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Abstract 

Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochem-
ical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel’s milestone discov-
eries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. 
Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes 
that encode their component enzymes and regulators. We use this historical review to discuss a range of classical 
genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-
throughput data obtained via the array of approaches currently adopted in multiomics studies.
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Introduction

The foundation of biochemical genetics

There has been much written about Gregor Mendel in the last 
12 months due to the 200th anniversary of his birth (Eckardt 
et al., 2022). He is often described as the founder of genetics 
but what is less commonly acknowledged is that he is without 
a doubt, somewhat serendipitously, the founder of biochem-
ical genetics. This is because of the seven characteristics of pea 
plants he studied, one of which was a wrinkled phenotype and 
was a morphological change that was displayed due to a muta-
tion in a starch branching enzyme—a fact that was first docu-
mented more than 30 years ago (Bhattacharyya et al., 1990). 
Until recently, biochemical genetics was centered around those 
metabolites that conferred highly visual phenotypes, either with 
respect to pigmentation, shape, or size. That said, unlike the case 

for Mendel, the majority of these studies followed the isolation 
of the first enzyme to be identified, diastase (currently known as 
amylase), in microbes the early 20th century (Needham, 1970; 
Kohler, 1972) and were also subsequent to what many regard 
as the foundation of biochemical genetics, namely the linking 
of enzymes to genes via the ‘one gene, one enzyme’ theory of 
(Beadle and Tatum (1941). Whilst this theory holds true (at least 
in part) in simple organisms such as Neurosporra crassa for which 
it was developed, the extensive gene duplication that has char-
acterized the plant kingdom (Zhang, 2003; Fernie and Tohge, 
2017), means that this is not the case for plants. Although on 
the one hand this presents a complication in the study of plant 
metabolism (and especially that of specialized metabolism), on 
the other hand, as we will detail below, recent studies aimed 
at examining metabolic gene clusters in plants have benefitted 
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from this complexity (Zhan et al., 2022). The term ‘biochem-
ical genetics’, whilst less commonly used in plants than it was 
50 years ago, refers to the combination of biochemistry and 
genetics. Prior to the greater availability of genome sequences 
over recent decades, this was largely performed by the use of 
molecular genetic markers and simple characteristics of gene 
products, for example based on their electrophoretic properties 
(Banuett-Bourrillon and Hague, 1979; Kawase and Sakamoto, 
1984). Whilst these approaches were simple, they produced an 
incredible knowledge base. The marriage of genetics and bio-
chemistry has a long history in the unravelling of plant meta-
bolic pathways, and it has contributed to pivotal developments 
in phytochemistry (Somerville, 2000; Fernie, 2007), including 
the vital elucidation of various aspects of photosynthesis 
(Calvin, 1962; Kortschak et al., 1965; Hatch and Slack, 1968), 
the discovery of transposable elements (McClintock, 1951), the 
establishment of the pathway of chlorophyll biosynthesis (Wolff 
and Price, 1957), the endosymbiont hypothesis of organelle ac-
quisition (Gray et al., 1999), and the high-level structural resolu-
tion of photosystems I and II (Zouni et al., 2005; El-Mohsnawy 
et al., 2010). In contemporary terms, biochemical genetics can 
be explained as the genetic diversity underpinning protein 
function and abundance.

Prior to the development of gene transformation and more 
latterly gene-editing techniques, many early studies exploited 
mutants in combination with either steady-state or isotope-
labelled metabolite analyses (Calvin, 1962; Wheeler et al., 1998), 
and this allowed the definition of the structures of the majority 
of the cardinal pathways of plant biochemistry. This approach 
has continued to be followed successfully in recent decades 
(Wheeler et al., 1998; Schwender et al., 2004; Tieman et al., 
2006; Dal Cin et al., 2011). However, the dependence of met-
abolic studies on genetic polymorphism has also considerably 
diversified to include both natural variation (Kliebenstein et al., 
2001; Bentsink et al., 2003; Schauer et al., 2005; El-Lithy et al., 
2006) and forward- and reverse-genetic approaches (Fridman 
et al., 2004; Sergeeva et al., 2004; Schauer et al., 2006; Tieman 
et al., 2006; Zhang et al., 2006; Lisec et al., 2008; Rowe et al., 
2008; Joseph et al., 2015a, 2015b). In parallel, integrated geno-
mics approaches are beginning to yield an enhanced mecha-
nistic understanding of biological systems, particularly when 
studied kinetically following an environmental perturbation or 
when spanning several developmental periods (Carrari et al., 
2006; Wang et al., 2014; Yang et al., 2022). In this paper, we 
review current and historical strategies for the elucidation of 
plant metabolic pathways and the genes that encode them. We 
additionally discuss a range of classical genetic phenomena in-
cluding mode of inheritance, epistasis, canalization, and heter-
osis as viewed through the lens of the high-throughput data 
obtained via the array of approaches that are currently adopted 
in multiomics studies (Fig. 1). First, however, we describe the 
gradual shift away from using single-mutants to scanning nat-
ural variance in the wild, and discuss the difficulties and ben-
efits of this transition.

