
1

Efficient High-Resolution Deep Learning: A Survey
Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis,

Abstract—Cameras in modern devices such as smartphones,
satellites and medical equipment are capable of capturing very
high resolution images and videos. Such high-resolution data
often need to be processed by deep learning models for can-
cer detection, automated road navigation, weather prediction,
surveillance, optimizing agricultural processes and many other
applications. Using high-resolution images and videos as direct
inputs for deep learning models creates many challenges due to
their high number of parameters, computation cost, inference
latency and GPU memory consumption. Simple approaches such
as resizing the images to a lower resolution are common in the
literature, however, they typically significantly decrease accuracy.
Several works in the literature propose better alternatives in
order to deal with the challenges of high-resolution data and
improve accuracy and speed while complying with hardware
limitations and time restrictions. This survey describes such
efficient high-resolution deep learning methods, summarizes real-
world applications of high-resolution deep learning, and pro-
vides comprehensive information about available high-resolution
datasets.

Index Terms—high-resolution deep learning, efficient deep
learning, vision transformer, computer vision

I. INTRODUCTION

Many modern devices such as smartphones, drones, aug-
mented reality headsets, vehicles and other Internet of Things
(IoT) devices are equipped with high-quality cameras that can
capture high-resolution images and videos. With the help of
image stitching techniques, camera arrays [1], [2], gigapixel
acquisition robots [3] and whole-slide scanners [4], capture
resolutions can be increased to billions of pixels (commonly
referred to as gigapixels), such as the image depicted in
Figure 1. One could attempt to define high-resolution based
on the capabilities of human visual system. However, many
deep learning tasks rely on data captured by equipment
which behaves very differently compared to the human eye,
such as microscopes, satellite imagery and infrared cameras.
Furthermore, utilizing more detail than the eye can sense
is beneficial in many deep learning tasks, such as in the
applications discussed in Section II. The amount of detail that
can be captured and is useful if processed varies greatly from
task to task. Therefore, the definition of high-resolution is task-
dependent. For instance, in image classification and computed
tomography (CT) scan processing, a resolution of 512×512
pixels is considered to be high [5], [6]. In visual crowd
counting, datasets with High-Definition (HD) resolutions or
higher are common [7], and whole-slide images (WSIs) in

Arian Bakhtiarnia, Qi Zhang and Alexandros Iosifidis are with DIGIT,
the Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Midtjylland, Denmark (e-mail: arianbakh@ece.au.dk; qz@ece.au.dk;
ai@ece.au.dk).

This work was funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957337, and by the Danish
Council for Independent Research under Grant No. 9131-00119B.

histopathology, which is the study of diseases of the tissues,
or remote sensing data, which are captured by aircrafts or
satellites, can easily reach gigapixel resolutions [8], [9].

Moreover, with the constant advancement of hardware and
methodologies, what deep learning literature considers high-
resolution has shifted over time. For instance, in the late
1990s, processing the 32×32-pixel MNIST images with neural
networks was an accomplishment [10], whereas in early 2010s,
the 256×256-pixel images in ImageNet were considered high-
resolution [11]. This trend can also be seen in the consistent
increase of the average resolution of images in popular deep
learning datasets, such as crowd counting [7] and anomaly
detection [12] datasets. Therefore, the definition of high-
resolution is also period-dependent. Based on the task- and
period-dependence properties, it is clear that the term “high-
resolution” is technical, not fundamental or universal. There-
fore, instead of trying to derive such a definition, we shift our
focus to resolutions that create technical challenges in deep
learning at the time of this writing.

Using high-resolution images and videos directly as in-
puts to deep learning models creates challenges during both
training and inference phases. With the exception of fully-
convolutional networks (FCNs), the number of parameters
in deep learning models typically increases with larger in-
put sizes. Moreover, the amount of computation, which is
commonly measured in terms of floating point operations
(FLOPs), and therefore inference/training time, as well as GPU
memory consumption increase with higher-resolution inputs,
as shown in Figure 2. This issue is especially problematic
in Vision Transformer (ViT) architectures, which use the self-
attention mechanism, where the inference speed and number of
parameters scale quadratically with input size [6], [15]. These
issues are exacerbated when the training or inference needs to
be done on resource-constrained devices, such as smartphones,
that have limited computational capabilities compared to high-
end computing equipment, such as workstations or servers.

Even though methods such as model parallelism can be
used to split the model between multiple GPUs during both
the training [17], [18] and inference [19] phases, and thus
avoid memory and latency issues, these methods require a
large amount of resources, such as a large number of GPUs
and servers, which can incur high costs, especially when
working with extreme resolutions such as gigapixel images.
Furthermore, in many applications, such as self-driving cars
and drone image processing, there is a limit for the hardware
that can be mounted, and offloading the computation to
external servers is not always possible because of unreliability
of the network connection due to movement and the time-
critical nature of the application. Therefore, the most common
approach for deep learning training and inference is to load the
full model on each single GPU instance. Multi-GPU setups are

2

(a) (b)

Fig. 1: Example of a gigapixel image, taken from the PANDA-Crowd dataset [13], captured using an array of micro-cameras;
(a) original image with a size of 26,558×14,828 pixels, and (b) zoomed in to the location specified by the red rectangle in
the original image, with a size of 2,516×1,347 pixels, which is more than 100 times smaller than the original image, yet still
approximately 5 times larger than the image size processed by state-of-the-art deep learning models for crowd counting such as
SASNet [14], which is 1024×768, and around 50 times larger than the standard image size processed by image classification
models, which is 224×224.

0 5 10 15 20 25 30 35
Input Size (Megapixels)

0

1000

2000

3000

4000

5000

6000

7000

Co
m

pu
ta

tio
n

(G
FL

OP
S)

Model: EfficientNetB7

0 5 10 15 20 25 30 35
Input Size (Megapixels)

50

100

150

200

250

In
fe

re
nc

e
Ti

m
e

(m
s)

Model: EfficientNetB7

0 5 10 15 20 25 30 35
Input Size (Megapixels)

5000

10000

15000

20000

25000
GP

U
M

em
or

y
Us

ag
e

(M
Bs

)

Model: EfficientNetB7

0 5 10 15 20 25 30 35
Input Size (Megapixels)

100

120

140

160

180

Nu
m

be
r o

f P
ar

am
et

er
s (

M
illi

on
)

Model: ViT-B16

(a) (b) (c) (d)

Fig. 2: As the resolution of the input image increases, so does (a) the amount of computation, (b) inference time, and (c) GPU
memory usage in the EfficientNet-B7 [16]; and (d) the number of parameters in the ViT-B16 [6] architecture. The last layer of
EfficientNet-B7 was removed to form a fully-convolutional feature extractor. Since accuracy is not considered in these figures,
there is no need to use real images, thus randomly generated images are given to the models as input. All experiments were
conducted on an Nvidia A6000 GPU.

instead typically used to speed up the training by increasing
the overall batch size, to test multiple sets of hyper-parameters
in parallel or to distribute the inference load. Consequently,
in many cases, there is an effective maximum resolution that
can be processed by deep learning models. As an example,
the maximum resolution for inference using SASNet [14],
which is the state-of-the-art model for crowd counting on
the Shanghai Tech dataset [20] at the time of this writing,
is around 1024×768 (less than HD) on Nvidia 2080 Ti GPUs
which have 11 GBs of video memory.

Although newer generations of GPUs are getting faster
and have more memory available, the resolution of images
and videos captured by devices is also increasing. Figure 3
shows this trend across recent years for multiple types of
devices. Therefore, the aforementioned issues will likely per-
sist even with advances in computation hardware technology.
Furthermore, current imaging technologies are nowhere near
the physical limits of image resolutions, which is estimated to

be in petapixels [21].
Whether or not capturing and processing a higher resolution

leads to improvements depends on the particular problem at
hand. For instance, in image classification, it is unlikely that
increasing the resolution for images of objects or animals to
gigapixels would reveal more beneficial details and improve
the accuracy. On the other hand, if the goal is to count the
total number of people in scenes such as the one presented in
Figure 1, using an HD resolution instead of gigapixels would
mean that several people could be represented by a single
pixel, which significantly increases the error. Similarly, it has
been shown that using higher resolutions in histopathology can
lead to better results [22].

Assuming there is an effective maximum resolution for
a particular problem due to hardware limitations or latency
requirements, there are two simple baseline approaches for
processing the original captured inputs which are commonly
used in deep learning literature [23]–[25]. The popularity of

3

Year

M
eg

ap
ix

el
s

0

25

50

75

100

125

2008 2010 2012 2014 2016 2018 2020 2022

Apple iPhone Rear Camera Samsung Galaxy S Rear Camera
Microsoft HoloLens Camera Raspberry Pi Camera DJI Phantom Camera

Mobile, IoT, Drone and AR Input Resolutions Over Time

Fig. 3: Trend of the maximum resolutions captured by smart-
phones (Apple iPhone and Samsung Galaxy S), drones (DJI
Phantom), augmented reality headsets (Microsoft HoloLens)
and IoT devices (Raspberry Pi) over time. Details and data
sources are available in appendix A.

these baselines can be attributed to the simplicity of their
implementation. The first one is to resize (downsample) the
original input to the desired resolution, however, this will lead
to a lower accuracy if any important details for the problem at
hand are lost. This approach is called uniform downsampling
(UD) since the quality is reduced uniformly throughout the
image. The second approach is to cut up the original input
into smaller patches that each have a maximum resolution,
process the patches independently, and aggregate the results,
for instance, by summing them up for regression problems
and majority voting for classification problems. We call this
approach cutting into patches (CIP). There are two issues
with this approach. First, many deep learning models rely on
global features which will be lost since features extracted from
each patch will not be shared with other patches, leading to
decreased accuracy. For instance, crowd counting methods typ-
ically heavily rely on global information such as perspective
or illumination [7], and in object detection, objects near the
boundaries may be split between multiple patches. Secondly,
since multiple passes of inference are performed, that is, one
pass for each patch, inference will take much longer. This
issue is worse when patches overlap.

To highlight these issues, we test the two baseline ap-
proaches (UD and CIP) on the Shanghai Tech Part B dataset
[20] for crowd counting, which contains images of size
1024×768 pixels. We reduce the original image size by factors
of 4 and 16 and measure the mean absolute error (MAE) for
both baselines. To test UD, we take a SASNet model [14]
pre-trained on the Shanghai Tech Part B dataset [20] with
input size of 1024×768, and fine-tune it for the target input
size using the AdamW optimizer [26] with a learning rate
of 10−5 and weight decay of 10−4. Note that the original
SASNet paper uses the Adam optimizer [27] with a learning
rate of 10−5. We train the model for 100 epochs with batch
size of 12 per GPU instance using 3×Nvidia A6000 GPUs.
We empirically found that fine-tuning does not improve the
accuracy of cutting into patches, therefore, we cut the original

image into 4 and 16 patches, and obtain the count for each
patch using the pre-trained SASNet mentioned above, then
aggregate the results by summing up the predicted count for
each patch.

The results of these experiments are shown in Table I. It can
be observed that uniform downsampling significantly increases
the error compared to processing the original input size. Keep
in mind that even though the increase in error is not as drastic
with cutting into patches, the inference time of this approach is
increased by the same factor (i.e., 4 and 16) since we assumed
we are using the effective maximum resolution possible for our
hardware, and thus patches cannot be processed in parallel as
the entire hardware is required to process a single patch.

TABLE I: Performance of baseline approaches on the Shang-
hai Tech Part B dataset.

Input Size Original MAE UD∗ MAE CIP† MAE
1024×768 (original) 6.31 - -
512×384 (reduced 4×) - 9.01 (+43%) 6.40 (+1%)
256×192 (reduced 16×) - 16.06 (+155%) 6.67 (+6%)
∗Uniform Downsampling
†Cutting into Patches

Since these baseline approaches are far from ideal, in recent
years, several alternative methods have been proposed in the
literature in order to improve accuracy and speed while com-
plying with the maximum resolution limitation caused either
by memory limitations or speed requirements. The goal of
this survey is to summarize and categorize these contributions.
To the best of our knowledge, no other survey on the topic
of high-resolution deep learning exists. However, there are
some surveys that include aspects relevant to this topic. A
survey on methods for reducing the computational complexity
of Transformer architectures is provided in [15], which dis-
cusses the issues related to the quadratic time and memory
complexity of self-attention and analyzes various aspects of
efficiency including memory footprint and computational cost.
While reducing the computational complexity of Transformer
models can contribute to efficient processing of high-resolution
inputs, in this survey, we only include Vision Transformer
methods that explicitly focus on high-resolution images. Some
application-specific surveys include high-resolution datasets
and methods that operate on such data. For instance, a
survey on deep learning for histopathology, which mentions
challenges with processing the giga-resolution of WSIs, is
provided in [28]; a survey of methods that achieve greater
spatial resolution in computed tomography (CT) is provided
in [29], which highlights improved diagnostic accuracy with
ultra high-resolution CT, and briefly discusses deep learning
methods for noise reduction and reconstruction; a survey on
crowd counting where many of the available datasets are
high-resolution is provided in [7]; a survey on deep learning
methods for land cover classification and object detection in
high-resolution remote sensing imagery is provided in [30];
and a survey on deep learning-based change detection in high-
resolution remote sensing images is provided in [31].

