press andMcGraw-Hill.

[15] Crawley, M.J. (2007).TheRBook. JohnWiley & Sons.

[16] Date, C.J. (2003). An Introduction to Database Systems. Pearson.

[17] Davis, M. and Whistler, K. (2021). Unicode Standard Annex #15: Unicode Normaliza-
tion Forms. URL: http://www.unicode.org/reports/tr15.

http://people.math.sfu.ca/~cbm/aands
http://people.math.sfu.ca/~cbm/aands
https://sas.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
https://sas.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://www.unicode.org/reports/tr15

444 REFERENCES

[18] Davis, M., Whistler, K., and Scherer, M. (2021). Unicode Technical Standard #10:
Unicode Collation Algorithm. URL: http://www.unicode.org/reports/tr10.

[19] Deisenroth, M.P., Faisal, A.A., and Ong, C.S. (2020). Mathematics for Machine
Learning. Cambridge University Press. URL: https://mml-book.com/.

[20] DeMichiel, L.G. and Gabriel, R.P. (1987). The Common Lisp Object System: An
overview. ECOOP. URL: https://www.dreamsongs.com/Files/ECOOP.pdf.

[21] Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer. URL: https:
//luc.devroye.org/rnbookindex.html.

[22] Fog, A. (2018). NaN Payload Propagation – Unresolved Issues. URL: https:
//grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/
nan-propagation.pdf.

[23] Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2010). Statistical Distribu-
tions. Wiley.

[24] Friedl, J.E.F. (2006).Mastering Regular Expressions. O'Reilly.

[25] Gagolewski, M. (2016). Programowanie w języku R. Analiza danych, obliczenia,
symulacje (R Programming. Data Analysis, Computing, Simulations). Wydawnictwo
Naukowe PWN, 2nd edition. In Polish (1st edition published in 2014).

[26] Gagolewski, M. (2022). Minimalist Data Wrangling with Python. Zenodo. URL:
https://datawranglingpy.gagolewski.com/, DOI: 10.5281/zenodo.6451068.

[27] Gagolewski, M. (2022). stringi: Fast and portable character string processing in
R. Journal of Statistical Software, 103(2):1–59. URL: https://stringi.gagolewski.com/,
DOI: 10.18637/jss.v103.i02.

[28] Galassi,M.,Theiler, J., and others. (2021).GNUScientific LibraryReferenceManual.
URL: https://www.gnu.org/software/gsl.

[29] Gentle, J.E. (2003). RandomNumber Generation andMonte Carlo methods. Springer.

[30] Gentle, J.E. (2007).Matrix Algebra. Springer.

[31] Gentle, J.E. (2009). Computational Statistics. Springer.

[32] Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic.ACMComputingSurveys, 21(1):5–48.URL: https://perso.ens-lyon.
fr/jean-michel.muller/goldberg.pdf.

[33] Hankin, R.K.S. (2006). Special functions in R: Introducing the gsl package. R
News, 6:24–26. URL: https://cran.r-project.org/web/packages/gsl/vignettes/gsl.
pdf.

[34] Harris, C.R. and others. (2020). Array programming with NumPy. Nature,
585(7825):357–362. DOI: 10.1038/s41586-020-2649-2.

[35] Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms. SIAM. DOI:
10.1137/1.9780898718027.

http://www.unicode.org/reports/tr10
https://mml-book.com/
https://www.dreamsongs.com/Files/ECOOP.pdf
https://luc.devroye.org/rnbookindex.html
https://luc.devroye.org/rnbookindex.html
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/nan-propagation.pdf
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/nan-propagation.pdf
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/nan-propagation.pdf
https://datawranglingpy.gagolewski.com/
https://stringi.gagolewski.com/
https://www.gnu.org/software/gsl
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://cran.r-project.org/web/packages/gsl/vignettes/gsl.pdf
https://cran.r-project.org/web/packages/gsl/vignettes/gsl.pdf

REFERENCES 445

[36] Hughes, J., van Dam, A., McGuire, M., Sklar, D., Foley, J., Feiner, S., and Akeley,
K. (2013). Computer Graphics: Principles and Practice. Addison-Wesley, 3rd edition.

[37] Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299–314. URL:
https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf, DOI:
10.1080/10618600.1996.10474713.

[38] Kernighan, B.W. and Ritchie, D. (1988). The C Programming Language. Prentice
Hall.

[39] Knuth, D.E. (1974). Computer programming as an art. Communications of
the ACM, 17(12):667–673. URL: https://www.cs.tufts.edu/~nr/cs257/archive/
don-knuth/as-an-art.pdf.

[40] Knuth, D.E. (1992). Literate Programming. CSLI.

