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Abstract

We study cohomology of generalized Suzuki curves in characteristic two as representa-
tions of their automorphism groups. We calculate the number of rational points and the
zeta functions of the curves.

1 Introduction

Let p be a power of 2. Let t ≥ 1 be a positive integer and q := p2t−1. Let S be the smooth affine
curve defined by yq − y = xp

t
(xq − x) in A2

Fq
= SpecFq[x, y]. The smooth compactification S

of S is called a Suzuki curve if p = 2 and t ≥ 2. In this paper, we call S a generalized Suzuki
curve in characteristic two. The Suzuki curve has been studied in so many aspects (cf. [BC,
Introduction]).

Let F be an algebraic closure of Fq. A structure of the automorphism group Q of SF is
known. First, Q consists of Fq-automorphisms. The group is isomorphic to the Suzuki group
whose order is q2(q − 1)(q2 + 1) if p = 2. If p > 2, the structure of Q is determined in [BC,
Theorem 1.3 and Introduction]. The group is a 3-step solvable group of order q2(q − 1).

Let ℓ 6= 2 be a prime number. We consider the first ℓ-adic étale cohomology group of SF
which is denoted by H1(SF,Qℓ). Let GFq denote the Galois group of the extension F/Fq. In

this paper, we explicitly study H1(SF,Qℓ) as a Q×GFq -representation. Further, we explicitly
determine the L-polynomial and the numbers of the rational points of S. Counting rational
points on an algebraic curve over a finite field is an interesting and important problem in
number theory and coding theory (cf. [Se3]). In general, it can be so difficult to calculate them
exactly. Maximal curves are often used in coding theory. We give a criterion whether S is
maximal over a finite extension of Fq.

Let n ≥ 1 be a positive integer. Let C(Fqn) denote the set of the Fqn-rational points on
an algebraic curve C over Fq. A projective smooth geometrically connected curve C is said
to be Fqn-maximal (resp. Fqn-minimal) if and only if |C(Fqn)| = qn + 1 + 2g(C)qn/2 (resp.
|C(Fqn)| = qn + 1− 2g(C)qn/2), where g(C) denotes the genus of C.

We state two main theorems in this paper. We note g(S) = pt(q − 1)/2.

Theorem 1.1. We write p = 2f with an integer f ≥ 1.

(1) Assume 2 ∤ f . We have

|S(Fqn)| = qn + 1− 2g(S)qn/2

p

(
p

2
((−1)n + 1) +

√
p

2
((−1)n − 1)

)
cos

πn

4
.

In particular, S is Fqn-maximal (resp. Fqn-minimal) if and only if n ≡ 4 (mod 8) (resp.
8 | n).
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(2) Assume 2 | f . We have

|S(Fqn)| = qn + 1− 2g(S)qn/2

p

(
p

4
(1 + (−1)n + in + (−i)n) +

√
p

2
((−1)n − 1)

)
.

In particular, S is Fqn-minimal if and only if 4 | n. Moreover, S is not Fqn-maximal for
any n ≥ 1.

For a projective smooth geometrically connected curve C over Fq, we define

LC/Fq
(T ) := det(1− Fr∗qT ;H

1(CF,Qℓ)),

where Frq is the Frobenius endomorphism of CF (cf. Notation). This rational polynomial is
called the L-polynomial of C. We show the following theorem.

Theorem 1.2. (1) Assume 2 ∤ f . We have

LS/Fq
(T ) =

((
1 +

√
2qT + qT 2

)k1(1−√
2qT + qT 2

)k2)pt−1(q−1)
,

where

k1 =
1

2

(
p

2
+

√
p

2

)
, k2 =

1

2

(
p

2
−
√
p

2

)
.

(2) Assume 2 | f . We have

LS/Fq
(T ) =

(
(1−√qT )l1(1 +√qT )l2(1 + qT 2)l3

)pt−1(q−1)
,

where

l1 =
p

4
−
√
p

2
, l2 =

p

4
+

√
p

2
, l3 =

p

4
.

If f = 1, these theorems are shown in [Ha, Proposition 4.3] and [Se3, 5.4.1]. Our proofs of
these theorems restricted to f = 1 are different from the ones there.

For g ∈ Z>0, let Nq(g) denote the maximum number of Fq-rational points on a curve of
genus g over Fq. This quantity has been studied in many aspects (cf. [GV2] and [Se3]).

Let 1 ≤ i ≤ f(2t − 1) be a positive integer and gi := pt(2i − 1)/2. Assume that f is odd
and n ≡ 4 (mod 8). As an application of Theorem 1.1, we show

Nqn(gi) = qn + 1 + 2giq
n/2.

We briefly describe the structure of H1(SF,Qℓ) as a Q×GFq -representation. Let Frobq ∈
GFq be the geometric Frobenius automorphism defined by Frobq(x) = xq

−1
for x ∈ F.

