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Abstract

Motivation: Sequence alignment is a memory bound computation whose performance in modern systems is limited
by the memory bandwidth bottleneck. Processing-in-memory (PIM) architectures alleviate this bottleneck by provid-
ing the memory with computing competencies. We propose Alignment-in-Memory (AIM), a framework for high-
throughput sequence alignment using PIM, and evaluate it on UPMEM, the first publicly available general-purpose
programmable PIM system.

Results: Our evaluation shows that a real PIM system can substantially outperform server-grade multi-threaded
CPU systems running at full-scale when performing sequence alignment for a variety of algorithms, read lengths,
and edit distance thresholds. We hope that our findings inspire more work on creating and accelerating bioinformat-
ics algorithms for such real PIM systems.

Availability and implementation: Our code is available at https://github.com/safaad/aim.

1 Introduction

One of the most fundamental computational steps in most genomic anal-
yses is sequence alignment. This step is formulated as an approximate
string matching (ASM) problem (Navarro 2001), which typically uses a
dynamic programming (DP) algorithm to optimally calculate the type,
location, and number of differences in one of the two given genomic
sequences. Such sequence alignment information is typically needed for
DNA sequence alignment, gene expression analysis, taxonomy profiling
of a multi-species metagenomic sample, rapid surveillance of disease out-
breaks, and many other important genomic applications.

DP-based alignment algorithms, such as Needleman–Wunsch
(NW) (Needleman and Wunsch 1970) and Smith–Waterman–Gotoh
(SWG) (Gotoh 1982), are computationally expensive as they have
quadratic time and space complexity (i.e. O(n2) for a sequence
length of n). It is mathematically proven that subquadratic align-
ment algorithm cannot exist (Backurs and Indyk 2015). Recent
attempts for improving sequence alignment tend to follow one of
three key directions: (i) accelerating the DP algorithms using hard-
ware accelerators, (ii) accelerating the DP algorithms using heuris-
tics and limited functionality, and (iii) reducing the workload for
alignment by filtering out highly dissimilar sequences using pre-
alignment filtering algorithms. Comprehensive surveys have been
done on these existing attempts (Alser et al. 2020a,c, 2022).

The first direction accelerates exact sequence alignment using
existing hardware devices, such as SIMD-capable multi-core CPUs,
GPUs, and FPGAs, or using to-be-manufactured devices, such as
application-specific integrated circuits. One of the most recent align-
ment algorithms, the wavefront algorithm (WFA) (Marco-Sola et al.
2020a,b), indeed benefits from acceleration via SIMD (Marco-Sola
et al. 2020a,b, 2022), GPUs (Aguado-Puig et al. 2022), and FPGAs
(Haghi et al. 2021). Parasail (Daily 2016), BWA-MEM2
(Vasimuddin et al. 2019), and mm2-fast (Kalikar et al. 2022) all ex-
ploit SIMD-capable and multi-core CPUs to accelerate sequence
alignment in read mapping. SillaX (Fujiki et al. 2018) provides an
order of magnitude of acceleration through specialization, but
requires fabricating their architecture designs into real hardware,
which is costly and performed at a semiconductor fabrication
facility.

The second direction includes limiting the functionality of se-
quence alignment to performing only edit distance calculation, as in
Edlib (�So�si�c and �Siki�c 2017), or limiting the number of calculated
entries in the DP table, as in windowing/tiling the DP table
(Arlazarov et al. 1970, Rizk and Lavenier 2010, Turakhia et al.
2018) and the X-drop algorithm (Zhang et al. 2000) implemented in
one of the versions of KSW2 (Li 2018). This second direction is not
mutually exclusive from the first and can also benefit from
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acceleration via SIMD (Li 2018), GPUs (Ahmed et al. 2020), and
FPGAs (Banerjee et al. 2018).

The third direction is to early and quickly detect any two dissimi-
lar genomic sequences, which differ by more than a user-defined edit
distance threshold, and exclude them from being aligned as their
alignment result is not useful. Pre-alignment filtering usually saves a
significant amount of time by avoiding DP-based alignment without
sacrificing alignment accuracy or limiting the algorithm functional-
ity as demonstrated when using even basic CPU implementations
(Rasmussen et al. 2006, Rizk and Lavenier 2010, Xin et al. 2013,
Alser et al. 2020b). Pre-alignment filtering can also benefit from
hardware acceleration (Xin et al. 2015, Alser et al. 2017a,b, Kim
et al. 2018, Alser et al. 2019, 2020b, Cali et al. 2020).