It is important to mention that some methods operate on
high-resolution inputs, yet do not make any effort to address

4

the aforementioned challenges. For instance, multi-column
(also known as multi-scale) networks [7] incorporate multiple
columns of layers in their architecture, where each column is
responsible for processing a specific scale as shown in Figure
4. However, since the columns process the same resolution
as the original input, most of these methods in fact require
even more memory and computation compared to the case
where only the original scale is processed. The primary goal
of these methods is instead to increase the accuracy by taking
into account the scale variances that occur in high-resolution
images, although there are some multi-scale methods that
improve both accuracy and efficiency [32]–[34]. Therefore,
these methods do not fall within the scope of this survey,
unless they explicitly address the efficiency aspect for high-
resolution inputs. ZoomCount [35], Locality-Aware Crowd
Counting [36], RAZ-Net [37] and Learn to Scale [38] are
all examples of multi-scale methods in crowd counting, and
DMMN [39] and KGZNet [40] in medical image processing.

Fig. 4: Schematic illustration of a multi-column architecture.
If the original input to the DNN is a patch taken from a larger
image, such as in [36], in addition to zooming in, it is also
possible to zoom out.

The primary purpose of this survey is to collect and describe
methods that exist in deep learning literature, which can be
used in situations where the high resolution of input images
and videos create the aforementioned technical challenges
regarding memory, computation and time. The rest of this
paper is organized as follows: Section II lists applications
where high-resolution images and videos are processed using
deep learning. Section III categorizes efficient methods for
high-resolution deep learning into five general categories and
provides several examples for each category. This section
also briefly discusses alternative approaches for solving the
memory and processing time issues caused by high-resolution
inputs. Section IV lists existing high-resolution datasets for
various deep learning problems and provides details for each
of them. Section V discusses the advantages and disadvan-
tages of using efficient high-resolution methods belonging
to different categories and provides recommendations about
which method to use in different situations. Finally, Sec-
tion VI concludes the paper by summarizing the current
state and trends in high-resolution deep learning as well as

suggestions for future research. The code for experiments
conducted in this survey is available at https://gitlab.au.dk/
maleci/high-resolution-deep-learning.

II. APPLICATIONS OF HIGH-RESOLUTION DEEP
LEARNING

In this section, we list some real-world applications where
high-resolution images are processed with deep learning. Most
of these methods do not focus on the efficiency angle, however,
some of the methods address issues encountered with high-
resolution images. For instance, [41] mentions that “it was
not possible to train the model with the original 6000×4000
pixels images because of GPU memory limitation” and [42],
which uses the cutting into patches approach, states that “a
raw remote image has millions of pixels and is difficult to
process directly”.

A. Medical and Biomedical Image Analysis

Multi-gigapixel whole-slide pathology images can be pro-
cessed with deep learning in order to detect breast cancer [43],
skin cancer [44], [45], prostate cancer [45], lung cancer [45],
cervical cancer [46] and cancer in the digestive tract [47].
Some methods are even able to detect the cancer subtypes
[45] or detect the spread of cancer to lymph nodes (metastasis)
[48]. Semantic segmentation of such images can be useful in
neuropathology [49], which is the study of diseases of the
nervous system, and identifying tissue components such as
tumor, muscle, and debris in medical images [50].

Moreover, the processing of high-resolution computed to-
mography (CT) scans with deep learning is becoming more
prevalent. The studies in [51] and [5] detect COVID-19
in high-resolution CT scans of the lung, and the study in
[52] uses deep learning to improve the quality of captured
ultra-high-resolution CT scans. In addition, the study in [53]
performs semantic segmentation on high-resolution electron
microscopy images from hearts and brains of mice, which
is useful for fundamental biomedical research. Additionally,
high-resolution deep learning can be used for reconstruction
of CT images and reduction of image noise, which has been
shown to obtain results similar to other conventional methods
with clinically feasible speed [54], [55].

Even though medical image analysis methods primarily
focus on improving the accuracy of particular tasks, inference
speed can be crucial in some applications, for instance, speed
might be a requirement in clinical practice [48]. Furthermore,
real-time augmented reality under microscopes can provide
suitable human–computer interaction for AI-assisted slide
screening [46]. Finally, there might be situations where the
speed for processing a single input is acceptable, however, the
sheer number of input data is so high that inputs collectively
cannot be processed within a deadline. For instance, 55,000
high-resolution images are taken during the examination of a
single patient using wireless capsule endoscopy, where a tiny
wireless camera is swallowed to take pictures of the digestive
tract, which can be used to detect lesions and inflammation
[56].

https://gitlab.au.dk/maleci/high-resolution-deep-learning
https://gitlab.au.dk/maleci/high-resolution-deep-learning

5

B. Remote Sensing

Processing high-resolution aerial and satellite imagery with
deep learning has various applications [57], such as detect-
ing buildings [58], which is useful for urban planning and
monitoring; detecting airplanes [59], which can be used for
defense and military applications as well as airport surveil-
lance; extracting road networks [42], which has applications
in automated road navigation with unmanned vehicles, ur-
ban planning and real-time updating of geospatial databases;
detecting areas in a forest that are damaged due to natural
disasters such as storms [60]; identifying weed plants, which
can be used for targeted spraying of pesticides in agricultural
fields; semantic segmentation of satellite data which can help
with crop monitoring, natural resource management and digital
mapping [61]; and remote sensing image captioning which is
useful for applications such as image retrieval and military in-
telligence generation [62]. Moreover, significant accuracy im-
provements can be obtained by taking low-resolution weather
data as input and interpolating high-resolution data using
super-resolution [63]. The motivation behind this approach is
that high-resolution data are only available with a few days
delay, and this method can be used to more accurately process
low-resolution but up-to-date data.

C. Surveillance

Capturing and processing gigapixel images for surveillance
is becoming increasingly widespread, and such images can
be processed with deep learning for searching and identifying
people [64], [65] as well as detecting pedestrians [66], [67]
which can be used for human behavior analysis and intel-
ligent video surveillance such as enforcing social distancing
restrictions during a pandemic [68], [69]. It should be noted
that capturing gigapixel images for surveillance has several
advantages over capturing lower resolutions with multiple
cameras at different locations of the scene. First, cameras in a
multi-camera setup typically have some overlap in their fields
of view to avoid blindspots. This may result in errors for
many applications, such as crowd counting, due to duplicates,
as shown in Figure 5. Reducing this error is not an easy
task, since it requires information about the geometry of the
scene and the use of re-identification methods for identifying
and deduplicating people in multiple views of the same
scene. Secondly, tracking the trajectory of people, vehicles
and other moving objects is difficult with multiple cameras,
since it also requires identifying them in multiple views of
the scene. Finally, in many deep learning applications such
as crowd counting, incorporating global information from the
entire scene such as illumination and perspective improves
the accuracy of the task [7]. Note that images captured from
drastically different locations and perspectives, such as the
ones in in Figure 5, cannot be stitched together to form a
single image.

D. Other Applications

High-resolution deep learning can be beneficial in many
other applications and various domains of science. For in-
stance, the study in [41] estimates the density of wheat ears,

Fig. 5: Overlap in the field of view for multi-camera setups,
which can result in duplicates in tasks such as crowd counting.

which are the grain-bearing parts of the plant, from high-
resolution images taken from grain fields, which aids plant
breeders in optimizing their yield; and the study in [70]
introduces a deep learning method for segmentation of high-
resolution electron microscopy images, which has applications
in material science such as understanding the degradation
process of industrial catalysts. [71] proposes a method for real-
time high-resolution background replacement, which is useful
in video calls and conferencing.

III. METHODS FOR EFFICIENT PROCESSING OF
HIGH-RESOLUTION INPUTS WITH DEEP LEARNING

A. Non-Uniform Downsampling

Non-uniform downsampling (NUD) is based on the idea
that for any deep learning task, some locations of an input
image are more important than others. For instance, in gaze
estimation, where the goal is to detect where a person is
looking given an image including the person’s face, the image
locations depicting the person’s eyes are much more important
than other parts of the image. Therefore, when reducing the
resolution of the image, it might be beneficial to sample more
pixels from salient areas and less pixels from non-salient
locations, resulting in a warped and distorted image. This
operation requires salient areas to be determined before intro-
ducing the downsampled image to the task DNN. Therefore, a
small saliency detection network is utilized in order to obtain
this saliency map. Figure 6 provides a schematic illustration
of the non-uniform downsampling approach. Note that non-
uniform downsampling is a broad process that encompasses
any method that downsamples the input image in any man-
ner other than uniform. [23] further subdivides non-uniform
downsampling into three categories: attention mechanisms,
saliency-based methods and adaptive image sampling methods.
However, as the authors point out, there is a lot of overlap
between these categories and it is difficult to draw a clear
border between them.

Formally, the saliency map S can be obtained by applying
saliency detection network fs(·) on a uniformly downsampled
image Il, that is, S = fs(Il). The input to the saliency
detection network is downsampled in order to keep the
overhead of the saliency detection process low. The non-
uniformly downsampled image J can the be obtained based on
J = g(I, S), where g(·) is the non-uniform resampler and I is
the original image. Essentially, the resampler should compute
a mapping J(x, y) = I(uc(x, y), vc(x, y)) from the original

6

Fig. 6: Schematic illustration of the non-uniform downsam-
pling approach. The saliency detector detects the cat’s right
eye as a salient area, therefore, the non-uniform resampler
samples more pixels from that area.

image to the downsampled one. Functions uc(·) and vc(·) need
to map pixels proportionally to the weight assigned to them in
the saliency map. Assuming the saliency map is normalized
and ∀x, y : 0 ≤ uc(x, y) ≤ 1 and ∀x, y : 0 ≤ vc(x, y) ≤ 1,
this problem can be written as∫ uc(x,y)

0

∫ vc(x,y)

0

S(x′, y′)dx′dy′ = xy. (1)

However, methods for determining this transformation based
on Eq. 1 are not efficient [23]. An alternative approach is to
presume each pixel (x′, y′) is pulling all other pixels with
a force proportional to its saliency S(x′, y′), which can be
formulated as

uc(x, y) =

∑
x′,y′ S(x′, y′)k((x, y), (x′, y′))x′∑
x′,y′ S(x′, y′)k((x, y), (x′, y′))

, (2)

vc(x, y) =

∑
x′,y′ S(x′, y′)k((x, y), (x′, y′))y′∑
x′,y′ S(x′, y′)k((x, y), (x′, y′))

, (3)

where k((x, y), (x′, y′)) is a distance kernel, for instance, the
Gaussian kernel. Using this formulation, salient areas will
be sampled more since they attract more pixels. Moreover,
based on this formulation, uc(·) and vc(·) can be computed
with simple convolutions. Therefore, this operation can be
easily plugged into neural network architectures as a layer,
and has the added benefit of preserving the differentiability
which is a requirement for training neural networks with
the backpropagation algorithm. The overall result is that the
entire module including the saliency detection network and
the task network can be trained end-to-end. The method in
[23] uses this approach to improve the performance of gaze
estimation as well as fine-grained classification, which is the
task of differentiating between hard-to-distinguish objects such
as different species of animals.

