

Copyright © 2017 by authors and IBII. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

American Journal of Advanced Research, 2017, 1–1

Sept. 2017, pages 1-6

doi: 10.5281/zenodo.807664

http://www.ibii-us.org/Journals/AJAR/

ISBN 2572-9829 (Online), 2572-9810 (Print)

A Feature Enhancement Method for 3D Tree Synthesis

Ling Xu1, *

1Department of Computer Science and Engineering Technology, University of Houston-Downtown, USA

*Email: xul@uhd.edu

Received on May 05, 2017; revised on May 29, 2017; published on June 13, 2017

Abstract

Computer synthesized 3D tree models often appear in the virtual worlds of 3D movies and games. The creation of tree models wi th

controllability of realistic features including branch irregularities and gaps between branch clusters is a challenging task. This paper

presents a procedural method for 3D tree feature enhancement. The tree model is generated in a weighted graph and the basic geometric

tree branches are least-cost paths from path planning. Through disconnecting edges in specified regions of holes in the graph, the

method can control the tree branches to avoid the hole regions thus demonstrate crooked shapes. The distribution and the sizing of

holes can be used to enhance the tree features of irregularity and heterogeneity.

Keywords: Procedural modeling, Tree modeling, Geometry synthesis

1 Introduction

With the fast development of computer-generated movies and games, the

audiences and game players have high demands of realistic experience for

the synthetic virtual scenes. Synthesizing realistic 3D worlds becomes a

more and more important topic in both computer research and industrial

areas. As a commonly seen component of the nature world, trees play an

important role in decorating the 3D natural scenes, by attracting the viewer

attention and invoking a realistic sense of beauty and complexity. An ex-

ample of virtual scenes with trees is shown in Figure 1, where the high

trees and small bushes decorate the environment and make it realistic. The

trees have complicated and hierarchical structures, composed of a variety

of branches including thick trunks, multiple primary branches, and many

slim twigs. For computer modelers, the synthesis of the numerous

branches is a tedious work. In addition, different species of trees have dif-

ferent features such as branching patterns, branch shapes, and branch dis-

tributions. Some trees, such as spruce trees (as shown in the left of Figure

2), have straight branches and side primary branches attach to a straight

trunk; some trees, such as Japanese maple trees (as shown in the right of

Figure 2), have multiple primary branches without a distinct central trunk

and the branches are highly crooked. How to efficiently synthesize 3D

trees with controllability of a variety of branch features is also a challenge

for computer modelers.

This paper presents a method to synthesize 3D tree models with effective

enhancement of tree features. The method is based on the idea of path

planning introduced in our earlier work (Xu and Mould, 2007): a graph is

built by placing graph nodes uniformly in a 2D plane or a 3D space, and

edges connect nodes and are set with specified weights. A path between

two nodes is defined as those successive edges that connect one node to

the other, whose cost is the sum of the weights of its constituent edges,

Fig. 1. A virtual world with trees in the game “The Witcher 3”. Image from

Flickr.com.

Fig. 2. Two real trees. Left: a spruce tree; right: a Japanese maple tree. Images from

Flickr.com.

http://www.ibii-us.org/Journals/AJAR/
mailto:xul@uhd.edu

L. Xu / American Journal of Advanced Research 2017 1(1) 1-6

2

and the least-cost path is the one which has the minimum cost among all

paths. By finding the least-cost paths connecting a node (which represents

the tree root) in the lower region of the graph and multiple nodes (which

represent branch ends) in the upper region of the graph, we can get a col-

lection of least-cost paths that resemble a branching tree structure where

each individual least-cost path is a tree branch. In this paper the technique

is refined by involving a graph modification method, which can effec-

tively enhance the features of resulting 3D tree models. To be specific,

edges in a few regions of the weighted graph are disconnected, thus pre-

venting the least-cost paths from crossing the regions. As a result, the syn-

thesized tree branches will avoid the regions and demonstrate crooked

shapes, making the tree appearance more irregular. In addition, the size

and the distribution of the regions can contribute to create different scales

of the irregularities, such as big gaps between branches and small crook-

edness along individual branches. These are helpful to simulate the corre-

sponding features that can be often observed in real trees.

This paper makes the following main contributions.

 First, it proposes a method of modifying the weighted graph by

disconnecting edges in specified regions. The prior methods

(Xu and Mould, 2007; Xu and Mould, 2015) do not have an

effective way to control the branch irregularities; the individ-

ual branches are generally smooth. The method of disconnect-

ing edges in specified regions of a graph can effectively en-

hance the irregular features of branches and make the branch

shape more crooked and realistic.