Regardless of which of these three directions are followed to im-
prove performance, sequence alignment remains a fundamentally
memory-bounded computation with a low data reuse ratio (Gupta
et al. 2019, Kaplan et al. 2020, Cali et al. 2020, Lavenier et al.
2020). Sequence alignment implementations suffer from wasted exe-
cution cycles due to the memory bandwidth bottleneck faced when
moving data between the memory units and the computing units
(e.g. CPUs, FPGAs, GPUs). This bottleneck exists because of the
large disparity in performance between the compute units and mem-
ory units in modern computing systems. Following Moore’s law, the
number of transistors in processors has been doubling about every 2
years, leading to an exponential increase in the power of the proces-
sor cores (Moore 1998). However, memory performance did not
scale comparably which has made the cost of transferring data be-
tween the main memory and the CPU more expensive than the com-
putations to be performed by a CPU instruction on the data (Mutlu
et al. 2019, 2020).

Processing-in-memory (PIM) architectures alleviate the data
movement bottleneck of modern computing systems by providing
the memory with computing competencies (Hwu et al. 2017, Mutlu
et al. 2019, 2020, Ankit et al. 2019, 2020, Huang et al. 2021,
Hajinazar et al. 2021a,b, Ferreira et al. 2022, Mansouri Ghiasi et al.
2022). PIM has been used to improve the performance of a wide
variety of memory-bound computations, including sequence align-
ment as is the case in RAPID (Gupta et al. 2019), BioSEAL (Kaplan
et al. 2020), GenASM (Cali et al. 2020), and SeGraM (Cali et al.
2022). However, these PIM-based sequence alignment solutions rely
on emerging technologies that require either major changes to exist-
ing hardware or fabricating new hardware chips that are specially
designed for the subject algorithm. These limitations pose a critical
barrier to the adoption of PIM in sequence alignment.

UPMEM is the first publicly available programmable PIM sys-
tem in the market (Devaux 2019). The UPMEM architecture inte-
grates conventional DRAM arrays and general-purpose cores called
DPUs into the same chip. This architecture allows computations to
be performed near where the data resides, which reduces the latency
imposed by data movement. UPMEM systems have been used to ac-
celerate memory-bound applications such as database index search,
compression/decompression, image reconstruction, genomics, and
many others (Lavenier et al. 2016a,b,c, Church et al. 2011, Diab et
al. 2022, Zois et al. 2018, Lavenier et al. 2020, Nider et al. 2021,
Gómez-Luna et al. 2021a,b, 2022, Giannoula et al. 2022).

Our goal is to evaluate the suitability of real PIM systems for
accelerating sequence alignment algorithms. To this end, we intro-
duce Alignment-in-Memory (AIM), a framework for PIM-based se-
quence alignment that targets the UPMEM system. AIM dispatches
a large number of sequence pairs across different memory modules
and aligns each pair using compute cores within the memory module
where the pair resides. AIM supports multiple alignment algorithms
including NW, SWG, GenASM, WFA, and WFA adaptive. Each al-
gorithm has alternate implementations that manage the UPMEM
memory hierarchy differently and are suitable for different read
lengths.

We evaluate AIM on a real UPMEM system and compare the
throughput it can achieve with that achieved by server-grade multi-
threaded CPU systems running at full scale. Our evaluation shows
that a real PIM system can substantially outperform CPU systems
for a wide variety of algorithms, read lengths, and edit distance

thresholds. For example, for WFA adaptive, the state-of-the-art se-
quence alignment algorithm, AIM achieves a speedup of up to
2.56� when the data transfer time between the CPU and DPUs is
included, and up to 28.14� when that data transfer time is not
included. These speedups to sequence alignment can translate into
substantial performance improvements for widely used bioinformat-
ics tools such as minimap2, where alignment can consume up to
76% of the time (Kalikar et al. 2022), or BWA-MEM, where align-
ment can consume up to 47.2% of the time (Vasimuddin et al.
2019). Our results demonstrate that emerging real PIM systems are
promising platforms for accelerating sequence alignment. We hope
that our findings inspire more work on creating and accelerating
bioinformatics algorithms for real PIM systems.

