

Using SMB modelling and ICESat-2 to uncover ice sheet mass budget processes

Nicolaj Hansen^{1,2}, Louise Sandberg Sørensen¹, Giorgio Spada³, Daniele Melini⁴, Rene Forsberg¹, Ruth Mottram², and Sebastian B. Simonsen¹ et al.

1: Geodesy and Earth Observation, DTU-Space, Technical University of Denmark, Lyngby, Denmark

2: Danish Meteorological Institute, Copenhagen, Denmark

3: Dipartimento di Fisica e Astronomia (DIFA) "Augusto Righi", Alma Mater Studiorum Università di Bologna, Bologna, Italy

4 Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

What is the (surface) mass balance?

MB = SMB - D SMB = precipitation - runoff - evaporation - sublimationD = discharge

Discharge when crossing the GL

RCM SMB ensemble over Antarctica

Mottram et al 2021

- Model spread of 550 Gt per year
 - Equivalent to nearly 2 mm sea level change per year
- HIRHAM5

The ice masks results

45°W

55°S

90°W

Ensemble mean from Mottram et al 2021= 2329 Gt per year

Common ice mask vs. native ice mask

Model	∆area (%)	$\Delta SMB(Gt yr^{-1})$	ΔSMB (%)	SMB ($Gt yr^{-1}$)	Grounded Δ SMB (Gt yr ⁻¹)
HIRHAM5 0.11°	-2.43	-140.6	-6.04	2452±107	-102.4
HIRHAM5 0.44°	-2.49	-69.5	-2.99	2518±118	-40.7
MARv3.10	-2.89	-91.9	-3.95	2445±91	-54.1
COSMO-CLM2	-1.94	-40.5	-1.77	1961±70	-20.1
RACMO2.3p2	-1.85	-119.6	-5.13	2399±101	-74.0
MetUM	-2.49	-57.6	-2.47	2191±101	-33.9