 Second, the exploration of varying the size and distribution of

regions for disconnected edges contributes a mechanism of

building different scales of branch irregularities. Large sizes of

compactly placed regions contribute to create large scale of

branch irregularities such as gaps between branch clusters;

small sized regions contribute to build fine crooked branch

shapes. This feature controlling method is novel and effective.

The paper is organized as follows. Following the introduction, the section

of background will review related methods in tree modeling. The details

of the feature enhancement method will be introduced in the algorithm

section. Results will be given and discussed in section 4. The last section

includes a conclusion and also proposes the future work.

2 Background

Due to the wide uses of tree models in computer applications such as video

games and 3D movies, many methods have been devised for tree synthe-

sis. Scanning is a common method. Based on a real tree, scanning can

obtain point clouds of tree data which will then be used to reconstruct a

virtual tree structure. Scanning methods (Xu et al., 2007; Li et al., 2013;

Livny et al., 2010) can produce high quality tree models with precise de-

scriptions of tree features due to the data directly from real trees. How-

ever, because of the occlusion of tree branches and leaves, scanning needs

pre-processing and post-processing work for the raw data. The availability

and operations of scanning devices are also not easy for novice users

(Capizzi, 1982). In addition, scanning requires a real tree as an example,

and it is hard to create a 3D virtual tree without an existing tree in the

natural world.

Another category of widely used methods is procedural methods. Proce-

dural methods (Ebert, 2005; Prusinkiewicz and Hanan, 1989) use algo-

rithms with a set of parameters to depict the complex details of tree struc-

tures. By changing the rules or formulas and parameter settings, proce-

dural methods can automatically generate a large amount of variations of

results. For synthesizing complicated structures such as trees, procedural

methods have their strength in the data amplification ability – “a few pa-

rameters (or a small amount of geometry) magically expand into a large,

detailed model” (Ebert, 2005). A famous group of procedural methods for

tree modeling is L-systems. L-systems are a grammar that generates

strings that can be subsequently interpreted as branching structures such

as trees. The basic idea of L-systems is based on rewriting rules. A rewrit-

ing rule is composed of strings of symbols. Each symbol represents a

graphical operation, such as the following.

F Move forward a step of length d

+ Turn left by angle δ

− Turn right by angle δ

[Push the current state onto a pushdown stack

] Pop the current state onto a pushdown stack

After applying the replacement rules for a few iterations, the initial struc-

ture can be developed into a large complex shape. An example is shown

in Figure 3, where the initial vertical line (at iteration 0) can be developed

into a branching structure after applying the rewriting rules for 5 iterations.

Fig. 4. Least-cost paths in a 2D graph with guiding vectors (Xu and Mould, 2015)

Fig. 3. Structures generated by iterations of rewriting. The example is taken

from “The Geometric Beauty of Plants” (Prusinkiewicz and Lindenmayer, 1990)

A Feature Enhancement Method for 3D Tree Synthesis

3

One issue with L-systems is the difficulty to design the rewriting rules to

create a desired tree shape. It is not easy to relate the long string of symbols

with the resulting tree structure.

The method introduced in this paper is built on our earlier procedural al-

gorithms of path planning (Xu and Mould, 2007; Xu and Mould, 2015).

Here we briefly review their basic ideas.

The basic tree modeling mechanism (Xu and Mould, 2007) is based on the

idea of path planning. Path planning is the problem of finding the least-

cost paths in a weighted graph (Millington and Funge, 2009). By selecting

a node in the lower region of the graph and multiple nodes in the upper

region of the graph, the least-cost (or shortest) paths connecting each up-

per node and the lower node form a branching structure. The purpose to

select a lower node (which we call the root point) and a few upper nodes

(which we call endpoints) is to simulate the tree shape – a root located at

the bottom and multiple branches connecting the root and the upper ends.

An example of least-cost paths is shown in Figure 4, where the red point

is the root point, and the blue points are endpoints. The black paths are

least-cost paths that connect the root point and the endpoints.

There are a few elements in the above path planning algorithm that can

affect the resulting tree structures: the placement of graph node, the distri-

bution of the root point and the endpoints, and the setting of edge weights.

