
ar
X

iv
:2

30
5.

00
49

2v
3 

 [
cs

.A
R

] 
 1

5 
M

ay
 2

02
3

Invited: Accelerating Genome Analysis

via Algorithm-Architecture Co-Design
Onur Mutlu Can Firtina

ETH Zürich

High-throughput sequencing (HTS) technologies have revolu-

tionized the field of genomics, enabling rapid and cost-effective

genome analysis for various applications. However, the increas-

ing volume of genomic data generated by HTS technologies

presents significant challenges for computational techniques to

effectively analyze genomes. To address these challenges, sev-

eral algorithm-architecture co-design works have been proposed,

targeting different steps of the genome analysis pipeline. These

works explore emerging technologies to provide fast, accurate,

and low-power genome analysis.

This paper provides a brief review of the recent advancements

in accelerating genome analysis, covering the opportunities and

challenges associated with the acceleration of the key steps of

the genome analysis pipeline. Our analysis highlights the im-

portance of integrating multiple steps of genome analysis us-

ing suitable architectures to unlock significant performance im-

provements and reduce data movement and energy consump-

tion. We conclude by emphasizing the need for novel strategies

and techniques to address the growing demands of genomic data

generation and analysis.

1. Introduction
Genome analysis plays a crucial role in various fields such
as personalized medicine [1], agriculture [2], evolutionary
biology [3], pharmacogenomics [4], infectious disease con-
trol [5,6], cancer research [7] andmicrobiome studies [8]. The
advent of high-throughput sequencing (HTS) technologies,
such as sequencing-by-synthesis (SBS) [9], Single Molecule
Real-Time (SMRT) [10], and nanopore sequencing [11–13],
has revolutionized genome analysis, enabling faster and more
cost-effective sequencing of genomes by generating a large
amount of genomic data at relatively low cost [14]. However,
the analysis of genomic data is challenging due to a variety
of reasons: 1) HTS technologies can only sequence relatively
short fragments of genomes, called reads, whose locations in
the entire genome are unknown, 2) these reads can contain se-
quencing errors [14,15], leading to differences from their orig-
inal sequences, 3) the sequenced genome may not (and usu-
ally does not) exactly match recorded genomes in a reference
database, known as reference genomes, due to variations be-
tween individuals within and across species. Despite signifi-
cant improvements in computational tools since the 1980s [16]
to overcome such challenges, the rapid growth in genomic
data [17] has led to ever larger computational overheads in
the genome analysis pipeline, posing large challenges for effi-
cient and timely analysis of genomes [18, 19].
A genome analysis pipeline consists of multiple key steps,

each of which affects the accuracy, speed, and energy con-
sumption of genome analysis. First, basecalling translates the
raw sequencing data that HTS generates (e.g., measured elec-

trical signals in nanopore sequencing) into sequences of ge-
nomic characters (e.g., A, C, G, and Ts in DNA). Basecall-
ing is time-consuming because it relies heavily on compute-
intensive approaches that process large chunks of noisy and
error-prone raw data to accurately infer the actual nucleotide
sequences [13, 19–24]. Second, real-time analysis of raw se-

quencing data [5, 25–34] aims to analyze the reads simultane-
ously while the read is being sequenced using a particular se-
quencing technology (e.g., nanopore sequencing). Although
real-time analysis of raw sequencing data provides enormous
advantages in significantly reducing the overall genome anal-
ysis time and cost [25], it introduces unique challenges as the
analysis needs to match stringent throughput and latency re-
quirements to satisfy real-time requirements [34]. Third, read
mapping aims to find similarities and differences between ge-
nomic sequences (e.g., between sequenced reads and reference
genomes of one or more species). Read mapping includes sev-
eral steps such as sketching [35–40], seeding [41–49], and
alignment [50–55], which demand considerable processing
power and memory due to the large scale of genomic se-
quences [16, 56, 57]. Fourth, subsequent steps of the genome
analysis (i.e., downstream analysis) use the output generated
in the read mapping step. An example of such downstream
analysis is known as variant calling [58–64], which aims to
identify genetic differences, known as variants, between an
individual’s genome and a reference genome. Variant call-
ing is often followed by additional steps, such as gene anno-
tation [65–69] and enrichment analysis [70–73]. These steps
aim to generate insights from the identified variants and de-
termine if these variants show an unexpectedly high or low
statistical correlation with specific functional behavior (e.g.,
association with a disease) that can be used in a clinical re-
port [74].

Many pure algorithmic and software techniques aim to
address the computational challenges in the genome anal-
ysis pipeline. These works improve the performance and
accuracy of the computational tools by 1) reducing overall
computational and space complexity [55, 75], 2) eliminating
useless work [38, 43–45, 56, 57, 76–78], 3) optimizing data
structures and memory access patterns [79–81], 4) exploit-
ing parallelism in multi-core, many-core, and SIMD architec-
tures [38,44,77,78,82–86], and 5) employing machine learning
techniques [15,64,77,78]. These works fall short on greatly im-
proving performance and energy consumption due to at least
threemajor reasons. First, many of these approaches incur sig-
nificant data movement between computation units and mem-
ory units [18,87]. Second, a large portion of the data becomes
useless in downstream genome analysis [88], and performing
computation on it wastes time and energy. Third, HTS tech-

1

http://arxiv.org/abs/2305.00492v3


nologies produce sequencing data at an increasingly high rate,
which makes it challenging to keep up with the throughput of
these sequencing technologies, especially in time-critical sce-
narios [18, 34].