2 System and methods

In this section, we provide an overview of PIM and the UPMEM
PIM architecture (Section 2.1). We then describe the overall work-
flow of our PIM-based sequence alignment framework (Section 2.2),
how we manage data within the UPMEM PIM memory hierarchy
(Section 2.3), and how each of the different sequence alignment
algorithms are supported within our framework (Section 2.4).

2.1 PIM and the UPMEM PIM architecture
Figure 1 compares the organization of conventional CPU processing
systems to PIM systems. In conventional systems, illustrated in
Fig. 1a, data resides in dynamic random access memory (DRAM)
which is typically organized into multiple DRAM banks. This data
is transferred to the CPU cores where computations are performed
on the data. If the same data is reused for many computations, the
cost of moving that data from memory to the CPU cores is amor-
tized. However, if the data is not reused, the cost of moving the data
is much higher than the cost of the computations on that data. In
this case, the CPU cores will be idle most of the time waiting for
memory accesses to complete, and the movement of data between
the CPU cores and the memory becomes a major performance
bottleneck.

In a PIM system, illustrated in Fig. 1b, small PIM cores are
placed in the memory chip near the memory banks. These PIM cores
are typically much less powerful than CPU cores at performing com-
putations; however, they are much faster at accessing data from
memory because of their proximity. Hence, if only a few computa-
tions are performed on the data, it is cheaper to perform these com-
putations in the PIM cores than to move the data all the way to the
CPU cores. In this case, programmers would load their code onto
the PIM cores and execute it there where the data can be fetched
quickly, instead of executing it on the CPU cores. Sequence align-
ment algorithms are well-suited for such a system because there are
usually a few computations performed for each data element
accessed from the intermediate data structures (e.g. entries of the DP
table in NW).

The UPMEM PIM architecture (Devaux 2019) is the first public-
ly available general-purpose programmable (https://sdk.upmem.
com) processing-in-DRAM architecture. An UPMEM system con-
sists of a set of UPMEM DIMM modules plugged alongside main

(a) (b)

Figure 1 Comparison of conventional CPU processing and PIM.
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memory (standard DDR4 DIMMs) and acting as parallel co-
processors to the host CPU. An UPMEM module is a DDR4-2400
DIMM with 16 PIM-enabled chips, where each chip consists of
eight general-purpose processing PIM cores called DRAM
Processing Units (DPUs). Each DPU is coupled with a 64-MB
DRAM bank called main RAM (MRAM). A current UPMEM sys-
tem supports up to 20 UPMEM modules, which is equivalent to
2560 DPUs and 160 GB of memory. A DPU is a 32-bit RISC proces-
sor with a proprietary Instruction Set Architecture (ISA), which can
potentially run at 500 MHz. Each DPU has 24 hardware threads
that share a 24-KB instruction memory (IRAM) and a 64-KB
scratchpad memory which is also called a working RAM (WRAM).
The threads also share the 64-MB MRAM bank coupled with the
DPU. DPUs cannot communicate with other DPUs or access data
outside their own MRAM bank. The host CPU transfers data be-
tween the main memory and the MRAM banks and coordinates
communication and synchronization across DPUs if needed.

2.2 Overall workflow
Figure 2 illustrates our framework’s overall workflow. In Step (1),
we read the sequence pairs from an input file on disk and store them
to the main memory. In Step (2), we transfer the sequence pairs
from the main memory to the UPMEM DIMMs, distributing them
evenly across the MRAM banks of the different DPUs. We use paral-
lel transfers so that the sequence pairs are written to multiple
MRAM banks simultaneously, thereby optimizing the transfer
latency.

Next, we launch the DPU kernels and have each thread in each
DPU work independently to align a set of sequence pairs. This paral-
lelization scheme avoids inter-DPU and inter-thread synchroniza-
tion, which can be expensive in the UPMEM system (Gómez-Luna
et al. 2021a). In Step (3), each DPU thread performs a DMA transfer
to fetch a sequence pair from MRAM and store it in WRAM. In
Step (4), the DPU thread aligns the sequence pair and extracts the
alignment operations using traceback. Our framework supports five
different alignment algorithms: NW, SWG, GenASM, WFA, and
WFA adaptive. In Step (5), the DPU thread performs a DMA trans-
fer to write the alignment score and operations to MRAM. The
thread then moves on to process the next sequence pair, repeating
Steps (3)–(5) until all sequence pairs have been processed.

