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Abstract 

Computer synthesized 3D tree models often appear in the virtual worlds of 3D movies and games. The creation of tree models wi th 

controllability of realistic features including branch irregularities and gaps between branch clusters is a challenging task. This paper 

presents a procedural method for 3D tree feature enhancement. The tree model is generated in a weighted graph and the basic geometric 

tree branches are least-cost paths from path planning. Through disconnecting edges in specified regions of holes in the graph, the 

method can control the tree branches to avoid the hole regions thus demonstrate crooked shapes. The distribution and the sizing of 

holes can be used to enhance the tree features of irregularity and heterogeneity. 
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1 Introduction  

With the fast development of computer-generated movies and games, the 

audiences and game players have high demands of realistic experience for 

the synthetic virtual scenes. Synthesizing realistic 3D worlds becomes a 

more and more important topic in both computer research and industrial 

areas. As a commonly seen component of the nature world, trees play an 

important role in decorating the 3D natural scenes, by attracting the viewer 

attention and invoking a realistic sense of beauty and complexity. An ex-

ample of virtual scenes with trees is shown in Figure 1, where the high 

trees and small bushes decorate the environment and make it realistic. The 

trees have complicated and hierarchical structures, composed of a variety 

of branches including thick trunks, multiple primary branches, and many 

slim twigs. For computer modelers, the synthesis of the numerous 

branches is a tedious work. In addition, different species of trees have dif-

ferent features such as branching patterns, branch shapes, and branch dis-

tributions. Some trees, such as spruce trees (as shown in the left of Figure 

2), have straight branches and side primary branches attach to a straight 

trunk; some trees, such as Japanese maple trees (as shown in the right of 

Figure 2), have multiple primary branches without a distinct central trunk 

and the branches are highly crooked. How to efficiently synthesize 3D 

trees with controllability of a variety of branch features is also a challenge 

for computer modelers.   

This paper presents a method to synthesize 3D tree models with effective 

enhancement of tree features. The method is based on the idea of path 

planning introduced in our earlier work (Xu and Mould, 2007): a graph is 

built by placing graph nodes uniformly in a 2D plane or a 3D space, and 

edges connect nodes and are set with specified weights. A path between 

two nodes is defined as those successive edges that connect one node to 

the other, whose cost is the sum of the weights of its constituent edges, 

Fig. 1. A virtual world with trees in the game “The Witcher 3”. Image from 

Flickr.com. 

Fig. 2. Two real trees. Left: a spruce tree; right: a Japanese maple tree. Images from 

Flickr.com. 
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and the least-cost path is the one which has the minimum cost among all 

paths. By finding the least-cost paths connecting a node (which represents 

the tree root) in the lower region of the graph and multiple nodes (which 

represent branch ends) in the upper region of the graph, we can get a col-

lection of least-cost paths that resemble a branching tree structure where 

each individual least-cost path is a tree branch. In this paper the technique 

is refined by involving a graph modification method, which can effec-

tively enhance the features of resulting 3D tree models. To be specific, 

edges in a few regions of the weighted graph are disconnected, thus pre-

venting the least-cost paths from crossing the regions. As a result, the syn-

thesized tree branches will avoid the regions and demonstrate crooked 

shapes, making the tree appearance more irregular. In addition, the size 

and the distribution of the regions can contribute to create different scales 

of the irregularities, such as big gaps between branches and small crook-

edness along individual branches. These are helpful to simulate the corre-

sponding features that can be often observed in real trees.  

This paper makes the following main contributions.  

 First, it proposes a method of modifying the weighted graph by 

disconnecting edges in specified regions. The prior methods 

(Xu and Mould, 2007; Xu and Mould, 2015) do not have an 

effective way to control the branch irregularities; the individ-

ual branches are generally smooth. The method of disconnect-

ing edges in specified regions of a graph can effectively en-

hance the irregular features of branches and make the branch 

shape more crooked and realistic.  