Single-mutants to segregating populations 
to genome-wide association studies: an 
overview of population types underpinning 
the study of plant biochemical genetics

As was the case noted above for N. crassa, the earliest reports of 
biochemical genetics tended to focus on mutant screens tar-
geting single genes. Indeed, much of our understanding of the 
biosynthesis of starch, lipids, cell walls, and flavonols has come 
from screens of populations mutagenized using ethyl meth-
anesulfonate (Herlihy et al., 2019). In the case of starch me-
tabolism, these screens were based on simple iodine staining 
that highlights differences in amylose binding (Caspar et al., 
1985; Lin et al., 1988). Similarly, flavonol biosynthesis was dis-
sected on the basis of seed colour, since the lack of flavonols 
in the seed coat gives rise to a transparent testa phenotype 
(Appelhagen et al., 2014). In contrast, mutants in lipids and cell 
walls were largely identified by more laborious means or in 
developmental screens. For example, in the case of the identi-
fication of the Arabidopsis dgd1 mutant radiolabel tracing was 
employed (Dörmann et al., 1999), whilst mutants of cell wall 
biosynthesis have often been found on the basis of cell swelling 
phenotypes in root tissues (Doblin et al., 2002). The use of 
stress to exacerbate phenotypes has additionally been widely 
employed, such as in screens for sensitivity to UV-B (Li et al., 
1993; Landry et al., 1995; Conklin et al., 1996). Since the turn of 
the century the availability (at least in Arabidopsis) of a T-DNA 
knockout collection and database (e.g. TAIR and ABRC) have 
greatly simplified gene functional analysis. Beyond Arabidopsis, 
the development of the TILLING method as an approach to 
accelerate the identification of mutant loci (Till et al., 2003) 
and the development of genotyping by sequencing (Galvão 
et al., 2012) have greatly accelerated the identification of the 
genetic basis of biochemical phenotypes (Fig. 1). In parallel, 
the advent and adoption of techniques that can simultaneously 
determine the levels of hundreds of metabolites (Fiehn et al., 
2000; Alseekh and Fernie, 2018) alongside the opportunities 
afforded by next-generation sequencing (Purugganan and 
Jackson, 2021; Gui et al., 2023) have opened up the possibility 
of evaluating much broader genetic variance, such as that avail-
able in advanced breeding populations (Alseekh et al., 2021; 
Sharwood et al., 2022; Bulut et al., 2023) and panels of natural 
variants (Fang and Luo, 2019). Although such populations have 
been reviewed extensively elsewhere (Fernie and Klee, 2011; 
Wijnen and Keurentjes, 2014), we will briefly describe their 
development here since they are highly relevant to the fol-
lowing sections.

Whilst the study of natural variance (at a narrow level) 
proceeded that of advanced breeding populations, given that 
it has only been possible to provide mechanistic rather than 
descriptive results since the recent advent of genome-wide 
association analysis, we will start this discussion with the 
use of advanced breeding populations. There are five types 
of population that are worthy of discussion in the context 
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Fig. 1. Historical developments of genetics in the multiomics era (part of the figure generated by BioRender).
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of biochemical genetics, namely recombinant inbred lines, 
introgression lines, backcrossed inbred lines, double-hap-
loids, and heterogeneous inbred families (Bulut et al., 2023). 
Populations can be generated by multiple rounds of selfing, 
as in the case for recombinant inbred lines (RILS; Fernie 
and Klee, 2011), or by repeated backcrossing and extensive 
genotyping, as in the case of introgression lines (ILs) and 
backcrossed inbred lines (BILs). Despite their similar routes 
of generation, BILs are more similar to RILs in that they 
have a mosaic of donor and recurrent genomes rather than 
a single (or at least a small number) of chromosomal seg-
ment substitutions (Ofner et al., 2016; Brog et al., 2019). 
Homozygous populations can also be induced by chromo-
somal doubling of haploids, such as for double-haploids (von 
Korff et al., 2004). Heterogeneous inbred families are most 
frequently used in order to confirm quantitative trait loci 
(QTL) detected in a RIL population by taking a predecessor 
of a RIL that remains heterozygous for the region of in-
terest but is otherwise homozygous and selfing it, following 
which the heterozygous region segregates in a Mendelian 
manner. Such studies thus enable comparison of the trait of 
interest for that specific region for both parental genotypes 
in an isogenic background. Following similar principles, 
multi-parental populations have been generated to increase 
the allelic variance in the resultant offspring, such as NAM 
and CUBIC populations (Gage et al., 2020; Liu et al., 2020). 
Again, we will detail the use of these populations in bio-
chemical genetics in the following sections.

A complementary approach to that offered by breeding 
populations is that of directly assessing the broad-range nat-
ural variation of traits and associating this with differences in 
gene sequences via genome-wide association studies (GWAS; 
Alseekh et al., 2021). The aim of GWAS is strikingly simple, 
namely to detect the association between allele or genotype 
frequency and trait status. The first step is to select an appro-
priate study population, considering both the size of the popu-
lation and the amount of genetic and phenotypic variance that 
it possesses. Given that we have recently reviewed this exten-
sively (Alseekh et al., 2021), we will not detail it here; suffice 
to say that suitable collections now exist for a range of model 
species, common and even rare crop species, and also a range 
of non-cultivated species. These collections have made GWAS 
considerably easier to conduct, even compared with just a few 
years ago. Given that approaches based on breeding popula-
tions and GWAS are highly complementary, we will discuss 
them together in the following sections.