[41] Knuth, D.E. (1997). The Art of Computer Programming III: Sorting and Searching.
Addison-Wesley.

[42] Knuth, D.E. (1997).The Art of Computer Programming II: Seminumerical Algorithms.
Addison-Wesley.

[43] Knuth, D.E. (1997). The Art of Computer Programming I: Fundamental Algorithms.
Addison-Wesley.

[44] Marschner, S. and Shirley, P. (2021). Fundamentals of Computer Graphics. AK
Peters/CRC Press, 5th edition.

[45] Matloff, N.S. (2011).The Art of R Programming: A Tour of Statistical Software Design.
No Starch Press.

[46] Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACMTransactions onModeling and Computer Simulation, 8:3–30.

[47] McKinney, W. (2022). Python for Data Analysis. O'Reilly. URL: https:
//wesmckinney.com/book.

[48] Murrell, P. (2011). RGraphics. Chapman &Hall/CRC.

[49] Nelsen, R.B. (1999). An Introduction to Copulas. Springer.

[50] Okabe, M. and Ito, K. (2002). Color Universal Design (CUD): How to make figures
and presentations that are friendly to Colorblind people. URL: https://jfly.uni-koeln.de/
color.

[51] Olver, F.W.J. and others. (2021). NIST Digital Library of Mathematical Functions.
NIST. URL: https://dlmf.nist.gov/.

[52] Rahlf, T. (2019). Data Visualisation with R: 111 Examples. Springer Nature, 2nd edi-
tion. URL: http://www.datavisualisation-r.com/.

[53] Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer. URL:
http://lmdvr.r-forge.r-project.org/.

https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/as-an-art.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/as-an-art.pdf
https://wesmckinney.com/book
https://wesmckinney.com/book
https://jfly.uni-koeln.de/color
https://jfly.uni-koeln.de/color
https://dlmf.nist.gov/
http://www.datavisualisation-r.com/
http://lmdvr.r-forge.r-project.org/

446 REFERENCES

[54] Tierney, L. (1990). LISP-STAT: AnObject-Oriented Environment for Statistical Comput-
ing andDynamic Graphics. Wiley.

[55] Tierney, L., Becker, G., and Kalibera, T. (2018). ALTREP: Alternative Representations
for RObjects. URL: https://svn.r-project.org/R/branches/ALTREP/ALTREP.html.

[56] Venables, W.N. and Ripley, B.D. (2000). S Programming. Springer.

[57] Venables, W.N., Smith, D.M., and R Development Core Team. (2023). An In-
troduction to R. URL: https://CRAN.R-project.org/doc/manuals/r-release/R-intro.
html.

[58] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer, 2nd edi-
tion.

[59] Wickham,H. (2019). Advanced R. Chapman&Hall/CRC, 2nd edition. URL: https:
//adv-r.hadley.nz/.

[60] Wickham, H. and Grolemund, G. (2017). R for Data Science. O'Reilly. URL: https:
//r4ds.had.co.nz/.

[61] Wilkinson, L. (2005).TheGrammar of Graphics. Springer.

[62] Xie, Y. (2015).Dynamic Documents with R and knitr. Chapman and Hall/CRC.

[63] R Development Core Team. (2023). Writing R Extensions. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-exts.html.

[64] R Development Core Team. (2023). R Data Import/Export. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-data.html.

[65] R Development Core Team. (2023). R Installation and Administration. URL: https:
//CRAN.R-project.org/doc/manuals/r-release/R-admin.html.

[66] R Development Core Team. (2023). R Internals. URL: https://CRAN.R-project.
org/doc/manuals/r-release/R-ints.html.

[67] R Development Core Team. (2023). R Language Definition. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-lang.html.

[68] R Development Core Team. (2023). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. URL: https://www.R-project.
org/.

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html
https://CRAN.R-project.org/doc/manuals/r-release/R-intro.html
https://CRAN.R-project.org/doc/manuals/r-release/R-intro.html
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://CRAN.R-project.org/doc/manuals/r-release/R-data.html
https://CRAN.R-project.org/doc/manuals/r-release/R-data.html
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.html
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.html
https://CRAN.R-project.org/doc/manuals/r-release/R-ints.html
https://CRAN.R-project.org/doc/manuals/r-release/R-ints.html
https://CRAN.R-project.org/doc/manuals/r-release/R-lang.html
https://CRAN.R-project.org/doc/manuals/r-release/R-lang.html
https://www.R-project.org/
https://www.R-project.org/

	Preface
	To R, or not to R
	R (GNU S) as a language and an environment
	Aims, scope, and design philosophy
	Classification of R data types and book structure
	About the author
	Acknowledgements
	You can make this book better

	I Deep
	Introduction
	Hello, world!
	Setting up the development environment
	Installing R
	Interactive mode
	Batch mode: Working with R scripts (**)
	Weaving: Automatic report generation (**)
	Semi-interactive modes (Jupyter Notebooks, sending code to the associated R console, etc.)

