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The problem: Representing sub-shelf melt in 
(uncoupled) ice-sheet and ocean models
Ice-sheet models need information about ocean-
induced melt at the base of the ice shelves…

?
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The problem: Representing sub-shelf melt in 
(uncoupled) ice-sheet and ocean models
Ice-sheet models need information about ocean-
induced melt at the base of the ice shelves…

Ocean models need information about the melt 
as it affects the water properties

Sub-shelf cavities are typically not resolved in 
ocean or coupled-climate models…

?

The link between the open ocean and the 
ocean-ice sheet interface is missing!
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Observations or
Models without cavity
e.g. coarse climate 
models

Basal melt parameterisations bridge the gap 
between ocean and ice

Several parameterisations of various complexity developed in past decades
[e.g. Beckmann and Goosse (2002), Holland et al. (2008), Favier et al. (2019), Reese et al. (2018), 
Lazeroms et al. (2018 & 2019), Pelle et al. (2019)]
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e.g. coarse climate 
models

Basal melt parameterisations bridge the gap 
between ocean and ice

Several parameterisations of various complexity developed in past decades
[e.g. Beckmann and Goosse (2002), Holland et al. (2008), Favier et al. (2019), Reese et al. (2018), 
Lazeroms et al. (2018 & 2019), Pelle et al. (2019)]

But assessments based on cavity-resolving ocean simulations 
showed that there are still large uncertainties 
[Favier et al. (2019), Burgard et al. (2022)]



Our approach: 

Explore the potential of a rather simple 
deep learning parameterisation
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Feedforward neural network - 101
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Weights and biases optimised 
during iterative training

Feedforward neural network is 
applied for each grid cell

No spatial patterns, each grid 
cell is treated “independently”

Rosier et al. (2023), The Cryosphere
=> see next presentation
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Our virtual reality for training

4 x NEMO global ocean simulations 
[same as in Burgard et al. 2022]

0.25° grid
127 simulation years in total 

representing varying conditions between 1980 and 2018
35 largest cavities resolved: ocean circulation and basal melt
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Bedrock topography + slope

INPUT

INPUT

Profiles averaged 
over domain within 
50 km of ice shelf 
front

INPUT

Neural network

INPUT

Ice draft + slopeINPUT

What gets into the neural network…
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Neural network

What gets out of the neural network…



The training process
Training
Minimisation of the mean squared error (MSE) between the 
parameterised and reference yearly melt for each grid cell

Neural network



The training process

Neural network

Cross validation
over time: Training over 12 blocks of ~10 years, evaluation over 1 block, x 13
over ice shelves: Training over 34 ice shelves, evaluation over 1 ice shelf, x 35

Training
Minimisation of the mean squared error (MSE) between the 
parameterised and reference yearly melt for each grid cell



Assessing two different aspects
Integrated melt Melt near the 

grounding line
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Neural networks closer to reference…
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Near grounding line, less difference between them
Integrated melt 
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Going forward
Integrated melt 
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Spatial patterns promising !?
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Two questions to explore during testing…

Will the RMSE remain as low as for the cross-
validation over time with an evolving geometry?

How will the neural network perform with input data 
from a different distribution (climate change)? 



Our approach: 

Explore the potential of a rather simple 
deep learning parameterisation

using cavity-resolving ocean simulations
as a virtual reality

PART I – TRAINING
PART II - TESTING
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Our virtual reality for testing
2 x NEMO global ocean simulations 

coupled with ice-sheet model within UKESM-ice
[from Smith et al. 2021]

0.25° grid
2 x 60 simulation years

Run with (1) 60 years x 1970 forcing and (2) 60 years with 4xCO2 forcing
~35 large cavities resolved: ocean circulation and basal melt
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The neural networks struggle…
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… but the traditional ones too!
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Will the RMSE remain as low as for the cross-
validation over time with an evolving geometry?

How will the neural network perform with input data 
from a different distribution (climate change)? 

No large differences 
to cross-validation

Performance is not as good 
but still better as traditional 
parameterisations

Two questions to explore…
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What you should take home…

We use an ensemble of cavity-resolving circum-Antarctic ocean 
simulations to explore neural network parameterisations

Comparably small neural networks applied on the grid-cell 
level perform well in:

emulating basal melt rates in a cross-validation framework
adapting to evolving geometries

For warmer conditions, both neural networks and traditional 
parameterisations struggle 

Promising results and food for thought for further development!

Include warmer simulations in training? 
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What you should take home…

We use an ensemble of cavity-resolving circum-Antarctic ocean 
simulations to explore neural network parameterisations

Comparably small neural networks applied on the grid-cell 
level perform well in:

emulating basal melt rates in a cross-validation framework
adapting to evolving geometries

For warmer conditions, both neural networks and traditional 
parameterisations struggle 

Promising results and food for thought for further development!

Include warmer simulations in training? 



Neural networks deal well with evolving geometries
Integrated melt Melt near the 

grounding line
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