Epistasis

In population genetics, the total genetic variance is di-
vided into orthogonal components attributable to additive, 
dominance (intralocus interactions), and epistatic variance 
(interlocus interactions) that depend on allele frequencies 

(Vitezica et al., 2017). Epistasis can be defined as deviation 
from the additivity of the combined effect of multiple variants 
(Falconer, 1989). At the beginning of the 20th century, the 
term epistasis was first brought into the scientific commu-
nity by William Bateson as meaning a non-linear interaction 
between two or more segregating loci with different alleles 
across genetic backgrounds (Causse et al., 2007; Liu and Yan, 
2019). Most observed genetic variance for quantitative traits is 
additive; however, the great influence of epistatic gene action 
at many loci for quantitative traits should not be ignored (Liu 
and Yan, 2019). In the absence of epistasis, the estimates of 
additive and dominance effects at a given locus are the same 
regardless of the genotype of another locus; however, in the 
presence of epistasis, a substantial contribution is provided to 
each of these variance components.

Multiple genetic factors and their interactions (epistasis) are 
the key regulators for elucidating the genetic basis of pheno-
typic variances, and are also implicated in gene–environment 
interactions. The great influence of epistasis and complicated 
forms of environmental effects have been neglected in studies 
detecting phenotypic variance. The elucidation of statistical 
associations between millions of genetic variants and pheno-
types has become possible with the use of single-nucleotide 
polymorphisms (SNPs), and these have also contributed to the 
investigation of genotype × environment (G×E) interactions 
(Liu and Yan, 2019). It has been suggested that G×E interac-
tions might have impacts in complex ways within populations 
(Scheiner, 1993; Juenger et al., 2005).

In all studies of quantitative variation, statistical power is a 
central issue. Theoretical models and experimental results in-
dicate that population bottlenecks and subdivisions expose 
hidden additive genetic variance selection due to epistasis. 
Many distinct methods are available to analyse and visualize 
one-, two-, or three-way epistatic interactions (Martínez et al., 
2018). Due to the statistical and computational complexities, 
most analyses are constrained to examine only pairwise inter-
actions in order to detect epistasis (Weinreich et al., 2013). the 
approaches mainly focus on the selection of SNPs for inter-
actions, based on existing biological knowledge or statistical 
features (L. Li et al., 2022). When considering biochemical 
pathways and gene networks, the presence of epistasis may be 
inevitable; however, evidence of epistasis in terms of quanti-
tative character variation is surprisingly weak (Mackay, 2014; 
Labroo et al., 2021). In quantitative genetics, the standard non-
epistatic model is often considered to be a linear approxima-
tion of the complicated mapping from genotype to phenotype. 
Therefore, it is now considered normal to characterize gene 
interactions with non-linear functions when predicting phe-
notype from genetic metrics.

Over recent decades, the contribution of epistasis to quanti-
tative trait phenotypes has been apparent in many studies, espe-
cially in GWAS and QTL analysis (Yi and Xu, 2002; Manicacci 
et al., 2009; Würschum et al., 2011; Wen et al., 2015; Zhang 
et al., 2015). GWAS have been mainly conducted based on the 
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assessment of statistical significance in the dissection of G×E 
interactions (Liu and Yan, 2019). Many studies have successfully 
mapped QTL; however, the variations that are caused by the 
tens to hundreds of genes underlying genomic regions remain 
unidentified (Allen Orr, 2001; Maloof, 2003; Koornneef et al., 
2004). The increasing use of QTL mapping has been cited as 
the key contributor for elucidating epistasis in quantitative trait 
variation (Erickson et al., 2004).

Dominance and epistasis play key roles in the determina-
tion of complex traits of interest. The difficulties in detecting 
epistasis cannot be ignored, and therefore experimental set-
ups capable of full characterization are necessary to test these 
higher-order interactions. An ideal experimental set-up would 
be the generation of isogenic lines harbouring distinct allelic 
combinations underlying the set of genes of interest. F2 popu-
lations or recombinant inbred populations have been used to 
handle epistatic mapping (Kerwin et al., 2017). A strong ep-
istatic interaction can be detected for some metabolites in 
kernels in maize RIL populations (Wen et al., 2015). Shang 
et al. (2016) have shown that epistasis contributes to yield het-
erosis in RIL and backcross populations of cotton. GWAS 
and epistasis studies performed using 214 soybean germplasm 
accessions have shown that additive and epistatic variance can 
explain almost half of the phenotypic variance for sudden 
death syndrome resistance (Zhang et al., 2015).

The great influence of epistasis has been demonstrated 
in a wide range of crop species (Schnable and Springer, 
2013; Labroo et al., 2021; Monforte, 2021). For instance, 
in common bean significant epistasis is observed for seed 
yield, the number of seeds per plant, and the number of pods 
per plant (Moreto et al., 2012). In wheat, epistatic analysis 
using RIL mapping populations has detected one pair of 
epistatic QTL for the first internode component index and 
three pairs for the third internode component index, thereby 
providing information about plant height components and 
associated increases in yield (Qin et al., 2022). Another 
study of common bean has indicated the role of epistasis in 
the genetic control of traits associated with yield in inter-
gene-pool crosses (Johnson and Gepts, 2002), and in rice 
it has been shown that epistasis regulates plant height on 
the genetic basis of midparent heterosis (Shen et al., 2014). 
Epistatic QTL interactions including synergistic interactions 
have been identified in wheat populations that shed light 
on the inheritance of shattering resistance (Bokore et al., 
2022). Metabolite profiling using a maize backcross pop-
ulation detected ~15% epistatic interactions for primary 
metabolites that have impacts on maize quality, and hence 
could be utilized for improvement (K. Li et al., 2019). Away 
from crop species, Kerwin et al., (2017) conducted a detailed 
analysis that identified both additive and epistatic interac-
tions for the polymorphic genes that control aliphatic gluco-
sinolate in Arabidopsis that had not previously been assessed 
for potential interactions with the environment. In addition, 
crossing of C24 with Col-0 has indicated that dominance 

and epistatic interactions have an important role in biomass-
related traits (Kusterer et al., 2007).