Finally, once all DPUs finish execution, we retrieve and save the
alignment results. In Step (6), we transfer the alignment score and
operations of each sequence pair from the UPMEM DIMMs to main
memory using parallel transfers. In Step (7), we load the results from
main memory and write them to an output file on disk.

2.3 Data management
One important aspect of implementing alignment algorithms on the
UPMEM PIM architecture efficiently is data management. Recall
from Section 2.1 that an UPMEM DPU has access to two memory

spaces for data: a 64-KB WRAM and a 64-MB MRAM. WRAM is
fast and is accessed via loads and stores, whereas MRAM is slow
and is accessed via DMA transfers to and from WRAM. Our frame-
work always places the full sequence pair to be aligned and the full
alignment result in WRAM for fast access because these data items
are small. However, the intermediate data structures used by the
alignment algorithms are relatively large. For this reason, it may not
be possible to fit the entire intermediate data structure for each DPU
thread in WRAM while supporting a large enough number of DPU
threads to efficiently utilize the DPU pipeline. In this case, the con-
strained WRAM capacity can act as a limiting factor to parallelism.

To tackle this trade-off, we provide two alternative implementa-
tions of each alignment algorithm. This first implementation, illus-
trated in Fig. 3 (top), places the entire intermediate data structure
for each DPU thread in WRAM, thereby prioritizing fast load/store
access to the intermediate data structures. However, as the aligned
sequences get larger, the WRAM capacity begins to constrain the
number of DPU threads that can be launched, which causes the DPU
pipeline to be underutilized. The second implementation, illustrated
in Fig. 3 (bottom), places the intermediate data structure for each
DPU thread in MRAM and transfers the parts of the data structure
that need to be accessed to WRAM on-demand. With the WRAM
capacity less of an issue, this approach enables using a larger number
of DPU threads to better utilize the DPU pipeline. However, it incurs
longer access latency to the intermediate data structures. The user of
our framework can easily select which implementation they would
like to use, and our framework automatically adapts the number of
DPU threads launched depending on the implementation selected as
well as the choice of alignment algorithm, read length, and error
rate. We evaluate the trade-off between these two implementations
in Section 3.5.

Another important aspect of data management is performing dy-
namic memory allocation efficiently. NW, SWG, and GenASM have
fixed-size data structures that are allocated in WRAM or MRAM
up-front. However, WFA and WFA adaptive rely on dynamic mem-
ory allocation which is performed frequently as the algorithms run.
Dynamic memory allocation is needed for allocating the wavefront
components, which vary in size at run time depending on the read
length and similarity. The UPMEM SDK has an incremental dynam-
ic memory allocator which allocates memory incrementally from be-
ginning to end and then frees it all at once. However, it is not
suitable for our purpose because it is shared by all threads so it

Figure 2 Overall workflow of AIM.

Figure 3 Example of using WRAM only (top) or using both WRAM and MRAM

(bottom) for intermediate alignment data structures.
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requires synchronization across threads to perform allocation,
which degrades performance. To overcome this issue, we provide
our own per-thread custom memory allocator to perform low-
overhead dynamic memory allocation in the WFA and WFA-
adaptive algorithms. The allocator also ensures that allocations are
properly aligned such that they can be used in DMA transfers be-
tween WRAM and MRAM.

2.4 Supported alignment algorithms
2.4.1 Needleman–Wunsch

NW (Needleman and Wunsch 1970) computes the alignment of
sequences using a DP table. In the implementation that only uses
WRAM for intermediate alignment data structures, we have each
DPU thread allocate its entire DP table in WRAM, fill it, perform
the traceback, and send the alignment result to MRAM. The size of
the DP table is m � n where m and n are the lengths of the two
aligned sequences. The data type of the DP-cells is int16. Therefore,
the WRAM memory consumption per thread consists of the DP
table (m � n � sizeof ðint16Þ), the sequence pair, and the traceback
operations. In this case, the 64-KB WRAM capacity limits the max-
imum read length to 175 bp, where one DPU thread is executed con-
suming 61-KB of WRAM. On the other hand, in the
implementation that uses MRAM for intermediate alignment data
structures, we store the DP table of each DPU thread in MRAM and
use WRAM to store the neighboring DP-table cells of the current
cell being computed. In this case, the 64-MB MRAM capacity limits
the maximum read length to around 4 kb. NW uses the linear gap
model to compute the alignment score. In our evaluation, we set the
scoring parameters to a ¼ 0 (match cost), x ¼ 3 (mismatch cost),
and e ¼ 4 (deletion/insertion cost).

