
QoR-driven Resource Selection for Hybrid Web
Environments

Lara Kallab1, Richard Chbeir2, and Michael Mrissa3

1 Groupe Open, Levallois Perret, 92300, France
lara.kallab@open-groupe.com

2 Univ Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France
richard.chbeir@univ-pau.fr

3 InnoRenew CoE, Livade 6, 6310 Izola, Slovenia
michael.mrissa@innorenew.eu

Abstract. In the Web of Things (WoT) context, an increasing number
of objects provide functions as RESTful services (resources), that can be
composed with other existing resources, to create value-added processes
(compositions). However, to form a composition, selecting the suitable
resources is becoming more challenging, due to: (1) the growing number
of resources providing identical functions, which calls for the use of Qual-
ity of Resource (QoR) to distinguish between them, and (2) the transient
nature of resource availability as a result of objects’ sporadic connectiv-
ity in the WoT environments. In this chapter, we present a QoR-driven
resource selection approach that forms i-compositions (with i ∈ N∗) offer-
ing different implementation alternatives. This is done using a selection
strategy adaptor that considers QoR constraints and Inputs/Outputs
matching of related resources, as well as resource availability and users’
different needs (e.g., optimal compositions having the highest scores, and
optimistic compositions having acceptable scores but obtained in more
satisfactory delays). Analysis are made to evaluate our resource quality
model against existing ones, and experiments are conducted in different
environments setups to study the performance of our work.

Keywords: Hybrid Web environments · Resource selection · i-compositions.

1 Introduction

Nowadays, a plethora of Web environments (Web applications, Web platforms,
etc.), publish their functions as RESTful services, i.e., self-contained and self-
describing resources that follow the REpresentational State Transfer (REST)
architectural style [7]. As the Web has become a major medium of communica-
tion, integrating objects (e.g., smart devices) into the Web and taking advan-
tage of its open popular standards (e.g., HTTP), has created an emerging trend:
the Web of Things (WoT) [1]. In the WoT, objects are abstracted as RESTful
services, which are resources individually identifiable with a Uniform Resource
Identifier (URI) and provide functions callable using HTTP methods (e.g., GET
and POST). A resource is either (i) dynamic, connected to and removed from the
Web environment at different instances, or (ii) static, always connected to the
environment. In many cases, a single resource is not sufficient to satisfy specific

2 Lara Kallab, Richard Chbeir, and Michael Mrissa

user requests, and often, resources are combined forming a composition that
achieves the desired results. To form a composition, selecting the appropriate
resources is essential. However, several challenges arise:

1. Selecting the appropriate resource for a function: With the growing
number of resources realizing the same function, selecting the appropriate
one while considering user constraints (if given), is non-trivial for end-users.
Therefore, taking into account the Quality of Resource (QoR) attributes
used to differentiate resources having identical functions [15], is important
to select the suitable resource for a function. The increasing number of can-
didate resources and their various QoR attributes [8] (e.g., Availability and
Cost) require an automatic approach that facilitates the task for end-users,
and accelerates the selection process. Also, during selection, considering the
matching of the input and output (I/O) parameters of the related resources
is essential to generate compositions that fit efficiently users needs.

2. Forming different composition alternatives: The selected dynamic re-
source(s) for a composition may be unavailable for execution. To avoid re-
peating the selection process to form new suitable composition, providing
i-compositions (i ∈ N∗), i.e., a set of compositions having different imple-
mentation alternatives, becomes important. These compositions respond to
the user request by using, each, a different set of resources. This allows to
substitute a composition that misses a resource, by another one consisting of
available resources. Furthermore, in some cases, users require compositions
having the highest possible scores, others may need compositions having
acceptable scores obtained in more satisfactory delays, etc. Thus, forming
compositions that are adaptive to different user needs is essential.

In the literature, some works [2,14,16] were based on Quality of Services (QoS) to
select the most suitable ones according to user constraints or preferences, without
taking into account I/O service matching and service dynamicity. Others [10,13]
aimed at finding a sequence of services starting from given inputs and leading
to the desired outputs, without considering service matching on the functional
level, their QoS, and dynamicity. Also, none of the existing service composition
approaches [3, 6], forms several types of compositions realizing different user
needs (optimal compositions having the highest scores, optimistic compositions
having acceptable scores but obtained in more satisfactory delays, etc.).