Since software techniques alone are not effective enough
at coping with huge amounts of genomic data and the strin-
gent requirements of genome analysis, it is critical to de-
sign software-hardware cooperative techniques to accelerate
genome analysis. To this end, several works co-design algo-
rithms and architectures to substantially improve the perfor-
mance and energy efficiency of the genome analysis pipeline.
These works 1) reduce data movement overheads by employ-
ing processing in memory (PIM) [2, 89–106], or processing
near storage (e.g., solid-state drives) [87] and 2) efficiently
co-design and execute computationally complex algorithms
with massive parallelism and efficient hardware design us-
ing specialized architectures, e.g., field programmable gate
arrays (FPGAs) and application-specific integrated circuits
(ASICs) [31, 46, 48, 49, 54, 84, 107–123]

In this paper (and the associated invited talk), we review
the recent advancements in accelerating genome analysis via
algorithm-architecture co-design and discuss emerging chal-
lenges that highlight the need for new acceleration techniques.
We aim to provide a brief yet comprehensive overview of the
current state of the field and inspire future research directions
to further improve the efficiency of genome analysis and hope-
fully enable new use cases and computing platforms.

2. Accelerating Basecalling
HTS technologies produce raw sequencing data, the content
of which depends on the type of sequencing technology em-
ployed. There are three main types of sequencing technolo-
gies: sequencing by synthesis (SBS) [9], Single Molecule Real-
Time (SMRT) [10], and nanopore sequencing [11]. SBS gen-
erates images where the color intensity at a particular posi-
tion of an image represents the base of the read. Basecalling
after SBS aims to accurately associate these colors with their
corresponding bases while correcting sequencing errors [124].
SMRT sequencing generates continuous images in amovie for-
mat by sequencing the same read multiple times via a strat-
egy known as circular consensus sequencing (CCS) [125]. Al-
though these images can be quickly converted to their cor-
responding bases, the high noise associated with SMRT se-
quencing requires additional steps to correct sequencing er-
rors [125]. These techniques include alignment [47], con-
sensus assembly construction [125], and polishing [15, 126].
Nanopore sequencing generates raw electrical signals as DNA
or RNA molecules pass through tiny pores (i.e., nanoscale
holes) called nanopores [11]. Changes in ionic current, mea-
sured as nucleotides pass through, are sampled in real-time
and used to perform 1) basecalling and 2) real-time genome
analysis.

Recent basecalling works [22,24,77,78,127–132] especially
focus on basecalling raw nanopore signals due to two ma-
jor reasons. First, the measured signal represents a combi-
nation of multiple nucleotides passing through the nanopore,

making the basecalling task more challenging compared to
the relatively simpler and more direct signal-to-base conver-
sion in SBS and SMRT sequencing methods [19, 78]. Second,
nanopore sequencing provides unique opportunities for real-
time genome analysis that can be used to reduce the time and
cost of sequence analysis [19, 34], as we discuss in §3.

Basecalling techniques developed for nanopore sequenc-
ing mainly use deep neural networks (DNNs) [78] to achieve
high accuracy. However, these methods are computation-
ally expensive to train and use with large amounts of raw
electrical signal data [88]. To address this issue, several
algorithm-architecture co-design works have been proposed.
First, some works accelerate the execution of DNN opera-
tions using graphics processing units (GPUs) [22,24,127–132].
GPUs can substantially improve basecaller performance by
providing massive parallelism for performing matrix multipli-
cations in DNNs. Second, RUBICON [78] and TargetCall [77]
reduce unnecessary computations in GPU-based basecallers
by 1) reducing the DNN parameters and precision [78] or 2) in-
troducing pre-basecalling filters [77]. Third, several works use
processing-in-memory (PIM) [88, 96, 133], or FPGAs [119] to
accelerate basecalling and reduce power consumption. A re-
cent work that uses PIM, GenPIP [88], shows that a significant
portion of useless data can propagate to downstream analysis,
causing unnecessary data movement, compute cycles, and en-
ergy consumption. To eliminate such useless operations, Gen-
PIP combines both basecalling and read mapping in PIM to
quickly identify unnecessary reads without fully basecalling
them, thereby reducing both data movement overheads and
overall execution time spent in basecalling and read mapping.

We believe that integrating multiple steps of genome analy-
sis using suitable architectures, such as PIM, can unlock signif-
icant opportunities for 1) reducing data movement overheads,
2) eliminating useless basecalling, and 3) avoiding useless data
movement and computation in downstream analysis. These
approaches have the potential to substantially enhance the
performance and energy efficiency of the entire genome anal-
ysis pipeline.