2.4.2 Smith–Waterman–Gotoh
SWG (Gotoh 1982) resembles NW but uses an affine gap model
which treats opening new gaps and extending existing gaps differ-
ently. To do so, SWG uses three DP tables—Matching (M),
Insertion (I), and Deletion (D)—each of size m � n. In the implemen-
tation that only uses WRAM for intermediate alignment data struc-
tures, we have each DPU thread store all three DP tables in WRAM.
Since the memory usage of SWG is higher than that of NW, the
maximum read length that can be used in this case is only 100 bp.
On the other hand, in the implementation that uses MRAM for
intermediate alignment data structures, we store the three DP tables
of each DPU thread in MRAM and use WRAM to store the neigh-
boring DP-table cells of the current cell being computed. In this
case, the maximum read length that can be used is around 2.5 kb.
We physically store the three tables as a single table where each cell
has three consecutive values. By doing so, we can transfer cells from
all three tables with the same DMA transfer, thereby amortizing the
cost of transferring data from MRAM over fewer DMA transfers. In
our evaluation, we set the scoring parameters to a ¼ 0 (match cost),
x ¼ 3 (mismatch cost), o ¼ 4 (deletion/insertion opening cost), and
e ¼ 1 (deletion/insertion extension cost).

2.4.3 GenASM

GenASM (Cali et al. 2020) is a recently proposed alignment algo-
rithm that modifies and adds a traceback method to the bitap algo-
rithm (Baeza-Yates and Gonnet 1992, Wu and Manber 1992). It
uses the affine gap model and takes as an input the maximum num-
ber of edit distances (k) allowed while computing the alignment. In
the implementation that only uses WRAM for intermediate align-
ment data structures, we have each DPU thread use WRAM to store
the pattern bit-mask for each character in the alphabet, two status
bit-vectors to hold the partial alignment between subsequences of
the sequences in the pair, and four intermediate bit-vectors for each
edit case (matching, substitution, deletion, and insertion). On the
other hand, in the implementation that uses MRAM for intermedi-
ate alignment data structures, we store the pattern bit-mask and the
two status bit-vectors in MRAM and transfer parts of them to
WRAM as needed. However, the four intermediate bit vectors are

still allocated in WRAM since they are small in size. In our evalu-
ation, we set k according to the read length and error rate used.

2.4.4 Wavefront algorithm

WFA (Marco-Sola et al. 2020a,b) is the state-of-the-art affine gap
alignment algorithm that computes exact pairwise alignments effi-

ciently using wavefronts in the DP table. Each wavefront represents
an alignment score, and the algorithm finds successive wavefronts

(i.e. computes increasing-score partial alignments) until reaching the
optimal alignment. Hence, the complexity of WFA is Oðn � sÞ, where
s is the alignment score. As the alignment score s increases, WFA

takes longer to execute and consumes more memory because it spans
more diagonals. For this reason, WFA adaptive (Marco-Sola et al.

2020a,b), a heuristic variant of WFA, reduces the number of the
spanned diagonals by eliminating outer diagonals that are unlikely
to lead to an optimal alignment. Note that both WFA and WFA

adaptive have linear space complexity, which makes them represen-
tative of other linear space sequence alignment algorithms (Myers

and Miller 1988, Durbin et al. 1998) that could also benefit from
our framework.

In our framework, we provide implementations of both WFA

and WFA adaptive. In the implementations that only use WRAM
for intermediate alignment data structures, we have each DPU

thread use WRAM to store all the wavefront components. On the
other hand, in the implementations that use MRAM for intermedi-
ate alignment data structures, we store all the wavefront compo-

nents in MRAM and keep the addresses of the components in
WRAM so they can be found when needed. To compute a new

wavefront component WFs, a DPU thread transfers from MRAM to
WRAM only the components it needs. After computing WFs, the
DPU thread transfers the result from WRAM to MRAM. In our

evaluation, we set the scoring parameters to a ¼ 0, x ¼ 3, o ¼ 4,
and e ¼ 1.