In order to make the coarse branching structure resemble real tree struc-

tures, the challenges lie in the control of branching patterns and interme-

diate scale architectures through the above elements, which are addressed

by using guiding vectors (Xu and Mould, 2015). In the method of guiding

vectors, a graph is built by connecting nodes scattered in a specified vol-

ume (e.g. a cube) with edges. Each graph node has a vector, i.e. guiding

vector, used to set the weights of the edges that connect the node and its

neighboring nodes. Based on a large or small deviation of the edge direc-

tion to the guiding vector direction, the weight of an edge can be expensive

or cheap, thus leading to the resulting least-cost paths to follow the guiding

vector directions. The least-cost paths in a graph with guiding vectors at

each node are shown in Figure 4, where the red arrows are guiding vectors.

The guiding vectors are set in the process of applying Dijkstra’s algorithm

(Dijkstra, 1959) in a brushfire way. The Dijkstra’s algorithm is an algo-

rithm to compute the least-cost paths from a source node (i.e. the root node

in our case) to other nodes in a weighted graph, by proceeding from the

source node to reach other graph nodes and computing the path cost from

each graph node to the root node. When a graph node is visited, its guiding

vector is set as a rotation from its parent node’s guiding vector, leading to

the smooth flow of guiding vector directions. Because the method uses the

positions of endpoints to control the global tree shape and guiding vectors

to vary the branching patterns, which are based on the user’s geometric

understanding of the target tree shape rather than abstract symbols or rules,

it is straightforward to create a desired tree structure.

A complicated tree can be synthesized by adding more branches through

iterations. A tree example is shown in Figure 5. The left is a tree skeleton

and the right is a complete tree after adding more branches to the previous

structure. The tree shows a reasonable structure and details. However, due

to the setting of guiding vectors is based on an incremental rotation and

the flow of guiding vectors is smooth, the branch shapes are generally

smooth and lack natural irregular crookedness. Another observation of the

tree model is that its branches are generally evenly distributed, however

the distribution of branches in natural trees are often more heterogeneous

– they have big gaps between clusters of branches. Although the guiding

vectors can affect the branch shapes, making branches possess the above

features through setting guiding vectors is difficult: unlike incremental ro-

tations, making the flow of guiding vectors crooked requires a much more

tedious and careful setting mechanism. In this paper, these target features

are obtained by modifying the graph rather than setting guiding vectors,

which can effectively address the problem. More details are introduced

next.

3 Algorithm

The algorithm for feature enhancement is based on the influence of edge

connections to the resulting least-cost path shapes. To be specific, since a

least-cost path is composed of edges in the graph, if the graph has some

holes where edges are disconnected, the path between two nodes will not

cross the holes and take a direct route, but tends to take available edges in

the vicinity of holes. As the result, the path shape is less smooth but be-

comes more irregular. The idea is illustrated in Figure 6. In this figure, the

left shows a graph composed of nodes (in blue) and edges (in black). A

least-cost path (in red) connects two points from P1 and P2. On the right

side, the edges that connect nodes inside the green circle and between in-

ner nodes and outer nodes are disconnected. Because there is no edge con-

necting the nodes inside the hole (the green circle) and other nodes, the

least-cost path that connect P1 and P2 will not take the original route that

crosses the hole region, but takes the edges close to the hole and demon-

strates a more irregular shape than the left path. Although there are other

optional paths that can connect P1 and P2, the least-cost path tends to take

the shortest route, i.e. the edges tightly follow the contour of the hole,

making it feasible to control the path irregularities through the properties

of holes.

The above described algorithm involves two further questions: how to de-

cide the placement of a hole in the graph and how to decide the size of a

hole. The following introduces the explorations with respect to the above

questions.

Fig. 5. A tree model created in the earlier work (Xu and Mould, 2015).

Fig. 6. Left: a generally smooth path connecting two nodes in a graph without

holes; Right: a more irregular path in a graph with a hole (the green circle).

L. Xu / American Journal of Advanced Research 2017 1(1) 1-6

4

Since the least-cost path does not take in-hole edges, through controlling

the placement and sizes of holes, we can change the features of resulting

least-cost paths. The holes in a 2D graph (as shown in Figure 6 – 9) are

defined as circles, and in a 3D graph (as those used in Figure 10 and 11)

are spheres. Edges are disconnected if they locate inside a hole or cross

the boundary of a hole. The purpose of doing so is to prevent the least-cost

path to take the edges in the hole. The positions of holes are decided ac-

cording to the Poisson Disc distribution (Fiume, 1995), where holes must

keep a minimum distance to each other. This decision helps to control the

distribution of holes and the shapes of the resulting least-cost paths.