To address the aforementioned challenges and existing limitations, we present,
in this chapter, a QoR-driven resource selection that forms i-compositions (with
i ∈ N∗) offering different implementation alternatives for user request. To do
so, we define a Selection Strategy Adaptor (SSA) that allows selecting the suit-
able resources, while considering user QoR constraints and I/O matching of
related resources, as well as resource dynamicity and user requested composi-
tion type (e.g., optimal compositions having the highest scores, and optimistic
compositions having acceptable scores but obtained in more satisfactory delays).
Resource selection is automatic, i.e., based on semantic annotations integrated
within resource descriptions expressed using Hydra [9] in our work.

The rest of the chapter is organized as follows. Section 2 motivates our work,
and describes the main challenges and needs. Section 3 discusses related work

QoR-driven Resource Selection for Hybrid Web Environments 3

and shows the originality of our solution. Section 4 details our resource selection
solution. Section 5 compares our defined QoR model against existing works, and
evaluates the solution performance. Finally, Section 6 concludes the chapter.

2 Motivation, Challenges and Needs

We motivate our work through OpenCEMS4: a Web platform that provides
solutions for energy data management in connected environments. The platform
allows to connect (1) stationary and mobile objects that provide static/dynamic
resources, and (2) Web applications exposed as static resources. The resources,
described in Hydra, are used for: collecting on-site data, preprocessing collected
data, and analyzing data. Many requests occur in OpenCEMS. We consider a
building manager that wants to predict the temperature in the conference room
A. To satisfy his request, specified by the “ATP” (Air Temperature Prediction)
function, it is important to select the appropriate resources realizing his need5.
However, several challenges arise, as illustrated in Figure 1:

om1

om2

om3

om4
os1

os6

om2

om3

os1

om1

os2

os4 os5

os3 os2

os4 os5

os3

user user

t t+n (n ∈ ℕ∗)
Conference Room A Conference Room A

os6

X

os = stationary object om = mobile object

om5 om5

Function Object

Air
Temperature
Collection
(ATC)

om3, om4 ,
om5 , om6,
om7, os1,
os2, os5

CO2

Collection
(COC)

om1, om2 ,
os3, os4 , os6

om6

= disconnection

om7 X

Fig. 1: Challenges illustration in the OpenCEMS platform

1. Select the appropriate resources to form a suitable composition.
When several resources are identified having the same function required to
answer “ATP”, as “Air Temperature Collection”, selecting the appropriate
ones among others is not obvious for end-users, as the building manager.
Therefore, QoR plays an essential role to select the suitable resources. For
instance, object os1 can be better than others (e.g., om3 and om4) as it may
have: (i) full battery capacity denoting a full availability, (ii) continuous con-
nectivity to the environment (since it is static), (iii) cost free when using it,
and (iv) high usage rate (it has been invoked many times). Considering these
QoR, allows selecting the appropriate resources among other candidates. As
many candidate resources can connect to openCEMS with various QoR, re-
source selection requires an automatic approach to facilitate and accelerate
the task for the building manager. Such approach should also consider I/O
matching of the linked resources to guarantee efficient composition results.
Moreover, in some cases, the building manager may require:
(a) Prediction results using the most qualified resources. In this

case, the resources to be selected are the ones having the highest val-
ues of quality aspects, independently of the selection response time, as
the building manager may need to adjust the necessary temperature, in
conference room A, for a meeting that will start in the late afternoon.

4 Connected Environment & Distributed Energy Data Management Solutions: https:
//opencems.sigappfr.org/

5 We assume the resource discovery is already performed based on the required location

4 Lara Kallab, Richard Chbeir, and Michael Mrissa

(b) Fast but good prediction results. As the building manager might be
feeling very hot in the conference room A, he needs fast prediction results
to regulate the temperature. This is done by selecting the first resources
realizing his demand without the need to check others. However, and
despite requiring fast results, it is important that the selected resources
have minimal quality aspects to guarantee good composition results.