For a finite abelian group A, let A∨ := HomZ(A,Q
×
ℓ ). Let Z = Fp × Fp be the abelian

group defined by (b, c) · (b′, c′) = (b + b′, c + c′ + bb′). Let Z∨
prim := {ψ ∈ Z∨ | ψ|{0}×Fp

6= 1}.
We define an action of F×

p 3 a on Z∨
prim 3 ψ by (aψ)(b, c) = ψ(ab, a2c) for (b, c) ∈ Z. Let

Z := Z∨
prim/F×

p . Let ξψ be the character of GFq which sends Frobq to the character sum

xψ := −pt−1
∑
b∈Fp

ψ(b, 0),

which depends only on the class [ψ] ∈ Z. We define distinct irreducible Q-representations
{ρψ}[ψ]∈Z of dimension pt−1(q − 1) (cf. Definition 3.11).

For a representation ρi of a group Gi for i = 1, 2, let ρ1 ⊠ ρ2 denote the tensor product
representation of G1 ×G2.

We give an irreducible decomposition of H1(SF,Qℓ) as a Q × GFq -representation in the
following.
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Theorem 1.3. (Theorem 3.13) We have an isomorphism

H1(SF,Qℓ) '
⊕
[ψ]∈Z

(ρψ ⊠ ξψ)

as Q×GFq -representations.

The exponent pt−1(q − 1) in LS/Fq
(T ) is regarded as the dimension of ρψ.

Our main results in this paper are Theorems 1.1–1.3. First we show Theorem 1.3 in a
cohomological and representation-theoretic manner. Using this theorem, we show Theorems
1.1 and 1.2. We describe the strategy roughly. We identify Qℓ ' C. Then we can prove

xψ√
q
∈

{{
e±

πi
4 , e±

3πi
4

}
if f is odd,

{±1,±i} if f is even.

Computing the values
∑

[ψ]∈Z xψ and
∑

[ψ]∈Z x
2
ψ, we can determine the set of the Frobenius

eigenvalues: {xψ | [ψ] ∈ Z} (cf. Lemma 3.18). Theorems 1.1 and 1.2 follow from this.
We study the curve S in the case where p is a power of an odd prime number in [T2].
This work was supported by JSPS KAKENHI Grant Numbers 20K03529/21H00973.

Notation

For a scheme X over a field k and a field extension l/k, let Xl denote the base change of X to
l.

For a scheme X over Fq, let F : X → X be the q-th power Frobenius endomorphism. Let
F be an algebraic closure of Fq. Let Frq : XF → XF denote the base change of F to F. Let
ℓ ∤ q be a prime number. For a variety X over Fq and an integer i ≥ 0, let H i

c(XF,Qℓ) denote
the i-th ℓ-adic étale cohomology group of XF with compact support. For a proper morphism
between Fq-varieties f : Y → X and an integer i ≥ 0, let f∗ : H i

c(XF,Qℓ)→ H i
c(YF,Qℓ) denote

the pull-back. We refer to the Grothendieck trace formula (cf. [De, (1.9.1) and Remarque 1.9.4
in Sommes trig.]) as the trace formula.

Let C denote the smooth compactification of an algebraic curve C over Fq.
For a vector space V over a field k and a k-endomorphism f : V → V , let Tr(f ;V ) ∈ k

denote the trace of f .
For a group G, Let Z(G) denote its center.
For a finite field extension Fpr/Fps , let Trpr/ps : Fpr → Fps and Nrpr/ps : Fpr → Fps denote

the trace map and the norm map, respectively.
For a representationM of a finite abelian group A and a character χ ∈ A∨, letM [χ] denote

the χ-isotypic part of M .

2 Review on generalized Suzuki curve

In this section, we build notation and collect fundamental facts on S used in the proceeding
section. Let D be the affine curve defined by wp + w = xp

t−1+1 + xp
t+1. We relate the

cohomology of S to the one of D (cf. Proposition 2.15). The curve D is regarded as a quotient
of S.

2.1 Generalized Suzuki curve and its automorphisms

Definition 2.1. (1) Let Q = F×
q × Fq × Fq be the group defined by

(a, b, c) · (a′, b′, c′) =
(
aa′, b+ a−1b′, c+ a−(pt+1)(c′ + abb′p

t
)
)
.
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(2) Let Q act on S by (x, y) · (a, b, c) =
(
a(x+ b), ap

t+1(y + bp
t
x+ c)

)
for (x, y) ∈ S and

(a, b, c) ∈ Q.

(3) We define Qp := {(a, b, c) ∈ Q | a ∈ F×
p }, which is a normal subgroup of Q.

All automorphisms of SF are Fq-rational. The automorphism group of SF is isomorphic to
Q as in [BC, Introduction and Theorem 1.3] if f > 1. This result is independent of the parity
of p. If p = 2, the group Q is regarded as a Borel subgroup of the Suzuki group.

