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High-throughput sequencing (HTS) technologies have revolu-

tionized the field of genomics, enabling rapid and cost-effective

genome analysis for various applications. However, the increas-

ing volume of genomic data generated by HTS technologies

presents significant challenges for computational techniques to

effectively analyze genomes. To address these challenges, sev-

eral algorithm-architecture co-design works have been proposed,

targeting different steps of the genome analysis pipeline. These

works explore emerging technologies to provide fast, accurate,

and low-power genome analysis.

This paper provides a brief review of the recent advancements

in accelerating genome analysis, covering the opportunities and

challenges associated with the acceleration of the key steps of

the genome analysis pipeline. Our analysis highlights the im-

portance of integrating multiple steps of genome analysis us-

ing suitable architectures to unlock significant performance im-

provements and reduce data movement and energy consump-

tion. We conclude by emphasizing the need for novel strategies

and techniques to address the growing demands of genomic data

generation and analysis.

1. Introduction
Genome analysis plays a crucial role in various fields such
as personalized medicine [1], agriculture [2], evolutionary
biology [3], pharmacogenomics [4], infectious disease con-
trol [5,6], cancer research [7] andmicrobiome studies [8]. The
advent of high-throughput sequencing (HTS) technologies,
such as sequencing-by-synthesis (SBS) [9], Single Molecule
Real-Time (SMRT) [10], and nanopore sequencing [11–13],
has revolutionized genome analysis, enabling faster and more
cost-effective sequencing of genomes by generating a large
amount of genomic data at relatively low cost [14]. However,
the analysis of genomic data is challenging due to a variety
of reasons: 1) HTS technologies can only sequence relatively
short fragments of genomes, called reads, whose locations in
the entire genome are unknown, 2) these reads can contain se-
quencing errors [14,15], leading to differences from their orig-
inal sequences, 3) the sequenced genome may not (and usu-
ally does not) exactly match recorded genomes in a reference
database, known as reference genomes, due to variations be-
tween individuals within and across species. Despite signifi-
cant improvements in computational tools since the 1980s [16]
to overcome such challenges, the rapid growth in genomic
data [17] has led to ever larger computational overheads in
the genome analysis pipeline, posing large challenges for effi-
cient and timely analysis of genomes [18, 19].
A genome analysis pipeline consists of multiple key steps,

each of which affects the accuracy, speed, and energy con-
sumption of genome analysis. First, basecalling translates the
raw sequencing data that HTS generates (e.g., measured elec-

trical signals in nanopore sequencing) into sequences of ge-
nomic characters (e.g., A, C, G, and Ts in DNA). Basecall-
ing is time-consuming because it relies heavily on compute-
intensive approaches that process large chunks of noisy and
error-prone raw data to accurately infer the actual nucleotide
sequences [13, 19–24]. Second, real-time analysis of raw se-

quencing data [5, 25–34] aims to analyze the reads simultane-
ously while the read is being sequenced using a particular se-
quencing technology (e.g., nanopore sequencing). Although
real-time analysis of raw sequencing data provides enormous
advantages in significantly reducing the overall genome anal-
ysis time and cost [25], it introduces unique challenges as the
analysis needs to match stringent throughput and latency re-
quirements to satisfy real-time requirements [34]. Third, read
mapping aims to find similarities and differences between ge-
nomic sequences (e.g., between sequenced reads and reference
genomes of one or more species). Read mapping includes sev-
eral steps such as sketching [35–40], seeding [41–49], and
alignment [50–55], which demand considerable processing
power and memory due to the large scale of genomic se-
quences [16, 56, 57]. Fourth, subsequent steps of the genome
analysis (i.e., downstream analysis) use the output generated
in the read mapping step. An example of such downstream
analysis is known as variant calling [58–64], which aims to
identify genetic differences, known as variants, between an
individual’s genome and a reference genome. Variant call-
ing is often followed by additional steps, such as gene anno-
tation [65–69] and enrichment analysis [70–73]. These steps
aim to generate insights from the identified variants and de-
termine if these variants show an unexpectedly high or low
statistical correlation with specific functional behavior (e.g.,
association with a disease) that can be used in a clinical re-
port [74].

Many pure algorithmic and software techniques aim to
address the computational challenges in the genome anal-
ysis pipeline. These works improve the performance and
accuracy of the computational tools by 1) reducing overall
computational and space complexity [55, 75], 2) eliminating
useless work [38, 43–45, 56, 57, 76–78], 3) optimizing data
structures and memory access patterns [79–81], 4) exploit-
ing parallelism in multi-core, many-core, and SIMD architec-
tures [38,44,77,78,82–86], and 5) employing machine learning
techniques [15,64,77,78]. These works fall short on greatly im-
proving performance and energy consumption due to at least
threemajor reasons. First, many of these approaches incur sig-
nificant data movement between computation units and mem-
ory units [18,87]. Second, a large portion of the data becomes
useless in downstream genome analysis [88], and performing
computation on it wastes time and energy. Third, HTS tech-
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nologies produce sequencing data at an increasingly high rate,
which makes it challenging to keep up with the throughput of
these sequencing technologies, especially in time-critical sce-
narios [18, 34].