The method in [72] applies the idea of non-uniform down-
sampling to semantic segmentation. If the input image I = Iij
has a size H ×W and must be downsampled to size h× w,

the first step is to generate ideal sampling tensors from ground
truth (GT) labels based on

E(ϕ) =
∑
i,j

∥ϕij − b(uij)∥2 + λ
∑

|i−i′|+|j−j′|=1

∥ϕij −ϕi′j′∥2,

(4)
where ϕ ∈ [0, 1]h×w×2 is the sampling tensor to be de-
termined, E(ϕ) is the (energy) cost function to minimize,
u ∈ [0, 1]h×w×2 is the uniform downsampling tensor and
b(uij) is the coordinates of the closest point to pixel uij on
semantic boundaries in the GT labels. Eq. 4 corresponds to
a least squares problem with convex constraints that can be
efficiently solved using a set of sparse linear equations. The
first term in Eq. 4 ensures the sampling locations are close to
the semantic boundaries, and the second term ensures that the
distortion is not excessive by forcing the transformations of
adjacent pixels to be similar. Eq. 4 is also subject to covering
constraints that ensure the sampled locations cover the whole
image. The contribution of the second term is controlled by
a parameter λ which is empirically set to 1. The next step is
to train a neural network to generate sampling tensors from
input images. The images are then downsampled based on
the output of this neural network and introduced to the task
network. Finally, the segmentation output is upsampled to
remove distortions and match the original resolution.

Similarly, the method in [73] utilizes non-uniform down-
sampling for semantic segmentation. However, in contrast with
the previous method, the saliency detector in this method is
optimized based on the performance of semantic segmentation
rather than external supervision signals. This method is similar
to [23], however, applying a straightforward adaptation of [23]
to semantic segmentation does not perform well. To improve
the performance, an edge loss is added as a regularization
term, which is calculated by using the mean squared error
(MSE) between the deformation map d obtained by the
saliency detector and target deformation map dt calculated
based on segmentation labels. To combat trivial solutions, the
target deformation map has denser sampling around object
boundaries and is formulated by dt = fedge(fgauss(Ylr)), where
Ylr is the uniformly downsampled segmentation label, fedge is
an edge detection filter by convolution with a specific 3 × 3
kernel, and fgauss is Gaussian blur with σ = 1.

Since the distortions caused by the customized grids defined
in Eqs. 2 and 3 can be severe, the method in [56] introduces
structured grids that can be combined with customized grids to
obtain a more subtle spatial distortion effect for wireless cap-
sule endoscopy (WCE) image classification. These structured
grids ensure that pixels that were in the same row/column in
the input image are also in the same row/column in the output
image, and can be obtained by

u(x) =

∑
x′ S(x′)k(x, x′)x′∑
x′ S(x′)k(x, x′)

, (5)

v(y) =

∑
y′ S(y′)k(y, y′)x′∑
y′ S(y′)k(y, y′)

, (6)

where S(x) = maxy S(x, y) and S(y) = maxx S(x, y). u(x)
and v(y) are then copied and stacked to form us(x, y) = u(x)

7

and vs(x, y) = v(y). Finally, the combined deformation grids
can be computed by

u(x, y) = λus(x, y) + (1− λ)uc(x, y), (7)
v(x, y) = λvs(x, y) + (1− λ)vc(x, y), (8)

where parameter λ is empirically set to 0.5.
Similarly, FOVEA [74] discards custom grids and solely

relies on structured grids for object detection in autonomous
driving use cases. It also introduces anti-cropping regular-
ization to combat cropping which may result in missing
objects, by using reflect padding on the saliency map. In
[23], the saliency detector is trained end-to-end along with
the task network, however, as mentioned, finding saliency
maps in object detection is more difficult. Therefore FOVEA
uses intermediate supervision to train the saliency detection
network.

Even though the primary goal of the spatial transformer
module in spatial transformer networks (STNs) [75] is to
learn invariance to translation, scale, rotation and warping
in order to improve performance, in the special case where
the module is the first layer of the network, it can learn to
crop the raw high-resolution input to a lower resolution and
increase computational efficiency, thus it could be considered
a form of NUD. Figure 7 shows the architecture of the
spatial transformer module, where the localization network
determines the parameters θ for the transformation τθ from
input features U . τθ(·) can be a 2D affine transformation, a
more constrained transformation such as

Aθ =

[
s 0 tx
0 s ty

]
, (9)

which only allows cropping, translation and scaling, or a more
general transformation such as plane projective transformation
with 8 parameters, piecewise affine, thin plate spline [76], or
any transformation as long as it is differentiable with respect
to its parameters.

Fig. 7: Architecture of the spatial transformer module [75].

SALISA [77] uses spatial transformer modules to per-
form non-uniform downsampling for object detection in high-
resolution videos. In SALISA, the output of a video frame is
used to determine the saliency map for the next frame. Figure
8 shows this method, where the first frame is introduced to
a high-performing detector without any downsampling. The
detected objects are subsequently used to create a saliency
map, which is then given to the resampling module. The
resampling module contains a spatial transformer module
with a thin plate spline transformation, where the localization

network receives the saliency map as input. The downsampled
image provided by the resampling module is then introduced
to a lightweight detector. Since the lightweight detector detects
objects in the warped image, the detected bounding boxes
need to be transformed back into the original grid. Therefore
an inverse transformation is applied before generating the
saliency map. To prevent cascading errors, the method is reset
to use the original high-resolution frame and high-performing
detector every few frames.

Fig. 8: Overview of SALISA [77]. The second frame is slightly
different from the first frame (in this case, slightly rotated
clockwise), therefore, the detection result obtained from the
first frame can be used to estimate the saliency of objects in
the second frame.

B. Selective Zooming and Skipping
Selective zooming and skipping (SZS) methods take a more

efficient approach to cutting into patches by only zooming into
regions of the input image that are important. The zoom level
may differ across different patches, and some patches may be
entirely skipped. Reinforced Auto-Zoom Net (RAZN) [78] uses
reinforcement learning to determine where to zoom in WSIs
for the task of breast cancer segmentation. RAZN assumes
the zoom-in action can be performed at most m times and the
zooming rate is a constant r. At each zoom level i, there is
a different segmentation network fθi and a different policy
network gθi . Initially, policy network gθ0 takes a cropped
image x0 ∈ RH×W×3 as input and determines whether to
zoom-in or to break. If there is no need to zoom in, x0 is
given as input to segmentation network fθ0 which produces the
output, otherwise, a higher-resolution image x̂0 ∈ RrH×rW×3

is sampled from the same area and will be cut into r2 patches
of size H × W × 3. Each patch is then given to policy
network gθ1 and this process is recursively repeated until all
policy networks break or the maximum zoom level is reached.
RAZN achieves an improved performance over other state-
of-the-art methods while reducing the inference time by a
factor of ∼2. Similarly, the methods in [79] and [80] use
reinforcement learning for efficient object detection and aerial
image classification, respectively.

Instead of reinforcement learning, the method in [81] uses
a hierarchichal graph neural network to classify whether a

8

mammogram (X-ray image of a breast) is normal/benign
(contains a tumor that is not cancerous) or malignant (contains
a tumor that is cancerous). At each zoom level i, the graph
Gi is defined by the adjacency matrix Ai ∈ RNi×Ni where
there is an edge between each zoomed-in patch and its
original image. The feature matrix of the graph is defined
as Xi ∈ RNi×D×D, and the maximum zoom level is R.
The features on the nodes are zoomed-in regions of the input
image, resized to D×D. A pre-trained CNN is used to extract
feature vectors Hi ∈ RNi×H from Xi. GATnode(·) is a graph
attention network [82] used to classify whether to zoom in
for each node. Therefore, the output of the i-th level in the
hierarchical graph is

Pi =

{
1, i = 1,

softmax(GATnode(Ai, Hi)), 1 < i < R,
(10)

where Pi ∈ RNi×2 represents the decision to zoom or not
for each node of the i-th level. At the final zoom level R,
another graph attention network GATgraph(·) is used to perform
the final classification for the entire mammogram based on
Ŷ = softmax(GATgraph(AR, HR)W), where W is a trainable
weight matrix. The loss function contains both node losses and
graph losses, with the zoom labels for nodes being obtained
from lesion segmentation labels. This method achieves an
accuracy comparable to the state-of-the-art, however, it is
unclear how much it improves the inference speed.

GigaDet [83] achieves near real-time object detection in
gigapixel videos. At the core of GigaDet is the Patch Gener-
ation Network (PGN). PGN takes a uniformly downsampled
image as input and outputs a dense regression map which
counts the number of objects that are completely contained
within the corresponding area in the image, referred to as
the patch candidate. PGN is applied at different scales in
order to obtain patch candidates of varying scales. The patch
candidates selected by the PGN go through post-processing
which includes non-maximum suppression (NMS), and are
subsequently sorted based on their count. The top K patch
candidates are then selected to be processed by the Decorated
Detector (DecDet) to detect objects. VGG [84] and YOLO
[85] are used for the PGN and DecDet networks, respectively.
Given gigapixel videos, GigaDet is capable of running 5 FPS
on a single Nvidia 2080 Ti GPU, which is 50× faster than
Faster RCNN [86], yet obtains a comparable performance in
terms of average precision.

REMIX [87] detects pedestrians in high-resolution videos
within a latency budget given by the user. The input frame
is partitioned into several blocks, where more salient blocks
are processed using a computationally expensive but accurate
network whereas less salient blocks are processed using a
computationally cheap network or even skipped, as shown
in Figure 9. REMIX uses historical frames to determine the
object distribution, and determines the optimal partition using
a dynamic programming algorithm that takes into account
the given latency budget, the estimated object distribution, as
well as the accuracy and speed of available neural networks
for object detection. REMIX achieves up to 8.1× inference

speedup with an accuracy comparable to the state-of-the-art
methods.

Fig. 9: Partitioning in REMIX [87]. Some parts of the image
are skipped, some processed by computationally cheap DNNs
and some by computationally expensive DNNs.

C. Lightweight Scanner Networks

Lightweight scanner networks (LSNs) are lightweight fully
convolutional neural networks (FCNs) that efficiently scan
the entire high-resolution input. To achieve a lightweight
architecture, LSNs are typically designed and trained for very
specific tasks. Moreover, as opposed to the cutting into patches
approach, FCNs are inherently efficient in a sliding-window
setting since they share the computation in overlapping regions
[88].

VGG-720p and VGG-1080p [89], [90] are LSNs capable of
running in real-time on drones and provide heatmaps for input
images of size 1280×720 and 1920×1080 pixels, respectively,
that specify whether or not there are people, faces, or bicycles
at each location in the input image. Both models take patches
of size 32×32 or 64×64 pixels as input. The architectures
of VGG-720p and VGG-1080, shown in Tables II and III,
respectively, contain only 5 convolutional layers with only 2 to
24 output channels. In contrast, the original VGG architectures
have 11 to 19 layers with up to 512 output channels in some
layers [84].

TABLE II: Architecture of VGG-720p.

Layer Kernel Stride Pad† (X/Y)∗ Max Pool (X/Y) Channels
conv1 1 3×3 1/1 1/1 - / - 16
conv1 2 3×3 1/1 1/1 ✓/ - 16
conv2 1 3×3 1/1 1/1 - / - 24
conv2 2 3×3 1/4 1/1 ✓/ ✓ 16
conv last 8×8 1/1 0/0 - / - 2
†Zero padding
∗X and Y represent the horizontal and vertical axes

TABLE III: Architecture of VGG-1080p.

Layer Kernel Stride Pad† (X/Y)∗ Max Pool (X/Y) Channels
conv1 1 3×3 2/1 0/0 - / - 8
conv1 2 3×3 1/2 0/0 ✓/ - 8
conv2 1 3×3 1/1 0/0 - / - 6
conv2 2 3×3 1/2 0/0 - / - 6
conv last 8×8 1/1 0/0 - / - 2
†Zero padding
∗X and Y represent the horizontal and vertical axes

Similarly, the study in [91] proposes an architecture with
6 convolutional layers for the same problem of generating

9

a crowd heatmap from high-resolution images. The study
in [92] proposes lightweight FCNs for face detection with
7 convolutional layers and 76K parameters, for facial parts
detection (such as eyes, nose and mouth) with 4 convolutional
layers and 20K parameters, and for combined face and parts
detection with 9 convolutional layers and 101K parameters.

You only look twice (YOLT) [9] is a method that detects
objects of different scales in DigitalGlobe satellite images
which have a size of over 250 megapixels. The architecture
of YOLT is based on the YOLO architecture [85], however,
it reduces the number of layers from the original 30 down to
22. Furthermore, YOLT trains two separate models: one which
processes images that correspond to areas of 200×200m2

for detecting relatively small objects such as cars, airplanes,
boats and buildings; and another which processes images
that correspond to areas of 2500×2500m2 for detecting large
objects such as airports. YOLT has an inference speed of
32km2/min for the former model and 6000km2/min for the
latter on an Nvidia Titan X GPU.