MB=-109±56 Gt per year

The ice masks results

	HIRHAM5 0.11	HIRHAM5 0.44	MAR v3.10	MetUM	RACMO2.3p2	COSMO-CLM ²	0
Basin 1	-0.45 -0.43	-0.36 -0.41	-0.98 -1.10	0.44 0.44	-1.17 -1.12	-0.50 -0.68	0
Basin 2 -	-0.30 -0.08	-0.17 -0.06	-0.41 -0.14	-0.25 -0.08	-0.54 -0.13	-0.07 -0.05	
Basin 3 -	-0.21 -0.05	-0.19 -0.05	-0.08 -0.03	-0.07 -0.02	-0.20 -0.05	-0.09 -0.04	. 1
Basin 4 -	-5.06 -2.91	-2.02 -1.75	-7.08 -6.46	-4.20 -2.63	-8.70 -5.86	-3.71 -3.97	-1
Basin 5 -	-4.13 -2.28	-3.75 -2.10	-2.82 -1.80	-1.88 -0.90	-3.05 -1.62	-2.55 -1.98	
Basin 6 -	-6.92 -2.15	-3.54 -1.53	-7.38 -3.19	-2.29 -0.77	-7.10 -2.92	-4.33 -2.71	-2
Basin 7 -	-9.30 -2.47	-4.81 -1.87	-6.25 -2.82	-3.13 -0.89	-8.42 -2.67	-3.59 -2.16	- <u>z</u>
Basin 8-	-3.30 -4.14	-1.31 -2.58	-1.98 -4.24	-0.36 -0.83	-4.32 -3.87	-1.39 -3.31	
Basin 9-	-3.04 -0.96	-0.67 -0.26	-3.83 -1.83	-2.55 -0.87	-4.20 -1.57	-0.39 -0.35	-4
Basin 10	0.00 0.00	-0.18 -0.03	-1.43 -0.25	-0.23 -0.03	-1.48 -0.23	-0.09 -0.05	-
Basin 11-	-0.29 -0.05	-1.19 -0.33	-1.55 -0.33	0.00 0.00	-1.19 -0.27	-0.15 -0.05	л Г
Basin 12 -	-4.91 -1.60	-3.03 -1.35	-2.62 -1.49	-2.82 -1.08	-3.00 -1.21	-2.05 -1.29	-6 ×
Basin 13-	-2.88 -0.71	-1.45 -0.46	-1.36 -0.69	-1.63 -0.42	-2.15 -0.62	-0.95 -0.55	, er
Basin 14 -	-5.06 -1.49	-2.73 -1.07	-3.57 -1.68	-3.79 -1.17	-4.82 -1.55	-1.52 -0.82	с Б
Basin 15 -	-13.14 -5.62	-3.54 -3.11	-7.69 -6.22	-6.00 -3.23	-10.32 -5.62	-6.45 -4.55	ں –8 ج
Basin 16-	-2.77 -3.80	-1.80 -2.71	-1.49 -2.71	-2.62 -2.42	-3.12 -3.34	-1.35 -2.65	ш. В
Basin 17 -	-0.76 -0.24	-0.14 -0.09	-0.45 -0.33	-0.53 -0.17	-0.84 -0.33	-0.25 -0.26	SM
Basin 18-	-0.21 -0.15	-0.37 -0.44	-0.75 -0.66	-0.57 -0.33	-1.03 -0.74	-0.05 -0.15	-10 ⊲
Basin 19-	-0.20 -0.13	-0.15 -0.13	-0.02 -0.03	-0.17 -0.13	-0.12 -0.09	-0.11 -0.13	
Basin 20-	-6.80 -4.52	-3.84 -3.03	-8.87 -8.97	-5.22 -4.32	-9.97 -7.55	-4.49 -5.23	
Basin 21 -	-2.46 -0.93	-1.88 -0.93	-0.68 -0.47	-1.26 -0.66	-1.51 -0.73	-0.78 -0.60	-15
Basin 22 -	-0.47 -0.21	-0.69 -0.48	0.62 0.62	-0.52 -0.28	-1.04 -0.62	-0.46 -0.55	
Basin 23 -	-13.98 -8.83	-9.90 -8.30	-10.95 -12.52	-4.18 -4.48	-12.81 -11.46	-9.03 -10.41	
Basin 24 -	-8.74 -4.72	-4.27 -3.58	-6.01 -7.62	-7.88 -5.79	-9.21 -7.08	-4.51 -6.55	-20
Basin 25 -	-50.79 -40.49	-24.19 -24.54	-36.03 -41.10	-14.67 -13.50	-36.74 -32.52	-26.16 -40.49	
Basin 26 -	-3.63 -2.73	-1.70 -3.03	-2.02 -3.79	-1.62 -2.12	-2.49 -2.73	-0.99 -2.12	
Basin 27 -	-5.17 -5.48	-3.38 -4.57	-3.90 -5.71	-3.41 -3.42	-4.82 -5.48	-4.10 -4.79	-40
otal SMB -	-140.58	-69.56	-91.88	-57.60	-119.56	-40.46	
-							

The SMB model

- Models the physical properties of the firn
 - Melt-albedo feedback
 - Densification
 - Grain growth
 - Water/snow/ice fractions
 - Temperature
- 1-D columns
- Offline model

DTU

Quick outline of our ICESat-2 study

- We use ICESat-2 to derive the surface elevation change over the ice sheets
- October 2018 to September 2021
- Our methodology closely follows the Sørensen et al. (2011) repeat track method for ICESat
- We update the ICESat-2 processing chain and the model assumptions
- We make a new density parameterization for deriving mass balance in a consistent manner for both ice sheets

$$\frac{dH}{dt} = \frac{\dot{b}}{\rho} + w_c + w_{ice} + \frac{\dot{b_m}}{\rho} + w_{br} - u_s \frac{dS}{dx} - u_b \frac{dB}{dx}$$

- *b* SMB
- ρ density
- w_c firn compaction
- w_{ice} vertical ice velosity
- $\dot{b}_{
 m m}$ basal melt
- w_{br} vertical bedrock movement
- u_s horizontal ice velocity at the surface
- u_b horizontal ice velocity at the bed

Firn compaction and bedrock movement are non-DTU The Danish Meteorological mass-related processes Institute

[m/yr]

ate

com

GIA + ER

Dynamical ice build-up in Kamb ice stream (Shepherd et al., 2019)