Since software techniques alone are not effective enough
at coping with huge amounts of genomic data and the strin-
gent requirements of genome analysis, it is critical to de-
sign software-hardware cooperative techniques to accelerate
genome analysis. To this end, several works co-design algo-
rithms and architectures to substantially improve the perfor-
mance and energy efficiency of the genome analysis pipeline.
These works 1) reduce data movement overheads by employ-
ing processing in memory (PIM) [2, 89–106], or processing
near storage (e.g., solid-state drives) [87] and 2) efficiently
co-design and execute computationally complex algorithms
with massive parallelism and efficient hardware design us-
ing specialized architectures, e.g., field programmable gate
arrays (FPGAs) and application-specific integrated circuits
(ASICs) [31, 46, 48, 49, 54, 84, 107–123]

In this paper (and the associated invited talk), we review
the recent advancements in accelerating genome analysis via
algorithm-architecture co-design and discuss emerging chal-
lenges that highlight the need for new acceleration techniques.
We aim to provide a brief yet comprehensive overview of the
current state of the field and inspire future research directions
to further improve the efficiency of genome analysis and hope-
fully enable new use cases and computing platforms.

2. Accelerating Basecalling
HTS technologies produce raw sequencing data, the content
of which depends on the type of sequencing technology em-
ployed. There are three main types of sequencing technolo-
gies: sequencing by synthesis (SBS) [9], Single Molecule Real-
Time (SMRT) [10], and nanopore sequencing [11]. SBS gen-
erates images where the color intensity at a particular posi-
tion of an image represents the base of the read. Basecalling
after SBS aims to accurately associate these colors with their
corresponding bases while correcting sequencing errors [124].
SMRT sequencing generates continuous images in amovie for-
mat by sequencing the same read multiple times via a strat-
egy known as circular consensus sequencing (CCS) [125]. Al-
though these images can be quickly converted to their cor-
responding bases, the high noise associated with SMRT se-
quencing requires additional steps to correct sequencing er-
rors [125]. These techniques include alignment [47], con-
sensus assembly construction [125], and polishing [15, 126].
Nanopore sequencing generates raw electrical signals as DNA
or RNA molecules pass through tiny pores (i.e., nanoscale
holes) called nanopores [11]. Changes in ionic current, mea-
sured as nucleotides pass through, are sampled in real-time
and used to perform 1) basecalling and 2) real-time genome
analysis.

Recent basecalling works [22,24,77,78,127–132] especially
focus on basecalling raw nanopore signals due to two ma-
jor reasons. First, the measured signal represents a combi-
nation of multiple nucleotides passing through the nanopore,

making the basecalling task more challenging compared to
the relatively simpler and more direct signal-to-base conver-
sion in SBS and SMRT sequencing methods [19, 78]. Second,
nanopore sequencing provides unique opportunities for real-
time genome analysis that can be used to reduce the time and
cost of sequence analysis [19, 34], as we discuss in §3.

Basecalling techniques developed for nanopore sequenc-
ing mainly use deep neural networks (DNNs) [78] to achieve
high accuracy. However, these methods are computation-
ally expensive to train and use with large amounts of raw
electrical signal data [88]. To address this issue, several
algorithm-architecture co-design works have been proposed.
First, some works accelerate the execution of DNN opera-
tions using graphics processing units (GPUs) [22,24,127–132].
GPUs can substantially improve basecaller performance by
providing massive parallelism for performing matrix multipli-
cations in DNNs. Second, RUBICON [78] and TargetCall [77]
reduce unnecessary computations in GPU-based basecallers
by 1) reducing the DNN parameters and precision [78] or 2) in-
troducing pre-basecalling filters [77]. Third, several works use
processing-in-memory (PIM) [88, 96, 133], or FPGAs [119] to
accelerate basecalling and reduce power consumption. A re-
cent work that uses PIM, GenPIP [88], shows that a significant
portion of useless data can propagate to downstream analysis,
causing unnecessary data movement, compute cycles, and en-
ergy consumption. To eliminate such useless operations, Gen-
PIP combines both basecalling and read mapping in PIM to
quickly identify unnecessary reads without fully basecalling
them, thereby reducing both data movement overheads and
overall execution time spent in basecalling and read mapping.