	Atomic vectors at a glance
	Getting help
	Exercises

	Numeric vectors
	Creating numeric vectors
	Numeric constants
	Concatenating vectors with c
	Repeating entries with rep
	Generating arithmetic progressions with seq and `:`
	Generating pseudorandom numbers
	Reading data with scan

	Creating named objects
	Vectorised mathematical functions
	abs and sqrt
	Rounding
	Natural exponential function and logarithm
	Probability distributions (*)
	Special functions (*)

	Arithmetic operations
	Vectorised arithmetic operators
	Recycling rule
	Operator precedence
	Accumulating
	Aggregating

	Exercises

	Logical vectors
	Creating logical vectors
	Comparing elements
	Vectorised relational operators
	Testing for NA, NaN, and Inf
	Dealing with round-off errors (*)

	Logical operations
	Vectorised logical operators
	Operator precedence revisited
	Dealing with missingness
	Aggregating with all, any, and sum
	Simplifying predicates

	Choosing elements with ifelse
	Exercises

	Lists and attributes
	Type hierarchy and conversion
	Explicit type casting
	Implicit conversion (coercion)

	Lists
	Creating lists
	Converting to and from lists

	NULL
	Object attributes
	Developing perceptual indifference to most attributes
	But there are a few use cases
	Special attributes
	Labelling vector elements with the names attribute
	Altering and removing attributes

	Exercises

	Vector indexing
	head and tail
	Subsetting and extracting from vectors
	Nonnegative indexes
	Negative indexes
	Logical indexer
	Character indexer

	Replacing elements
	Modifying atomic vectors
	Modifying lists
	Inserting new elements

	Functions related to indexing
	Matching elements in another vector
	Assigning numbers into intervals
	Splitting vectors into subgroups
	Ordering elements
	Identifying duplicates
	Counting index occurrences

	Preserving and losing attributes
	c
	as.something
	Subsetting
	Vectorised functions

	Exercises

	Character vectors
	Creating character vectors
	Inputting individual strings
	Many strings, one object
	Concatenating character vectors
	Formatting objects
	Reading text data from files

	Pattern searching
	Comparing whole strings
	Partial matching
	Matching anywhere within a string
	Using regular expressions (*)
	Locating pattern occurrences
	Replacing pattern occurrences
	Splitting strings into tokens

	Other string operations
	Extracting substrings
	Translating characters
	Ordering strings

	Other atomic vector types (*)
	Integer vectors (*)
	Raw vectors (*)
	Complex vectors (*)

	Exercises

	Functions
	Creating and invoking functions
	Anonymous functions
	Named functions
	Passing arguments to functions
	Grouping expressions with curly braces, `{`

	Functional programming
	Functions are objects
	Calling on precomputed arguments with do.call
	Common higher-order functions
	Vectorising functions with Map

	Accessing third-party functions
	Using R packages
	Default packages
	Source vs binary packages (*)
	Managing dependencies (*)

	Calling external programs
	Interfacing C, C++, Fortran, Python, Java, etc. (**)

	Exercises

	Flow of execution
	Conditional evaluation
	Return value
	Nested ifs
	Condition: Either TRUE or FALSE
	Short-circuit evaluation

	Exception handling
	Repeated evaluation
	while
	for
	break and next
	return
	Time and space complexity of algorithms (*)

	Exercises

	II Deeper
	Designing functions
	Managing data flow
	Checking input data integrity and argument handling
	Putting outputs into context

	Organising and maintaining functions
	Function libraries
	Writing R packages (*)
	Package structure (*)
	Building and installing (*)
	Documenting (*)

	Writing standalone programs (**)
	Assuring quality code
	Managing changes and working collaboratively
	Test-driven development and continuous integration
	Debugging
	Profiling

	Special functions: Syntactic sugar
	Backticks
	Dollar, `$` (*)
	Curly braces, `{`
	`if`
	Operators are functions
	Calling built-in operators as functions
	Defining binary operators

	Replacement functions
	Creating replacement functions
	Substituting parts of vectors
	Replacing attributes
	Compositions of replacement functions (*)

	Arguments and local variables
	Call by “value”
	Variable scope
	Closures (*)
	Default arguments
	Lazy vs eager evaluation
	Ellipsis, `...`
	Metaprogramming (*)

	Principles of sustainable design (*)
	To write or abstain
	To pamper or challenge
	To build or reuse
	To revolt or evolve