Fast ScanNet [48] converts VGG16 [84] to a fully convo-
lutional network by replacing the last fully-connected layers
in VGG16 with convolutional layers of kernel size 1×1. Fast
ScanNet is applied to patches of size 2800×2800 pixels, a
size which is dictated by GPU memory limitations, taken from
WSIs, which have ∼400 patches on average. It takes about one
minute for Fast ScanNet to process a WSI on a workstation
with 8×Nvidia Titan X GPUs.

ICNet [34] takes advantage of both the efficiency of process-
ing lower resolutions and the accuracy of processing higher
ones by uniformly downsampling the input image to two
smaller scales, processing each scale separately, and fusing the
result of processing lower resolutions with higher ones. Lower
resolutions are processed with more convolution layers and
higher resolutions with less, which makes the entire architec-
ture efficient, as shown in Figure 10. In addition, some of the
layers share weights in order to increase the efficiency. ICNet
is able to perform semantic segmentation on 2048×1024
images at 30 frames per second with high accuracy on a
Titan X GPU. Even though ICNet does not obtain state-of-
the-art accuracy, it is ∼ 15× faster than methods with similar
performance.

ESPNet [93] relies on efficient spatial pyramid (ESP) mod-
ules which reduce the amount of computation by decomposing
standard convolutions with n × n kernels into two steps.
The first step applies a 1×1 convolution to project feature
maps with dimension N to feature maps with dimension N

K .
The second step applies K dilated convolutions with kernel
size n × n and dilation rates 2k−1, k ∈ {1, . . . ,K} to the
new feature maps simultaneously, and combines the results.
Concatenating the outputs of dilated convolutions creates
checkerboard artifacts, therefore, a simple solution is used
where the outputs of dilated convolutions are hierarchically
added to each other before concatenation. ESPNet can perform
semantic segmentation on 2048×1024 images at 54 frames per
second with an accuracy comparable to the state-of-the-art.

Neural architecture search (NAS) techniques can be used
for designing better LSNs. Since LSNs need to be lightweight
and contain few layers and parameters, the search space is

Fig. 10: ICNet architecture. CFF blocks perform the fusion
operation and consist of convolution and upsample layers. CFF
blocks get supervision signals using downsampled annotations
during the training process.

relatively small, making NAS easier. HR-NAS [94] is one
such method that searches for network architectures that can
contain both convolutions and lightweight Transformers, and
may have parallel branches. HR-NAS obtains state-of-the-art
results in the trade-off between efficiency and accuracy in
semantic segmentation, human pose estimation and 3D object
detection tasks with high-resolution inputs.

D. Task-Oriented Input Compression

Task-oriented input compression (TOIC) methods compress
the high-resolution inputs into lightweight representations.
These representations are then given to the task DNN as input
instead of the high-resolution images or videos. The exact
nature of the lightweight representations and the compression
procedure varies from method to method and is often highly
dependent on the underlying task.

There is an important distinction between this approach and
neural image compression methods such as SlimCAE [95].
The goal of neural image compression is to learn optimal
compression algorithms for the task at hand, in order to reduce
the size of stored or transmitted data. Therefore, the network
that compresses and decompresses this data may be very large
and inefficient. Moreover, neural image compression aims to
reconstruct the input from the compressed representations,
whereas TOIC does not reconstruct the input data and strives to
extract compact representations that are suitable for the second
part of the network which is responsible for performing the
task.

Slide Graph [96] recognizes the loss of visual context
that comes with using the cutting into patches method, and

10

fixes this issue by building and processing a compact graph
representation of the cellular architecture in breast cancer
WSIs in order to predict the status of human epidermal growth
factor receptor 2 (HER2) and progesterone receptor (PR),
which are proteins that promote the growth of cancer cells.
Slide Graph has four stages: The first stage uses a HoVer-
Net [97], which is a CNN for segmentation and classification
of cellular nuclei, trained on the PanNuke dataset [98] to
extract features of the tissue cells. The second stage uses
agglomerative clustering [99] to group neighboring nuclei
to further reduce the computational cost. The third stage
constructs a graph where each vertex corresponds to a cluster
and contains features extracted in the previous stage. Graph
edges are constructed based on Delauney triangulation where
vertices are represented by the geometric center of their
corresponding cluster, which results in a planar graph. In the
final stage, HER2 and PR status predictions are obtained from
the constructed graph using a graph convolutional network
(GCN) [100]. Slide graph is more accurate than state-of-the-
art methods and reduces the average inference time from 1.2
seconds of the baseline down to 0.4 milliseconds. However,
these measurements do not include the graph construction
phase. Therefore, the end-to-end improvement in efficiency
obtained by Slide Graph is unclear.

The method in [101], shown in Figure 11, compresses
gigapixel histopathology WSIs down to a size that can be
processed with a CNN on a single GPU. This compression
is obtained by training an autoencoder (either VAE [102] or
bidirectional GAN [103]) on image patches of size P ×P ×3.
The WSI image of size M ×N ×3 is then cut into patches of
the aforementioned size, and compressed embeddings of size
1×1×C are obtained from the patches using the encoder part
of the autoencoder. These embeddings are then concatenated
to form a compressed image of size ⌈M

P ⌉ × ⌈N
P ⌉ × C, which

can be given as input to the CNN. In experiments where
M = N = 50, 000 and P = C = 128, the input size is
reduced by a factor of ∼43.

Fig. 11: A method based on neural image compression for
gigapixel histopathology images.

MCAT [104] uses a combination of WSIs and genomics data
for cancer survival outcome prediction. At the core of MCAT
is the Genomic-Guided Co-Attention (GCA) layer which re-
duces the spatial complexity of processing WSIs. MCAT
processes the input in data structures known as bags, which
are unordered sets of objects of varying size without individual
labels. MCAT constructs one bag (Hbag) from multiple WSIs
in order to utilize the entire tissue microenvironment, and
another bag (Gbag) from genomic features. Hbag is constructed
by cutting the WSIs into non-overlapping 256 × 256 pixel

patches and processing each patch with a ResNet50 CNN
[105] pre-trained on the ImageNet dataset [106] to obtain
dk-dimensional feature embeddings. Gbag is constructed by
categorizing genes into N different sets based on similarity
and applying a fully-connected (FC) layer to obtain genomic
embeddings. GCA then takes these two bags as input and
performs the co-attention operation by

CoAttnG→H(G,H) = softmax
(
QKT

√
dk

)
V (11)

= softmax
(
WqGHTWT

k√
dk

)
WvH,

where Q = WqG is the query matrix, K = WkH is the key
matrix, V = WvH is the value matrix, and Wq,Wk,Wv ∈
Rdk×dk are trainable weights. The output of this operation, as
shown in Figure 12, has a dimension of N × dk. Therefore,
the subsequent self-attention layers in the MCAT network are
quadratic with respect to N instead of M . Since on average
M = 15, 231 and N = 6, this results in a massive reduction
in complexity.

Fig. 12: Genomic-Guided Co-Attention (GCA) layer.

A subcategory of TOIC methods are frequency-domain
DNNs, which convert input RGB pixels to frequency domain
representations with the help of operations such as discrete
cosine transform (DCT) or wavelet transform. The intuition
behind this approach is that the first few layers in CNNs
often learn filters that resemble such transforms. Therefore, not
only are image representations more compact in the frequency
domain, but also a lower number of layers is required for
processing such representations.

The method in [107] uses the DCT coefficients obtained in
the middle of JPEG encoding as inputs to a modified ResNet50
CNN [105] for the image classification task. JPEG encoding
consists of three stages. The first stage converts the input 3-

11

(a) (b)

(c) (d)

Fig. 13: (a) Original color image, taken from the Shanghai
Tech Part B dataset [20]; (b) luma component Y, which is
essentially a grayscale version of the color image; (c) chroma
component Cb; and (d) chroma component Cr.

channel 24-bit RGB image to the YCbCr color space by Y
Cb
Cr

 =

 0.299 0.587 0.114
−0.168935 −0.331665 0.50059
0.499813 −0.418531 −0.081282

RG
B

 .

(12)
The luma component (Y) represents the brightness, and the
chroma components (Cb and Cr) represent color. The reso-
lution of chroma components is then reduced by a factor of
2 due to the fact that the human eye is less sensitive to fine
color detail than fine brightness. Figure 13 shows an example
image and its corresponding Y, Cb and Cr components. The
second stage is a blockwise DCT, where each of the three
components is partitioned into 8 × 8 blocks that undergo
a 2D DCT. The amplitude values of the frequency domain
are the input representations used by this method. The DCT
representations of Cb and Cr are upsampled by a factor
of two and concatenated with the DCT representation of Y
before being given as input to the task DNN, as shown in
Figure 14. The rest of the JPEG encoding process contains the
quantization of these representations as well as lossless com-
pression techniques such as Huffman coding. However, this
method uses the representations obtained before quantization
and lossless compression.

Fig. 14: Initial stages of JPEG encoding, used by [107] to
obtain frequency-domains representations of the RGB input.

With the help of these input representations, this method

obtains DNNs that are both more accurate and up to 1.77×
faster than ResNet50. Moreover, [107] includes experiments
attempting to learn convolutions behaving like DCT, however,
they find that this learned DCT transform leads to higher error
compared to the conventional DCT transform.

The method in [108] uses the same idea for image clas-
sification and semantic segmentation tasks using ResNet50
and MobileNetV2 architectures. However, this method also
prunes the 192 DCT channels with the help of a gating module
that generates a binary decision for each channel. Further-
more, this study discovers that some channels are consistently
pruned regardless of the particular task, and develops a static
frequency channel selection scheme based on these results.
This scheme prunes up to 87.5% of the channels with little
accuracy drop, if any. The method in [109] uses the same
approach for image classification, however, it uses several
variants of discrete wavelet transform (DWT) instead of DCT.
The advantage of DWT over DCT is that it can obtain a
better compression ratio without loss of information, however,
it is more computationally expensive [110]. Experiments show
that using DWT instead of DCT can lead to higher accuracy,
however, the impact of DWT on inference time is unclear.

Finally, similar to images, DNNs can directly process the
compressed representations obtained by video compression
formats. MMNet [111] performs efficient object detection on
H.264/MPEG-4 Part 10 compressed videos [112], one of the
most commonly used video compression formats, by taking
advantage of the motion information already embedded in the
video compression format. It only runs the complete feature
extractor DNN on few reference frames in the video and
aggregates the visual information from the subsequent frames
with the help of an LSTM [113]. H.264 has two types of
frames: I-frames which contain a complete image, and P-
frames, also known as delta frames, which store the offset
to previous frames using motion vectors and residual errors.
In MMNet, the extracted motion vectors and residual errors
for each P-frame following an I-frame are passed on to the
LSTM. MMNet is 3× to 10× faster than competing models
with minor loss in accuracy.

E. High-Resolution Vision Transformers
As previously mentioned, the self-attention operation in

Transformers has a high complexity that increases in a
quadratic fashion with respect to the number of input tokens.
This operation is formulated by

Z = softmax

(
QKT

√
dk

)
V, (13)

where query Q = XWQ ∈ Rn×dq , key K = XWK ∈ Rn×dk

and value V = XWV ∈ Rn×dv are obtained from sequence
of input tokens X = (x1, . . . , xn) ∈ Rn×d, and WQ, WK

and WV are learnable weight matrices. Due to this quadratic
complexity, naive approaches, such as ViT [6], that create a
long sequence of input tokens from a high-resolution image
will lead to massive complexity. On the other hand, if X
contains few tokens, each input token represents a large area
of the original image, leading to loss of detailed information
that might be crucial to some applications.

12

Vision Longformer (ViL) [114] is a variant of Longformer
[115] which has a linear complexity with respect to the number
of input tokens, and is capable of processing high-resolution
images. This linear complexity is achieved by adding ng global
tokens, which include the classification token cls, that serve as
global memory by attending to all input tokens. Input tokens
are only allowed to attend to the global tokens as well as
their neighbors within a 2D window. If the number of input
tokens are nl and the 2D window size is w, then the memory
complexity is O(ng(ng + nl) + nlw

2). When ng ≪ nl, the
complexity is significantly reduced from the original n2

l in ViT.
By using ViL in a multi-scale architecture, multi-scale Vision
Longformer is able to obtain superior performance compared
to the state-of-the-art in image classification, object detection
and semantic segmentation while requiring less computation
in terms of FLOPs in some cases.