We simply write (b, c) for (1, b, c) ∈ Q and write a for (a, 0, 0) ∈ Q. Then

(b, c)a = (a, b, c), a−1(b, c)a = (ab, ap
t+1c) for a ∈ F×

q and (b, c) ∈ Q. (2.1)

2.2 Quotient of Qp and certain representations

Definition 2.2. (1) Let

R(x) := xp
t−1

+ xp
t ∈ F[x], f(x, y) := xp

t−1
y +

t−1∑
i=0

(xR(y))p
i ∈ Fp[x, y].

(2) Let QR := {(a, b, c) ∈ F×
p × F2

q | cp + c = bR(b)} be the group defined by

(a, b, c) · (a′, b′, c′) =
(
aa′, b+ a−1b′, c+ a−2(c′ + f(ab, b′))

)
.

Let PR := {(1, b, c) ∈ QR} ◁ QR.

We note that f(x, y) is bilinear form in a natural sense. We write (b, c) and a for (1, b, c) ∈
PR and (a, 0, 0) ∈ QR respectively. Then

(b, c)a = (a, b, c), a−1(b, c)a = (ab, a2c) for a ∈ F×
p and (b, c) ∈ PR. (2.2)

We have |QR| = pq(p− 1).

Lemma 2.3. We have the surjective group homomorphism

ϕ : Qp → QR; (a, b, c) 7→
(
a, b,Trq/p(c) +

t−1∑
i=0

bp
i(pt−1+1)

)
.

Proof. By bp
2t−1

= b for b ∈ Fq, one knows that ϕ is well-defined. Surjectivity of ϕ follows
from |Kerϕ| = p2t−2.

2.2.1 Representations of PR

For elements g, g′ of a group G, let [g, g′] := gg′g−1g′−1.

Lemma 2.4. (1) For g = (b, c) and g′ = (b′, c′) ∈ PR, we have [g, g′] = (0, f(b, b′)+ f(b′, b)).
Moreover, we have f(b, b′) + f(b′, b) = Trq/p(b

′bp
t
+ bb′p

t
).

(2) We have Z(PR) = {(b, c) | b, c ∈ Fp}, which is isomorphic to (Z/4Z)f with p = 2f .

(3) We identify {(0, c) | c ∈ Fp}
∼−→ Fp; (0, c) 7→ c. The pairing

ω : (PR/Z(PR))× (PR/Z(PR))→ Fp; (g, g′) 7→ [g, g′]

is a non-degenerate symmetric form.
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Proof. We have (b, c)−1 = (b, c+ f(b, b)). Then (1) is easily verified.
We show (2). The former claim follows from (1) and Fp2t ∩ Fq = Fp. We take a basis

b1, . . . , bf of Fp over F2. Then we set xi := (bi, 0) ∈ Z(PR). By f(bi, bi) = b2i , we have
x2i = (0, b2i ). We can easily check that the homomorphism

(Z/4Z)f → Z(PR); (i1, . . . , if ) 7→ xi11 · · ·x
if
f

is surjective. Hence this is injective. Thus we obtain the claim.
We show (3). We identify PR/Z(PR)

∼−→ Fq/Fp; (b, c) 7→ b̄. Then ω is given by (b̄, b̄′) 7→
Trq/p(b

′bp
t
+ bb′p

t
). The claim follows from Fp2t ∩ Fq = Fp.

The above lemma implies the following.

Lemma 2.5. ([Bu, Exercise 4.1.8: The Stone–Von Neumann Theorem]) Let ψ ∈ Z(PR)∨\{1}.
There exists a unique irreducible representation τψ of PR containing ψ restricted to Z(PR).

Moreover, we have an isomorphism τψ|Z(PR) ' ψ⊕pt−1
.

2.3 Quotients of S and first analysis of cohomology

Let α ∈ F×
q and let Cα be the affine curve defined by zp + z = αxp

t
(xq + x) over Fq.

Lemma 2.6. We have the isomorphism Cα
∼−→ C1; (x, z) 7→

(
α

pt−1
p−1 x,Nrq/p(α)z

)
.

Proof. The claim is checked using Nrq/p(α)α = Nrq/p(α)
pα = α

p2t−1
p−1 .

The curve Cα appears as a quotient of S naturally as follows. We have the finite Galois
étale morphism

πα : S → Cα; (x, y) 7→
(
x,

2t−2∑
i=0

(αy)p
i

)
,

whose Galois group is the kernel of the homomorphism Trα : Fq → Fp; y 7→ Trq/p(αy).
The cohomology group of S is understood via the ones of {Cα}α∈F×

q
.

Lemma 2.7. Let ℓ 6= 2 be a prime number. For α ∈ F×
q , let Wα := π∗α(H

1
c (Cα,F,Qℓ)) ⊂ V :=

H1
c (SF,Qℓ).

(1) The subspace Wα depends only on the class αF×
p ∈ F×

q /F×
p .