 Second, the exploration of varying the size and distribution of 

regions for disconnected edges contributes a mechanism of 

building different scales of branch irregularities. Large sizes of 

compactly placed regions contribute to create large scale of 

branch irregularities such as gaps between branch clusters; 

small sized regions contribute to build fine crooked branch 

shapes. This feature controlling method is novel and effective.  

The paper is organized as follows. Following the introduction, the section 

of background will review related methods in tree modeling. The details 

of the feature enhancement method will be introduced in the algorithm 

section. Results will be given and discussed in section 4. The last section 

includes a conclusion and also proposes the future work. 

2 Background 

Due to the wide uses of tree models in computer applications such as video 

games and 3D movies, many methods have been devised for tree synthe-

sis. Scanning is a common method. Based on a real tree, scanning can 

obtain point clouds of tree data which will then be used to reconstruct a 

virtual tree structure. Scanning methods (Xu et al., 2007; Li et al., 2013; 

Livny et al., 2010) can produce high quality tree models with precise de-

scriptions of tree features due to the data directly from real trees.  How-

ever, because of the occlusion of tree branches and leaves, scanning needs 

pre-processing and post-processing work for the raw data. The availability 

and operations of scanning devices are also not easy for novice users 

(Capizzi, 1982). In addition, scanning requires a real tree as an example, 

and it is hard to create a 3D virtual tree without an existing tree in the 

natural world.  

Another category of widely used methods is procedural methods. Proce-

dural methods (Ebert, 2005; Prusinkiewicz and Hanan, 1989) use algo-

rithms with a set of parameters to depict the complex details of tree struc-

tures. By changing the rules or formulas and parameter settings, proce-

dural methods can automatically generate a large amount of variations of 

results. For synthesizing complicated structures such as trees, procedural 

methods have their strength in the data amplification ability – “a few pa-

rameters (or a small amount of geometry) magically expand into a large, 

detailed model” (Ebert, 2005). A famous group of procedural methods for 

tree modeling is L-systems. L-systems are a grammar that generates 

strings that can be subsequently interpreted as branching structures such 

as trees. The basic idea of L-systems is based on rewriting rules. A rewrit-

ing rule is composed of strings of symbols. Each symbol represents a 

graphical operation, such as the following.  

 

F    Move forward a step of length d  

+    Turn left by angle δ  

−    Turn right by angle δ  

[     Push the current state onto a pushdown stack  

]     Pop the current state onto a pushdown stack 

 

After applying the replacement rules for a few iterations, the initial struc-

ture can be developed into a large complex shape. An example is shown 

in Figure 3, where the initial vertical line (at iteration 0) can be developed 

into a branching structure after applying the rewriting rules for 5 iterations.  

Fig. 4. Least-cost paths in a 2D graph with guiding vectors (Xu and Mould, 2015) 

Fig. 3. Structures generated by iterations of rewriting. The example is taken 

from “The Geometric Beauty of Plants” (Prusinkiewicz and Lindenmayer, 1990) 
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One issue with L-systems is the difficulty to design the rewriting rules to 

create a desired tree shape. It is not easy to relate the long string of symbols 

with the resulting tree structure.  

The method introduced in this paper is built on our earlier procedural al-

gorithms of path planning (Xu and Mould, 2007; Xu and Mould, 2015). 

Here we briefly review their basic ideas. 

The basic tree modeling mechanism (Xu and Mould, 2007) is based on the 

idea of path planning. Path planning is the problem of finding the least-

cost paths in a weighted graph (Millington and Funge, 2009). By selecting 

a node in the lower region of the graph and multiple nodes in the upper 

region of the graph, the least-cost (or shortest) paths connecting each up-

per node and the lower node form a branching structure. The purpose to 

select a lower node (which we call the root point) and a few upper nodes 

(which we call endpoints) is to simulate the tree shape – a root located at 

the bottom and multiple branches connecting the root and the upper ends. 