High-Resolution Transformer (HRFormer) [116] reduces
the computational complexity of self-attention by partitioning
the input representations into non-overlapping patches, and
performing the self-attention only within each patch. Figure
15 shows the building block of HRFormer, which contains a
depth-wise convolution that facilitates information exchange
between patches. By utilizing this augmented self-attention in
a multi-scale architecture, HRFormer obtains superior perfor-
mance in human pose estimation and semantic segmentation
with fewer parameters and FLOPs.

Fig. 15: HRFormer block. Multi-head self-attention (MHSA)
is applied only within each patch. The patches are then
concatenated and followed by a depth-wise (DW) convolution.

Multi-Scale High-Resolution Vision Transformer (HRViT)
[117] uses cross-shaped self-attention [118] and parameter
sharing to decrease the computational cost of self-attention.
Cross-shaped self-attention, shown in Figure 16, splits the K
self-attention heads present in multi-head attention into two
groups: {h1, . . . , hK

2
} and {hK

2 +1, . . . , hK}. These groups
perform self-attention in horizontal and vertical strips in
parallel. Strip width sw can be adjusted to achieve a trade-off
between efficiency and performance. The linear projections
for key and value tensors are shared in HRViT’s blocks to
save in computation and parameters. In addition to efficient
self-attention, HRViT employs a convolutional stem to reduce
the spatial dimension of the input. HRViT achieves the best
performance-efficiency trade-off compared to state-of-the-art
models for semantic segmentation.

Instead of restricting self-attention to patches that are
neighbors in the 2D grid, Glance and Gaze Transformer
(GG-Transformer) [119], shown in Figure 17, performs the
self-attention within dilated partitions. Since these dilations

Fig. 16: Cross-shaped self-attention.

create holes in the receptive field, a parallel branch containing
depth-wise convoluion is added to compensate for the local
interactions with negligible cost. GG-Transformer achieves
superior performance in image classification, object detection
and semantic segmentation and reduces the parameters or
FLOPs in some cases.

Fig. 17: GG-Transformer block.

Hierarchical Image Pyramid Transformer (HIPT) [120]
processes gigapixel WSIs for the task of cancer subtyping
and survival prediction. Since the input WSIs are as large
as 150,000×150,000 pixels, processing them with a normal
ViT and small patch size, such as 16×16, results in a massive
number of parameters and computational cost requirements,
and using large patch sizes such as 4096×4096 pixels directly
would result in loss of cellular information. Therefore, HIPT
takes a hierarchical approach, shown in Figure 18, where an
initial ViT processes patches of 16×16 in an area of size
256×256 pixels. A second ViT then takes the aggregated
tokens from the previous ViT and processes an area of size
4096×4096 pixels. A final ViT takes the aggregated tokens
from the second ViT and processes the entire image.

IV. HIGH-RESOLUTION DATASETS

Table IV lists popular datasets used in the high-resolution
deep learning literature and provides information about their
attributes, such as which is the deep learning application they
have been primarily used for, the number of images/videos

13

Fig. 18: Hierarchical Image Pyramid Transformer (HIPT). The
notation ViTL − l means a Vision Transformer that operates
on size L×L with patch size of l× l. ViTWSI operates on the
entire WSI.

in the dataset and their resolution, the type of available
annotations, whether they specify training/validation/test set
splits, the year of publication, and whether they are publicly
available. It is important to note that studies reported in some
papers create customized datasets. For instance, [79] constructs
a dataset from YFCC100M [121]; [89] constructs datasets
from AFLW [122], MTFL [123] and WIDER FACE [124];
and [9] constructs datasets from DigitalGlobe satellites, Planet
satellites, and aerial platforms.

The Cancer Genome Atlas (TCGA) program is a collabo-
ration between National Cancer Institute (NCI) and National
Human Genome Research (NHGRI)1. Since 2006, TCGA
has generated over 2.5 petabytes of publicly available data
which has led to improvements in cancer diagnosis, treatment,
and prevention. Among efficient high-resolution deep learning
methods, the most widely used subset of this data is the breast
invasive carcinoma (BRCA), which is outlined in Table IV.
However, TCGA provides data for many other types of cancer,
such as bladder urothelial carcinoma (BLCA), glioblastoma
and lower grade glioma (GBMLGG), lung adenocarcinoma
(LUAD), and uterine corpus endometrial carcinoma (UCEC).
These are used in some studies, and have properties similar to
that of BRCA.

V. DISCUSSION AND OPEN ISSUES

Each of the approaches introduced in Section III has its
advantages and disadvantages and is useful in certain situa-
tions. NUD (Section III-A) works well in cases where the
salient area is small compared to the entire image, and thus,
it is possible to sample many pixels from such areas. This
requirement is satisfied in gaze estimation or object detection
problems. Our conjecture is that it would also work well in
problems such as hand gesture detection and non-cropped
facial expression recognition, although these tasks are not yet
explored in the literature in combination with NUD. However,
when the salient area is large, for instance densely populated
scenes in visual crowd counting or a scene fully covered
with objects in object detection, the quality gain obtained by

1https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga

sampling from salient areas will be negligible, and the result
of NUD will be similar that of uniform downsampling [77].

Similarly, SZS methods (Section III-B) require the salient
area to be small, otherwise they zoom everywhere and save
little time and computation. This also means that the effec-
tiveness of NUD and SZS methods may vary based on the
specific input. For instance, the more people there are in an
image processed for crowd counting, or the more tumors there
are in cancer detection, the less efficient such methods will be,
unless there are specific safeguards that prevent them from
performing an enormous number of computations, such as
GigaDet [83] which processes at most K patch candidates.

Furthermore, NUD methods are not effective when the
resulting resolution is extremely smaller compared to the input
resolution, for instance, when gigapixel inputs need to be
resized down to HD, as this would result in highly distorted
images which makes it difficult for the task DNN to perform
well. Even when the gap between the two resolutions is not
extremely large, NUD can lead to high distortions in some
cases, for instance, it may completely distort and change the
shape of the edges of a gastrointestinal lesion, making it
difficult for the task network to detect useful features. This
may reduce accuracy despite the fact that more pixels are
sampled from salient areas. As explained in Section III-A,
some methods try to mitigate the distortion by using structured
grids. However, this may limit the benefits obtained by NUD.

In addition, since NUD is enlarging some parts of the
image compared to uniform downsampling, some areas of
the resulting image will be smaller than they would be with
uniform downsampling. Thus, if the saliency map is not
of high quality, unimportant areas will be enlarged and the
ones important for the final task will shrink, resulting in
accuracy loss. This is directly at odds with the requirement
that the saliency detection method should be low-overhead,
creating another trade-off that needs to be carefully balanced.
Moreover, as explained in Section III-A, some variations of
NUD require an external supervision signal or regularization
term to train the saliency detection network, which can be
difficult to design. In NUD or SZS methods that detect saliency
in videos based on the results obtained from previous frames,
such as SALISA [77] and REMIX [87], when the difference
between subsequent frames is high, the method needs to be
reset to processing the entire high-resolution image. When this
occurs frequently, the obtained benefits are diminished.

As mentioned in Section III-C, LSNs need to designed,
trained and well optimized for the specific problem at hand,
which is not an easy task. Furthermore, since LSNs produce
an output for each scanned area of the input, they are suitable
for tasks where the output has the form of a map, such as
dense classification or dense regression problems. Moreover,
the scanning nature of LSNs means that all areas of the
image are treated similarly, therefore, they are better suited
for situations where there is no perspective and objects of the
same type have the same size regardless of their location, such
as WSIs and remote sensing, as opposed to surveillance and
crowd counting where people close to the camera are larger
than people far away.

Since TOIC methods extract representations that are both

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

14

TABLE IV: List of Popular High-Resolution Datasets

Name Applications Resolution (Pixels) # of Samples Annotations Splits Year Availability

Supervisely Persons‡ Person Segmentation 800×1116 to 9933×6622 5711 images Pixel Mask None 2018 Public
PANDA [13] Person Detection >25K×14K 555 frames§ Person Bounding Box None 2020 Upon Request
UCF CC 50 [125] Crowd Counting 2888×2101 on average 50 images Head Annotations∗ None 2013 Public
Shanghai Tech Part A [126] Crowd Counting 868×589 482 images Head Annotations Train & Test 2016 Public
Shanghai Tech Part B [126] Crowd Counting 1024×768 716 images Head Annotations Train & Test 2016 Public
UCF-QNRF [127] Crowd Counting 2902×2013 on average 1535 images Head Annotations Train & Test 2018 Public
PANDA Crowd [13] Crowd Counting 25,151×14,151 to 26,908×15,024 45 images Person Bounding Box None 2020 Upon Request
JHU-CROWD++ [128] Crowd Counting 1430×910 on average 4372 images Head Annotations Train, Val & Test 2020 Public
NWPU-Crowd [129] Crowd Counting 3209×2191 on average 5109 images Head Annotations Train, Val & Test 2020 Public
DISCO [130] Audio-Visual Crowd Counting 1920×1080 (Full HD) 1935 images Head Annotations Train & Test 2020 Public
CityScapes [131] Autonomous Driving 2048×1024 5K images Pixel Mask Train, Val & Test 2016 Upon Request
SYNTHIA-RAND [132] Autonomous Driving 1280×720 (HD) ∼13K images Pixel Mask Train & Test 2016 Public
ApolloScape [133] Autonomous Driving 3384×2710 ∼113K images Pixel Mask Train & Test 2020 Upon Request
Argoverse-HD [134] Autonomous Driving 1920×1200 89 videos Bounding Box Train, Val & Test 2020 Public
BDD100K [135] Autonomous Driving 1280×720 (HD) 100K videos Bounding Box Train, Val & Test 2020 Upon Request
PASCAL-Context [136] Scene Understanding 500×375 to 500×500 10,103 images Pixel Mask Train & Test 2014 Public
ADE20K [137] Scene Understanding 683×512 to 2100×2100 27,574 images Pixel Mask Train & Test 2017 Upon Request
COCO-Stuff 10K [138] Scene Understanding ∼640×480 10K images Pixel Mask Train & Test 2018 Public
DeepGlobe [139] Land Cover Classification 2448×2448 1146 images Pixel Mask Train, Val & Test 2018 Public
Copernicus [140] Land Cover Classification 20,160×20,160 94 images Pixel Mask None 2015-2019 Public
fMoW [141] Aerial Image Classification up to 16,032×14,840 1,047,691 images Classes Train, Val & Test 2018 Public
KID [142] Capsule Endoscopy 360×360 ∼2500 frames Pixel Mask None 2017 Public (N/A)
CAD-CAP [143] Capsule Endoscopy 576×576 25,124 frames Pixel Mask Train & Test 2020 Upon Request
CAMELYON16 [124] Pathology up to 200,000×100,000 400 images Pixel Mask Train & Test 2016 Public
TUPAC16 [144] Pathology ∼50,000×50,000 821 images Proliferation Score† Train & Test 2016 Public
BACH Part B [145] Pathology (39,980-62,952)×(27,972-44,889) 40 images Pixel Mask Train & Test 2019 Public
TCGA-BRCA [146] Pathology up to 150,000×100,000 709 images Classes None 2020 Public
PCa-Histo [73] Pathology (1968±216)×(9392±4794) 266 images Pixel Mask Train, Val & Test 2021 Private
INbreast [147] Breast Cancer Detection 2560×3328 to 3328×4084 410 images Pixel Mask Train & Test 2012 Public
UA-DETRAC [148] Video Object Detection 960×540 140K frames Bounding Box Train & Test 2015 Public
ImageNet-VID [149] Video Object Detection 176×132 to 1280×720 (HD) 5354 videos Bounding Box Train, Val & Test 2015 Public
FAIR1M [150] Fine-Grained Object Detection 600×600 to 10,000×10,000 40,000 images Bounding Box Train & Test 2021 Public (N/A)

COCO [151] Object Detection
Human Pose Estimation ∼640×480 >200K images Pixel Mask

Keypoints Train, Val & Test 2014 Public
§A frame is a single image in a sequence representing a video
∗The locaion for the center of each human head in the image is specified
†A measure of the number of cells in a tumor that are dividing
‡https://github.com/supervisely-ecosystem/persons

compressed and suitable for the task at hand, they often need
to be tailored to the specific problem, which requires high
domain knowledge. Both Slide Graph [96] and MCAT [104]
presented in Section III-D are based on domain knowledge
about cellular structure of tissues and biological function of
genes, respectively. Almost all frequency-domain DNNs try
to preserve the architecture of the CNNs they are based on.
However, since the interpretation of features in frequency-
domain is different, and they have certain properties such
as being non-negative, it might be better to customize the
architectural elements for the frequency domain, as CS-Fnet
[152] does.