(2) We have V =
∑

αF×
p ∈F×

q /F×
p
Wα.

Proof. For α, α′ ∈ F×
q ,

αF×
p = α′F×

p ∈ F×
q /F×

p =⇒ KerTrα = KerTrα′ .

If a finite group G acts on a vector space V , let V G denote its G-fixed part. Since the Galois
group of the finite Galois étale morphism πα is isomorphic to KerTrα, we knowWα = V KerTrα .
Thus Wα depends only on the class αF×

p .
We show (2). We take ψ ∈ F∨

p \ {1}. For α ∈ F×
q , we define ψα ∈ F∨

q \ {1} by ψα(x) =
ψ(Trα(x)) for x ∈ Fq. Then V =

⊕
ψ′∈F∨

q \{1} V [ψ′] =
⊕

α∈F×
q
V [ψα]. Thus the claim follows

from V [ψα] ⊂ V KerTrα =Wα and (1).
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Lemma 2.8. (1) We regard F×
q as a subgroup of Q by a 7→ (a, 0, 0). For a ∈ F×

q ⊂ Q, we
have the commutative diagram

S
a //

π
ap

t+1

��

S

π1
��

Capt+1
≃
fa

// C1,

where fa is given by (x, z) 7→ (ax, z).

(2) Let the notation be as in Lemma 2.7. Then the subgroup F×
q ⊂ Q permutes the subspaces

{Wα}αF×
p ∈F×

q /F×
p
in V transitively.

Proof. The assertion (1) is directly checked. We show (2). For a ∈ F×
q , we have a∗(W1) =

Wapt+1 by (1). Since gcd(pt+1, q−1) = 1 by 2 | p, the map F×
q → F×

q ; a 7→ ap
t+1 is a bijection.

Thus the claim follows.

Definition 2.9. (1) Let D be the affine curve defined by wp + w = xR(x) over Fq.

(2) Let QR 3 (a, b, c) act on D 3 (x,w) by

(x,w) · (a, b, c) =
(
a(x+ b), a2(w + c+ f(x, b))

)
.

Curves like D have been studied in [GV] in detail if p = 2. Now, we relate Cα to D.

Lemma 2.10. We have the isomorphism πR : C1
∼−→ D; (x, z) 7→

(
x, z +

∑t−1
i=0 x

pi(pt−1+1)
)
.

Moreover, we have Cα
∼−→ D.

Proof. The first claim is directly checked. Then the latter claim follows from Lemma 2.6.

Lemma 2.11. Let ϕ be as in Lemma 2.3. Let π := πR ◦ π1. For (a, b, c) ∈ Qp, we have the
commutative diagram

S
(a,b,c) //

π
��

S

π
��

D
ϕ(a,b,c) // D.

Proof. The claim is reduced to the equality

f(x, b) =

2t−2∑
i=0

(xbp
t
)p

i
+

t−1∑
i=0

(xp
t−1
b+ xbp

t−1
)p

i
for b ∈ Fq.

This equality follows from
∑2t−2

i=0 (xbp
t
)p

i
=

∑t−1
i=0(xb

pt)p
i
+

∑t−1
i=1(xb

pt−1
)p

i
by bp

2t−1
= b.

In the following, all isomorphisms between cohomology groups are supposed to be isomor-
phisms as GFq -representations. For a separated scheme X over F, we often write H i

c(X) for

H i
c(X,Qℓ) in proofs.

Lemma 2.12. (1) We have g(D) = pt(p− 1)/2 and

H0
c (DF,Qℓ) = 0, H2

c (DF,Qℓ) = Qℓ(−1), dimH1
c (DF,Qℓ) = pt(p− 1).

(2) The forgetful map H1
c (DF,Qℓ)→ H1(DF,Qℓ) is an isomorphism.

Proof. The claims are well-known. For example, see [T1, Lemma 3.28].
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Lemma 2.13. (1) We have g(S) = pt(q − 1)/2 and

H0
c (SF,Qℓ) = 0, H2

c (SF,Qℓ) = Qℓ(−1), dimH1
c (SF,Qℓ) = pt(q − 1).

(2) The forgetful map H1
c (SF,Qℓ)→ H1(SF,Qℓ) is an isomorphism.

Proof. As in the proof of Lemma 2.7(2), we have V =
⊕

α∈F×
q
V [ψα]. Then V [ψα] ' H1

c (Cα,F)[ψ].

We will show that the natural map H1
c (SF) → H1(SF) is an isomorphism. For each α ∈ F×

q ,
we have the commutative diagram

H1
c (SF)[ψα]

∼ //

ι

��

H1
c (Cα,F)[ψ]

��
H1(SF)[ψα]

∼ // H1(Cα,F)[ψ].