The principle to decide the size and the number of holes is not that strict.

Since this work does not aim at a precise simulation of a specific tree

branch shape, a hole at a radius of 3 nodes will not have big difference

with a radius of 4 nodes or 5 nodes. We intend to achieve a general en-

hancement of branch features that are absent in the previous work, so the

possession of crookedness and branch gaps are the main concerns. Ac-

cording to our experience, depending on the target branch features, the

size of holes can be set in a flexible range: in a graph of 150,000 nodes,

holes at a radius of 2-6 nodes can be used for small-scale crookedness, and

10-20 nodes for large-scale crookedness. Further adjustment is possible

for specific trees. Fortunately due to the benefits of procedural methods,

adjusting the hole sizes does not require extra effort but changing a pa-

rameter setting. Changing the hole size and re-running the program take

less than 10 seconds for most tree structures. The number of holes in the

graph is decided by the minimum distance in the Poisson Disc distribution

and the radii of holes. The principle to follow is to make the holes tightly

and evenly filled the graph but also leave narrow non-hole regions (at a

width of 2-5 nodes) for least-cost paths.

In Figure 6 – 9 we use least-cost paths in a 2D graph to illustrate the algo-

rithm for the ease of viewing the path shapes and the holes, which in 3D

may be difficult because of node shading and occlusions. Figure 7 shows

Fig. 7. Top: a tree-like structure in a graph without holes; middle: the graph

has sparse holes; bottom: the graph with denser holes

Fig. 8. From top to bottom: least-cost paths obtained in graphs with small sized

holes, intermediate sized holes, and large sized holes.

A Feature Enhancement Method for 3D Tree Synthesis

5

how different densities of holes affect the resulting path shapes in a 2D

graph. In the top, least-cost paths in a graph without holes tend to follow

the flow of guiding vectors (blue arrows). In the middle, the sparsely dis-

tributed holes do not have much influence on the path shapes, because in

addition to the edges close to the holes there are still plenty of other edges

in the non-hole regions. It is possible that the least-cost paths do not take

the edges around the holes but in a more direct route in the big non-hole

regions. In the lower, the graph has many holes and the resulting paths

demonstrate the crooked shapes, due to the very few available edges in the

non-hole regions. A least-cost path must avoid many holes to take availa-

ble edges in order to reach the endpoint, leading to the irregular path fea-

ture.

While the densely distributed holes contribute to the feature of path irreg-

ularity, the sizes of holes affect the scale of irregular features. Figure 8

shows three examples. The top graph has dense small holes in which edges

are disconnected. The paths have small-scale irregularities. The holes in

the middle graph are larger, leading to larger crooked path shapes. The

paths in the bottom graph show large-scale features – big gaps between

some paths, and large turning path shape due to the path traveling around

big holes. Figure 9 shows the use of a combination of small holes and big

holes. The graph in the right has 12 big holes and 240 small holes whose

radii are only 1/5 of the big holes. Compared with the paths in the left

graph without any holes, the right paths demonstrate both big scale irreg-

ularities such as gaps between paths and crookedness of individual paths.

4 Results and Discussion

The feature enhancement algorithm introduced above has been applied to

create 3D tree models, shown in the following figures. The evaluation of

the results is based on the side by side comparison with a tree model with-

out the feature enhancement. This comparison is built on visual inspection,

which has been used for evaluating tree modeling since the earliest syn-

thetic trees in 1980s. It is worth mentioning that in the area of tree model-

ing there does not exist an objective function or standard for evaluating

the quality of tree models. Since the main applications of the tree models

are for entertainment purposes, not for precise duplication or detailed sim-

ulation, the visual inspection of the presence/absence of target features can

be used to evaluate the quality of results and the effectiveness of algo-

rithms. Actually the method of visual inspection and comparison has been

widely used by many researchers (Stava et al., 1998; Runions, 2008; Xu

and Mould, 2012). Here it is used to evaluate the results in this paper.

Figure 10 shows a 3D tree with feature enhancement (on the left side) and

a tree created using the previous method (Xu and Mould, 2015) without

feature enhancement (on the right). The top row shows the tree skeleton

and the lower row shows the trees after adding twigs. The left tree has

more crooked branches which enhance the natural irregularities. The big

gap in the central region of the left tree also makes the whole tree structure

different from the right regular structure. This feature is hard for the pre-

vious method of guiding vectors. While the right tree shows more homo-

geneous properties, the left tree possesses more heterogeneous features.