Most high-resolution Vision Transformer methods try to
reduce the quadratic cost of self-attention to linear, and then
compensate the accuracy loss by learning data transformations
using convolutions. To keep the overhead of convolutions low,
depth-wise convolution is typically used. Additionally, most
high-resolution ViTs utilize a multi-scale architecture in order
to capture features of various scales. High-resolution ViTs are
more general purpose than other high-resolution deep learning
methods and are often used for a large variety of tasks.

VI. CONCLUSION AND OUTLOOK

Processing high-resolution images and videos with deep
learning is crucial in various domains of science and tech-
nology. However, few methods exist that address the com-
putational challenges. Among existing methods, the trend
of designing solutions specifically for the problem at hand
is clearly visible. This can be an issue in tasks for which
high-resolution datasets are not available. Similar to model
compression approaches, both modifying existing methods and

designing an efficient high-resolution method from scratch are
viable approaches.

Efficient high-resolution deep learning is in its infancy
and there is a lot of room for improvement. For instance,
a number of attention-free MLP-based methods have been
recently proposed as lightweight alternatives for Transformers
[153], which try to mimic the global receptive field of Trans-
formers without the self-attention mechanism. Exploiting such
architectures for efficient processing of high-resolution inputs
would be an interesting research direction. Furthermore, the
multimodal co-attention in MCAT [104] can be applied to
many other multimodal tasks, especially the ones with audio,
vision and language modalities. Moreover, frequency-domain
representations can be explored as inputs to ViTs, which
can lead to more efficiency compared to frequency-domain
CNNs. For instance, ViTs can take separate patches from DCT-
Cb, DCT-Cr and DCT-Y components, bypassing the need to
upsample DCT-Cb and DCT-Cr to match the dimensions of
DCT-Y.

The combination of efficient high-resolution deep learning
with other efficient deep learning methods, such as model
compression [154], dynamic inference [155], collaborative
inference [156] and continual inference [157], is an unex-
plored area of research. For instance, if the saliency detection
network is a lightweight version of the task network, NUD
can be combined with early exiting, where the output of the
saliency detection network would be a fast, but less accurate,
early result. This is simple to implement in dense regression
problems such as depth estimation and crowd counting, where
the output of the task can be interpreted as a form of saliency.

Moreover, with the adoption of edge and cloud computing,

https://github.com/supervisely-ecosystem/persons

15

transmission of high-resolution inputs to servers for processing
is a real challenge. As a solution, efficient high-resolution
deep learning methods can be combined with edge computing
paradigms. For instance, the downsampled images in NUD
and compressed representation in TOIC can be transmitted
instead of the original inputs. This would be a form of split
computing (also known as collaborative intelligence) [158],
[159], where the initial portion of computation is performed
on a resource-constrained end-device, and the compact inter-
mediate representation is then transmitted to a server where
the rest of the computation is carried out. A study using this
idea for high-resolution images captured by drones is reported
in [160].

REFERENCES

[1] E. Thomson, M. Harfouche et al., “Gigapixel behavioral and neural
activity imaging with a novel multi-camera array microscope,” bioRxiv,
2021.

[2] X. Yuan, L. Fang et al., “Multiscale gigapixel video: A cross reso-
lution image matching and warping approach,” in IEEE International
Conference on Computational Photography, 2017, pp. 1–9.

[3] R. Sargent, C. Bartley et al., “Timelapse gigapan: Capturing, sharing,
and exploring timelapse gigapixel imagery,” in Fine International
Conference on Gigapixel Imaging for Science, 2010.

[4] N. Farahani, A. V. Parwani et al., “Whole slide imaging in pathology:
advantages, limitations, and emerging perspectives,” Pathology and
Laboratory Medicine International, vol. 7, no. 23-33, p. 4321, 2015.

[5] J. Chen, L. Wu et al., “Deep learning-based model for detecting 2019
novel coronavirus pneumonia on high-resolution computed tomogra-
phy,” Scientific Reports, vol. 10, no. 1, p. 19196, 2020.

[6] A. Dosovitskiy, L. Beyer et al., “An image is worth 16x16
words: Transformers for image recognition at scale,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[7] G. Gao, J. Gao et al., “Cnn-based density estimation and crowd
counting: A survey,” arXiv preprint arXiv:2003.12783, 2020.

[8] J. van der Laak, G. Litjens, and F. Ciompi, “Deep learning in
histopathology: the path to the clinic,” Nature Medicine, vol. 27, no. 5,
pp. 775–784, 2021.

[9] A. Van Etten, “You only look twice: Rapid multi-scale object detection
in satellite imagery,” arXiv preprint arXiv:1805.09512, 2018.

[10] Y. Lecun, L. Bottou et al., “Gradient-based learning applied to docu-
ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates
Inc., 2012, p. 1097–1105.

[12] B. Ramachandra, M. J. Jones, and R. R. Vatsavai, “A survey of single-
scene video anomaly detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 5, pp. 2293–2312, 2022.

[13] X. Wang, X. Zhang et al., “Panda: A gigapixel-level human-centric
video dataset,” in IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 3268–3278.

[14] Q. Song, C. Wang et al., “To choose or to fuse? scale selection for
crowd counting,” in AAAI Conference on Artificial Intelligence, vol. 35,
no. 3, 2021, pp. 2576–2583.

[15] Y. Tay, M. Dehghani et al., “Efficient transformers: A survey,” arXiv
preprint arXiv:2009.06732, 2020.

[16] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning, 2019, pp. 6105–6114.

[17] M. Shoeybi, M. Patwary et al., “Megatron-lm: Training multi-billion
parameter language models using model parallelism,” arXiv preprint
arXiv:1909.08053, 2019.

[18] L. Weng and G. Brockman. (2022) Techniques for training
large neural networks. [Online]. Available: https://openai.com/blog/
techniques-for-training-large-neural-networks/

[19] J. Du, X. Zhu et al., “Model parallelism optimization for distributed
inference via decoupled cnn structure,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, pp. 1665–1676, 2020.

[20] Y. Zhang, D. Zhou et al., “Single-image crowd counting via multi-
column convolutional neural network,” in IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 589–597.

[21] D. J. Brady, D. L. Marks et al., “Petapixel photography and the limits
of camera information capacity,” in Computational Imaging XI, 2013,
pp. 87–93.

[22] W. Lu, S. Graham et al., “Capturing cellular topology in multi-
gigapixel pathology images,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 260–261.

[23] A. Recasens, P. Kellnhofer et al., “Learning to zoom: a saliency-
based sampling layer for neural networks,” in European Conference
on Computer Vision, 2018, pp. 51–66.

[24] G. Cheng, X. Xie et al., “Remote sensing image scene classification
meets deep learning: Challenges, methods, benchmarks, and opportu-
nities,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 13, pp. 3735–3756, 2020.

[25] N. Dimitriou, O. Arandjelović, and P. D. Caie, “Deep learning for
whole slide image analysis: An overview,” Frontiers in Medicine,
vol. 6, 2019. [Online]. Available: https://www.frontiersin.org/articles/
10.3389/fmed.2019.00264

[26] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2019.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

[28] C. L. Srinidhi, O. Ciga, and A. L. Martel, “Deep neural network models
for computational histopathology: A survey,” Medical Image Analysis,
vol. 67, p. 101813, 2021.

[29] J. D. Schuijf, J. A. Lima et al., “Ct imaging with ultra-high-resolution:
Opportunities for cardiovascular imaging in clinical practice,” Journal
of Cardiovascular Computed Tomography, vol. 16, no. 5, pp.
388–396, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1934592522000235

[30] X. Zhang, L. Han et al., “How well do deep learning-based methods
for land cover classification and object detection perform on high
resolution remote sensing imagery?” Remote Sensing, vol. 12, no. 3,
2020.

[31] H. Jiang, M. Peng et al., “A survey on deep learning-based change de-
tection from high-resolution remote sensing images,” Remote Sensing,
vol. 14, no. 7, 2022.

[32] Z. Cai, Q. Fan et al., “A unified multi-scale deep convolutional neural
network for fast object detection,” in Computer Vision – ECCV 2016,
B. Leibe, J. Matas et al., Eds. Cham: Springer International Publishing,
2016, pp. 354–370.

[33] J. Wang, K. Sun et al., “Deep high-resolution representation learning
for visual recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 10, pp. 3349–3364, 2021.

[34] H. Zhao, X. Qi et al., “Icnet for real-time semantic segmentation on
high-resolution images,” in Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

[35] U. Sajid, H. Sajid et al., “Zoomcount: A zooming mechanism for crowd
counting in static images,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 30, no. 10, pp. 3499–3512, 2020.

[36] J. T. Zhou, L. Zhang et al., “Locality-aware crowd counting,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 7, pp. 3602–3613, 2021.

[37] C. Liu, X. Weng, and Y. Mu, “Recurrent attentive zooming for joint
crowd counting and precise localization,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019.

[38] C. Xu, K. Qiu et al., “Learn to scale: Generating multipolar normal-
ized density maps for crowd counting,” in IEEE/CVF International
Conference on Computer Vision, 2019.

[39] D. J. Ho, D. V. Yarlagadda et al., “Deep multi-magnification networks
for multi-class breast cancer image segmentation,” Computerized Med-
ical Imaging and Graphics, vol. 88, p. 101866, 2021.

[40] K. Wang, X. Zhang, and S. Huang, “KGZNet: knowledge-guided deep
zoom neural networks for thoracic disease classification,” in IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
2019, pp. 1396–1401.

[41] S. Madec, X. Jin et al., “Ear density estimation from high resolution
rgb imagery using deep learning technique,” Agricultural and Forest
Meteorology, vol. 264, pp. 225–234, 2019.

[42] Y. Xu, Z. Xie et al., “Road extraction from high-resolution remote
sensing imagery using deep learning,” Remote Sensing, vol. 10, no. 9,
p. 1461, 2018.

[43] Y. Liu, K. Gadepalli et al., “Detecting cancer metastases on gigapixel
pathology images,” arXiv preprint arXiv:1703.02442, 2017.

https://openreview.net/forum?id=YicbFdNTTy
https://openai.com/blog/techniques-for-training-large-neural-networks/
https://openai.com/blog/techniques-for-training-large-neural-networks/
https://www.frontiersin.org/articles/10.3389/fmed.2019.00264
https://www.frontiersin.org/articles/10.3389/fmed.2019.00264
https://www.sciencedirect.com/science/article/pii/S1934592522000235
https://www.sciencedirect.com/science/article/pii/S1934592522000235

16

[44] L. Wang, L. Ding et al., “Automated identification of malignancy
in whole-slide pathological images: identification of eyelid malignant
melanoma in gigapixel pathological slides using deep learning,” British
Journal of Ophthalmology, vol. 104, no. 3, pp. 318–323, 2020.

[45] C. Xie, H. Muhammad et al., “Beyond classification: Whole slide tissue
histopathology analysis by end-to-end part learning,” in Conference on
Medical Imaging with Deep Learning, 2020, pp. 843–856.

[46] S. Cheng, S. Liu et al., “Robust whole slide image analysis for cer-
vical cancer screening using deep learning,” Nature Communications,
vol. 12, no. 1, p. 5639, 2021.

[47] N. Z. Tsaku, S. C. Kosaraju et al., “Texture-based deep learning
for effective histopathological cancer image classification,” in IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
2019, pp. 973–977.

[48] H. Lin, H. Chen et al., “Fast scannet: Fast and dense analysis of multi-
gigapixel whole-slide images for cancer metastasis detection,” IEEE
Transactions on Medical Imaging, vol. 38, no. 8, pp. 1948–1958, 2019.

[49] Z. Lai, C. Wang et al., “Joint semi-supervised and active learning
for segmentation of gigapixel pathology images with cost-effective
labeling,” in IEEE/CVF International Conference on Computer Vision
Workshops, October 2021, pp. 591–600.

[50] S. Javed, A. Mahmood et al., “Deep multiresolution cellular communi-
ties for semantic segmentation of multi-gigapixel histology images,” in
IEEE/CVF International Conference on Computer Vision Workshops,
2019.

[51] S. Yang, L. Jiang et al., “Deep learning for detecting corona virus
disease 2019 (covid-19) on high-resolution computed tomography: a
pilot study,” Annals of Translational Medicine, vol. 8, no. 7, pp. 450–
450, 2020.

[52] M. Akagi, Y. Nakamura et al., “Deep learning reconstruction improves
image quality of abdominal ultra-high-resolution ct,” European Radi-
ology, vol. 29, no. 11, pp. 6163–6171, 2019.