An example of least-cost paths is shown in Figure 4, where the red point 

is the root point, and the blue points are endpoints. The black paths are 

least-cost paths that connect the root point and the endpoints. 

There are a few elements in the above path planning algorithm that can 

affect the resulting tree structures: the placement of graph node, the distri-

bution of the root point and the endpoints, and the setting of edge weights. 

In order to make the coarse branching structure resemble real tree struc-

tures, the challenges lie in the control of branching patterns and interme-

diate scale architectures through the above elements, which are addressed 

by using guiding vectors (Xu and Mould, 2015). In the method of guiding 

vectors, a graph is built by connecting nodes scattered in a specified vol-

ume (e.g. a cube) with edges. Each graph node has a vector, i.e. guiding 

vector, used to set the weights of the edges that connect the node and its 

neighboring nodes. Based on a large or small deviation of the edge direc-

tion to the guiding vector direction, the weight of an edge can be expensive 

or cheap, thus leading to the resulting least-cost paths to follow the guiding 

vector directions. The least-cost paths in a graph with guiding vectors at 

each node are shown in Figure 4, where the red arrows are guiding vectors. 

The guiding vectors are set in the process of applying Dijkstra’s algorithm 

(Dijkstra, 1959) in a brushfire way. The Dijkstra’s algorithm is an algo-

rithm to compute the least-cost paths from a source node (i.e. the root node 

in our case) to other nodes in a weighted graph, by proceeding from the 

source node to reach other graph nodes and computing the path cost from 

each graph node to the root node. When a graph node is visited, its guiding 

vector is set as a rotation from its parent node’s guiding vector, leading to 

the smooth flow of guiding vector directions. Because the method uses the 

positions of endpoints to control the global tree shape and guiding vectors 

to vary the branching patterns, which are based on the user’s geometric 

understanding of the target tree shape rather than abstract symbols or rules, 

it is straightforward to create a desired tree structure.  

A complicated tree can be synthesized by adding more branches through 

iterations. A tree example is shown in Figure 5. The left is a tree skeleton 

and the right is a complete tree after adding more branches to the previous 

structure. The tree shows a reasonable structure and details. However, due 

to the setting of guiding vectors is based on an incremental rotation and 

the flow of guiding vectors is smooth, the branch shapes are generally 

smooth and lack natural irregular crookedness. Another observation of the 

tree model is that its branches are generally evenly distributed, however 

the distribution of branches in natural trees are often more heterogeneous 

– they have big gaps between clusters of branches. Although the guiding 

vectors can affect the branch shapes, making branches possess the above 

features through setting guiding vectors is difficult: unlike incremental ro-

tations, making the flow of guiding vectors crooked requires a much more 

tedious and careful setting mechanism. In this paper, these target features 

are obtained by modifying the graph rather than setting guiding vectors, 

which can effectively address the problem. More details are introduced 

next. 

3 Algorithm 

The algorithm for feature enhancement is based on the influence of edge 

connections to the resulting least-cost path shapes. To be specific, since a 

least-cost path is composed of edges in the graph, if the graph has some 

holes where edges are disconnected, the path between two nodes will not 

cross the holes and take a direct route, but tends to take available edges in 

the vicinity of holes. As the result, the path shape is less smooth but be-

comes more irregular. The idea is illustrated in Figure 6. In this figure, the 

left shows a graph composed of nodes (in blue) and edges (in black). A 

least-cost path (in red) connects two points from P1 and P2. On the right 

side, the edges that connect nodes inside the green circle and between in-

ner nodes and outer nodes are disconnected. Because there is no edge con-

necting the nodes inside the hole (the green circle) and other nodes, the 

least-cost path that connect P1 and P2 will not take the original route that 

crosses the hole region, but takes the edges close to the hole and demon-

strates a more irregular shape than the left path. Although there are other 

optional paths that can connect P1 and P2, the least-cost path tends to take 

the shortest route, i.e. the edges tightly follow the contour of the hole, 

making it feasible to control the path irregularities through the properties 

of holes.  