Canalization

Much less well understood than the genetics that contribute to 
the level of a given quantitative trait are those that are respon-
sible for the robustness of the trait between or within environ-
ments (Fig. 2). An early principle for the concept of robustness 
in a developmental context was described by Waddington 
(1942). Waddington noticed that developmental processes were 
generally canalized so as to bring about a single clearly defined 
final stage, regardless of minor variations in the conditions 
under which the processes occurred. Based on this, Waddington 
suggested that there must be some capacity of the genotype to 
buffer the phenotype against these minor variations in geno-
type and environment. In that sense, a distinction can be made 
between genetic and environmental canalization. Perhaps the 
best-studied developmental process that shows considerable 
canalization against different sources of variation is the pat-
terning of the vulva plate of Caenorhabditis elegans (Félix and 
Barkoulas, 2012). In both Drosophila and in Arabidopsis, the 
chaperone HSP90 has been shown to be a capacitor of phe-
notypic variation (Rutherford and Lindquist, 1998; Queitsch 
et al., 2002), providing another example of developmental can-
alization. Genes such as HSP90 are often considered to be so-
called gene network hubs, where the exponential distribution 
of connectivity is associated with robustness (Lachowiec et al., 
2016).

Quantitative traits seem to have received less attention than 
developmental ones in terms of canalization. When considering 
quantitative traits of different genotypes in different environ-
ments it becomes clear that there are different forms of canaliza-
tion that can be considered, and it seems reasonable and necessary 
to also use a terminology that works in a quantitative sense. Using 
the reaction norm, that is how the trait of a genotype changes 

Fig. 2. Concepts of canalization and variance. Schematic plots are shown 
for the mean (±SD) of theoretical traits of two different genotypes, G1 and 
G2, in two different environments, E1 and E2. The top row shows plots for 
the reaction norm of the mean (RxNM) whilst the bottom row shows plots 
for the corresponding variance (RxNV). The sources of variation are either 
due to genetic (VG), environmental (VE), or stochastic (VS) factors.
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between environments, it is possible to distinguish the reaction 
norm of the mean (RxNM) and the reaction norm of the var-
iance (RxNV) of a trait (Dworkin, 2005). While the former 
considers the change of mean values of genotypes between envi-
ronments, the latter considers the change of variance between 
individuals between environments. Accordingly, the sources of 
phenotypic variation can be either genetic, environmental, or 
stochastic factors (Fig. 2; Laitinen and Nikoloski, 2019).

While there are examples with respect to canalization of 
quantitatively characterized traits ranging from single-celled 
organisms to higher plants (Alon et al., 1999; Lehner, 2010; 
Fisher et al., 2017; Lachowiec et al., 2018), the application to 
metabolism is relatively recent and more limited. A flux bal-
ance analysis in E. coli identified six capacitor reactions that 
have a high influence on genetic canalization of metabolism 
(Ho and Zhang, 2016). In Arabidopsis, the ELF3 gene shows 
an effect on the canalization of both the circadian clock as 
well as glucosinolate levels (Jimenez-Gomez et al., 2011). By 
using transformed data to assess the reaction norm of the var-
iance, several canalized metabolic QTL (cmQTL) responsible 
for genotype × environment effects on the variance of various 
tomato fruit metabolites have been detected (Alseekh et al., 
2017). Interestingly the cmQTL only sparsely overlapped with 
the QTL for the levels of the metabolites, suggesting different 
loci were related to level and variance. Further validation of 
candidate genes supports the idea that genes that affect (e.g.) 
the cross-environment canalization do not necessarily also af-
fect the inter-individual variance. The observation that loci re-
sponsible for variation in a trait are (at least partly) distinct and 
also fewer in number than loci responsible for the level of the 
trait is supported by other research (Hall et al., 2007; Joseph 
et al., 2015a; Li et al., 2016; Kusmec et al., 2017). Both the dis-
tinctiveness and the reduced number of loci could point to 
there being a few regulatory genes that simultaneously control 
several traits (Alseekh et al., 2017). Depending on the trait, we 
can consider many different combinations of effects of loci on 
either the level or variance of that trait, or both (Fig. 2, col-
umns 1, 2, and 3, respectively).

In this regard, datasets from large mapping studies that have 
previously been used simply to study the level of a given trait 
could be reused to study the inter-individual or cross-envi-
ronment variation. While this has been done in some cases 
(Schauer et al., 2006; Wentzell et al., 2007; Schauer et al., 2008; 
Jimenez-Gomez et al., 2011; Alseekh et al., 2017), this resource 
of legacy data is still underutilized. Together with new data 
generated through the high-throughput platforms of the mul-
tiomics era, it can be used to study canalization and variation 
more comprehensively (Wijesingha Ahchige et al., 2023).