3 Evaluation

3.1 Experimental setup
We compare the performance of our proposed framework to a

mutli-threaded CPU baseline that uses OpenMP to align multiple se-
quence pairs in parallel. The baseline CPU implementations of NW,
SWG, WFA, and WFA adaptive are taken from the original WFA re-

pository (Marco-Sola et al. 2020a,b), and the baseline CPU imple-
mentation of GenASM is taken from the GenASM repository (Cali

et al. 2020).
We evaluate our PIM implementations on a UPMEM system

with 2560 DPUs (20 UPMEM-DIMMs) running at 425 MHz. We
evaluate the CPU implementations on three different server-grade
CPU systems: (i) a dual socket Intel Xeon Silver 4215 CPU with 32

threads (16 cores, 8 cores/socket), 2.50 GHz frequency, 22 MB of
L3 cache (11 MB/socket), and 256 GB of main memory, (ii) a dual
socket Intel Xeon Gold 5120 CPU with 56 threads (28 cores, 14

cores/socket), 2.20 GHz frequency, 38 MB of L3 cache (19 MB/
socket), and 64 GB of main memory, and (iii) a dual socket Intel

Xeon E5-2697 v2 CPU with 48 threads (24 cores, 12 cores/socket),
2.70 GHz frequency, 60 MB of L3 cache (30 MB/socket), and 32
GB of main memory. We use execution time as the basis for com-

parison, which includes the wall clock time for performing data
transfer, alignment, backtrace, and CIGAR string generation.

We use real and synthetic datasets to evaluate our proposed
framework, as shown in Table 1. The real datasets are short read-

reference pairs generated using minimap2 (Li 2018) by mapping the
datasets (https://www.ebi.ac.uk/ena/browser/view) mentioned in
Table 1 to the human reference genome GRCh37 (church2011mo-

dernizing). The synthetic datasets are long sequence pairs simulated
using the synthetic data generator provided in the WFA repository
(Marco-Sola et al. 2020a,b).
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3.2 CPU performance
Figure 4a shows how the execution times of the CPU implementa-
tions scale with the number of CPU threads while aligning five mil-
lion sequence pairs using different alignment algorithms and read
lengths, and an edit distance of 1%. The results are reported for the
Xeon E5 CPU system, which is the best performing CPU system as
we show in Section 3.3. Our key observation is that the CPU imple-
mentations face limited performance improvement as the number of
CPU threads grows. To investigate the cause of this limited perform-
ance improvement, we profile the application using perf. Figure 4b
shows that as the number of CPU threads increases, the instructions
executed per cycle by each thread decreases. Hence, the CPU is in-
creasingly underutilized when more threads are added. To further
understand what is causing the CPU to be underutilized, Fig. 4c
shows that as the number of CPU threads increases, the cycles spent
by the CPU stalling while waiting for memory requests increases.
Hence, the limited performance improvement is caused by the in-
ability of the memory to serve memory requests quickly enough.
These results demonstrate the importance of using PIM to overcome
the memory bandwidth bottleneck faced by sequence alignment
applications.

3.3 PIM performance versus CPU performance
Figure 5 shows the execution time of our framework aligning five
million sequence pairs using different alignment algorithms, read
lengths, and edit distances. We report the execution time both with
and without the data transfer time between main memory and the
UPMEM DIMMs. Based on these results, we make four key
observations.

The first observation is that among the three CPU baselines, the
best performing baseline in the majority of cases is the Xeon E5

CPU system. Despite not having the largest number of threads, this
baseline has the largest L3 cache. This result demonstrates the mem-
ory boundedness of the sequence alignment problem, where having
a larger L3 cache is favored over more having more threads.

The second observation is that our framework running on the
UPMEM system outperforms the CPU baselines in the majority of
cases, even when data transfer time is included. The speedup achieved
over the best CPU baseline is up to 4.06� in the case of SWG. For the
state-of-the-art algorithms, WFA and WFA adaptive, the speedups
achieved over the best CPU baseline are up to 1.83� and 2.56�, re-
spectively. These results demonstrate the effectiveness of PIM at accel-
erating memory-bound sequence alignment workloads.