3. Accelerating Real-Time Genome Analysis

Real-time genome analysis aims to perform the steps in the
genome analysis pipeline (e.g., read mapping) while the raw
sequencing data is generated [25,34]. The main challenges of
real-time genome analysis are to 1) match the throughput at
which the raw sequencing data is generated, 2) tolerate the
noise in the raw sequencing data to provide accurate results,
and 3) meet the latency and energy consumption require-
ments of target applications. Among the HTS technologies,
nanopore sequencing is uniquely suited for real-time genome
analysis due to its ability to eject reads from nanopores with-
out fully sequencing them, known as adaptive sampling or

Read Until [25]. This feature can significantly reduce the over-
all sequencing time and cost and reduce the latency of genome
analysis by 1) avoiding full sequencing of reads that will be
useless in downstream analysis and 2) overlapping the latency
of sequencing with steps in downstream analysis.

2



To enable real-time genome analysis, several works pro-
pose pure algorithmic techniques or algorithm-hardware co-
design solutions. First, ReadFish [29], ReadBouncer [134], and
RUBRIC [26] use costly basecalling mechanisms for adaptive
sampling. These techniques require costly and energy-hungry
computational resources. Such a requirement may cause prac-
tical challenges in 1) scaling genome analysis to lower en-
ergy and cost levels and 2) performing in-the-field sequencing
using mobile sequencing devices such as ONT MinION [34].
Second, many works such as UNCALLED [27], Sigmap [28],
and RawHash [34] use efficient techniques to utilize adap-
tive sampling in low-power devices with usually lower accu-
racy than the basecalling mechanisms. Among these works,
RawHash can provide high accuracy for large genomes with
an efficient and accurate hash-based similarity identification
technique. Third, several algorithm-architecture co-designs
use FPGAs [31] or ASICs [121] to provide fast, accurate, and
low-power real-time genome analysis. However, these works
are applicable only to small genomes, such as viral genomes,
as their algorithm designs lack efficient scalability to larger
genomes.

We believe that achieving accurate and real-time genome
analysis still requires substantial developments in both effi-
cient algorithms and architecture. This can be achieved by
1) designing efficient software that can be used in low-power
devices for adaptive sampling and real-time genome analy-
sis, 2) new techniques for genome analysis that do not re-
quire translating the raw sequencing data to nucleotide bases,
and 3) combining and parallelizing several steps in real-time
genome analysis using efficient algorithm-architecture co-
designs to minimize the latency (and energy) of time-critical
genomics applications.

4. Accelerating Read Mapping

The goal of read mapping is to identify similarities and dif-
ferences between genomic sequences, such as between a read
and a representative sequence of a species, known as a ref-

erence genome. Due to genomic variants and sequencing er-
rors, differences and similarities between these sequences (i.e.,
matches, substitutions, insertions, and deletions) are identi-
fied using an approximate string matching (ASM) algorithm
to generate an alignment score that quantifies the degree of
similarity between a pair of sequences. This process is known
as sequence alignment. A pair of sequences is said to be
aligned when their alignment score shows a sufficiently high
degree of similarity. However, ASM algorithms often have
quadratic time and space complexity, making them computa-
tionally challenging for both long genomic sequences and a
large number of sequence pairs. To ease the identification of
similarities within vast amounts of sequencing data, readmap-
ping includes multiple steps, such as: 1) sketching [35–40],
2) indexing and seeding [41–45, 47], 3) pre-alignment filter-
ing [46, 48, 49, 76, 90, 135], and 4) sequence alignment (i.e.,
ASM) [50–55].

Since read mapping is a crucial and computationally ex-
pensive step in many genome analysis pipelines, numerous

works focus on accelerating it in various ways. First, a signif-
icant fraction of sequence pairs do not align, which leads to
wasted computation and energy during alignment [90]. To
avoid this useless computation, several works propose pre-

alignment filtering, another step in read mapping that can
efficiently detect and eliminate highly dissimilar sequence
pairs without using alignment. Most pre-alignment filtering
works [46, 48, 49, 76, 90, 135] provide algorithm-architecture
co-design using FPGAs, GPUs, and PIM to substantially accel-
erate the entire read mapping process by exploiting massive
parallelism, efficient bitwise operations, and specialized hard-
ware logic for detecting similarities among a large number of
sequences.

Second, GenStore [87] observes that a large amount of se-
quencing data unnecessarily moves from the solid-state drive
(SSD) to memory during read mapping, significantly increas-
ing latency and energy consumption. To eliminate this waste-
ful data movement, GenStore uses specialized logic within the
SSD to identify two sets of reads: 1) reads that do not align due
to high dissimilarity with the reference genome, and 2) reads
that align by exactly matching the reference genome. Such
reads are processed in the storage system and not moved to
main memory or the CPU, thereby eliminating unnecessary
data movement in the system.

Third, numerous studies, including GenASM [54] and
Darwin [117], focus on accelerating the underlying ASM
algorithm employed in sequence alignment through effi-
cient algorithm-architecture co-design. They do so by ex-
ploiting systolic arrays [115], GPUs [86], FPGAs [115, 118,
120], ASICs [116], high-bandwidth memory (HBM) [123],
and PIM [89, 97, 105, 106]. These works provide substantial
speedups of up to several orders of magnitude compared to
software baselines. Among these works, SeGraM [123] is the
first to accelerate aligning sequences to graphs that are used
to reduce population bias and improve genome analysis ac-
curacy by representing a large population (instead of a few
individuals) within a single reference genome.