Organellar inheritance of biochemical traits

The organellar inheritance of biochemical genetic traits (also 
known as cytoplasmic genetic variation) is a further type of 

epistasis that we consider separately here given that it has long 
been studied in its own right. Organellar genomic variation 
can be linked to dramatic phenotypic alterations in both mam-
mals (Johns et al., 1992; Taylor and Turnbull, 2005; Schon et al., 
2012) and plants (Schnable and Wise, 1998; Roubertoux et al., 
2003). The use of structured populations in yeast and animals 
have variously shown that cytoplasmic variance can influence 
fitness, cognition, and biomass as well as altering fitness and 
creating hybrid isolation (Dimitrov et al., 2009; Wolf, 2009; 
Willett, 2012). Similarly, in plants mitochondrial genetic vari-
ation is linked to important quantitative phenotypes including 
cytoplasmic male sterility (Hanson, 1991; Schnable and Wise, 
1998), whilst plant breeding efforts commonly employ diallele 
crosses to assess the presence of maternal effects on pheno-
types such as height in maize (Tang et al., 2013). Moreover, 
the presence of cytoplasmic and nuclear genome interactions 
has been found to influence a range of agronomic traits (Tao 
et al., 2004); however, the genes involved are yet to be iden-
tified. Such variation is uncovered in experiments in which 
variance in organellar genomes is assessed alongside that of the 
nuclear genome. Due to their differing modes of inheritance, 
in practice this is largely achieved via varying the organellar 
genome within a population in which the nuclear genome has 
undergone considerable recombination. This is most simply 
achieved by the analysis of reciprocal F2 populations; however, 
historically in plants such analyses have been taken to imply 
that cytoplasmic effects on phenotypic variation are quite small 
(Singh, 1966; Crane and Nyquist, 1967; Eenink and Garretsen, 
1980; Bhatt et al., 1983; Rehal et al., 2022). However, in con-
trast to previous estimates of small effects, genomic sequencing 
within Arabidopsis has shown the presence of considerable ge-
netic polymorphism in both the plastidic and mitochondrial 
genomes, suggesting the potential for broad phenotypic con-
sequences (Moison et al., 2010). In an attempt to quantify the 
importance of cytoplasmic variance, Joseph et al. (2013) uti-
lized metabolomics to investigate how genetic variation in the 
cytoplasmic and nuclear genomes interacts to control metabo-
lome variation in a reciprocal Arabidopsis Kas × Tsu RIL pop-
ulation (Juenger et al., 2006; McKay et al., 2008). They found 
that variation in the organellar genome contributed to varia-
tion in the levels of more than 80% of the metabolites studied. 
Organellar genes also helped to regulate the effect of nuclear 
genes. This combination of direct and indirect influences helps 
to explain how a small number of organellar genes can have 
a disproportionately large effect on phenotype. However, de-
spite the considerable insights provided by this study, it is our 
contention that a considerable deficit remains in our overall 
knowledge of the importance of these interactions, and it will 
be highly important to boost our understanding of their im-
portance in crop species as well as to employ recently devel-
oped approaches (Alseekh et al., 2021) to ascertain whether 
differences in their influence have arisen during the processes 
of domestication and crop improvement.
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Use of populations in metabolite and gene 
annotation

Plant metabolic studies have traditionally focused on the role 
and regulation of the enzymes that catalyse key reactions 
within specific pathways (Fernie and Tohge, 2017). Although 
metabolic regulation is still being addressed via reverse-genet-
ics approaches such as transgenesis, and via novel molecular 
techniques such as genome editing, within recent years broad 
natural variance in the form of linkage mapping populations 
and GWAS have been shown to be effective tools by which 
to deepen our understanding of plant metabolism (Alseekh 
et al., 2021). As mentioned above, there has been a long his-
tory of utilizing genetics to understand plant biochemistry, as 
demonstrated by Mendel’s early studies on peas (Mendel, 1865; 
White, 1917). In plant metabolism, a further seminal study was 
the discovery of transposable elements in maize kernels that 
regulate the flavonoid biosynthesis genes (McClintock, 1950). 
The genetic regulation of plant flower color, which is mainly 
an attribute of the abundance of secondary metabolites such as 
anthocyanins and flavonoids, has been investigated over the last 
two centuries (Hooker, 1837; Sink, 1973).

Sax (1923) was the first to describe QTL mapping in study-
ing the seed size and color of common bean. Modern QTL 
mapping, which is defined in segregating populations, is based 
on the genotyping of progeny derived from a cross between 
distinct genotypes and the association of molecular mark-
ers with the phenotype of interest in the resultant offspring 
(Broman, 2001). It was facilitated by development of compre-
hensive DNA markers (Kumar, 1999; Phillips and Vasil, 2001) 
and more recently by the release of many plant genomes (Kress 
et al., 2022). In terms of plant metabolism, early use of map-
ping populations focused mainly on important and easy-to-
score metabolic traits such as carotenoid content in tomato, 
protein and oil content in maize, and starch content in potato 
and rice (Moose et al., 2004; Fernie et al., 2006). The initial 
QTL mapping studies using high-throughput mass spectrom-
etry (MS) techniques and assessing the levels of multiple meta-
bolic traits was first made in 2006. These studies looked at the 
primary metabolism of tomato (Schauer et al., 2006) and the 
contents of secondary metabolites in Arabidopsis (Keurentjes 
et al., 2006) to evaluate the natural variations in metabolism 
present in biparental segregating populations. They were fol-
lowed up by further mapping studies in the same laborato-
ries that addressed many aspects of the genetics of metabolism, 
including comparative analyses of population types and the 
evaluation of heterosis, heritability, and the environmental plas-
ticity of the plant metabolome (Lisec et al., 2008; Rowe et al., 
2008; Joseph et al., 2015a, 2015b). This approach has been suc-
cessfully applied to various types of segregating populations 
across a wide range of other important crop species, including 
maize (Wen et al., 2015; K. Li et al., 2019), rice (Matsuda et al., 
2012; Chen et al., 2018), wheat (Hill et al., 2013), barley (Zeng 