Volume to mass conversion

 $\frac{dM}{dt} = \frac{dH_{corrected}}{dt}\tilde{\rho}$

Dynamical ice build-up in Kamb ice stream (Shepherd et al., 2019)

Volume to mass conversion

 $\frac{dM}{dt} = \frac{dH_{corrected}}{dt} \tilde{\rho}$

What is
$$\tilde{\rho}$$
 ?

$$\tilde{\rho} = \begin{cases} \rho_{i}, if \, Vsurf > 30 \, \frac{m}{yr} \, and \, \frac{dH_{corrected}}{dt} \leq 0 \\ \rho_{i}, if \, H \leq ELA \\ \rho_{i}, if \, dynamical \, ice \, build \, up \, is \, known \\ \rho_{s}, elsewhere \end{cases}$$

Volume to mass conversion

С

 $\widetilde{\rho} = \begin{cases} \rho_{i}, if \, Vsurf > 30 \, \frac{m}{yr} \, and \frac{dH_{corrected}}{dt} \leq 0 \\ \rho_{i} \, if \, H \leq ELA \\ \rho_{i} \, if \, dynamical \, ice \, build \, up \, is \, known \\ \rho_{s}, elsewhere \end{cases}$

ice

	Greenland			Antarctica				
	Unit	Total	>2000 m	<2000 m	Total	AP	WAIS	EAIS
ICESat-2	Km³/yr	-279.3±21.0	-19.3±7.4	-260.1±13.6	-42.9±54.0	11.0±12.9	-103.4±22.9	49.5±47.2
Firn Corr.	Km³/yr	-21.5± 4.5	-14.8±2.4	-6.7±2.2	-46.7±9.4	-17.1±2.2	-1.5±6.0	-28.0±6.9
Vert. Corr.	Km³/yr	8.10±0.01	3.29±0.00	4.81±0.01	21.80±0.03	0.80±0.01	11.22±0.02	9.78±0.02
MB	Gt/yr	-237.5±14.0	-18.7±3.6	-218.8±10.7	-135.7±27.3	1.5±6.7	-123.7±13.1	-13.5±23.0

The combined mass loss from AIS and GrIS is **-373.2** ±**41.3** Gt per year, or 1.03 ± 0.11 mm global sea level rise per year

Results mass balance on basin scale

-16.3±2.8

5

+1

23

-29.7±3.1

-62.4±6.4

-33.1±4.1

-135.7 ±27.3

-14.3±2.6

A

Compare to GRACE-FO

Barbara Jenny et al. 2023 (EGU23) Jenny et al. compare different GRACE-FO solutions in the time period.

Notice: JPL is an outliner.

All numbers are in Gt per year.

Uncertainty analysis is not done yet for the GRACE-FO results GRACE-FO might underestimate the MB in basins 21 and 22 due to leakage

	East	West	AP	Total	-
CSR0600	-29.5	-120.9	-9.1	-159.6	
CSR0601	-10.1	-114.3	-9.3	-133.7	
ITSG	2.2	-109.8	-20.2	-127.7	'ear '
GFZ	-24.7	-103.7	-15.2	-143.6	n GT/y
JPL	17.2	-93.0	-13.1	-88.9	rend i
COSTG	-2.2	-109.6	-16.3	-128.1	⊢ _1
ICESat-2	-13.5±23.0	-123.7±13.1	1.5±6.7	-135.7±27.3	-1

Irend in GT/year

Trend of ice mass loss in Antarctica

Overall the GRACE-FO agrees with our ICESat-2 analysis

1.00

0.75 0.50 0.25 0.00 -0.25 -0.50-0.75

-1.00 [1 -1.25 /u -1.50 [

-1.75 -2.00 -2.25 -2.50

-2.75 -3.00 -3.25 -3.50

Take away

- The grounded AIS has lost 135.7 ±27.3 Gt per year GrIS has lost 237.5 ±14.0 Gt per year
- We emphasize the importance of accurately representing the density of snow and firn
- New density parameterization for volume-to-mass conversion
- Read our pre-print in The Cryosphere soon (submitted Monday the 24th of April)
 "Revisiting ice sheet Mass balance: insights into changing dynamics in
 Greenland and Antarctica from ICESat-2"