Despite recent advancements, readmapping remains a com-
putational bottleneck in genome analysis [18, 19]. This is pri-
marily due to the vast amount of sequencing data generated at
an ever-increasing rate by sequencing machines, which puts
significant pressure on the mapping step due to numerous un-
necessary calculations between dissimilar pairs of sequences.
Avoiding wasteful 1) data movement, 2) computation, and
3) memory space usage using efficient algorithm-architecture
co-design is critical for minimizing the high energy, time, and
storage costs associated with read mapping and the entire
genome analysis pipeline.

5. Accelerating Variant Calling
The objective of variant calling is to identify genomic
variants between an individual’s genome and a reference
genome [58–64]. These variants are mainly categorized
as single-nucleotide polymorphisms (SNPs), insertions, dele-
tions, and larger structural variations (SVs). Accurate and effi-
cient detection of these variants is vital for understanding of

3



the genetic basis of diseases [7], population genetics [63], evo-
lutionary studies [3], personalized medicine [136] and phar-
macogenomics [137].

Variant calling involves processing the read mapping out-
put and detecting variants. First, read mapping output is pro-
cessed by sorting and optionally identifying duplicate infor-
mation to minimize bias introduced during the polymerase

chain reaction (PCR) step of sample preparation [138]. Sec-
ond, mapped reads are analyzed to distinguish genuine vari-
ants from sequencing errors or misalignments using resource-
intensive statistical techniques [59,61,63] or machine learning
techniques [64].

Variant callers like GATK HaplotypeCaller [63] use costly
probabilistic calculations to analyze the likelihood of specific
variants in large sequencing datasets. DeepVariant [64], a
DNN-based variant caller, processes read alignment informa-
tion as images, demanding substantial GPU resources and
memory. Reducing computational requirements through algo-
rithmic optimizations, parallelization, and efficient data repre-
sentation is crucial for faster, more accurate genetic variant
analyses.

To accelerate variant calling, several works propose
algorithm-architecture co-designs. These include fast execu-
tion of Pair Hidden Markov Models (Pair HMMs) in FPGAs
or ASICs [139, 140], reducing data movement overheads in
GPUs [141], and pipelining processing steps with tools like
elPrep [142] and system-on-chip designs [143].

Although several works focus on accelerating variant call-
ing, there is an urgent need for further acceleration, e.g., for
DNN-based variant callers that can provide highly accurate
results while bypassing certain processing steps, potentially
accelerating the entire genome analysis pipeline.

5.1. Analysis of Variants

Following variant calling, it is critical to analyze the identi-
fied variants to understand their functional impact on the or-
ganism and their role in diseases, population genetics, or evo-
lution. This analysis involves gene annotation [65–69] and
enrichment analysis [70–73]. Gene annotation provides rel-
evant information about variants, while enrichment analysis
tools identify associations with biological processes, molecu-
lar functions, or cellular components. Although these tools
need to handle large volumes of data, there is, to our knowl-
edge, little work on accelerating these steps in the genome
analysis pipeline. We believe these steps are critical for accel-
eration using hardware-software co-design.

6. Conclusion and Future Outlook
Rapid advancements in genomic sequencing technologies
have led to an exponential increase in generated genomic data.
As data generation continues to grow, data movement bot-
tlenecks will increasingly impact performance and waste en-
ergy [144, 145]. Future research in genome analysis accelera-
tion should focus on at least three main directions. First, ad-
dressing data movement and storage challenges is crucial for
reducing energy consumption and improving performance.
Second, integrating and pipelining multiple genome analy-

sis steps using hardware-software co-design can enhance effi-
ciency by reducing both useless computation and data move-
ment. Third, significant potential exists in enabling accurate
and fast real-time genome analysis by co-developing efficient
algorithms together with specialized hardware, resulting in
low-power, high-performance and cost-effective (portable) se-
quencing with low latency.

Acknowledgments
We thank all members of the SAFARI Research Group for the
stimulating and scholarly intellectual environment they pro-
vide. We acknowledge the generous gift funding provided by
our industrial partners (especially by Google, Huawei, Intel,
Microsoft, VMware). This work was in part supported by the
Semiconductor Research Corporation (SRC) and BioPIM.

References
[1]A. Pickar-Oliver and C. A. Gersbach, “The next generation of CRISPR–Cas tech-

nologies and applications,” Nat. Rev. Mol. Cell Biol., 2019.
[2] T. Shahroodi et al., “Demeter: A Fast and Energy-Efficient Food Profiler Using Hy-

perdimensional Computing in Memory,” IEEE Access, 2022.
[3]M. Kanehisa, “Toward understanding the origin and evolution of cellular organ-

isms,” Protein Science, 2019.
[4] S. Morganti et al., “Next Generation Sequencing (NGS): A Revolutionary Technol-

ogy in Pharmacogenomics and Personalized Medicine in Cancer,” in Adv. Exp. Med.
Biol., Cham, 2019.

[5] T. Dunn et al., “SquiggleFilter: An Accelerator for Portable Virus Detection,” in
MICRO, 2021.