et al., 2020), pepper (Wahyuni et al., 2014), eggplant (Sulli et al., 
2021), and potato (Carreno-Quintero et al., 2012). Examples 
such as these highlight the power of interspecific breeding 
populations for understanding the genetic bases of plant me-
tabolism where large numbers of genes have been cloned and 
characterized. Although considerable biological insights have 
been obtained from using linkage mapping, the adoption of 
GWAS has allowed for the greatest breakthroughs given the 
advent of next-generation sequencing (Nguyen et al., 2019). 
This approach relies on testing genetic variants across the 
genomes of many individuals of a population to identify gen-
otype–phenotype associations (Uffelmann et al., 2021). Similar 
to the linkage-mapping approach, GWAS has been successfully 
combined with metabolomics to assess the genetic bases of nat-
ural variance in plant metabolomes. This has been extensively 
reviewed elsewhere (Luo, 2015; Fang and Luo, 2019; Alseekh 
et al., 2021), and here we will just highlight some examples 
using this approach that have identified effects of genetic vari-
ants on metabolic diversity across natural populations. GWAS 
in plants was initially applied to Arabidopsis (Chan et al., 2010, 
2011; Angelovici et al., 2013; Verslues et al., 2014; Strauch et al., 
2015) and then successfully extended to several crop species, 
covering primary and quality-related metabolites such as in to-
mato (Sauvage et al., 2014; Tieman et al., 2017; Ye et al., 2017), 
wheat (Rathan et al., 2022), jujube (Hou et al., 2020), cassava 
(Rabbi et al., 2022), peach (Y. Li et al., 2019), and apple (Liao 
et al., 2021). Similar approaches have been applied for special-
ized secondary metabolites in rice (Dong et al., 2015; Matsuda 
et al., 2015; Yamamura et al., 2015; Chen et al., 2016; Zhu et al., 
2018), maize (Wen et al., 2014; Zhou et al., 2019), wheat (Chen 
et al., 2020), cucumber (Zhou et al., 2016), and lettuce (Zhang 
et al., 2020). Whilst many genes involved in plant metabo-
lism pathways have been identified and cloned through large-
scale GWAS, there are some examples of smaller-scale studies 
achieving good results. For example, the pathways of saiginols 
(phenylacylated flavonols) (Tohge et al., 2016) and dolichols 
in Arabidopsis (Gawarecka et al., 2022), lignin precursors in 
Arabidopsis, maize, and poplar (Vanholme et al., 2019), and 
steroidal glycoalkaloids in solanaceous species (Schwahn et al., 
2014) have all been refined by comparisons of only a handful 
up to around 100 genotypes. In principal, mapping of an un-
known compound to a gene gives hints as to the structure of 
that compound, especially in cases where the gene encodes 
an enzyme involved in the biosynthesis pathway. Indeed, ap-
plication of cross-over theory can be employed to check for 
corresponding changes in the substrate(s) or product(s) of the 
reaction catalysed as an additional means of validation. Even 
if the associated gene is a regulatory rather than a structural 
one, the vast array of available co-expression datasets (Mutwil 
et al., 2011) alongside the massive recent increases in our un-
derstanding of the functions of transcription factors (see for 
example Tang et al., 2021) means that mapping these differ-
ences to the respective metabolic pathways is becoming easier.
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Uncovering linkages from metabolites to 
morphology

As noted above, the linkage between morphological and met-
abolic phenotypes dates back to the foundation of genetics, 
even if Mendel himself was not aware of this. Much of the 
early study of biochemical genetics directly addressed these 
links since the majority of early genetic screens were based on 
morphological or other visual phenotypes. Following the de-
velopment of genetic transformation protocols, however, much 
information was gleaned by the overexpression, down-regula-
tion, and systematic knock out of genes (Stitt and Sonnewald, 
1995; Alonso and Ecker, 2006). Whilst knockout mutants are 
random in nature, modern techniques now allow precisely tar-
geted studies with genes essentially being knocked out to order. 
Such studies have now provided (almost) saturation coverage 
of the major of plant primary metabolic pathways, including 
the Calvin–Benson, tricarboxylic acid (TCA), and photores-
piratory C2 cycles, as well as gluconeogenesis, the sucrose-to-
starch transition, and amino acid metabolism (Galili et al., 2016; 
Fernie and Bauwe, 2020; Fernie et al., 2020; Walker et al., 2021; 
Rosado-Souza et al., 2022). Since this body of work has been 
comprehensively reviewed elsewhere, we will not cover it in 
detail here; suffice to say that it has provided a vast number of 
targets for breeding and that many of the effects of the genetic 
interventions have now been verified as resulting in improved 
performance in the field as well as in the laboratory. In keeping 
with the theme of this historical review, we will instead focus 
the rest of this section on a classical theme of genetics, namely 
heterosis. In their review on this phenomenon 16 years ago, 
Lippman and Zamir (2007) described it a plant biological mys-
tery that has endured since Charles Darwin famously described 
how hybrids display superior growth and fertility to their par-
ents (Darwin, 1876). Such hybrid vigor was rediscovered in 
maize breeding some 30 years later (East, 1908; Shull, 1908), 
and it was subsequently demonstrated to occur in many other 
crop species. Indeed, it is now widely used in agriculture with 
in excess of 65% of worldwide maize, sorghum, and sunflower 
production being hybrid-based. Yield gains of 15–50% cited by 
Lippman and Zamir (2007) have provided a great incentive to 
understand the underlying mechanisms, and yet although we 
have made great inroads into understanding the genetic basis of 
yield heterosis, most notably in tomato (Lippman and Tanksley, 
2001; Krieger et al., 2010; MacAlister et al., 2012; Park et al., 
2012; Jiang et al., 2013; Soyk et al., 2017; Torgeman and Zamir, 
2023) and maize (Lai et al., 2010; Yang et al., 2017; Birdseye 
et al., 2021; C. Li et al., 2022), a detailed understanding of the 
molecular mechanisms and how they are integrated with me-
tabolism remains lacking. There are excellent reviews available 
concerning the genetics underpinning heterosis (e.g. Lippman 
and Zamir, 2007), and so we will focus here on studies evaluat-
ing metabolic events underpinning growth and yield that have 
been elucidated via examination of either restricted or broad 
(natural) genetic variance. Our first example is provided by the 