From Lemma 2.10 and Lemma 2.12(2), the right vertical map is an isomorphism. Thus ι is an
isomorphism. Hence the claim follows. This implies that S \ S consists of one point and (2)
(cf. [T1, Lemma 3.27]). For each α ∈ F×

q , we have dimH1
c (Cα,F)[ψ] = pt by Lemma 2.10 (cf.

[T1, Remark 3.29]). Hence (1) follows.

Remark 2.14. One can directly check that S \ S consists of one point. Thus Lemma 2.13(2)
follows. To deduce dimH1

c (SF) = 2g(S) = pt(q − 1), one may apply [GS, Proposition 4.1].

Proposition 2.15. We have an isomorphism

H1
c (SF,Qℓ) ' IndQQp

H1
c (DF,Qℓ)

as Q-representations.

Proof. Let the notation be as in Lemma 2.7. We have dimWα = pt−1(p − 1) and dimV =
pt−1(q − 1) by Lemmas 2.10, 2.12 and 2.13. Thus V =

⊕
αF×

p ∈F×
q /F×

p
Wα by Lemma 2.7(2).

Let H be the stabilizer of W1 in Q. By [Se2, Proposition 19 in Chapter 7] and Lemma
2.8(2), we have V ' IndQHW1. Hence [Q : H] = (q−1)/(p−1). We identify π∗ : H1

c (DF)
∼−→W1.

Lemma 2.11 implies that Qp ⊂ H. By [Q : Qp] = [Q : H], we have Qp = H. Hence the claim
follows.

3 Cohomology of S

It suffices to study D to show Theorems 1.1 and 1.2 by Proposition 2.15.

3.1 Cohomology of D

3.1.1 Computing dimension

In the following, we compute the dimension of H1
c (DF,Qℓ)[ψ] for ψ ∈ Z(PR)∨.

Let
D → A1

Fq
; (x,w) 7→ xp + x, (3.3)

which is a finite Galois étale morphism whose Galois group is Z(PR). In the following, we will
study the ramification of this covering at ∞.

Let F := Fq((t)), which is regarded as a local field with t-adic valuation. We regard A1
Fq

as an open subscheme of P1
Fq

naturally. We regard the ring of integers Fq[[t]] of F as the

completion of P1
Fq

at ∞.
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We take a separable closure F of F . Let x,w ∈ F be elements satisfying xp + x = t−1 and
wp + w = xp

t−1+1 + xp
t+1. We define

F ⊂ E1 := F (x) ⊂ E2 := E1(w).

This extension comes from the pull-back of (3.3) via the natural morphism SpecF → A1
Fq
.

For a finite Galois extension L/K of local fields, let G := Gal(L/K) denote its Galois
group. let φL/K denote the inverse of the Herbrand function of L/K and {Gi}i≥−1 (resp.
{Gi}i≥−1) denote the upper (resp. lower) numbering ramification subgroups of G (cf. [Se1,
IV§3]).

Lemma 3.1. (1) We have

φE1/F (u) =

{
u if u ≤ 1,

p−1(u+ p− 1) otherwise,

φE2/E1
(u) =

{
u if u ≤ pt + 1,

p−1(u+ (p− 1)(pt + 1)) otherwise,

φE2/F (u) =


u if u ≤ 1,

p−1(u+ p− 1) if 1 < u ≤ pt + 1,

p−2(u+ (p− 1)(pt + p+ 1)) otherwise.

(2) We have

Gal(E2/F )
i =


Gal(E2/F ) if i ≤ 1,

Gal(E2/E1) if 1 < i ≤ pt−1 + 1,

{1} otherwise.

Proof. We show (1). We note that x−1 is a uniformizer of E1. The extension E2/E1 is totally
ramified. Let ϖE2 := w−1xp

t−1
, which is a uniformizer of E2 by wp+w = xp

t−1+1+xp
t+1. Let

vE2(·) denote the normalized valuation of E2. Let σ ∈ Gal(E2/E1)\{1}. Then σ(w)−w ∈ F×
p

and vE2(σ(ϖE2)−ϖE2) = pt + 2 by vE2(w
−1) = pt + 1. This implies that

Gal(E2/E1)i =

{
Gal(E2/E1) if i ≤ pt + 1,

{1} otherwise.

Hence we obtain the claim on φE2/E1
. The claim on φE1/F is checked more easily. Thus the

last claim follows from φE2/F = φE1/F ◦ φE2/E1
.

By (1) and [Se1, Proposition 12 in IV§3],

Gal(E2/F )i =


Gal(E2/F ) if i ≤ 1,

Gal(E2/E1) if 1 < i ≤ pt + 1,

{1} otherwise.

Hence (2) follows from GφE2/F
(i) = Gi.

Definition 3.2. (1) Let Z∨
prim := {χ ∈ Z(PR)∨ | χ|{0}×Fp

6= 1}.

(2) We define an action of F×
p on Z∨

prim by (aψ)(b, c) := ψ(ab, a2c) for a ∈ F×
p , (b, c) ∈ Z(PR)

and ψ ∈ Z∨
prim. Let

Z := Z∨
prim/F×

p .