We believe that integrating multiple steps of genome analy-
sis using suitable architectures, such as PIM, can unlock signif-
icant opportunities for 1) reducing data movement overheads,
2) eliminating useless basecalling, and 3) avoiding useless data
movement and computation in downstream analysis. These
approaches have the potential to substantially enhance the
performance and energy efficiency of the entire genome anal-
ysis pipeline.

3. Accelerating Real-Time Genome Analysis

Real-time genome analysis aims to perform the steps in the
genome analysis pipeline (e.g., read mapping) while the raw
sequencing data is generated [25,34]. The main challenges of
real-time genome analysis are to 1) match the throughput at
which the raw sequencing data is generated, 2) tolerate the
noise in the raw sequencing data to provide accurate results,
and 3) meet the latency and energy consumption require-
ments of target applications. Among the HTS technologies,
nanopore sequencing is uniquely suited for real-time genome
analysis due to its ability to eject reads from nanopores with-
out fully sequencing them, known as adaptive sampling or

Read Until [25]. This feature can significantly reduce the over-
all sequencing time and cost and reduce the latency of genome
analysis by 1) avoiding full sequencing of reads that will be
useless in downstream analysis and 2) overlapping the latency
of sequencing with steps in downstream analysis.
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To enable real-time genome analysis, several works pro-
pose pure algorithmic techniques or algorithm-hardware co-
design solutions. First, ReadFish [29], ReadBouncer [134], and
RUBRIC [26] use costly basecalling mechanisms for adaptive
sampling. These techniques require costly and energy-hungry
computational resources. Such a requirement may cause prac-
tical challenges in 1) scaling genome analysis to lower en-
ergy and cost levels and 2) performing in-the-field sequencing
using mobile sequencing devices such as ONT MinION [34].
Second, many works such as UNCALLED [27], Sigmap [28],
and RawHash [34] use efficient techniques to utilize adap-
tive sampling in low-power devices with usually lower accu-
racy than the basecalling mechanisms. Among these works,
RawHash can provide high accuracy for large genomes with
an efficient and accurate hash-based similarity identification
technique. Third, several algorithm-architecture co-designs
use FPGAs [31] or ASICs [121] to provide fast, accurate, and
low-power real-time genome analysis. However, these works
are applicable only to small genomes, such as viral genomes,
as their algorithm designs lack efficient scalability to larger
genomes.

We believe that achieving accurate and real-time genome
analysis still requires substantial developments in both effi-
cient algorithms and architecture. This can be achieved by
1) designing efficient software that can be used in low-power
devices for adaptive sampling and real-time genome analy-
sis, 2) new techniques for genome analysis that do not re-
quire translating the raw sequencing data to nucleotide bases,
and 3) combining and parallelizing several steps in real-time
genome analysis using efficient algorithm-architecture co-
designs to minimize the latency (and energy) of time-critical
genomics applications.

4. Accelerating Read Mapping

The goal of read mapping is to identify similarities and dif-
ferences between genomic sequences, such as between a read
and a representative sequence of a species, known as a ref-

erence genome. Due to genomic variants and sequencing er-
rors, differences and similarities between these sequences (i.e.,
matches, substitutions, insertions, and deletions) are identi-
fied using an approximate string matching (ASM) algorithm
to generate an alignment score that quantifies the degree of
similarity between a pair of sequences. This process is known
as sequence alignment. A pair of sequences is said to be
aligned when their alignment score shows a sufficiently high
degree of similarity. However, ASM algorithms often have
quadratic time and space complexity, making them computa-
tionally challenging for both long genomic sequences and a
large number of sequence pairs. To ease the identification of
similarities within vast amounts of sequencing data, readmap-
ping includes multiple steps, such as: 1) sketching [35–40],
2) indexing and seeding [41–45, 47], 3) pre-alignment filter-
ing [46, 48, 49, 76, 90, 135], and 4) sequence alignment (i.e.,
ASM) [50–55].

Since read mapping is a crucial and computationally ex-
pensive step in many genome analysis pipelines, numerous

works focus on accelerating it in various ways. First, a signif-
icant fraction of sequence pairs do not align, which leads to
wasted computation and energy during alignment [90]. To
avoid this useless computation, several works propose pre-

alignment filtering, another step in read mapping that can
efficiently detect and eliminate highly dissimilar sequence
pairs without using alignment. Most pre-alignment filtering
works [46, 48, 49, 76, 90, 135] provide algorithm-architecture
co-design using FPGAs, GPUs, and PIM to substantially accel-
erate the entire read mapping process by exploiting massive
parallelism, efficient bitwise operations, and specialized hard-
ware logic for detecting similarities among a large number of
sequences.

Second, GenStore [87] observes that a large amount of se-
quencing data unnecessarily moves from the solid-state drive
(SSD) to memory during read mapping, significantly increas-
ing latency and energy consumption. To eliminate this waste-
ful data movement, GenStore uses specialized logic within the
SSD to identify two sets of reads: 1) reads that do not align due
to high dissimilarity with the reference genome, and 2) reads
that align by exactly matching the reference genome. Such
reads are processed in the storage system and not moved to
main memory or the CPU, thereby eliminating unnecessary
data movement in the system.