(c) Always available results. The building manager may need to have
results at anytime of his request, i.e., even if dynamic resources are dis-
connected from the Web platform there are always other resources that
can take over. Thus, the resources that will be selected are always con-
nected to the environment (static resources) at both instants t and t+n.

In other particular cases, the building manager may define other needs as:
(i) Trusted results, generated by only static resources already provided
by the OpenCEMS Web platform (e.g., os1, os2, and os5), (ii) Cost free
results, using resources without any charge, and Reliable results, using
resources that can be linked in the most proper way (i.e., best I/O matching
between the related resources), etc. Thus, it is necessary to consider user
needs and constraints, and adapt resource selection accordingly.

2. Form several composition alternatives. The selected dynamic resource(s)
for a composition may be unavailable during execution. As such, at instant
t, 5 mobile objects providing “ATC” are positioned in the conference room
A. If om4 provides the appropriate resource among these objects, it will be
selected to take part in the composition. However, at t+n, om4 is discon-
nected, and thus, the composition will miss a resource if the composition
execution time is > t+n. To avoid repeating resource selection process to
form a new suitable solution with available resources, it is important to
identify i-compositions during resource selection, with i ∈ N∗.

To address these challenges and respond to user needs, we propose a QoR-
driven resource selection adapted to: (i) different requested composition types
(e.g., Optimal, Optimistic, and Optimistic cost-free), and (ii) QoR constraints.
Our solution considers I/O matching between the related resources and resource
dynamicity (when it is necessary), to form the required i-compositions.

3 Related Work

3.1 QoS-based Approaches

In [2], a quality-driven solution for resource selection is presented. The approach
uses a set of quality attributes incorporated into each resource description ex-
pressed with Hydra, and implements a skyline-based algorithm that reduces the
set of candidates for a given task. In [4], a heuristic is proposed to solve QoS-
aware Web service composition problem. It uses a backtracking algorithm on
the results computed by a Linear Program relaxation, while considering user
constraints given to the overall composition. In [14], an approach for a service
selection based on both qualitative and quantitative user QoS preference with
services trust properties is presented. The solution is applicable in Big Data Web
environments consisting of massive migrated services, i.e., business applications,

QoR-driven Resource Selection for Hybrid Web Environments 5

to the cloud. The work in [5] proposes a QoS-aware service composition based
on QoS correlations. It produces the optimal composite service, and considers
service plans with sequence structure.
Discussion: Although these works consider QoS attributes and user constraints/
preferences, they neglect services dynamicity and I/O matching between the
linked services. Moreover, they are not adapted to generate different composi-
tion types to realize different user needs.

3.2 I/O-based Approaches

Work [13], presents a graph-based framework for automatic service composition,
by focusing on the semantic I/O services matching. It produces a service com-
position containing the minimum number of services, and multiple compositions
can be extracted satisfying user request in terms of I/O. In [10], a formal model
is provided for an AI planning-oriented service composition. It precomputes the
I/O semantic similarity between services, according to causal links, which are
logical dependencies among input and output parameters of different services.
Discussion: Despite computing I/O services semantics, these works do not con-
sider the functional aspect of the related services, nor even the dynamicity of
services. Also, QoS attributes and user constraints/preferences are neglected.

3.3 k-compositions Approaches

A top-k automatic service composition solution is presented in [6]. It adopts the
idea of MapReduce, by mapping the top-k service compositions into multiple
tasks that can be executed in parallel. The solution considers one quality of ser-
vice, i.e., Response time, and I/O services similarities to filter the services. In [3],
an approach for composing the top-k DaaS (Data as a Service) services is pro-
posed. The top-k compositions are computed based on a fuzzy score, associated
for each service and service composition, and fuzzy user preferences expressed
in fuzzy terms (e.g., “cheap” for services price).
Discussion: Although these works produce several service compositions, and
consider QoS attributes, they are not designed to handle service dynamicity, nor
the generation of different composition types answering user needs. Also, only
in [6], I/O matching and QoS attributes are used in the same approach.