We have |Z∨
prim| = p(p− 1) and |Z| = p.
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Lemma 3.3. Let ψ ∈ Z∨
prim. We have [ψ] 6= [ψ−1] in Z.

Proof. Assume [ψ] = [ψ−1]. There exists a ∈ F×
p such that ψ−1 = aψ. Since p is even, ψ|Fp

is a quadratic character. Hence ψ(0, c) = ψ−1(0, c) = ψ(0, a2c). This implies that a = 1 by
ψ|Fp 6= 1. Thus ψ2 = 1. This contradicts to ψ ∈ Z∨

prim.

Proposition 3.4. Let ψ ∈ Z∨
prim. Let Lψ denote the smooth Qℓ-sheaf on A1

Fq
defined by φ

in (3.3) and ψ in [De, Définition 1.7 in Sommes trig.]. Let τψ be as in Lemma 2.5.

(1) We have dimH1
c (DF,Qℓ)[ψ] = pt−1.

(2) We have an isomorphism H1
c (DF,Qℓ) '

⊕
ψ∈Z∨

prim
τψ as PR-representations.

Proof. We show (1). Let A1 := A1
F. For any integer i, H i

c(DF)[ψ] = H i
c(A1,Lψ). Let

Sw(Lψ) denote the Swan divisor of Lψ. We have deg Sw(Lψ) = pt−1 + 1 by Lemma 3.1(2)
and ψ ∈ Z∨

prim. We have χc(A1,Lψ) − χc(A1,Qℓ) = −deg Sw(Lψ) by the Grothendieck–
Ogg–Shafarevich formula in [De, (3.2.1) in Sommes trig.]. Hence the claim follows from
H i

c(A1,Lψ) = 0 for i 6= 1.
From (1) and Lemma 2.5, it results that H1

c (DF)[ψ] ' τψ for ψ ∈ Z∨
prim. Hence (2) follows

from Lemma 2.12(1) and |Z∨
prim| = p(p− 1).

3.1.2 Frobenius eigenvalues and proof of Theorem 1.3

For ψ ∈ Z∨
prim, we determine the Frobenius eigenvalues on H1

c (DF,Qℓ)[ψ] and show Theorem

1.3. For an F-endomorphism T of a scheme X over F, let XT denote the fixed point subscheme
of T . If XT is finite over F, let |XT | denote the degree of XT → F.

Lemma 3.5. Let (b, c) ∈ Z(PR). We have

∣∣∣DFrq◦(b,c)
∣∣∣ = {

pq if c = b2,

0 otherwise.

Proof. Let (x,w) ∈ D. Assume xq = x+ b. Then we compute

wq + w =

2t−2∑
i=0

(wp + w)p
i
=

2t−2∑
i=0

(
xp

i(pt−1+1) + xp
i(pt+1)

)
=

t−1∑
i=0

xp
i(pt−1+1) +

t−2∑
i=0

xp
i+t(pt−1+1) +

t−2∑
i=0

xp
i(pt+1) +

t−1∑
i=0

xp
i+t−1(pt+1)

=

t−1∑
i=0

xp
i(pt−1+1) +

t−2∑
i=0

(xp
t
(x+ b))p

i
+

t−2∑
i=0

xp
i(pt+1) +

t−1∑
i=0

(xp
t−1

(x+ b))p
i
= bxp

t−1
,

where we substitute wp+w = xp
t−1+1+xp

t+1 at the second equality and use xq = x+ b at the
fourth one. The endomorphism Frq ◦ (b, c) of D is given by (x,w) 7→ (xq+ b, (w+ bxp

t−1
+ c)q).

Thus

DFrq◦(b,c) =
{
(x,w) ∈ D | xq = x+ b, (w + bxp

t−1
+ c)q = w

}
=

{
(x,w) ∈ D | xq = x+ b, wq + w = bxp

t−1
+ b2 + c

}
= {(x,w) ∈ D | xq = x+ b, b2 + c = 0}.

Hence we obtain the claim.
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Lemma 3.6. For ψ ∈ Z∨
prim, we have

Tr(Fr∗q ;H
1
c (DF,Qℓ)) = −q(p− 1), Tr(Fr∗q ;H

1
c (DF,Qℓ)[ψ]) = −

q

p

∑
b∈Fp

ψ(b, 0).

Proof. The former equality follows from Lemma 3.5 for (b, c) = (0, 0) and the trace formula.
We show the latter equality. By the trace formula (cf. [DL, the proof of Proposition 3.3]),

−Tr((Frq ◦ (b, c))∗;H1
c (DF)) + q =

∣∣∣DFrq◦(b,c)
∣∣∣ .