[6]M. Alser et al., “COVIDHunter: COVID-19 Pandemic Wave Prediction and Mitiga-
tion via Seasonality Aware Modeling,” Front. Public Health, 2022.

[7]M. S. Lawrence et al., “Mutational heterogeneity in cancer and the search for new
cancer-associated genes,” Nature, 2013.

[8] J. S. Johnson et al., “Evaluation of 16S rRNA gene sequencing for species and strain-
level microbiome analysis,” Nat. Comm., 2019.

[9]D. R. Bentley et al., “Accurate whole human genome sequencing using reversible
terminator chemistry,” Nature, 2008.

[10] J. Eid et al., “Real-Time DNA Sequencing from Single Polymerase Molecules,” Sci-
ence, 2009.

[11]D. Branton et al., “The potential and challenges of nanopore sequencing,” Nat.
Biotech., 2008.

[12]D. Deamer et al., “Three decades of nanopore sequencing,” Nat. Biotech., 2016.
[13]D. Senol et al., “Nanopore Sequencing Technology and Tools for Genome Assembly:

Computational Analysis of the Current State, Bottlenecks and Future Directions,”
in BIB, 2018.

[14] J. Shendure et al., “DNA sequencing at 40: past, present and future,” Nature, 2017.
[15] C. Firtina et al., “Apollo: a sequencing-technology-independent, scalable and accu-

rate assembly polishing algorithm,” Bioinform., 2020.
[16]M. Alser et al., “Technology dictates algorithms: recent developments in read align-

ment,” Genome Biol., 2021.
[17] Z. D. Stephens et al., “Big Data: Astronomical or Genomical?” PLOS Biology, 2015.
[18]M. Alser et al., “Accelerating Genome Analysis: A Primer on an Ongoing Journey,”

IEEE Micro, 2020.
[19]M.Alser et al., “FromMolecules toGenomic Variations: Accelerating GenomeAnal-

ysis via Intelligent Algorithms and Architectures,” CSBJ, 2022.
[20] R. F. Purnell et al., “Nucleotide Identification and Orientation Discrimination of

DNA Homopolymers Immobilized in a Protein Nanopore,” Nano Letters, 2008.
[21]W. Timp et al., “DNA Base-Calling from a Nanopore Using a Viterbi Algorithm,”

Biophysical Journal, 2012.
[22] V. Boža et al., “DeepNano: Deep recurrent neural networks for base calling in Min-

ION nanopore reads,” PLOS One, 2017.
[23] F. J. Rang et al., “From squiggle to basepair: computational approaches for improv-

ing nanopore sequencing read accuracy,” Genome Biol., 2018.
[24] Z. Xu et al., “Fast-bonito: A faster deep learning based basecaller for nanopore

sequencing,” Artificial Intelligence in the Life Sciences, 2021.
[25]M. Loose et al., “Real-time selective sequencing using nanopore technology,” Nat.

Methods, 2016.
[26]H. S. Edwards et al., “Real-Time Selective Sequencing with RUBRIC: Read Until

with Basecall and Reference-Informed Criteria,” Scientific Reports, 2019.
[27] S. Kovaka et al., “Targeted nanopore sequencing by real-time mapping of raw elec-

trical signal with UNCALLED,” Nat. Biotech., 2021.
[28]H. Zhang et al., “Real-time mapping of nanopore raw signals,” Bioinform., 2021.
[29]A. Payne et al., “Readfish enables targeted nanopore sequencing of gigabase-sized

genomes,” Nat. Biotech., 2021.
[30] Y. Bao et al., “SquiggleNet: real-time, direct classification of nanopore signals,”

Genome Biol., 2021.
[31] P. J. Shih et al., “Efficient real-time selective genome sequencing on resource-

constrained devices,” arXiv, 2022.

4



[32]H. Sadasivan et al., “Rapid Real-time Squiggle Classification for Read Until Using
RawMap,” Arch. Clin. Biomed. Res., 2023.

[33]A. Senanayake et al., “DeepSelectNet: deep neural network based selective sequenc-
ing for oxford nanopore sequencing,” BMC Bioinform., 2023.

[34] C. Firtina et al., “RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw
Nanopore Signals for Large Genomes,” in ISMB, 2023.

[35] S. Schleimer et al., “Winnowing: Local Algorithms for Document Fingerprinting,”
in SIGMOD, New York, NY, USA, 2003.

[36]M. Roberts et al., “Reducing storage requirements for biological sequence compar-
ison,” Bioinform., 2004.

[37]H. Li, “Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences,” Bioinform., 2016.

[38] C. Firtina et al., “BLEND: a fast, memory-efficient and accurate mechanism to find
fuzzy seed matches in genome analysis,” NARGAB, 2023.

[39]D. N. Baker and B. Langmead, “Dashing 2: genomic sketching with multiplicities
and locality-sensitive hashing,” bioRxiv, 2023.

[40]A. Joudaki et al., “Aligning distant sequences to graphs using long seed sketches,”
Genome Res., 2023.