Third, numerous studies, including GenASM [54] and
Darwin [117], focus on accelerating the underlying ASM
algorithm employed in sequence alignment through effi-
cient algorithm-architecture co-design. They do so by ex-
ploiting systolic arrays [115], GPUs [86], FPGAs [115, 118,
120], ASICs [116], high-bandwidth memory (HBM) [123],
and PIM [89, 97, 105, 106]. These works provide substantial
speedups of up to several orders of magnitude compared to
software baselines. Among these works, SeGraM [123] is the
first to accelerate aligning sequences to graphs that are used
to reduce population bias and improve genome analysis ac-
curacy by representing a large population (instead of a few
individuals) within a single reference genome.

Despite recent advancements, readmapping remains a com-
putational bottleneck in genome analysis [18, 19]. This is pri-
marily due to the vast amount of sequencing data generated at
an ever-increasing rate by sequencing machines, which puts
significant pressure on the mapping step due to numerous un-
necessary calculations between dissimilar pairs of sequences.
Avoiding wasteful 1) data movement, 2) computation, and
3) memory space usage using efficient algorithm-architecture
co-design is critical for minimizing the high energy, time, and
storage costs associated with read mapping and the entire
genome analysis pipeline.

5. Accelerating Variant Calling
The objective of variant calling is to identify genomic
variants between an individual’s genome and a reference
genome [58–64]. These variants are mainly categorized
as single-nucleotide polymorphisms (SNPs), insertions, dele-
tions, and larger structural variations (SVs). Accurate and effi-
cient detection of these variants is vital for understanding of
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the genetic basis of diseases [7], population genetics [63], evo-
lutionary studies [3], personalized medicine [136] and phar-
macogenomics [137].

Variant calling involves processing the read mapping out-
put and detecting variants. First, read mapping output is pro-
cessed by sorting and optionally identifying duplicate infor-
mation to minimize bias introduced during the polymerase

chain reaction (PCR) step of sample preparation [138]. Sec-
ond, mapped reads are analyzed to distinguish genuine vari-
ants from sequencing errors or misalignments using resource-
intensive statistical techniques [59,61,63] or machine learning
techniques [64].

Variant callers like GATK HaplotypeCaller [63] use costly
probabilistic calculations to analyze the likelihood of specific
variants in large sequencing datasets. DeepVariant [64], a
DNN-based variant caller, processes read alignment informa-
tion as images, demanding substantial GPU resources and
memory. Reducing computational requirements through algo-
rithmic optimizations, parallelization, and efficient data repre-
sentation is crucial for faster, more accurate genetic variant
analyses.

To accelerate variant calling, several works propose
algorithm-architecture co-designs. These include fast execu-
tion of Pair Hidden Markov Models (Pair HMMs) in FPGAs
or ASICs [139, 140], reducing data movement overheads in
GPUs [141], and pipelining processing steps with tools like
elPrep [142] and system-on-chip designs [143].

Although several works focus on accelerating variant call-
ing, there is an urgent need for further acceleration, e.g., for
DNN-based variant callers that can provide highly accurate
results while bypassing certain processing steps, potentially
accelerating the entire genome analysis pipeline.

5.1. Analysis of Variants

Following variant calling, it is critical to analyze the identi-
fied variants to understand their functional impact on the or-
ganism and their role in diseases, population genetics, or evo-
lution. This analysis involves gene annotation [65–69] and
enrichment analysis [70–73]. Gene annotation provides rel-
evant information about variants, while enrichment analysis
tools identify associations with biological processes, molecu-
lar functions, or cellular components. Although these tools
need to handle large volumes of data, there is, to our knowl-
edge, little work on accelerating these steps in the genome
analysis pipeline. We believe these steps are critical for accel-
eration using hardware-software co-design.

6. Conclusion and Future Outlook
Rapid advancements in genomic sequencing technologies
have led to an exponential increase in generated genomic data.
As data generation continues to grow, data movement bot-
tlenecks will increasingly impact performance and waste en-
ergy [144, 145]. Future research in genome analysis accelera-
tion should focus on at least three main directions. First, ad-
dressing data movement and storage challenges is crucial for
reducing energy consumption and improving performance.
Second, integrating and pipelining multiple genome analy-

sis steps using hardware-software co-design can enhance effi-
ciency by reducing both useless computation and data move-
ment. Third, significant potential exists in enabling accurate
and fast real-time genome analysis by co-developing efficient
algorithms together with specialized hardware, resulting in
low-power, high-performance and cost-effective (portable) se-
quencing with low latency.
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