	Exercises

	S3 classes
	Object type vs class
	Generics and method dispatching
	Generics, default, and custom methods
	Creating generics
	Built-in generics
	First-argument dispatch and calling S3 methods directly
	Multi-class-ness
	Operator overloading

	Common built-in S3 classes
	Date, time, etc.
	Factors
	Ordered factors
	Formulae (*)

	(Over)using the forward pipe operator, `|>` (*)
	S4 classes (*)
	Defining S4 classes
	Accessing slots
	Defining methods
	Defining constructors
	Inheritance

	Exercises

	Matrices and other arrays
	Creating arrays
	matrix and array
	Promoting and stacking vectors
	Simplifying lists
	Beyond numeric arrays
	Internal representation

	Array indexing
	Arrays are built on basic vectors
	Selecting individual elements
	Selecting rows and columns
	Dropping dimensions
	Selecting submatrices
	Selecting elements based on logical vectors
	Selecting based on two-column numeric matrices
	Higher-dimensional arrays
	Replacing elements

	Common operations
	Matrix transpose
	Vectorised mathematical functions
	Aggregating rows and columns
	Binary operators

	Numerical matrix algebra (*)
	Matrix multiplication
	Solving systems of linear equations
	Norms and metrics
	Eigenvalues and eigenvectors
	QR decomposition
	SVD decomposition
	A note on the Matrix package

	Exercises

	Data frames
	Creating data frames
	data.frame and as.data.frame
	cbind.data.frame and rbind.data.frame
	Reading data frames
	Interfacing relational databases and querying with SQL (*)
	Strings as factors?
	Internal representation

	Data frame subsetting
	Data frames are lists
	Data frames are matrix-like

	Common operations
	Ordering rows
	Handling duplicated rows
	Joining (merging) data frames
	Aggregating and transforming columns
	Handling missing values
	Reshaping data frames
	Aggregating data in groups
	Transforming data in groups
	Metaprogramming-based techniques (*)
	A note on the dplyr (tidyverse) and data.table packages (*)

	Exercises

	Graphics
	Graphics primitives
	Symbols (points)
	Line segments
	Polygons
	Text
	Raster images (bitmaps) (*)

	Graphics settings
	Colours
	Plot margins and clipping regions
	User coordinates and axes
	Plot dimensions (*)
	Many figures on one page (subplots)
	Graphics devices

	Higher-level functions
	Scatter and function plots with plot.default and matplot
	Bar plots and histograms
	Box-and-whisker plots
	Contour plots and heat maps

	Exercises

	III Deepest
	Interfacing compiled code (**)
	C and C++ code in R
	Source files for compiled code in R packages
	R CMD SHLIB

	Handling basic types
	SEXPTYPEs
	Accessing elements in simple atomic vectors
	Representation of missing values
	Memory allocation
	Lists
	Character vectors and individual strings (*)
	Calling R functions from C (**)
	External pointers (**)

	Dealing with compound types
	Reading and setting attributes
	Factors
	Matrices
	Data frames

	Using existing function libraries
	Checking for user interrupts
	Generating pseudorandom numbers
	Mathematical functions from the R API
	Header files from other R packages (*)
	Specifying compiler and linker flags (**)

	Exercises

	Unevaluated expressions (*)
	Expressions at a glance
	Language objects
	Calls as combinations of expressions
	Browsing parse trees
	Manipulating calls

	Inspecting function definition and usage
	Getting the body and formal arguments
	Getting the expression passed as an actual argument
	Checking if an argument is missing
	Determining how a function was called

	Exercises

	Environments and evaluation (*)
	Frames: Environments as object containers
	Printing
	Environments vs named lists
	Hash maps: Fast element lookup by name
	Call by value, copy on demand: Not for environments
	A note on reference classes (**)

	The environment model of evaluation
	Getting the current environment
	Enclosures, enclosures thereof, etc.
	Missing names are sought in enclosing environments
	Looking for functions
	Inspecting the search path
	Attaching to and detaching from the search path
	Masking (shadowing) objects from down under

	Closures
	Local environment
	Lexical scope and function closures
	Application: Function factories
	Accessing the calling environment
	Package namespaces (*)
	S3 method lookup by UseMethod (*)

	Exercises

	Lazy evaluation (**)
	Evaluation of function arguments
	Evaluation of default arguments
	Ellipsis revisited
	on.exit (*)
	Metaprogramming and laziness in action: Examples (*)
	match.arg
	curve
	with and within
	transform
	subset
	Forward pipe operator
	Other ideas (**)

	Processing formulae, `~` (*)
	Exercises
	Outro

	Changelog
	References