Here, we would like to reiterate that our CPU baselines are
powerful server-grade dual-socket systems running at full scale.
CPU hardware and software have been developed and optimized for
decades by large teams of engineers, whereas the UPMEM PIM sys-
tem has been developed over a few years by a small team. We expect
that the relative advantage of PIM systems will be more pronounced
as PIM hardware and software matures. We also note that in our
current system, the DPUs are running at 425 MHz; however, they
are expected to run at 500 MHz in future systems which would fur-
ther improve performance.

The third observation is that, when the data transfer time is not
included, our framework achieves a speedup over the best CPU base-
line of up to 28.14� in the case of WFA adaptive (25.93� for
WFA). The results without transfer time are important for two rea-
sons. The first reason is that in the current UPMEM system, the
UPMEM DIMMs cannot be used as regular main memory. For this
reason, the CPU must read the data from disk to main memory then
transfer it from main memory to the UPMEM DIMMs. However, in
future systems where a PIM module could also be used as main
memory, the CPU could potentially read data from disk to the PIM
module directly and then perform the alignment in the PIM module
without the additional transfer. The second reason is that in the cur-
rent UPMEM system, one cannot overlap writing to MRAM by the
CPU and execution by the DPUs. However, in future systems where
CPU access to a PIM module may be overlapped with execution in
the PIM cores, such overlapping can hide some of the latency of
writing to the PIM module. Therefore, in light of the two aforemen-
tioned reasons, the results without the transfer time demonstrate the
potential that future PIM systems have for accelerating memory-
bound sequence alignment workloads.

The fourth observation is that our framework does not outper-
form the best CPU baseline for NW and SWG at small read lengths.
NW and SWG have more regular memory access patterns than the
other alignment algorithms, and when the read lengths are small,
the intermediate data structures fit into the CPU cache. The combin-
ation of these two factors makes the memory bandwidth bottleneck
less pronounced, which diminishes the advantage of PIM. However,
for other algorithms where the memory access pattern is less regular,
and for larger read lengths where the sizes of the intermediate data
structures outgrow the size of the CPU cache, the computation
becomes more memory bound causing our framework to achieve
large speedups over the CPU baseline.

To further study the scalability of our framework, we evaluate
the state-of-the-art algorithm, WFA adaptive, on large sequence
lengths of 5 and 10 kb. NW and SWG have difficulty scaling to such
large read lengths because their quadratic space complexity causes
them to exceed the MRAM capacity even for a single alignment.
However, WFA and WFA adaptive are not limited by MRAM cap-
acity due to their linear space complexity. The execution time of

Table 1. Datasets used for the evaluation.

Read lengths Edit distances (%) Description

100 0–5 Real, Accession # ERR240727

150 0–5 Real, Accession # SRR826460

250 0–5 Real, Accession # SRR826471

500, 1000, 5000, 10 000 0–5 Synthetic (Marco-Sola et al. 2020)

Figure 4 Evaluation of CPU implementations on the best performing CPU system

(Intel Xeon E5) while aligning five million sequence pairs.
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WFA adaptive for large read lengths while aligning one million se-
quence pairs is shown in Fig. 6.

We observe that our framework executing on the UPMEM system
continues to outperform all CPU baselines. The only exception is for read
length 10 000 with an edit distance threshold of 5%. In this case, the
WRAM capacity is only sufficient to support a single DPU thread per
DPU which underutilizes the DPU pipelines. Although the algorithm is
not limited by the 64-MB MRAM for storing all the wavefront compo-
nents, it is limited by the 64-KB WRAM for storing the select wavefront
components needed for computing a new wavefront component. Hence,
our current framework executing on the current hardware cannot scale to
read lengths far beyond 10 000 for WFA and WFA adaptive due to
WRAM capacity constraints. In some bioinformatics applications (such as
minimap2), sequence alignment is typically performed only between every
two seed chains to avoid long execution time and peak memory that could
result from performing sequence alignment on the complete read se-
quence. Thus, we believe that our framework is useful for a wide range of
applications despite the sequence length limitation. However, if sequence
lengths far beyond 10 000 are a concern, the current limitation can be
mitigated by streaming partial wavefront components from MRAM to
WRAM in order to reduce the WRAM footprint and support aligning
more sequence pairs of larger length simultaneously, or by using multiple
DPU threads to align a single sequence pair. These improvements are the
subject of our future work. We also expect the supportable read length
and the performance for large read lengths to improve in future systems
as the hardware and software mature, as the clock frequency of the DPUs
increases, and as future systems may have larger WRAM capacity.