assessment of what are now very well characterized Solanum 
penellii introgression lines that contain individual chromosomal 
segmental substitutions of the donor species in the background 
of the cultivated tomato S. lycopersicum (Alseekh et al., 2013). 
In their original approach, Schauer and co-workers utilized a 
then-novel metabolic profiling protocol to evaluate the con-
tents of primary metabolites and uncovered a large number 
of QTL, and they also demonstrated clear links (mainly nega-
tive ones) between metabolite levels and traits associated with 
yield (Roessner et al., 2001). In a follow-up study, Schauer et al. 
(2008) found that these links were not present when the in-
trogression lines were in the heterozygous state, suggesting that 
metabolite contents could be enhanced following this approach 
in the absence of a yield penalty. At around the same time, the 
group of Thomas Altmann used the same approach to char-
acterize metabolite levels and growth in Arabidopsis Col-0 × 
C24 introgression lines and using statistical methods they were 
able to detect a metabolic signature for growth (Meyer et al., 
2007). In follow-up studies in collaboration with the group 
of Albrecht Melchinger, they were able to apply the same ap-
proach to the growth of maize, including the use of metabo-
lomic prediction of growth phenotypes (Riedelsheimer et al., 
2012). Importantly, further studies demonstrated the utility of 
this approach in showing that metabolite profiling of young 
leaves could predict biomass at harvest (Vergara-Diaz et al., 
2020), and similar findings have also been published for wheat 
and canola (Knoch et al., 2021), and also with regard to pre-
dicting responses to stress (Villate et al., 2021). Furthermore, 
this approach is not only useful for predicting yield, as recent 
work has illustrated its potential use in predicting properties 
related to fruit flavour (Colantonio et al., 2022). The growing 
trend of characterizing large populations at the multiomics 
level offers yet further opportunities for us to obtain more 
complete insights into both the mysteries of heterosis per se 
and the linkages between metabolism and growth and devel-
opment in general.

The metabolic basis of plant immunity

During their lifespan, plants are threatened by various dif-
ferent biotic challenges, including those posed by bacteria, 
fungi, and insects. To overcome these challenges, plants have 
evolved two layers of immunity response to pathogens, namely 
pathogen-associated molecular pattern (PAMP)-triggered im-
munity (PTI) and effector-triggered immunity (ETI), which 
require the function of different metabolites (Zeier, 2013; 
Piasecka et al., 2015; Yuan et al., 2021). The waxes and lignin of 
plant surfaces represent the first structural barriers for patho-
gens, and after passing these physical barriers, PAMPs of the 
microbes, which include bacterial proteins and endotoxins and 
the fungal cell-wall component chitin, are recognized by spe-
cific pattern-recognition receptors (PRRs), thereby activat-
ing various PTI defense responses (DeFalco and Zipfel, 2021). 
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Among the PAMPs, chitin (an insoluble polymer of β-1,4-
linked N-acetylglucosamine) has long been well known and 
hence been the subject of a large amount of study. Chitinases 
secreted by host plants can hydrolyse the insoluble polymer 
to chitin oligosaccharides, which can then be recognised by 
plasma membrane-localized lysin-motif (LysM) proteins, and 
this in turn induces the accumulation of antimicrobial metabo-
lites such as reactive oxygen species (ROS) and salicylic acid 
(SA) (Gong et al., 2020). In an evolutionary arms race, patho-
gens developed specialized effector proteins to suppress PTI, 
in response to which plants evolved R-proteins to recog-
nize the active effectors, thereby inducing ETI responses and 
leading to the activation of mitogen-activated protein kinase 
signalling pathways and the promotion of more SA accumu-
lation (Tsuda et al., 2013; Shinya et al., 2015). In Arabidopsis, 
SA can induce the folding and docking of the SA-binding 
domain to the ankyrin repeats of NONEXPRESSOR OF 
PATHOGENESIS-RELATED GENES 1 (NPR1), which 
affects its activity as a transcriptional cofactor and activates the 
expression of NPR1-dependent systemic acquired resistance 
genes (Kumar et al., 2022). In addition, another immunity-
related hormone, jasmonic acid (JA) induces a different type 
of systemic resistance called induced systemic resistance (ISR), 
and studies have indicated that SA and JA immune signaling 
can interact with each other to balance plant responses against 
pathogens (Ton et al., 2002; Hou and Tsuda, 2022).