[41] S. F. Altschul et al., “Basic local alignment search tool,” JMB, 1990.
[42] B. Langmead et al., “Ultrafast and memory-efficient alignment of short DNA se-

quences to the human genome,” Genome Biol., 2009.
[43]H. Xin et al., “Accelerating read mapping with FastHASH,” BMC Genom., 2013.
[44]H. Xin et al., “Shifted Hamming distance: a fast and accurate SIMD-friendly filter

to accelerate alignment verification in read mapping,” Bioinform., 2015.
[45]H. Xin et al., “Optimal seed solver: optimizing seed selection in read mapping,”

Bioinform., 2016.
[46]M. Alser et al., “GateKeeper: a new hardware architecture for accelerating pre-

alignment in DNA short read mapping,” Bioinform., 2017.
[47]H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinform., 2018.
[48]M. Alser et al., “Shouji: a fast and efficient pre-alignment filter for sequence align-

ment,” Bioinform., 2019.
[49]M. Alser et al., “SneakySnake: a fast and accurate universal genome pre-alignment

filter for CPUs, GPUs and FPGAs,” Bioinform., 2020.
[50] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” JMB, 1970.
[51] T. Smith and M. Waterman, “Identification of common molecular subsequences,”

JMB, 1981.
[52] R. Baeza-Yates and G. H. Gonnet, “A New Approach to Text Searching,” Commun.

ACM, 1992.
[53]G. Myers, “A Fast Bit-Vector Algorithm for Approximate String Matching Based on

Dynamic Programming,” J. ACM, 1999.
[54]D. Senol Cali et al., “GenASM: A High-Performance, Low-Power Approximate

String Matching Acceleration Framework for Genome Sequence Analysis,” in MI-
CRO, 2020.

[55] S. Marco-Sola et al., “Fast gap-affine pairwise alignment using the wavefront algo-
rithm,” Bioinform., 2021.

[56] J. S. Kim et al., “AirLift: A Fast and Comprehensive Technique for Remapping Align-
ments between Reference Genomes,” in APBC, 2023.

[57] J. S. Kim et al., “FastRemap: A Tool for Quickly Remapping Reads between Genome
Assemblies,” Bioinform., 2022.

[58] P.-Y. Kwok et al., “Comparative Analysis of Human DNA Variations by
Fluorescence-Based Sequencing of PCR Products,” Genomics, 1994.

[59]D. A. Nickerson et al., “PolyPhred: automating the detection and genotyping of
single nucleotide substitutions using fluorescence-based resequencing,” NAR, 1997.

[60]G. T. Marth et al., “A general approach to single-nucleotide polymorphism discov-
ery,” Nat. Genetics, 1999.

[61] S. Weckx et al., “novoSNP, a novel computational tool for sequence variation dis-
covery,” Genome Res., 2005.

[62]H. Li et al., “Mapping short DNA sequencing reads and calling variants using map-
ping quality scores,” Genome Res., 2008.

[63] R. Poplin et al., “Scaling accurate genetic variant discovery to tens of thousands of
samples,” bioRxiv, 2018.

[64] R. Poplin et al., “A universal SNP and small-indel variant caller using deep neural
networks,” Nat. Biotech., 2018.

[65] R. Guigó et al., “Prediction of gene structure,” JMB, 1992.
[66]M. Borodovsky et al., “Detection of new genes in a bacterial genome using Markov

models for three gene classes,” NAR, 1995.
[67] C. Burge and S. Karlin, “Prediction of complete gene structures in human genomic

DNA11Edited by F. E. Cohen,” JMB, 1997.
[68] S. Li et al., “Snap: an integrated SNP annotation platform,” NAR, 2007.
[69] K. Wang et al., “ANNOVAR: functional annotation of genetic variants from high-

throughput sequencing data,” NAR, 2010.
[70]M. Ashburner et al., “Gene Ontology: tool for the unification of biology,” Nat. Ge-

netics, 2000.
[71] S. W. Doniger et al., “MAPPFinder: using Gene Ontology and GenMAPP to create

a global gene-expression profile from microarray data,” Genome Biol., 2003.
[72]A. Subramanian et al., “Gene set enrichment analysis: A knowledge-based ap-

proach for interpreting genome-wide expression profiles,” PNAS, 2005.
[73] B. Otlu et al., “GLANET: genomic loci annotation and enrichment tool,” Bioinform.,

2017.
[74] L. G. Biesecker and R. C. Green, “Diagnostic Clinical Genome and Exome Sequenc-

ing,” NEJM, 2014.
[75] S. Marco-Sola et al., “Optimal gap-affine alignment in O(s) space,” Bioinform., 2023.

[76] Z. Bingöl et al., “GateKeeper-GPU: Fast and Accurate Pre-Alignment Filtering in
Short Read Mapping,” in IPDPSW, 2021.

[77]M. B. Cavlak et al., “TargetCall: Eliminating theWastedComputation in Basecalling
via Pre-Basecalling Filtering,” in APBC, 2023.

[78]G. Singh et al., “A Framework for Designing Efficient Deep Learning-Based Ge-
nomic Basecallers,” bioRxiv, 2022.

[79] F. Hach et al., “mrsFAST: a cache-oblivious algorithm for short-readmapping,” Nat.
Methods, 2010.

[80] T. Pan et al., “Kmerind: A Flexible Parallel Library for K-Mer Indexing of Biological
Sequences on Distributed Memory Systems,” in BCB, 2016.