3.4 PIM performance versus GPU performance
Table 2 compares the throughput of our PIM implementations of WFA
adaptive (the fastest algorithm) to a recent GPU implementation of WFA
adaptive by Aguado-Puig et al. (2022) using the results reported in that
work. It is clear that our PIM implementation outperforms the GPU im-
plementation in the majority of cases. This result shows that PIM is a

promising technology for accelerating sequence alignment, even when
compared to mature and widely used accelerators such as GPUs.

3.5 Using WRAM only or WRAM and MRAM
Recall from Section 2.3 that our framework provides two implemen-
tations of each algorithm: one that only uses WRAM for intermedi-
ate alignment data structures, and another that uses MRAM for
these data structures and transfers data currently being accessed
from these data structures to WRAM as needed. Figure 7 compares
the execution time and scalability of these two implementations for
each algorithm and read length with edit distance 1%. Based on
these results, we make three key observations.

The first observation is that for the algorithms that use a large
amount of memory for the intermediate alignment data structures (i.e.
NW and SWG), the implementations that use both WRAM and
MRAM scale better with the read length than those that only use
WRAM. In the case of NW for small read lengths, the implementation
that uses WRAM only is up to 1.70� faster. However, for the remaining
cases, this implementation is slower or cannot even execute. The reason
is that the implementations that use WRAM only can only support a
small number of DPU threads due to the constrained WRAM capacity,
which prevents them from utilizing the DPU pipeline well. In contrast,
the implementations that use both WRAM and MRAM can support a
larger number of DPU threads, causing them to perform better for long
read lengths despite incurring higher memory access latency.

The second observation is that for the algorithm that uses a small
amount of memory for the intermediate alignment data structures
(i.e. GenASM), the implementation that only uses WRAM is faster
(up to 2.76�). The reason is that the WRAM only implementation
can support a large enough number of DPU threads to utilize the
DPU pipeline well. We note, however, that for larger edit distances
that require more memory, the implementation that uses WRAM and
MRAM becomes more favorable for large reads. For example, for
read length 1000 and edit distance 5% (not shown in Fig. 7), the im-
plementation that uses WRAM and MRAM together is 1.91� faster.

The third observation is that for the implementations that use a
moderate amount of memory for the intermediate alignment data
structures (i.e. WFA and WFA adaptive), the implementations that
use WRAM only are faster for shorter reads (up to 1.17� for WFA
and 1.12� for WFA adaptive). On the other hand, the implementa-
tions that use both WRAM and MRAM are faster for longer reads
(up to 2.70� for WFA and 1.25� for WFA adaptive). The reason is
that the number of DPU threads that can be used decreases as the
read length gets larger, which favors the implementation that can
use more threads over the one with lower access latency. Note that
the difference between the two implementations grows as the edit
distance grows because the memory consumption of WFA and WFA

Figure 5 Execution time of our framework while aligning five million sequence pairs using different alignment algorithms, read lengths, and edit distances compared with three

CPU baselines.

Figure 6 Execution time of our framework aligning one million sequence pairs using

WFA adaptive for large read lengths compared with three CPU baselines (same le-

gend as Fig. 5).
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adaptive is highly sensitive to the edit distance. For example, for edit
distance 5% (not shown in the plot), the implementation that uses
WRAM and MRAM together is up to 6.15� faster.

The three observations presented in this section demonstrate the
importance of our framework supporting both implementations of
each algorithm, those that use WRAM only and those that use WRAM
and MRAM for intermediate alignment data structures. In either case,
our framework can automatically identify the maximum number of
threads that can be used to alleviate this burden from the user.

4 Conclusion

We present a framework for high-throughput pairwise sequence
alignment that overcomes the memory bandwidth bottleneck by using
real PIM systems. Our framework targets UPMEM, the first publicly
available general-purpose programmable PIM architecture. It sup-
ports multiple alignment algorithms and includes two implementa-
tions of each algorithm that manage the UPMEM memory hierarchy
differently and are suitable for different read lengths. Our evaluation
shows that our framework executing on an UPMEM PIM system sub-
stantially outperforms parallel CPU implementations executing at
full-scale on dual-socket server-grade CPU systems. Our results dem-
onstrate that PIM systems provide a promising alternative for acceler-
ating sequence alignment. We expect even larger improvements from
future incarnations of PIM systems.
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