4 QoR-driven Resource Selection for i-compositions

4.1 General Overview

Figure 2 shows the process overview of our resource selection, applicable in hy-
brid Web environments providing static and/or dynamic resources. The process
is used to form i-compositions responding to user request, r, and adapted to user
request type. The latter includes one of the following desired compositions types:
(i) optimal, denoting compositions having the highest scores, (ii) optimistic, re-
ferring to compositions having acceptable scores, i.e., > a specific computed
threshold (see Section 4.4), or (iii) hybrid, denoting compositions having accept-
able scores but whose dynamic aspect is considered, guaranteeing the existence

6 Lara Kallab, Richard Chbeir, and Michael Mrissa

of a composition at any instance. A composition type can be followed optionally
by other subtypes (e.g., trusted, denoting that only static resources can be part
of the compositions). As for the user request, r, it is defined formally as:

Definition 1 - r = (f, P, C), where:

• f, is the user requested function, selected from a list of functions, F, provided
by the resources connected to the Web environment at the current instant.

– P, is the set of parameters necessary to execute f, such as the required location
(e.g., conference room A). P is mainly used by the resource discovery process,
which is out of scope of this chapter, to identify the needed resources.

– C, is the given user constraints according to which, i-compositions are ob-
tained, and such that C = Qc ∪ i ∪W ∪ d, with:
◦ Qc = Qres

c ∪Qf
c , refers to the set of constraints given to the resources

(Qres
c) and to their provided functions (Qf

c), with Qres
c =

⋃n
i=1

{
qres
i

}
,

and Qf
c =

⋃m
j=1

{
qf
j

}
, and where:

- n is the number of attributes describing a resource, and m the number
of attributes describing its provided functions (see Section 4.2).

- qres
i |q

f
j = [mini|j-maxi|j], with mini|j , maxi|j are respectively

the minimum and maximum values given for qres
i and qf

j .
◦ i ∈ N∗, is the desired number of compositions. By default i=1, and can

be only specified for optimal and optimistic compositions. For the hybrid
compositions, the number of solutions depends from resource dynamicity
aspect of the formed compositions (see Section 4.4).
◦ W = {wqor, wio}, are the weights given respectively to the score of the

resources and their I/O matching, during compositions score calculation
(see Section 4.3). wqor, wio ∈ R+ and are bounded by [0, 1].
◦ d, is the degree value rate (in %) of the threshold, T (see Section 4.4),

that refers to the minimal acceptable score of the i-compositions.

f2

f3

f4

f1 f5

Selection Process

Directed Resource Acyclic Graph

res1,2

res2,1

res2,2

res1,3

res3,1

res3,2

res4,1

res4,2

res5,1

res5,2

RG1

RG2

RG3

RG4

RG5

res1,1

Selection
Strategy Adaptor

i-Composition(s)

Overlapped
resources

Algorithms
Library

Request

Request Type

User

Workflow Model Example

f = function res = resource RG = Resource Group

Fig. 2: Overview of the resource selection process

The selection process, illustrated in Figure 2, is executed when there are several
candidate resources for at least one required function necessary to realize user
request, r. The required functions for r form a Workflow Model, WM. During
the process, the resources realizing an identical function are grouped into the
same resource group, RG. Each resource of a RG can be linked to the resources
included in the RG related to the next function (as defined in WM), forming
a Directed Resource Acyclic Graph, DRAG. In order to satisfy user different
requested composition types, we define a Selection Strategy Adaptor (SSA) that

QoR-driven Resource Selection for Hybrid Web Environments 7

adapts to user needs to form the required i-set of resource compositions. Using
a graph algorithm, as DFS (Depth First Search), from the algorithms library,
SSA can traverse DRAG to compute the I/O matching of the linked eligible
resources (whose QoR values respect user constraints defined in Qc), and pro-
duces optimal compositions having the highest scores. SSA allows also to form
compositions having acceptable scores, i.e., > a computed threshold, T (see Sec-
tion 4.4, obtained in more satisfactory delays. Such threshold is computed for
the compositions types: optimistic and hybrid.

4.2 Preliminaries

In our work, a resource, res, can be either static, ress, or dynamic, resd. It

provides a set of functions: F =
⋃N∗

i=1 {fi}, with: fi = (n, I, O,m,Qf) denotes
a single function, and where: n refers to fi name, I denotes the input(s) of fi, O
denotes the output(s) of fi, m is the HTTP verb used to call fi, and Qf is the

set of quality attributes related to each function (fi). Qf =
⋃N∗

i=1 {(qfi : vfi)},
with qfi is the name of the quality attribute, and vfi ∈ R+. Each resource has

also directly related quality attributes: Qres =
⋃N∗

i=1 {(qresi : vresi)}, with
qresi is the name of the attribute, and vresi ∈ R+.

