Emulating present and future simulations of melt rates at the base of **Antarctic ice shelves with neural networks**

OCEAN:ICE workshop 24.05.2023

Clara Burgard and Nicolas Jourdain, Pierre Mathiot, Robin Smith, Rieke Schäfer, Justine Caillet, Tobias Finn, J. Emmanuel Johnson clara.burgard@univ-grenoble-alpes.fr

@climate_clara@mastodon.green

The problem: Representing sub-shelf melt in (uncoupled) ice-sheet and ocean models

Ice-sheet models need information about oceaninduced melt at the base of the ice shelves...

The problem: Representing sub-shelf melt in (uncoupled) ice-sheet and ocean models

Ice-sheet models need information about oceaninduced melt at the base of the ice shelves... Ocean models need information about the melt as it affects the water properties

The problem: Representing sub-shelf melt in (uncoupled) ice-sheet and ocean models

Ice-sheet models need information about oceaninduced melt at the base of the ice shelves... Ocean models need information about the melt as it affects the water properties

Basal melt parameterisations bridge the gap between ocean and ice

Several parameterisations of various complexity developed in past decades [e.g. Beckmann and Goosse (2002), Holland et al. (2008), Favier et al. (2019), Reese et al. (2018), Lazeroms et al. (2018 & 2019), Pelle et al. (2019)]

Basal melt parameterisations bridge the gap between ocean and ice

Several parameterisations of various complexity developed in past decades [e.g. Beckmann and Goosse (2002), Holland et al. (2008), Favier et al. (2019), Reese et al. (2018), Lazeroms et al. (2018 & 2019), Pelle et al. (2019)]

> But assessments based on cavity-resolving ocean simulations showed that there are still large uncertainties [Favier et al. (2019), Burgard et al. (2022)]

Melt parameterisation

Ocean Temperature and Salinity Observations or Models without cavity e.g. coarse climate models Southern Ocean

Feedforward neural network - 101

Feedforward neural network - 101

Weights and biases optimised during iterative training

Feedforward neural network - 101

using cavity-resolving ocean simulations as a virtual reality

using cavity-resolving ocean simulations as a virtual reality

> PART I – TRAINING PART II - TESTING

using cavity-resolving ocean simulations as a virtual reality

> PART I – TRAINING PART II - TESTING

Our virtual reality for training

The training process

Training

Minimisation of the mean squared error (MSE) between the parameterised and reference yearly melt for each grid cell

The training process

Training

Minimisation of the mean squared error (MSE) between the parameterised and reference yearly melt for each grid cell

Cross validation

Assessing two different aspects

Assessing different neural network sizes

Assessing different neural network sizes

	n	Integrated melt	Melt near the
al"	Quadratic, local, Ant slope	\uparrow $$	grounding line
ition.	Quadratic, local, local slope		
trad	Plume		
99	Box, 10 boxes		
	PICOP, PICO boxes		
orks	No hidden layer : XXS		
	2 layers, 96/96 neurons : XS		
netw	3 layers, 32/64/32 : S		
ıral r	5 layers, 96/96/96/96/96 : M		
Neu	5 layers, 128/128/128/128/128 : L		
6 la	ayers, 256/256/256/256/256/256 : XL		
	Cross-validation X over time 	RMSE [Gt/yr] over the left-out blocks of the cross validation (127 simulation years and 35 ice shelves)	RMSE [m ice/yr] of space and (left-out) time mean near grounding line for (left- out) 35 ice shelves and 4 simulations

Neural networks closer to reference...

Near grounding line, less difference between them

Going forward

	S			Integrated	d melt		M	elt near the	1
al"	ation	Quadratic, local, Ant slope	P	X6 ∳-		Ŷ	*		
"tradition	teris	Quadratic, local, local slope -		×-					¥∳-
	amet	Plume -	-	¥∳-		_	×-		
	par	Box, 10 boxes	_	× +			神	-	
_		PICOP, PICO boxes	-	× +			* *		
Neural networks		No hidden layer : XXS		×	+		₽-		
		2 layers, 96/96 neurons : XS	×	+		- 🕻	+		
		3 layers, 32/64/32 : S -	X	+			+		
		5 layers, 96/96/96/96/96 : M -	×	+		- (+		
		5 layers, 128/128/128/128/128 : L	×	+		- 1	+		
6	laye	ers, 256/256/256/256/256/256 : XL -	X	- † -		- (-		
		Cross-validation X over time -↓- over ice shelves	0 RM (12	25 50 ISE [Gt/yr] over the left the cross valida 7 simulation years and	75 100 t-out blocks of ation 35 ice shelves)	0.0 t	0.5 RMSE [m ice/yr ime mean near out) 35 ice she	1.0 1.5] of space and (left-o r grounding line for (l elves and 4 simulatio	2.0 out) eft- ns

Spatial patterns promising !?

Spatial patterns promising !?

Two questions to explore during testing...

- Will the RMSE remain as low as for the crossvalidation over time with an evolving geometry?
- How will the neural network perform with input data from a different distribution (climate change)?

using cavity-resolving ocean simulations as a virtual reality

> PART I – TRAINING PART II - TESTING

Our virtual reality for testing

- Will the RMSE remain as low as for the crossvalidation over time with an evolving geometry?
- How will the neural network perform with input data from a different distribution (climate change)?

Apply to 60 years of 1970 forcing

- Will the RMSE remain as low as for the crossvalidation over time with an evolving geometry?
- How will the neural network perform with input data from a different distribution (climate change)?

No large differences to cross-validation

- Will the RMSE remain as low as for the crossvalidation over time with an evolving geometry?
- How will the neural network perform with input data from a different distribution (climate change)?

No large differences to cross-validation

Apply to 60 years of 4xCO₂ forcing

The neural networks struggle...

... but the traditional ones too!

- Will the RMSE remain as low as for the crossvalidation over time with an evolving geometry?
- How will the neural network perform with input data from a different distribution (climate change)?

No large differences to cross-validation

Performance is not as good but still better as traditional parameterisations

What you should take home...

What you should take home...

We use an ensemble of cavity-resolving circum-Antarctic ocean simulations to explore neural network parameterisations

Comparably small neural networks applied on the grid-cell level perform well in:

For warmer conditions, both neural networks and traditional parameterisations struggle

Include warmer simulations in training?

Promising results and food for thought for further development!

What you should take home...

We use an ensemble of cavity-resolving circum-Antarctic ocean simulations to explore neural network parameterisations

Comparably small neural networks applied on the grid-cell level perform well in:

For warmer conditions, both neural networks and traditional parameterisations struggle

Include warmer simulations in training?

Promising results and food for thought for further development!

Clara.burgard@univ-grenoble-alpes.fr
@climate_clara@mastodon.green

Neural networks deal well with evolving geometries