The above described algorithm involves two further questions: how to de-

cide the placement of a hole in the graph and how to decide the size of a 

hole. The following introduces the explorations with respect to the above 

questions.  

Fig. 5.  A tree model created in the earlier work (Xu and Mould, 2015). 

 

Fig. 6. Left: a generally smooth path connecting two nodes in a graph without 

holes; Right: a more irregular path in a graph with a hole (the green circle). 
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Since the least-cost path does not take in-hole edges, through controlling 

the placement and sizes of holes, we can change the features of resulting 

least-cost paths. The holes in a 2D graph (as shown in Figure 6 – 9) are 

defined as circles, and in a 3D graph (as those used in Figure 10 and 11) 

are spheres. Edges are disconnected if they locate inside a hole or cross 

the boundary of a hole. The purpose of doing so is to prevent the least-cost 

path to take the edges in the hole. The positions of holes are decided ac-

cording to the Poisson Disc distribution (Fiume, 1995), where holes must 

keep a minimum distance to each other. This decision helps to control the 

distribution of holes and the shapes of the resulting least-cost paths.  

The principle to decide the size and the number of holes is not that strict. 

Since this work does not aim at a precise simulation of a specific tree 

branch shape, a hole at a radius of 3 nodes will not have big difference 

with a radius of 4 nodes or 5 nodes. We intend to achieve a general en-

hancement of branch features that are absent in the previous work, so the 

possession of crookedness and branch gaps are the main concerns. Ac-

cording to our experience, depending on the target branch features, the 

size of holes can be set in a flexible range: in a graph of 150,000 nodes, 

holes at a radius of 2-6 nodes can be used for small-scale crookedness, and 

10-20 nodes for large-scale crookedness. Further adjustment is possible 

for specific trees. Fortunately due to the benefits of procedural methods, 

adjusting the hole sizes does not require extra effort but changing a pa-

rameter setting. Changing the hole size and re-running the program take 

less than 10 seconds for most tree structures. The number of holes in the 

graph is decided by the minimum distance in the Poisson Disc distribution 

and the radii of holes. The principle to follow is to make the holes tightly 

and evenly filled the graph but also leave narrow non-hole regions (at a 

width of 2-5 nodes) for least-cost paths.    

In Figure 6 – 9 we use least-cost paths in a 2D graph to illustrate the algo-

rithm for the ease of viewing the path shapes and the holes, which in 3D 

may be difficult because of node shading and occlusions. Figure 7 shows 

Fig. 7. Top: a tree-like structure in a graph without holes; middle: the graph 

has sparse holes; bottom: the graph with denser holes 

 

Fig. 8. From top to bottom: least-cost paths obtained in graphs with small sized 

holes, intermediate sized holes, and large sized holes. 
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how different densities of holes affect the resulting path shapes in a 2D 

graph. In the top, least-cost paths in a graph without holes tend to follow 

the flow of guiding vectors (blue arrows). In the middle, the sparsely dis-

tributed holes do not have much influence on the path shapes, because in 

addition to the edges close to the holes there are still plenty of other edges 

in the non-hole regions. It is possible that the least-cost paths do not take 

the edges around the holes but in a more direct route in the big non-hole 

regions. In the lower, the graph has many holes and the resulting paths 

demonstrate the crooked shapes, due to the very few available edges in the 

non-hole regions. A least-cost path must avoid many holes to take availa-

ble edges in order to reach the endpoint, leading to the irregular path fea-

ture.  

While the densely distributed holes contribute to the feature of path irreg-

ularity, the sizes of holes affect the scale of irregular features. Figure 8 

shows three examples. The top graph has dense small holes in which edges 

are disconnected. The paths have small-scale irregularities. The holes in 

the middle graph are larger, leading to larger crooked path shapes. The 

paths in the bottom graph show large-scale features – big gaps between 

some paths, and large turning path shape due to the path traveling around 

big holes. Figure 9 shows the use of a combination of small holes and big 

holes. The graph in the right has 12 big holes and 240 small holes whose 

radii are only 1/5 of the big holes. Compared with the paths in the left 

graph without any holes, the right paths demonstrate both big scale irreg-

ularities such as gaps between paths and crookedness of individual paths.  