In the literature, we find various QoR used to differentiate resources with
similar functions [15]. In this chapter, we consider 4 QoR, where some are related
to the resource itself, and others related to each of its provided functions:
– Dynamicity, is the quality aspect of whether the resource is always available

(ress) or not (resd). It is equal to 0 for ress, and to 1 for resd.
– Availability, is the degree (%) to which res is operational/ready for imme-

diate use. For resources provided by objects, it denotes their battery capacity.
– Cost, is the amount of money to pay to use a function of res.
– Usage, is a value that increments when a resource function is used. To avoid

the re-initialization of the usage when a resd is disconnected, we define for
each function of a resd, a Time To Live value denoting the maximum time
during which a resd can be disconnected before the usage decrements by 1.

Based on res definition, we extended Hydra-based resource description6, to
include the QoR values. QoR are grouped as: (i) maximization attributes, whose
values should be maximized (e.g., Availability), and (ii) minimization attributes,
whose values should be minimized (e.g., Cost). They are used to compute, for
each provided resource function, a global score that is defined as: score(resf)

=
∑N∗

i=1 {vresi} +
∑N∗

i=1 {vfi}, where vresi (excepting the “Dynamicity”
attribute value) and vfi are normalized based on the work in [11].

4.3 QoR-based Resource Graph: Formal Modeling

The functions required for f in r, define with their dependencies a Workflow
Model, WM. Based on the functions order in WM, the overlapped resources are
linked, forming a Directed Resource Acyclic Graph, DRAG, that is defined as:
Definition 2 - DRAG = (RES,Rel, fRES, fRel):
6 Hydra description example is available online: https://tinyurl.com/tose56k

8 Lara Kallab, Richard Chbeir, and Michael Mrissa

– RES, is the set of the identified and overlapped static/dynamic resources.
– Rel, is the set of relations linking the resources together.
– fRES, is the function computing the score of each resource function.
– fRel, is the function linking the resources together, and computing their link

score based on their I/O similarities.
The resources providing the same function, form a resource group, RGf , rela-
tive to that function, where: RGf =

⋃m
i=1

{
res(f,i)

}
, with m is the number

of candidate resources realizing function f, and res(f,i) refers to the resource
resi providing f. A resource composition, RC, consists of a set of resources in-
cluded, each, in a different RGf , where: RC =

⋃n
f=1

{
res(f,i)

}
, such that n

is the number of functions in WM, and i ∈ m, with m denotes the number of
resources in the correspondent RGf . During selection, I/O matching score be-
tween every linked eligible resources is computed, using any similarity measure
function between keywords (as Jaccard measure [12]), as follows: sim(res(f,i),

res(f ′,j)) =
∑U

u=1

∑V
v=1 sim(outres(f,i)

u , inres(f ′,j)
v), with:

– resf,i, resf ′,j , denote resources that belong, respectively, to RGf and
RGf ′ , where f precedes f’ in WM.

– outu, is an output of resf,i, and U is the number of resf,i outputs.
– inv, is an input of resf ′,j , and V is the number of resf ′,j inputs.

Each RC in DRAG has a score, score(RC), with: score(RC) = Score(RES)
+ Score(Rel), and where:
– Score(RES) =

∑n
f=1 score(res(f,i)), is the scores sum of the involved

resources realizing the required WM, with n is the number of WM functions.
– Score(Rel) =

∑
sim(res(f,i), res(f ′,j)), is the sum of I/O similarity

scores of each 2 eligible linked resources in RC, where: f precedes f’ in WM,
and sim(res(f,i), res(f ′,j)) ∈ [0, 1].

Score(RES) and Score(Rel) can be multiplied, each, by a weight value defined in
r, allowing users to assign them a priority for compositions score calculation.