We note (b, c)−1 = (b, c+ b2). By Lemma 3.5, we obtain

Tr(Fr∗q ;H
1
c (DF)[ψ]) =

1

p2

∑
(b,c)∈Z(PR)

ψ((b, c)−1)Tr((Frq ◦ (b, c))∗;H1
c (DF))

=
1

p2

(
−

∑
b∈Fp

ψ(b, 0)q(p− 1) +
∑

(b,c)∈Fp×F×
p

ψ(b, c)q

)
= −q

p

∑
b∈Fp

ψ(b, 0).

Definition 3.7. For ψ ∈ Z∨
prim, let ξψ be the character of GFq which sends Frobq to the

character sum
xψ := −pt−1

∑
b∈Fp

ψ(b, 0),

which depends only on the class [ψ] ∈ Z.

Corollary 3.8. For ψ ∈ Z∨
prim, let τψ be as in Lemma 2.5.

(1) We have isomorphisms

H1(DF,Qℓ)
∼←− H1

c (DF,Qℓ) '
⊕

ψ∈Z∨
prim

(τψ ⊠ ξψ)

as PR ×GFq -representations.

(2) The isomorphism class of the induced representation IndQR
PR

τψ depends only on the class

[ψ] ∈ Z. Furthermore, we have an isomorphismH1(DF,Qℓ) '
⊕

[ψ]∈Z

(
(IndQR

PR
τψ)⊠ ξψ

)
as QR ×GFq -representations.

Proof. We show (1). The first isomorphism follows from Lemma 2.12(2) and the second one
follows from Schur’s lemma, Proposition 3.4 and the latter equality in Lemma 3.6.

We show (2). Let Wψ := H1
c (DF)[ψ] for ψ ∈ Z∨

prim. We have H1
c (DF) =

⊕
ψ∈Z∨

prim
Wψ and

an isomorphism Wψ ' τψ as PR-representations by Lemma 2.5. An automorphism a ∈ F×
p ⊂

QR sends Waψ to Wψ by (2.2), where aψ is defined in Definition 3.2(2). Hence we obtain the
former claim and an isomorphism ⊕

ψ∈Z∨
prim

Wψ '
⊕
[ψ]∈Z

IndQR
PR

τψ

as QR-representations. Thus the latter claim follows from this and (1).

Corollary 3.9. We have LD/Fq
(T ) =

(∏
[ψ]∈Z(1− xψT )

)pt−1(p−1)
.

Proof. The claim follows from dim τψ = pt−1, [QR : PR] = p− 1 and Corollary 3.8(2).
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Corollary 3.10. We have

(1) Tr(Fr∗qn ;H
1
c (DF,Qℓ)) = pt−1(p− 1)

∑
[ψ]∈Z

xnψ =
2g(D)

p

∑
[ψ]∈Z

xnψ.

(2) |D(Fqn)| = qn + 1− 2g(D)

p

∑
[ψ]∈Z

xnψ.

Proof. The claim (1) follows from Corollary 3.8(2). The claim (2) follows from (1), Lemma
2.12(2) and the trace formula.

Definition 3.11. Let ψ ∈ Z∨
prim. We regard IndQR

PR
τψ as a Qp-representation via ϕ in Lemma

2.3 and consider the inflation of it to Q, for which we write ρψ. The isomorphism class of ρψ
depends only on [ψ] ∈ Z by Corollary 3.8(2).

Lemma 3.12. (1) Let ψ ∈ Z∨
prim. The QR-representation IndQR

PR
τψ is irreducible.

(2) The Q-representations {ρψ}[ψ]∈Z are irreducible and distinct.

Proof. We show (1). Let a ∈ F×
p ⊂ QR and let τaψ denote the conjugate of τψ by a. Lemma

2.5 implies that
τaψ ' τaψ (3.4)

and hence τψ 6' τaψ for a ∈ F×
p \ {1}. Since the PR-representation τψ is irreducible, (1) follows

from Mackey’s irreducibility criterion in [Se2, §7.4].
We show (2). We show the former claim. Let τ̃ψ denote the inflation of IndQR

PR
τψ via

ϕ : Qp → QR in Lemma 2.3. By definition, ρψ = IndQQp
τ̃ψ. We set ψFp := ψ|{0}×Fp

∈ F∨
p \ {1}.

For x ∈ Fq, we define ψx ∈ F∨
q by ψx(y) := ψFp(Trq/p(xy)) for y ∈ Fq. Let a ∈ F×

q ⊂ Q. Let

τ̃aψ denote the conjugate of τ̃ψ by a. Recall that a−1(1, 0, c)a = (1, 0, ap
t+1c) in Q for c ∈ Fq

by (2.1). We identify the subgroup {(1, 0, c) | c ∈ Fq} ⊂ Q with Fq. By Mackey’s formula and
Lemma 2.5, we have isomorphisms

τ̃ψ|Fq '
⊕
x∈F×

p

ψ⊕pt−1

x , τ̃aψ|Fq '
⊕
x∈F×

p

ψ⊕pt−1

apt+1x
. (3.5)

Hence τ̃ψ ' τ̃aψ ⇐⇒ a ∈ F×
p . Similarly as (1), the former claim follows.