4 Results and Discussion 

The feature enhancement algorithm introduced above has been applied to 

create 3D tree models, shown in the following figures. The evaluation of 

the results is based on the side by side comparison with a tree model with-

out the feature enhancement. This comparison is built on visual inspection, 

which has been used for evaluating tree modeling since the earliest syn-

thetic trees in 1980s. It is worth mentioning that in the area of tree model-

ing there does not exist an objective function or standard for evaluating 

the quality of tree models. Since the main applications of the tree models 

are for entertainment purposes, not for precise duplication or detailed sim-

ulation, the visual inspection of the presence/absence of target features can 

be used to evaluate the quality of results and the effectiveness of algo-

rithms. Actually the method of visual inspection and comparison has been 

widely used by many researchers (Stava et al., 1998; Runions, 2008; Xu 

and Mould, 2012). Here it is used to evaluate the results in this paper. 

Figure 10 shows a 3D tree with feature enhancement (on the left side) and 

a tree created using the previous method (Xu and Mould, 2015) without 

feature enhancement (on the right). The top row shows the tree skeleton 

and the lower row shows the trees after adding twigs. The left tree has 

more crooked branches which enhance the natural irregularities. The big 

gap in the central region of the left tree also makes the whole tree structure 

different from the right regular structure. This feature is hard for the pre-

vious method of guiding vectors. While the right tree shows more homo-

geneous properties, the left tree possesses more heterogeneous features. 

Figure 11 shows a 3D tree viewed from three different directions. A close 

view of individual branches is in the lower image, where due to the feature 

enhancement, the branch demonstrates a crooked shape that spreads from 

the lower left to the upper right and curves upwards. 

5 Conclusion and Future Work 

Fig. 9.  A 2D tree structure with (left) and without (right) feature enhancement. 

 

Fig. 10.  Left: a tree with feature enhancement; right: a tree without feature 

enhancement from the early work of guiding vectors (Xu and Mould, 2015). 

 

Fig. 11. A 3D tree with enhanced features viewed from three different direc-

tions. 
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This paper presents a feature enhancement algorithm for 3D tree synthesis. 

The algorithm is built on the idea of path planning and tree synthesis with 

guiding vectors. In this algorithm, a number of holes are placed in the 

graph, and edges in the holes are disconnected thus prevent the least-cost 

paths to cross the regions of holes. Due to the limited available edges in 

narrow non-hole regions, the least-cost paths are forced to take edges in 

non-hole regions especially those are close to the contour of holes, leading 

to crooked path shapes. The hole size contributes to control the scale of 

this irregularity: large holes make branch gaps and small holes make the 

fine crookedness. 

Compared with the previous work, the algorithm can effectively enhance 

the branch features and make branch shapes more irregular. The use of 

holes, including the hole distribution and hole sizing, contribute to en-

hance the heterogeneity of branches especially the natural gaps between 

branch clusters. These features are helpful to create irregular 3D trees 

which are needed in movie scenes or game animations especially for spe-

cial scenes where irregular crooked trees (such as Halloween spooky trees) 

are required. The algorithm also has its limitations. The current combina-

tion of large holes and small holes is tentative. A more sophisticated and 

systematic investigation of the proportion should be performed in the fu-

ture work. In addition, the distribution of holes is based on Poisson Disc 

distribution, which however does not take the overall tree structure into 

consideration. Different regions of the tree structure can be treated differ-

ently, with different densities of holes. In the future work, more interactive 

controls, such as sketch-based methods, will be explored to make the fea-

ture enhancement more controllable.   
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