[81]M. Ellis et al., “DiBELLA: Distributed Long Read to Long Read Alignment,” in ICPP,
2019.

[82] J. Daily, “Parasail: SIMD C library for global, semi-global, and local pairwise se-
quence alignments,” BMC Bioinform., 2016.

[83]M. Vasimuddin et al., “Efficient architecture-aware acceleration of BWA-MEM for
multicore systems,” in IPDPS, 2019.

[84]G. Singh et al., “FPGA-based Near-MemoryAcceleration of Modern Data-Intensive
Applications,” IEEE Micro, 2021.

[85] S. Kalikar et al., “Accelerating minimap2 for long-read sequencing applications on
modern CPUs,” Nat. Comput. Sci., 2022.

[86] J. Lindegger et al., “Scrooge: A Fast andMemory-FrugalGenomic Sequence Aligner
for CPUs, GPUs, and ASICs,” Bioinform., 2023.

[87]N. Mansouri Ghiasi et al., “GenStore: A High-Performance in-Storage Processing
System for Genome Sequence Analysis,” in ASPLOS, 2022.

[88]H. Mao et al., “GenPIP: In-Memory Acceleration of Genome Analysis via Tight
Integration of Basecalling and Read Mapping,” in MICRO, 2022.

[89] R. Kaplan et al., “A resistive CAM processing-in-storage architecture for DNA se-
quence alignment,” IEEE Micro, 2017.

[90] J. S. Kim et al., “GRIM-Filter: Fast seed location filtering in DNA read mapping
using processing-in-memory technologies,” BMC Genom., 2018.

[91] R. Kaplan et al., “RASSA: Resistive pre-alignment accelerator for approximate DNA
long read mapping,” IEEE Micro, 2018.

[92] S. Gupta et al., “RAPID: A reRAM processing in-memory architecture for DNA
sequence alignment,” in ISLPED, 2019.

[93] S. Angizi et al., “AlignS: A processing-in-memory accelerator for DNA short read
alignment leveraging SOT-MRAM,” in DAC, 2019.

[94] S. Ghose et al., “The Processing-in-Memory Paradigm: Mechanisms to Enable
Adoption,” in Beyond-CMOS Technologies for Next Generation Computer Design,
2019.

[95] S. Angizi et al., “Exploring DNA alignment-in-memory leveraging emerging SOT-
MRAM,” in GLSVLSI, 2020.

[96]Q. Lou et al., “Helix: Algorithm/architecture co-design for accelerating nanopore
genome base-calling,” in PACT, 2020.

[97] F. Chen et al., “PARC: A processing-in-CAM architecture for genomic long read
pairwise alignment using ReRAM,” in ASP-DAC, 2020.

[98] Z. I. Chowdhury et al., “A DNA read alignment accelerator based on computational
RAM,” JXCDC, 2020.

[99] S. Angizi et al., “PIM-Aligner: A processing-in-MRAM platform for biological se-
quence alignment,” in DATE, 2020.

[100] R. Kaplan et al., “BioSEAL: In-memory biological sequence alignment accelerator
for large-scale genomic data,” in SYSTOR, 2020.

[101]A. F. Laguna et al., “Seed-and-Vote based in-memory accelerator for DNA readmap-
ping,” in ICCAD, 2020.

[102] S. K. Khatamifard et al., “GeNVoM: Read mapping near non-volatile memory,”
TCBB, 2021.

[103]M. Khalifa et al., “FiltPIM: In-memory filter for DNA sequencing,” in ICECS, 2021.
[104] X.-Q. Li et al., “PIM-Align: A processing-in-memory architecture for FM-Index

search algorithm,” JCST, 2021.
[105] S. Diab et al., “High-throughput PairwiseAlignment with theWavefrontAlgorithm

using Processing-in-Memory,” in IPDPSW, 2022.
[106] S. Diab et al., “A Framework for High-throughput Sequence Alignment using Real

Processing-in-Memory Systems,” arXiv, 2022.
[107]A. Madhavan et al., “Race Logic: A Hardware Acceleration for Dynamic Program-

ming Algorithms,” in ISCA, 2014.
[108] P. Chen et al., “Accelerating the next generation long readmapping with the FPGA-

based system,” TCBB, 2014.
[109]H. M. Waidyasooriya and M. Hariyama, “Hardware-acceleration of short-read

alignment based on the Burrows-wheeler transform,” TPDS, 2015.
[110] Y.-T. Chen et al., “A novel high-throughput acceleration engine for read alignment,”

in FCCM, 2015.
[111] Y.-T. Chen et al., “When Spark Meets FPGAs: A case study for next-generation

DNA sequencing acceleration,” in HotCloud, 2016.
[112]A. Goyal et al., “Ultra-fast Next Generation Human Genome Sequencing Data

Processing Using DRAGENTM Bio-IT Processor for Precision Medicine,” Open J.
Genet., 2017.

[113] S. S. Banerjee et al., “ASAP: Accelerated short-read alignment on programmable
hardware,” TC, 2019.

[114] E. Rucci et al., “SWIFOLD: Smith-Waterman implementation on FPGA with
OpenCL for long DNA sequences,” BMC Syst. Biol., 2018.