In addition to functioning in pathogen recognition, immu-
nity signalling, and response regulation, some primary metab-
olites can participate in the immunity process by acting as 
precursors of key immunity metabolites, and some secondary 
metabolites can act directly as antimicrobial metabolites 
(Hartmann and Zeier, 2018; Huang et al., 2021). For example, 
the important amino acid lysine can be catalysed by AGD2-
like defense response protein 1 and SAR-deficient 4 to syn-
thesize pipecolic acid, which is then transferred to a cyclic, 
non-protein amino acid, N-hydroxypipecolic acid (NHP), cat-
alysed by flavin-dependent-monooxygenase 1 (Návarová et al., 
2012; Hartmann et al., 2018). Recently, NHP has been demon-
strated to induce the SA-independent signal pathway of plant 
innate immunity and systemic acquired resistance (Holmes 
et al., 2021; Mohnike et al., 2021). Putrescine, the most abun-
dant polyamine, is a product of ornithine and arginine catabo-
lism and it can induce callose deposition and the expression of 
several PTI marker genes through the hydrogen peroxide and 
NADPH oxidase (RbohD and RbohF) signaling pathway (Liu 
et al., 2019; Gerlin et al., 2021). Another polyamine, spermine, 
can inhibit the ROS burst and the associated sharp increase in 
the cytosolic Ca2+ concentration, and it acts as the repressor of 
the earliest signaling events of PTI and downstream transcrip-
tional and metabolic immunity responses (Zhang et al., 2023). 
Plant secondary metabolites have been demonstrated to pos-
sess high bioactivity that efficiently controls both herbivores 
and pathogens (Zaynab et al., 2018). Based on an integrative 
analysis of the genetic screening of a 26-parent recombinant 

inbred line population with unbiased transcriptomic and 
MS-based metabolomic analyses, the novel compound scaf-
feoylputrescine-5-(Z)-3-hexenal has been identified as playing 
a powerful role in non-host resistance against Empoasca leaf-
hoppers (Bai et al., 2022). In recent decades, many studies have 
reported that phenylpropanoid metabolism plays important 
roles in resistance to both abiotic stress and pathogen attack 
(Tohge et al., 2016; Huang et al., 2021). A combination of tran-
scriptomics, metabolomics, and sensitivity assays of 580 tomato 
lines to Botrytis cinerea has shown that the predominant tomato 
flavonoid naringenin chalcone together with two flavonoid 
glycosides (3ʹ,5ʹ-di-C-glucosylphloretin and phloretin-tri-
hexose) are representative fungal resistance-related metabolites 
(Szymański et al., 2020).

In recent decades, climate change has not only caused ab-
normal rainfall patterns and temperatures that induce drought 
and heat stress on plants, it has also changed the habits of tem-
perature-dependent pathogens and increased the risk of infec-
tion of plants (Chaloner et al., 2021). It is therefore necessary 
to enhance efforts to comprehensively elucidate the metabolo-
mic basis of plant immunity. We envisage that such efforts will 
be accelerated by the development of efficient treatments to 
overcome plant microbes and to supply novel metabolic engi-
neering genes and pathways to improve plant biotic stress tol-
erance. Before this is possible, however, a considerably higher 
number of multiomics studies of the effects of a given path-
ogen on a given crop need to be carried out. The study by Liu 
et al. (2018) of the role of OsWRKY67 in regulating responses 
to rice leaf panicle blast and bacterial blight diseases represents 
an interesting example of such a study, but we will need to 
examine far more pathogen–host responses in order to gather 
information regarding the commonalities and specificities of 
defense responses. As for understanding metabolite accumula-
tion per se, utilizing broad natural variance as well as advanced 
breeding lines will probably represent invaluable tools to ad-
dress this question in the coming decades.

The next 100 years

In the sections above, we have documented how the answers 
to many classical questions in genetic have either influenced, or 
been influenced by, biochemical factors. One notable omission 
from our review is the subject of the impact of epigenetics and 
epigenomics on metabolism and vice versa. There were two 
reasons for this: firstly, two recent reviews by Samo et al. (2021) 
and Hayashi et al. (2023) have covered this subject, the latter in 
a highly comprehensive manner, and secondly, we agree with 
the contention of (Weigel, 2016) that the majority of the in-
fluence is retained in the genome per se. This fact notwith-
standing, the study of epigenetic and epigenomic control of 
biochemical traits is clearly an area in which we can anticipate 
considerable breakthroughs in the future. Another area of great 
promise is the prospect of gaining a far more comprehensive 
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understanding of gene–environment interactions that encom-
passes both canalization and plasticity, with the genetic popula-
tions and analytical tools required to address these topics now 
becoming increasingly available and well tested (Alseekh et al., 
2017; N. Liu et al., 2021), as is the mathematical framework 
by which to assess them (Alseekh et al., 2017; Laitinen and 
Nikoloski, 2019). The adaptation of such approaches should 
ultimately allow the development of truly sustainable agricul-
ture (Fernie and Sonnewald, 2021; J. Liu et al., 2021), which 
is arguably the greatest challenge for humanity of the 21st 
century.
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