Annual mass budget of Antarctic ice shelves, 1997-2021

Benjamin Davison¹, Anna Hogg¹, Noel Gourmelen^{2,3}, Livia Jakob³, Jan Wuite⁴, Thomas Nagler⁴, Chad Greene⁵, Julia Andreasen⁶, Marcus Engdahl⁷

¹School of Earth and Environment, University of Leeds, Leeds, UK
²School of Geosciences, University of Edinburgh, Edinburgh, UK
³Earthwave, Codebase, Office L2, 3 Lady Lawson St, Edinburgh, UK
⁴ENVEO IT GmbH, Innsbruck, 6020, Austria
⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
⁶University of Minnesota Twin Cities, Minnesota, United States
⁷ESA-ESRIN, Largo Galileo Galilei 1, 00044 Frascati, Italy

The safety band of Antarctic ice shelves

Furst et al. (2016), Nat Clim Change

Reese et al. (2018), Nat Clim Change

Ice shelf mass balance

Ice shelf mass balance

Nb: I assume a static grounding line

Calving

Quasi-annual calving fronts 1997-2021

- Derived from manual coastline delineations constrained by ice flow observations
- 118 ice shelves have retreated
- Net reduction in ice shelf area of 36,701 ± 1,465 km²
- Area losses dominated by major calving events, but gradual wasting is widespread

Submarine melting

Combine two basal melt rate estimates

- 1. 1997-2017: quarterly, ~2x2 km (Paolo et al., 2022)
- 2. 2010-2020: monthly, 500x500 m (Noel Gourmelen & Livia Jakob)

Integrated over time-varying ice shelf masks

Submarine melting

Combine two basal melt rate estimates

- 1. 1997-2017: quarterly, ~2x2 km (Paolo et al., 2022)
- 2. 2020-2020: monthly, 500x500 m (Noel Gourmelen & Livia Jakob)

Integrated over time-varying ice shelf masks

Surface mass balance

Combine three regional climate models

- 1. RACMO (van Wessem et al. 2018)
- 2. HIRHAM (Hansen et al. 2021)
- 3. MAR (Agosta et al. 2019; Kittel et al. 2018) Integrated over time-varying ice shelf masks

Combine a range of datasets:

- Ice velocity: MEaSUREs annual, ITS-LIVE annual, ENVEO monthly
- Bed topography: BedMachine v2, H&F Peninsula, Cui Princess Elizabeth Land
- Ice surface: REMA 200 m DEM, time-varying
- Firn models: IMAU FDM (RACMO), GSFC-MERRA2
- Utilise multiple flux gates, corrected for gate-to-grounding line surface mass changes

Combine a range of datasets:

- Ice velocity: MEaSUREs annual, ITS-LIVE annual, ENVEO monthly
- Bed topography: BedMachine v2, H&F Peninsula, Cui Princess Elizabeth Land
- Ice surface: REMA 200 m DEM, time-varying
- Firn models: IMAU FDM (RACMO), GSFC-MERRA2
- Utilise multiple flux gates, corrected for gate-to-grounding line surface mass changes

Nb: Much uncertainty in this

Combine a range of datasets:

- Ice velocity: MEaSUREs annual, ITS-LIVE annual, ENVEO monthly
- Bed topography: BedMachine v2, H&F Peninsula, Cui Princess Elizabeth Land
- Ice surface: REMA 200 m DEM, time-varying
- Firn models: IMAU FDM (RACMO), GSFC-MERRA2
- Utilise multiple flux gates, corrected for gate-to-grounding line surface mass changes

Nb: Much uncertainty in this

```
Which shows up in these
```


Combine a range of datasets:

- Ice velocity: MEaSUREs annual, ITS-LIVE annual, ENVEO monthly
- Bed topography: BedMachine v2, H&F Peninsula, Cui Princess Elizabeth Land
- Ice surface: REMA 200 m DEM, time-varying
- Firn models: IMAU FDM (RACMO), GSFC-MERRA2
- Utilise multiple flux gates, corrected for gate-to-grounding line surface mass changes

Will be made freely available across all of Antarctica (not just ice shelves!)

Total freshwater export:

- 66,000 ± 13,500 Gt 1997-2021

Annual freshwater export:

- Total: 2,640 ± 540 Gt/yr
- Solid: 1557 ± 346 Gt/yr
- Liquid: 1083 ± 259 Gt/yr

Total freshwater export:

- 66,000 ± 13,500 Gt 1997-2021

Annual freshwater export:

- Total: 2,640 ± 540 Gt/yr
- Solid: 1557 ± 346 Gt/yr
- Liquid: 1083 ± 259 Gt/yr

Solid vs liquid freshwater:

- 41% of total freshwater export is liquid
- ~50% if 6 largest calving events are excluded

Total freshwater export

Total freshwater export:

- 66,000 ± 13,500 Gt 1997-2021

Annual freshwater export:

- Total: 2,640 ± 540 Gt/yr
- Solid: 1557 ± 346 Gt/yr
- Liquid: 1083 ± 259 Gt/yr

Solid vs liquid freshwater:

- 41% of total freshwater export is liquid
- ~50% if 6 largest calving events are excluded

Solid freshwater export dominates for most (75%) ice shelves

Total freshwater export

Total freshwater export:

- 66,000 ± 13,500 Gt 1997-2021

Annual freshwater export:

- Total: 2,640 ± 540 Gt/yr
- Solid: 1557 ± 346 Gt/yr
- Liquid: 1083 ± 259 Gt/yr

Solid vs liquid freshwater:

- 41% of total freshwater export is liquid
- ~50% if 6 largest calving events are excluded

Solid freshwater export dominates for most (75%) ice shelves

Generally steady freshwater export with intermittent calving spikes

- Weak negative trend of -50 Gt/yr total freshwater flux from Antarctica
- Positive melt flux trends of >2%/yr at 34 ice shelves

Total freshwater export

Ice shelf mass balance: Pine Island

Ice shelf mass balance: Pine Island

Total ice shelf mass change

- 103 ice shelves have lost mass
- Net reduction in ice shelf mass of 6,600 ± 1,500 Gt 1997-2021

Total ice shelf mass change

- 103 ice shelves have lost mass
- Net reduction in ice shelf mass of 6,600 ± 1,500 Gt 1997-2021

Large ice shelves are the principal contributors to overall ice shelf mass change:

- 5 ice shelves contribute >50% of gross mass loss: Wilkins, Larsen C, Pine Island, Getz, Thwaites
- 4 ice shelves contribute ~50% of gross mass gain: Brunt, Ronne, Amery, Filchner

Total mass change

Total ice shelf mass change

- 103 ice shelves have lost mass
- Net reduction in ice shelf mass of 6,600 ± 1,500 Gt 1997-2021

Large ice shelves are the principal contributors to overall ice shelf mass change:

- 5 ice shelves contribute >50% of gross mass loss: Wilkins, Larsen C, Pine Island, Getz, Thwaites
- 4 ice shelves contribute ~50% of gross mass gain: Brunt, Ronne, Amery, Filchner

Gradual ice shelf deterioration is widespread

Total mass change

Relative ice shelf mass change

- 101 ice shelves have a significant trend for mass loss
- 80 ice shelves have reduced in mass by more than 10%

Relative mass change

Relative ice shelf mass change

- 101 ice shelves have a significant trend for mass loss
- 80 ice shelves have reduced in mass by more than 10%

Relative mass change

Net mass change

- Antarctic wide, majority of mass loss occurs from 1997-2002 because of icebergs A38/39 and A43/44 (Ronne Ice Shelf)
- Net mass gain after 2002 because of growth of Amery and Filchner

Partitioned mass change

- Calving: 4800 ± 700 Gt mass loss
- Basal melt: 3500 ± 1400 Gt mass loss
- SMB: 23 ± 80 Gt mass loss
- Discharge: 1800 ± 800 Gt mass gain

Pine Island:

- Net mass change: -1580 Gt
- Net thickness change due to basal melting: -1769 Gt (111% of the total mass change)
- Net area change: -450 Gt (28% of the total mass change)

Pine Island:

- Net mass change: -1580 Gt
- Net thickness change due to basal melting: -1769 Gt (111% of the total mass change)
- Net area change: -450 Gt (28% of the total mass change)

Basal melting is principal contributor to mass change of individual ice shelves

• Basal melting dominates mass loss for 80% of shelves

Basal melting dominant in the Amundsen/Bellingshausen sea, Princess Elizabeth Land and parts of Dronning Maud Land

Summary

Large Antarctic ice shelf freshwater export:

- 66,000 ± 13,500 Gt 1997-2021

Many Antarctic ice shelves deteriorated from 1997 to 2021

- Net reduction in ice shelf mass of 6,600 ± 1,500 Gt
- 103 ice shelves have lost mass
- 80 ice shelves have reduced in mass by more than 10%

Many Antarctic ice shelves are deteriorating

• 101 ice shelves have a significant trend for mass loss

Basal melt appears to be driving the majority of deterioration for individual ice shelves

Large range of observed discharge responses to a given increase in basal melting or calving

Ice shelf mass balance: Pine Island

Impact on grounded ice – Pine Island Glacier

Impact on grounded ice – Amundsen Sea Embayment

Impact on grounded ice – Antarctic perspective

Individual ice shelves

- Retreat & discharge: highly variable relationship
- Thinning & discharge: generally positive relationship
- Large spread in strength of relationship

Impact on grounded ice – Antarctic perspective

Antarctic-wide

- Overall relationship: discharge increases by about 10% of the observed thinning or retreat
- But very large spread and ambiguous timescale