4.4 Selection Strategy Adaptor for i-compositions

In order to form i-compositions satisfying different user needs, we define the
Selection Strategy Adaptor (SSA) that allows the generation of 3 main compo-
sitions types: (1) optimal, (2) optimistic, and (3) hybrid) (see Section 4.1). Each
of these composition types can be followed optionally by several composition
subtypes, e.g., (i) trusted, refers to compositions having only static resources
that are already provided by the Web environment, and (ii) efficient, denotes
compositions that include resources with minimal acceptable normalized usage
value. As shown in Table 1, the composition subtypes are defined according to
either: (i) a minimal QoR attribute value (e.g., Dynamicity for trusted compo-
sitions), or (ii) a set of minimal QoR attributes values (Availability, Cost, and
Usage for qualified compositions), or (iii) a minimal Score(Rel) (as for reliable
compositions), computed based on “l”, which is the number of dependencies
links between the required functions in WM. However, in addition to these con-
straints highlighted in red, both optimistic and hybrid composition types should
respect other QoR attributes and Score(Rel) values, to ensure having compo-
sitions with an acceptable score(RC), and thus, good compositions results. If

QoR-driven Resource Selection for Hybrid Web Environments 9

optimal compositions subtypes are needed (e.g., optimal cost-free), a filtering
process is executed before score(RC) calculations. Such filtering is done based
on the maximum values of the constraints for which the values are highlighted
in red in Table 1, among the resources in DRAG. For example, Optimal Effi-
cient compositions will include resources having Max(Usage), which refers to the
maximum value of the Usage attribute among the resources in DRAG.

Table 1: QoR values and Score(Rel) in optimistic and hybrid compositions subtypes
Dynamicity Availability Cost Usage Score(Rel)

Trusted 0 > 0.5 6 0.25 > 0.5 > (l × 0.5)
Cost-free 0 | 1 > 0.5 0 > 0.5 > (l × 0.5)
Efficient 0 | 1 > 0.5 6 0.25 > 0.75 > (l × 0.5)
Effective 0 | 1 > 0.75 6 0.25 > 0.5 > (l × 0.5)
Qualified 0 | 1 > 0.75 6 0.25 > 0.75 > (l × 0.5)
Reliable 0 | 1 > 0.5 6 0.25 > 0.5 > (l × 0.75)

Based on the given composition type, SSA forms the necessary i-compositions.
The i value (∈ N∗) can be determined by the user in r, for the 2 main types: op-
timal and optimistic, where SSA retrieves the i-compositions having the best or
acceptable scores respectively. As for hybrid compositions, SSA stops generating
the solutions having acceptable scores until having one containing only static
resources, guaranteeing the existence of a composition at any instance. If the
user defines in r, constraints that do not align with the designated composition
subtype constraints, the latter are considered.
When optimistic or hybrid compositions are required, SSA applies several steps:
1. Compute the minimum score of an acceptable composition. A com-

position is considered acceptable, if its score(RC) is > a specific Threshold,
T. When optimistic or hybrid composition types are requested without sub-
types, T is defined as: T = [(n×Avg(Qc))+(l×0.5)]× (d/100), where:
– n is the total number of functions in WM.
– Avg(Qc) are the average of the normalized QoR constraints defined in r

(excepting the ”Dynamicity” attribute). If Qc are not given, the average
of each QoR is calculated using their maximum values among DRAG.

– l, is the number of the dependencies links between WM functions. We
consider that there is, at least, an I/O similarity match (=0.5) between
any two linked resources.

– d, is the composition acceptance degree value (%) given in user request.
If subtype compositions are requested, T is computed as: Tsubtype = [(n×
Q)+(l×s)]×(d/100), with Q denotes the minimum values of the attributes
as in Table 1 (excepting the “Dynamicity”), and s ∈ [0,1] is the minimum
I/O similarity matching score between any two linked resources. s = 0.75
whenever subtype = reliable, and s = 0.5 for the rest of subtype values.