Figure 11 shows a 3D tree viewed from three different directions. A close

view of individual branches is in the lower image, where due to the feature

enhancement, the branch demonstrates a crooked shape that spreads from

the lower left to the upper right and curves upwards.

5 Conclusion and Future Work

Fig. 9. A 2D tree structure with (left) and without (right) feature enhancement.

Fig. 10. Left: a tree with feature enhancement; right: a tree without feature

enhancement from the early work of guiding vectors (Xu and Mould, 2015).

Fig. 11. A 3D tree with enhanced features viewed from three different direc-

tions.

L. Xu / American Journal of Advanced Research 2017 1(1) 1-6

6

This paper presents a feature enhancement algorithm for 3D tree synthesis.

The algorithm is built on the idea of path planning and tree synthesis with

guiding vectors. In this algorithm, a number of holes are placed in the

graph, and edges in the holes are disconnected thus prevent the least-cost

paths to cross the regions of holes. Due to the limited available edges in

narrow non-hole regions, the least-cost paths are forced to take edges in

non-hole regions especially those are close to the contour of holes, leading

to crooked path shapes. The hole size contributes to control the scale of

this irregularity: large holes make branch gaps and small holes make the

fine crookedness.

Compared with the previous work, the algorithm can effectively enhance

the branch features and make branch shapes more irregular. The use of

holes, including the hole distribution and hole sizing, contribute to en-

hance the heterogeneity of branches especially the natural gaps between

branch clusters. These features are helpful to create irregular 3D trees

which are needed in movie scenes or game animations especially for spe-

cial scenes where irregular crooked trees (such as Halloween spooky trees)

are required. The algorithm also has its limitations. The current combina-

tion of large holes and small holes is tentative. A more sophisticated and

systematic investigation of the proportion should be performed in the fu-

ture work. In addition, the distribution of holes is based on Poisson Disc

distribution, which however does not take the overall tree structure into

consideration. Different regions of the tree structure can be treated differ-

ently, with different densities of holes. In the future work, more interactive

controls, such as sketch-based methods, will be explored to make the fea-

ture enhancement more controllable.

Acknowledgements

Thanks Dr. David Mould for valuable discussions about graph modification ideas.

This work has been supported by the Organized Research and Creative Activities

(ORCA) Program of University of Houston-Downtown.

Conflict of Interest: none declared.

References

A. Runions. Modeling biological patterns using the space colonization algorithm,

2008

D. S.Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and Mod-

eling, A Procedural Approach (Third Edition). Elsevier Science, USA, 2005.

E. Fiume. An Introduction to Scientific, Symbolic, and Graphical Computation. A K

Peters/CRC Press, 1995.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-

ematik, 1:269–271, 1959.

H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-based modeling of laser-

scanned trees. ACM Trans. Graph., 26, 2007.

I. Millington and J. Funge. Artificial Intelligence for Games, Second Edition. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2009.

L. Xu and D. Mould. Modeling dendritic shapes - using path planning. In GRAPP

(GM/R), pages 29–36, 2007.

L. Xu and D. Mould. Synthetic tree models from iterated discrete graphs. In Proceed-

ings of Graphics Interface, pages 149–156, 2012.

L. Xu and D. Mould. Procedural tree modeling with guiding vectors. Computer

Graphics Forum, 34(7), 2015.

O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mch, O. Deussen, and B. Benes. In search of

the right abstraction: The synergy between art, science, and information technol-

ogy in the modeling of natural phenomena. Art @ Science, pages 60–68, 1998.

P. Prusinkiewicz and J. Hanan. Lindenmayer systems, fractals and plants. Lecture

Notes on Biomathematics, 1989.

P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Spring-

erVerlag, New York, 1990.

T. Capizzi. 3D Modeling And Texture Mapping. Premier Press, 1982.

Y. Li, X. Fan, N. J. Mitra, D. Chamovitz, D. Cohen-Or, and B. Chen. Analyzing

growing plants from 4d point cloud data. ACM Trans. Graph., 32(6):157:1–

157:10, 2013.

Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana. Automatic recon-

struction of tree skeletal structures from point clouds. ACM Trans. Graph.,

29(6):151:1– 151:8, 2010.

	1 Introduction
	2 Background
	3 Algorithm
	4 Results and Discussion
	5 Conclusion and Future Work
	Acknowledgements
	References