[53] A. Khadangi, T. Boudier, and V. Rajagopal, “EM-stellar: benchmarking
deep learning for electron microscopy image segmentation,” Bioinfor-
matics, vol. 37, no. 1, pp. 97–106, 2021.

[54] Y. Fukushima, Y. Fushimi et al., “Evaluation of moyamoya disease
in ct angiography using ultra-high-resolution computed tomography:
Application of deep learning reconstruction,” European Journal of
Radiology, vol. 151, p. 110294, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0720048X22001449

[55] C. McLeavy, M. Chunara et al., “The future of ct: deep learning
reconstruction,” Clinical Radiology, vol. 76, no. 6, pp. 407–415, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0009926021000672

[56] X. Xing, Y. Yuan, and M. Q.-H. Meng, “Zoom in lesions for better
diagnosis: Attention guided deformation network for wce image classi-
fication,” IEEE Transactions on Medical Imaging, vol. 39, no. 12, pp.
4047–4059, 2020.

[57] J. E. Ball, D. T. Anderson, and C. S. Chan Sr, “Comprehensive survey
of deep learning in remote sensing: theories, tools, and challenges for
the community,” Journal of applied remote sensing, vol. 11, no. 4, p.
042609, 2017.

[58] M. Vakalopoulou, K. Karantzalos et al., “Building detection in very
high resolution multispectral data with deep learning features,” in IEEE
International Geoscience and Remote Sensing Symposium, 2015, pp.
1873–1876.

[59] U. Alganci, M. Soydas, and E. Sertel, “Comparative research on deep
learning approaches for airplane detection from very high-resolution
satellite images,” Remote Sensing, vol. 12, no. 3, p. 458, 2020.

[60] Z. M. Hamdi, M. Brandmeier, and C. Straub, “Forest damage assess-
ment using deep learning on high resolution remote sensing data,”
Remote Sensing, vol. 11, no. 17, p. 1976, 2019.

[61] L. Ding, D. Lin et al., “Looking outside the window: Wide-context
transformer for the semantic segmentation of high-resolution remote
sensing images,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 60, pp. 1–13, 2022.

[62] R. Zhao, Z. Shi, and Z. Zou, “High-resolution remote sensing image
captioning based on structured attention,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 60, pp. 1–14, 2022.

[63] E. Rocha Rodrigues, I. Oliveira et al., “Deepdownscale: A deep
learning strategy for high-resolution weather forecast,” in IEEE In-
ternational Conference on e-Science, 2018, pp. 415–422.

[64] C. B. R. Ferreira, H. Pedrini et al., “Where’s wally: A gigapixel image
study for face recognition in crowds,” in Advances in Visual Computing,
2020, pp. 386–397.

[65] A. Specker, L. Moritz et al., “Fast and lightweight online person search
for large-scale surveillance systems,” in IEEE/CVF Winter Conference
on Applications of Computer Vision Workshops, 2022, pp. 570–580.

[66] M. Cormier, S. Wolf et al., “Fast pedestrian detection for real-
world crowded scenarios on embedded gpu,” in IEEE International
Conference on Smart Technologies, 2021, pp. 40–44.

[67] L. Li, X. Guo et al., “Region nms-based deep network for gigapixel
level pedestrian detection with two-step cropping,” Neurocomputing,
vol. 468, pp. 482–491, 2022.

[68] M. Aghaei, M. Bustreo et al., “Single image human proxemics esti-
mation for visual social distancing,” in IEEE Winter Conference on
Applications of Computer Vision, 2021.

[69] I. Ahmed, M. Ahmad et al., “A deep learning-based social distance
monitoring framework for covid-19,” Sustainable Cities and Society,
vol. 65, p. 102571, 2021.

[70] J. P. Horwath, D. N. Zakharov et al., “Understanding important features
of deep learning models for segmentation of high-resolution trans-
mission electron microscopy images,” NPJ Computational Materials,
vol. 6, no. 1, p. 108, 2020.

[71] S. Lin, A. Ryabtsev et al., “Real-time high-resolution background
matting,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2021, pp. 8762–8771.

[72] D. Marin, Z. He et al., “Efficient segmentation: Learning downsampling
near semantic boundaries,” in IEEE/CVF International Conference on
Computer Vision, 2019, pp. 2131–2141.

[73] C. Jin, R. Tanno et al., “Learning to downsample for segmentation of
ultra-high resolution images,” arXiv preprint arXiv:2109.11071, 2021.

[74] C. Thavamani, M. Li et al., “Fovea: Foveated image magnification
for autonomous navigation,” in IEEE/CVF International Conference
on Computer Vision, 2021, pp. 15 539–15 548.

[75] M. Jaderberg, K. Simonyan et al., “Spatial transformer networks,”
Advances in Neural Information Processing Systems, vol. 28, 2015.

[76] J. Duchon, “Splines minimizing rotation-invariant semi-norms in
sobolev spaces,” in Constructive Theory of Functions of Several
Variables, 1977, pp. 85–100.

[77] B. E. Bejnordi, A. Habibian et al., “Salisa: Saliency-based in-
put sampling for efficient video object detection,” arXiv preprint
arXiv:2204.02397, 2022.

[78] N. Dong, M. Kampffmeyer et al., “Reinforced auto-zoom net: towards
accurate and fast breast cancer segmentation in whole-slide images,” in
Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support, 2018, pp. 317–325.

[79] M. Gao, R. Yu et al., “Dynamic zoom-in network for fast object
detection in large images,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[80] B. Uzkent and S. Ermon, “Learning when and where to zoom with
deep reinforcement learning,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[81] H. Du, J. Feng, and M. Feng, “Zoom in to where it matters: a
hierarchical graph based model for mammogram analysis,” arXiv
preprint arXiv:1912.07517, 2019.

[82] P. Velickovic, G. Cucurull et al., “Graph attention networks,” in
International Conference on Learning Representations, 2018.

[83] K. Chen, Z. Wang et al., “Towards real-time object detection in
gigapixel-level video,” Neurocomputing, vol. 477, pp. 14–24, 2022.

[84] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[85] J. Redmon, S. Divvala et al., “You only look once: Unified, real-time
object detection,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 779–788.

[86] S. Ren, K. He et al., “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” Advances in Neural Information
Processing Systems, vol. 28, 2015.

[87] S. Jiang, Z. Lin et al., “Flexible high-resolution object detection on
edge devices with tunable latency,” in Annual International Conference
on Mobile Computing and Networking, 2021, p. 559–572.

[88] P. Sermanet, D. Eigen et al., “Overfeat: Integrated recognition, lo-
calization and detection using convolutional networks,” arXiv preprint
arXiv:1312.6229, 2013.

[89] M. Tzelepi and A. Tefas, “Class-specific discriminant regularization in
real-time deep cnn models for binary classification problems,” Neural
Processing Letters, vol. 51, no. 2, pp. 1989–2005, 2020.

[90] M. Tzelepi and A. Tefas, “Improving the performance of lightweight
cnns for binary classification using quadratic mutual information reg-
ularization,” Pattern Recognition, vol. 106, p. 107407, 2020.

https://www.sciencedirect.com/science/article/pii/S0720048X22001449
https://www.sciencedirect.com/science/article/pii/S0720048X22001449
https://www.sciencedirect.com/science/article/pii/S0009926021000672
https://www.sciencedirect.com/science/article/pii/S0009926021000672

17

[91] M. Tzelepi and A. Tefas, “Graph embedded convolutional neural
networks in human crowd detection for drone flight safety,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 5,
no. 2, pp. 191–204, 2021.

[92] D. Triantafyllidou, P. Nousi, and A. Tefas, “Fast deep convolutional
face detection in the wild exploiting hard sample mining,” Big Data
Research, vol. 11, pp. 65–76, 2018.

[93] S. Mehta, M. Rastegari et al., “Espnet: Efficient spatial pyramid of
dilated convolutions for semantic segmentation,” in Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

[94] M. Ding, X. Lian et al., “Hr-nas: Searching efficient high-resolution
neural architectures with lightweight transformers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 2982–2992.

[95] F. Yang, L. Herranz et al., “Slimmable compressive autoencoders for
practical neural image compression,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 4998–5007.

[96] W. Lu, S. Graham et al., “Capturing cellular topology in multi-
gigapixel pathology images,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020.

[97] S. Graham, Q. D. Vu et al., “Hover-net: Simultaneous segmentation
and classification of nuclei in multi-tissue histology images,” Medical
Image Analysis, vol. 58, p. 101563, 2019.

[98] J. Gamper, N. A. Koohbanani et al., “Pannuke: an open pan-cancer
histology dataset for nuclei instance segmentation and classification,”
in European Congress on Digital Pathology, 2019, pp. 11–19.

[99] D. Müllner, “Modern hierarchical, agglomerative clustering algo-
rithms,” arXiv preprint arXiv:1109.2378, 2011.

[100] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations, 2017.

[101] D. Tellez, G. Litjens et al., “Neural image compression for gigapixel
histopathology image analysis,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 43, no. 2, pp. 567–578, 2021.

[102] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[103] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” arXiv preprint arXiv:1605.09782, 2016.

[104] R. J. Chen, M. Y. Lu et al., “Multimodal co-attention transformer
for survival prediction in gigapixel whole slide images,” in IEEE/CVF
International Conference on Computer Vision, 2021, pp. 4015–4025.

[105] K. He, X. Zhang et al., “Deep residual learning for image recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[106] J. Deng, W. Dong et al., “Imagenet: A large-scale hierarchical im-
age database,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

[107] L. Gueguen, A. Sergeev et al., “Faster neural networks straight from
jpeg,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[108] K. Xu, M. Qin et al., “Learning in the frequency domain,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
1740–1749.

[109] L. Wang and Y. Sun, “Image classification using convolutional neural
network with wavelet domain inputs,” IET Image Processing, vol. 16,
no. 8, pp. 2037–2048, 2022.

[110] A. Katharotiya, S. Patel, and M. Goyani, “Comparative analysis
between dct & dwt techniques of image compression,” Journal of
Information Engineering and Applications, vol. 1, no. 2, pp. 9–17,
2011.

[111] S. Wang, H. Lu, and Z. Deng, “Fast object detection in compressed
video,” in IEEE/CVF International Conference on Computer Vision,
2019.

[112] I. E. Richardson, H. 264 and MPEG-4 video compression: video coding
for next-generation multimedia. John Wiley & Sons, 2004.

[113] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[114] P. Zhang, X. Dai et al., “Multi-scale vision longformer: A new
vision transformer for high-resolution image encoding,” in IEEE/CVF
International Conference on Computer Vision, 2021, pp. 2998–3008.

[115] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

[116] Y. YUAN, R. Fu et al., “Hrformer: High-resolution vision transformer
for dense predict,” in Advances in Neural Information Processing
Systems, vol. 34, 2021, pp. 7281–7293.

[117] J. Gu, H. Kwon et al., “Multi-scale high-resolution vision transformer
for semantic segmentation,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2022, pp.
12 094–12 103.

[118] X. Dong, J. Bao et al., “Cswin transformer: A general vision trans-
former backbone with cross-shaped windows,” in IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 12 124–
12 134.

[119] Q. Yu, Y. Xia et al., “Glance-and-gaze vision transformer,” in Advances
in Neural Information Processing Systems, vol. 34, 2021, pp. 12 992–
13 003.

[120] R. J. Chen, C. Chen et al., “Scaling vision transformers to gigapixel
images via hierarchical self-supervised learning,” in IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 16 144–
16 155.

[121] B. Thomee, D. A. Shamma et al., “Yfcc100m: The new data in
multimedia research,” Communications of the ACM, vol. 59, no. 2,
pp. 64–73, 2016.

[122] P. M. R. Martin Koestinger, Paul Wohlhart and H. Bischof, “Annotated
Facial Landmarks in the Wild: A Large-scale, Real-world Database
for Facial Landmark Localization,” in IEEE International Workshop
on Benchmarking Facial Image Analysis Technologies, 2011.

[123] Z. Zhang, P. Luo et al., “Facial landmark detection by deep multi-
task learning,” in European Conference on Computer Vision, 2014, pp.
94–108.

[124] S. Yang, P. Luo et al., “Wider face: A face detection benchmark,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[125] H. Idrees, I. Saleemi et al., “Multi-source multi-scale counting in
extremely dense crowd images,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2547–2554.

[126] Y. Zhang, D. Zhou et al., “Single-image crowd counting via multi-
column convolutional neural network,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016, pp. 589–597.