2. Compute the score of a composition formed by eligible resources.
To do so, a generator is used to get the possible set of RC without score
calculation. During RC generation, the following conditions are performed:
(i) If a resource in RC is not eligible, it is registered in array, arr notEl,

and another possible RC is generated
(ii) If all the resources of RC are eligible, score(RC) is computed. If score(RC)

> T, RC is saved into the suitable compositions array, arr suitRC, if
not, another possible RC is generated

10 Lara Kallab, Richard Chbeir, and Michael Mrissa

While analyzing a RC, if a resource is in arr notEl, another possible RC is
generated. If not, conditions (i) and (ii) are tested. If optimistic compositions
are required, the generator stops when having i-compositions respecting T.
However, if hybrid solutions are needed, the generator stops when having
a composition that respects T, and contains only static resources (always
available). SSA results are the set of RC included in arr suitRC.

5 Evaluation and Discussion

In this section, we compare our QoR model to existing works, and evaluate our
resource selection solution in a simulated environment provided by OpenCEMS.
OpenCEMS offers 2 types of operation: real and simulated. As the real environ-
ment is currently being developed with a limited number of resources, in this
chapter, we evaluated our work in the simulated functioning of OpenCEMS. The
evaluation in the real environment will be presented in a dedicated work. In the
experiments, we considered the requested composition type is hybrid, to focus
on resources dynamcity aspect while forming the compositions. During the tests,
conducted on a Linux Debian (64 bits) virtual machine, with 1 dedicated Intel®
Core™ i7-46000 CPU @ 2.10GHz 2.70GHz processor and 1 GB RAM, we show
the response time (in ms) based on an average of 5 sequential executions.

5.1 Comparison with Existing QoS Models

The comparison between our QoR model against the QoS model of existing
works [2, 4, 14], is done independently of the number and type of the QoS used,
since our work supports various attributes as long as they are presented in
resources descriptions. The work in [2] uses 3 attributes: Performance: [0-10],
Availability: [0-100], and Reputation: [0-5]. During selection and based on user
constraints, a service is chosen over a candidate service if all of its QoS are equal
or better than the other, preventing thus having optimistic/hybrid compositions
having acceptable overall QoS. Also, and besides neglecting I/O matching of the
linked services, by applying our threshold formula, a service with a high attribute
value (Availability = 90) and a very low value for another one (Performance = 2)
is selected over a service with acceptable values for both attributes (Availability
= 70 and Performance = 6), as QoS are not normalized. In [4], several QoS are
used to describe the services as Response Time and Availability. Contrary to
our work, user constraints are given to the global composition (e.g., the over-
all response time should be < 50s) and not to each service, thus, aggregation
functions are used for every QoS parameter. Moreover, weights are given to each
QoS while computing the composition score. However, in our approach, user con-
straints are given to each of the involved services, and weights are assigned to
(i) the overall services score and (ii) the overall I/O score that is not considered
in [4]. In [14], a service has a score based on the sum of weighted utility functions
relative to each QoS attribute. Similar to our work, QoS are normalized and user
constraints are given to each service. However, the work does not define a global
composition score, since the service of a specific task with the highest score is
selected. Therefore, and apart of neglecting I/O matching of related services, no
optimistic/hybrid solutions with acceptable scores can be formed.

QoR-driven Resource Selection for Hybrid Web Environments 11

5.2 Resource Selection Performance

For the selection tests, we varied: (1) the number of overlapped resources per
function, and (2) the number of functions required in the WM. For these 2 cases,
we applied several scenarios: (i) All static resources in DRAG are eligible, (ii)
50% of the static resources in DRAG are eligible, and (iii) all DRAG resources are
dynamic and eligible. For (i) and (ii), the first generated possible compositions
(without score calculation) include dynamic resources, thus, the selection process
continue generating compositions until having one including only static resources
with acceptable score. In the best cases, static resources are traversed first, and
the selection process responds more rapidly. In the tests, each resource has 2
inputs and 2 outputs, and user constraints are given to: Dynamicity (where
static and dynamic resources can be selected), Availability, Cost, and Usage. In
the experiments, we assumed that the I/O similarity score between a resource
and another related one is > 0.5. In Figure 3, in which the workflow consists of
3 functions, response time evolves with the growing number of resources.