[115] X. Fei et al., “FPGASW: Accelerating large-scale Smith–Waterman sequence align-
ment application with backtracking on FPGA linear systolic array,” Interdiscip. Sci.,
2018.

[116]D. Fujiki et al., “Genax: A Genome Sequencing Accelerator,” in ISCA, 2018.

5



[117] Y. Turakhia et al., “Darwin: A Genomics Co-processor Provides up to 15,000 x Ac-
celeration on Long Read Assembly,” in ASPLOS, 2018.

[118]D. Fujiki et al., “SeedEx: A genome sequencing accelerator for optimal alignments
in subminimal space,” in MICRO, 2020.

[119] Z. Wu et al., “FPGA-accelerated 3rd generation DNA sequencing,” TBCS, 2020.
[120]A. Haghi et al., “An FPGA accelerator of the wavefront algorithm for genomics

pairwise alignment,” in FPL, 2021.
[121] T. Dunn et al., “SquiggleFilter: An accelerator for portable virus detection,” in MI-

CRO, 2021.
[122] C. Firtina et al., “ApHMM: A Profile Hidden Markov Model Acceleration Frame-

work for Genome Analysis,” arXiv, 2022.
[123]D. Senol Cali et al., “SeGraM: A Universal Hardware Accelerator for Genomic

Sequence-to-Graph and Sequence-to-Sequence Mapping,” in ISCA, 2022.
[124]A. Cacho et al., “A Comparison of Base-calling Algorithms for Illumina Sequencing

Technology,” Briefings Bioinform., 2016.
[125]A. M. Wenger et al., “Accurate circular consensus long-read sequencing improves

variant detection and assembly of a human genome,” Nat. Biotechnol., 2019.
[126] C.-S. Chin et al., “Nonhybrid, finished microbial genome assemblies from long-read

SMRT sequencing data,” Nat. Methods, 2013.
[127] X. Lv et al., “An end-to-end Oxford nanopore basecaller using convolution-

augmented transformer,” in BIBM, 2020.
[128] J. Zeng et al., “Causalcall: Nanopore basecalling using a temporal convolutional

network,” Frontiers in Genetics, 2020.
[129]H. Konishi et al., “Halcyon: an accurate basecaller exploiting an encoder-decoder

model with monotonic attention,” Bioinform., 2021.
[130] P. Perešíni et al., “Nanopore base calling on the edge,” Bioinform., 2021.
[131] Y.-M. Yeh and Y.-C. Lu, “MSRCall: A multi-scale deep neural network to basecall

Oxford nanopore sequences,” Bioinform., 2022.
[132]N.Huang et al., “SACall: A neural network basecaller for Oxford nanopore sequenc-

ing data based on self-attention mechanism,” TCBB, 2022.
[133]Q. Lou and L. Jiang, “Brawl: A spintronics-based portable basecalling-in-memory

architecture for nanopore genome sequencing,” CAL, 2018.
[134] J.-U. Ulrich et al., “ReadBouncer: precise and scalable adaptive sampling for

nanopore sequencing,” Bioinform., 2022.
[135]M. Alser et al., “MAGNET: Understanding and Improving the Accuracy of Genome

Pre-Alignment Filtering,” arXiv, 2017.
[136] Y. Dong et al., “Genome-Wide Off-Target Analysis in CRISPR-Cas9 Modified Mice

and Their Offspring,” G3, 2019.
[137] K. Sangkuhl et al., “Pharmacogenomics Clinical Annotation Tool (PharmCAT),”

Clin. Pharm. Therap., 2020.
[138] S. Zverinova and V. Guryev, “Variant calling: Considerations, practices, and devel-

opments,” Human Mutation, 2022.
[139] S. Ren et al., “FPGA acceleration of the pair-HMMs forward algorithm for DNA

sequence analysis,” in BIBM, 2015.
[140] X. Wu et al., “A High-Throughput Pruning-Based Pair-Hidden-Markov-Model

Hardware Accelerator for Next-Generation DNA Sequencing,” IEEE Solid-State Cir-
cuits Letters, 2021.

[141] E. Li et al., “Improved GPU Implementations of the Pair-HMM Forward Algorithm
for DNA Sequence Alignment,” in ICCD, 2021.

[142] C. Herzeel et al., “Multithreaded variant calling in elPrep 5,” PLOS ONE, 2021.
[143] Y.-C. Wu et al., “A 975-mW Fully Integrated Genetic Variant Discovery System-on-

Chip in 28 nm for Next-Generation Sequencing,” IEEE J. Solid-State Circuits, 2021.
[144]G. F. Oliveira et al., “DAMOV: A NewMethodology and Benchmark Suite for Eval-

uating Data Movement Bottlenecks,” IEEE Access, 2021.
[145]O. Mutlu et al., “A Modern Primer on Processing in Memory,” in Emerging Comput-

ing: From Devices to Systems: Looking Beyond Moore and Von Neumann, 2023.

6


	1 Introduction
	2 Accelerating Basecalling
	3 Accelerating Real-Time Genome Analysis
	4 Accelerating Read Mapping
	5 Accelerating Variant Calling
	5.1 Analysis of Variants

	6 Conclusion and Future Outlook