[127] H. Idrees, M. Tayyab et al., “Composition loss for counting, density
map estimation and localization in dense crowds,” in European con-
ference on computer vision, 2018, pp. 532–546.

[128] V. A. Sindagi, R. Yasarla, and V. M. Patel, “Jhu-crowd++: Large-scale
crowd counting dataset and a benchmark method,” Technical Report,
2020.

[129] Q. Wang, J. Gao et al., “Nwpu-crowd: A large-scale benchmark
for crowd counting and localization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, no. 6, pp. 2141–2149, 2020.

[130] D. Hu, L. Mou et al., “Ambient sound helps: Audiovisual crowd
counting in extreme conditions,” arXiv preprint arXiv:2005.07097,
2020.

[131] M. Cordts, M. Omran et al., “The cityscapes dataset for semantic urban
scene understanding,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[132] G. Ros, L. Sellart et al., “The synthia dataset: A large collection of
synthetic images for semantic segmentation of urban scenes,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[133] X. Huang, P. Wang et al., “The apolloscape open dataset for au-
tonomous driving and its application,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 10, pp. 2702–2719,
2020.

[134] M. Li, Y.-X. Wang, and D. Ramanan, “Towards streaming perception,”
in European Conference on Computer Vision, 2020, pp. 473–488.

[135] F. Yu, H. Chen et al., “Bdd100k: A diverse driving dataset for hetero-
geneous multitask learning,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[136] R. Mottaghi, X. Chen et al., “The role of context for object detection
and semantic segmentation in the wild,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[137] B. Zhou, H. Zhao et al., “Scene parsing through ade20k dataset,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 633–641.

[138] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff
classes in context,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1209–1218.

[139] I. Demir, K. Koperski et al., “Deepglobe 2018: A challenge to parse
the earth through satellite images,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 172–181.

[140] M. Buchhorn, B. Smets et al., “Copernicus global land service: Land
cover 100m: collection 3: epoch 2019: Globe,” Version V3. 0.1)[Data
set], 2020.

[141] G. Christie, N. Fendley et al., “Functional map of the world,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

18

[142] A. Koulaouzidis, D. Iakovidis et al., “KID project: an internet-based
digital video atlas of capsule endoscopy for research purposes,” En-
doscopy International Open, vol. 5, no. 6, pp. E477–E483, 2017.

[143] R. Leenhardt, C. Li et al., “CAD-CAP: a 25,000-image database serv-
ing the development of artificial intelligence for capsule endoscopy,”
Endosc Int Open, vol. 8, no. 3, pp. E415–E420, 2020.

[144] M. Veta, Y. J. Heng et al., “Predicting breast tumor proliferation from
whole-slide images: The tupac16 challenge,” Medical Image Analysis,
vol. 54, pp. 111–121, 2019.

[145] G. Aresta, T. Araújo et al., “Bach: Grand challenge on breast cancer
histology images,” Medical Image Analysis, vol. 56, pp. 122–139, 2019.

[146] D. C. Koboldt, R. S. Fulton et al., “Comprehensive molecular portraits
of human breast tumours,” Nature, vol. 490, no. 7418, pp. 61–70, 2012.

[147] I. C. Moreira, I. Amaral et al., “INbreast,” Academic Radiology, vol. 19,
no. 2, pp. 236–248, 2012.

[148] L. Wen, D. Du et al., “UA-DETRAC: A new benchmark and protocol
for multi-object detection and tracking,” Computer Vision and Image
Understanding, vol. 193, p. 102907, 2020.

[149] O. Russakovsky, J. Deng et al., “Imagenet large scale visual recognition
challenge,” International Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, 2015.

[150] X. Sun, P. Wang et al., “Fair1m: A benchmark dataset for fine-grained
object recognition in high-resolution remote sensing imagery,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 184, pp.
116–130, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0924271621003269

[151] T.-Y. Lin, M. Maire et al., “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision, 2014, pp. 740–
755.

[152] R. Ma and Q. Hao, “Cs-fnet: A compressive sampling frequency neural
network for simultaneous image compression and recognition,” in IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems, 2021, pp. 1–6.

[153] M.-H. Guo, Z.-N. Liu et al., “Can attention enable mlps to catch up
with cnns?” Computational Visual Media, vol. 7, no. 3, pp. 283–288,
2021.

[154] Y. Cheng, D. Wang et al., “Model compression and acceleration for
deep neural networks: The principles, progress, and challenges,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 126–136, 2018.

[155] Y. Han, G. Huang et al., “Dynamic neural networks: A survey,” arXiv
preprint arXiv:2102.04906, 2021.

[156] J. Carreira, V. Patraucean et al., “Massively parallel video networks,”
in European Conference on Computer Vision, 2018.

[157] L. Hedegaard and A. Iosifidis, “Continual inference: A library for
efficient online inference with deep neural networks in pytorch,” arXiv
preprint: arXiv:2204.03418, 2022.

[158] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and
early exiting for deep learning applications: Survey and research
challenges,” ACM Computing Surveys, 2021.

[159] A. Bakhtiarnia, N. Milošević et al., “Dynamic split computing for
efficient deep edge intelligence,” arXiv preprint arXiv:2205.11269,
2022.

[160] N. Boehrer, A. Gabriel et al., “Onboard ROI selection for aerial
surveillance using a high resolution, high framerate camera,” in Mobile
Multimedia/Image Processing, Security, and Applications, vol. 11399,
2020, pp. 76 – 95.

APPENDIX A
DATA SOURCES

Data Sources and details for device camera resolutions are
shown in Table V.

https://www.sciencedirect.com/science/article/pii/S0924271621003269
https://www.sciencedirect.com/science/article/pii/S0924271621003269

19

TABLE V: Details for device camera resolutions. All links were accessed at 26 July 2022.

Device Camera Year Resolution (MP) Source
Apple iPhone Rear Camera 2007 2 https://en.wikipedia.org/wiki/IPhone (1st generation)

2008 2 https://en.wikipedia.org/wiki/IPhone 3G
2009 3 https://en.wikipedia.org/wiki/IPhone 3GS
2010 5 https://en.wikipedia.org/wiki/IPhone 4
2011 8 https://en.wikipedia.org/wiki/IPhone 4S
2012 8 https://en.wikipedia.org/wiki/IPhone 5
2013 8 https://en.wikipedia.org/wiki/IPhone 5S
2014 8 https://en.wikipedia.org/wiki/IPhone 6
2015 12 https://en.wikipedia.org/wiki/IPhone 6S
2016 12.2 https://en.wikipedia.org/wiki/IPhone SE (1st generation)
2017 12 https://en.wikipedia.org/wiki/IPhone X
2018 12 https://en.wikipedia.org/wiki/IPhone XS
2019 12 https://en.wikipedia.org/wiki/IPhone 11 Pro
2020 12 https://en.wikipedia.org/wiki/IPhone 12 Pro
2021 12 https://en.wikipedia.org/wiki/IPhone 13 Pro
2022 12 https://en.wikipedia.org/wiki/IPhone SE (3rd generation)

Samsung Galaxy S Rear Camera 2010 5 https://en.wikipedia.org/wiki/Samsung Galaxy S
2011 8 https://en.wikipedia.org/wiki/Samsung Galaxy S II
2012 8 https://en.wikipedia.org/wiki/Samsung Galaxy S III
2013 13 https://en.wikipedia.org/wiki/Samsung Galaxy S4
2014 16 https://en.wikipedia.org/wiki/Samsung Galaxy S5
2015 16 https://en.wikipedia.org/wiki/Samsung Galaxy S6
2016 12 https://en.wikipedia.org/wiki/Samsung Galaxy S7
2017 12 https://en.wikipedia.org/wiki/Samsung Galaxy S8
2018 12 https://en.wikipedia.org/wiki/Samsung Galaxy S9
2019 16 https://en.wikipedia.org/wiki/Samsung Galaxy S10
2020 108 https://en.wikipedia.org/wiki/Samsung Galaxy S20
2021 108 https://en.wikipedia.org/wiki/Samsung Galaxy S21
2022 108 https://en.wikipedia.org/wiki/Samsung Galaxy S22

Microsoft HoloLens Camera 2016 2.4 https://docs.microsoft.com/en-us/hololens/hololens1-hardware
2019 8 https://www.microsoft.com/en-us/hololens/hardware

Raspberry Pi Camera 2013 2.1 https://en.wikipedia.org/wiki/Raspberry Pi#Accessories
2016 8 https://en.wikipedia.org/wiki/Raspberry Pi#Accessories
2020 12.3 https://en.wikipedia.org/wiki/Raspberry Pi#Accessories

DJI Phantom Camera 2012 12 https://en.wikipedia.org/wiki/GoPro#HERO3 (White/Silver/Black)
2013 14 https://www.dji.com/dk/phantom-2-vision
2014 14 https://www.dji.com/dk/phantom-2-vision-plus
2015 12.4 https://www.dji.com/dk/phantom-3-pro
2016 20 https://en.wikipedia.org/wiki/Phantom (UAV)#Current Phantom drones
2017 20 https://en.wikipedia.org/wiki/Phantom (UAV)#Current Phantom drones
2018 20 https://en.wikipedia.org/wiki/Phantom (UAV)#Current Phantom drones

https://en.wikipedia.org/wiki/IPhone_(1st_generation)
https://en.wikipedia.org/wiki/IPhone_3G
https://en.wikipedia.org/wiki/IPhone_3GS
https://en.wikipedia.org/wiki/IPhone_4
https://en.wikipedia.org/wiki/IPhone_4S
https://en.wikipedia.org/wiki/IPhone_5
https://en.wikipedia.org/wiki/IPhone_5S
https://en.wikipedia.org/wiki/IPhone_6
https://en.wikipedia.org/wiki/IPhone_6S
https://en.wikipedia.org/wiki/IPhone_SE_(1st_generation)
https://en.wikipedia.org/wiki/IPhone_X
https://en.wikipedia.org/wiki/IPhone_XS
https://en.wikipedia.org/wiki/IPhone_11_Pro
https://en.wikipedia.org/wiki/IPhone_12_Pro
https://en.wikipedia.org/wiki/IPhone_13_Pro
https://en.wikipedia.org/wiki/IPhone_SE_(3rd_generation)
https://en.wikipedia.org/wiki/Samsung_Galaxy_S
https://en.wikipedia.org/wiki/Samsung_Galaxy_S_II
https://en.wikipedia.org/wiki/Samsung_Galaxy_S_III
https://en.wikipedia.org/wiki/Samsung_Galaxy_S4
https://en.wikipedia.org/wiki/Samsung_Galaxy_S5
https://en.wikipedia.org/wiki/Samsung_Galaxy_S6
https://en.wikipedia.org/wiki/Samsung_Galaxy_S7
https://en.wikipedia.org/wiki/Samsung_Galaxy_S8
https://en.wikipedia.org/wiki/Samsung_Galaxy_S9
https://en.wikipedia.org/wiki/Samsung_Galaxy_S10
https://en.wikipedia.org/wiki/Samsung_Galaxy_S20
https://en.wikipedia.org/wiki/Samsung_Galaxy_S21
https://en.wikipedia.org/wiki/Samsung_Galaxy_S22
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://www.microsoft.com/en-us/hololens/hardware
https://en.wikipedia.org/wiki/Raspberry_Pi#Accessories
https://en.wikipedia.org/wiki/Raspberry_Pi#Accessories
https://en.wikipedia.org/wiki/Raspberry_Pi#Accessories
https://en.wikipedia.org/wiki/GoPro#HERO3_(White/Silver/Black)
https://www.dji.com/dk/phantom-2-vision
https://www.dji.com/dk/phantom-2-vision-plus
https://www.dji.com/dk/phantom-3-pro
https://en.wikipedia.org/wiki/Phantom_(UAV)#Current_Phantom_drones
https://en.wikipedia.org/wiki/Phantom_(UAV)#Current_Phantom_drones
https://en.wikipedia.org/wiki/Phantom_(UAV)#Current_Phantom_drones

	Introduction
	Applications of High-Resolution Deep Learning
	Medical and Biomedical Image Analysis
	Remote Sensing
	Surveillance
	Other Applications

	Methods for Efficient Processing of High-Resolution Inputs with Deep Learning
	Non-Uniform Downsampling
	Selective Zooming and Skipping
	Lightweight Scanner Networks
	Task-Oriented Input Compression
	High-Resolution Vision Transformers

	High-Resolution Datasets
	Discussion and Open Issues
	Conclusion and Outlook
	References
	Appendix A: Data Sources