Fig. 3: Response time while varying number of resources

Fig. 4: Response time while varying number of functions

Comparing Figure 3-(a) to Figure 3-(b), response time increments less signifi-
cantly with the existence of static eligible resources, as the selection process stops
when having a composition of static resources. Figure 3-(b) represents the worst
case scenario, where DRAG contains only dynamic resources that are eligible.
Thus, all compositions scores are computed, causing an important response time
with the evolution of resources number. Figure 4-(a), in which resource number
per function is fixed to 5, shows that response time increases with the number
of required functions. Similar to the first case, the selection process is faster
when there are static eligible resources, as the selection process stops before the
generation of the rest of the possible compositions. As for Figure 4-(b), response
time evolves significantly, since DRAG contains dynamic eligible resources, thus,
all compositions scores are calculated. The results highlight the importance of
the existence of static eligible resources in DRAG, as the selection process stops
when having a composition including static resources with an acceptable score.
When dynamic resources exist, the response time increases, as their dynamic-
ity is considered. The results also show that the increasing number of resources
affects more the response time, comparing to the number of functions.

12 Lara Kallab, Richard Chbeir, and Michael Mrissa

6 Conclusion

This chapter presents a QoR-driven resource selection approach that forms i-
compositions (i ∈ N∗) in Hybrid Web environments connecting static resources
(always available), and dynamic resources (connected/disconnected at different
instances). To do so, we defined a Selection Strategy Adapter that considers
different compositions types (e.g., Optimal and Optimistic) and subtypes (e.g.,
Cost-free), QoR constraints, as well as resource I/O matching and dynamicity.
Analysis are made to compare our QoR model with existing works, and tests
are conducted to study our solution in a simulated Web environment offered by
OpenCEMS. In the future, we plan to evaluate our work in the OpenCEMS real
functioning, while considering subtypes compositions. We also seek to deploy an
automatic orchestration to execute the compositions.

References

1. Payam Barnaghi, Amit Sheth, and Cory Henson. From data to actionable knowl-
edge: Big data challenges in the web of things [guest editors’ introduction]. IEEE
Intelligent Systems, 28(6):6–11, 2013.

2. Mahdi Bennara et al. Linked service selection using the skyline algorithm. In
MEDI, pages 88–97. Springer, 2016.

3. Karim Benouaret et al. Top-k web services compositions: A fuzzy-set-based ap-
proach. In ACM-Symp. on Applied Computing (SAC), pages 1038–1043, 2011.

4. Rainer Berbner et al. Heuristics for qos-aware web service composition. In
ICWS’06, pages 72–82. IEEE, 2006.

5. Shuiguang Deng et al. Service selection for composition with qos correlations.
IEEE Transactions on Services Computing, 9(2):291–303, 2014.

6. Shuiguang Deng et al. Top-k automatic service composition: A parallel method
for large-scale service sets. IEEE T-ASE, 11(3):891–905, 2014.

7. Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures, volume 7. University of California, Irvine
Irvine, USA, 2000.

8. Katawut Kaewbanjong and Sarun Intakosum. Qos attributes of web services: A
systematic review and classification. Journal of Advanced Management Science
Vol, 3(3), 2015.

9. Markus Lanthaler and Christian Gütl. Hydra: A vocabulary for hypermedia-driven
web apis. LDOW, 996, 2013.

10. Freddy Lécué and Alain Léger. A formal model for semantic web service compo-
sition. In International semantic web conference, pages 385–398. Springer, 2006.

11. Yohei Murakami, Donghui Lin, and Toru Ishida. Services Computing for Language
Resources. Springer, 2018.

12. Suphakit Niwattanakul et al. Using of jaccard coefficient for keywords similarity.
In Proceedings of IMECS, volume 1, pages 380–384, 2013.

13. Pablo Rodriguez-Mier et al. An integrated semantic web service discovery and
composition framework. IEEE TSC, 9(4):537–550, 2015.

14. Hongbing Wang et al. Effective bigdata-space service selection over trust and
heterogeneous qos preferences. IEEE TSC, 11(4):644–657, 2015.

15. Lijuan Wang et al. A survey on bio-inspired algorithms for web service composition.
In Proceedings of the 2012 IEEE CSCWD, pages 569–574. IEEE, 2012.

16. Xiaofei Xu et al. Novel artificial bee colony algorithms for qos-aware service selec-
tion. IEEE Transactions on Services Computing, 12(2):247–261, 2016.