Let a ∈ F×
p . By Frobenius reciprocity and (3.4),

HomQR
(IndQR

PR
τψ, Ind

QR
PR

τaψ′) =
⊕
x∈F×

p

HomPR
(τψ, τaxψ′) 6= {0} ⇐⇒ [ψ] = [ψ′] ∈ Z. (3.6)

Let b ∈ F×
q and ψ′ ∈ Z∨

prim. We will show that

HomQp(τ̃ψ, τ̃
b
ψ′) 6= {0} ⇐⇒ b ∈ F×

p , [ψ] = [ψ′].

Assume that HomQp(τ̃ψ, τ̃
b
ψ′) 6= {0}. By (3.5), ψ1 = ψ′

bpt+1y
with some y ∈ F×

p . We take c ∈ F×
p

such that ψ′
Fp
(x) = ψFp(cx) for x ∈ Fp. Hence 1 = bp

t+1yc. Thus b ∈ F×
p . This and (3.6) imply

that [ψ] = [ψ′]. We can show the converse using (3.4) and (3.6).
From Frobenius reciprocity, it results that

HomQ(ρψ, ρψ′) '
⊕

bF×
p ∈F×

q /F×
p

HomQp(τ̃ψ, τ̃
b
ψ′) 6= {0} ⇐⇒ [ψ] = [ψ′].

Thus the required claim follows.
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Theorem 3.13. We have an irreducible decomposition

H1(SF,Qℓ)
∼←− H1

c (SF,Qℓ) '
⊕
[ψ]∈Z

(ρψ ⊠ ξψ)

as Q×GFq -representations.

Proof. The claim follows from Proposition 2.15 and Corollary 3.8(2).

3.1.3 Explicit determination of L-polynomial of D

Our aim in the following is to show Theorems 3.19 and 3.20. We write p = 2f as before.

Lemma 3.14. Assume that x, y ∈ Z satisfy x2 + y2 = p. Then we have

x+ iy
√
p
∈

{
{e±

πi
4 , e±

3πi
4 } if f is odd,

{±1,±i} if f is even.

Proof. Assume 2 ∤ f . Then x 6= 0, y 6= 0. We write x = 2rx1 and y = 2sy1 with r ≤ s,
2 ∤ x1, y1. Then x21 + 22(s−r)y21 = 2f−2r. If s > r, 2 ∤ f implies that 2 | x1. Hence s = r.
This implies that x21 + y21 = 2f−2r. By x21 + y21 ≡ 2 (mod 4), we must have f = 2r + 1. Thus
x21 = y21 = 1.

Assume that 2 | f and x 6= 0, y 6= 0. We write x = 2rx1 and y = 2sy1 with r ≤ s,
2 ∤ x1, y1. Then x21 + 22(s−r)y21 = 2f−2r. If s > r, we have f = 2r by 2 ∤ x1. This implies
x21 + 22(s−r)y21 = 1. This is a contradiction. Hence s = r and x21 + y21 = 2f−2r. This is a
contradiction by 2 | f , since x21 + y21 ≡ 2 (mod 4). Hence x = 0 or y = 0.

We take an isomorphism Qℓ ' C.

Corollary 3.15. Let ψ ∈ Z∨
prim. Then we have

1
√
p

∑
b∈Fp

ψ(b, 0) ∈

{{
e±

πi
4 , e±

3πi
4

}
if f is odd,

{±1,±i} if f is even.

Proof. Lemma 2.4(2) implies that
∑

b∈Fp
ψ(b, 0) ∈ Z[i]. By the Weil conjecture for curves,∣∣∑

b∈Fp
ψ(b, 0)

∣∣ = √p. Hence the claim follows from Lemma 3.14.

Lemma 3.16. We have
∑

[ψ]∈Z xψ = −pt and
∑

[ψ]∈Z x
2
ψ = 0.

Proof. The former equality follows from H1
c (DF) =

⊕
[ψ]∈Z H

1
c (DF)[ψ] and Lemma 3.6.

We show the latter equality. Let yψ :=
∑

b∈Fp
ψ(b, 0) for ψ ∈ Z(PR)∨. Then we compute∑

ψ∈Z(PR)∨

y2ψ =
∑

b,b′∈Fp

∑
ψ∈Z(PR)∨

ψ((b, 0)(b′, 0)) = p2, (3.7)

where we use (b, 0)(b′, 0) = (0, 0) ⇐⇒ b = b′ = 0 at the second equality. Let g : Z(PR) →
Fp; (b, c) 7→ b. By g, we regard F∨

p as a subgroup of Z(PR)
∨. Then∑

ψ∈F∨
p

y2ψ =
∑

b,b′∈Fp

∑
ψ∈F∨

p

ψ(b+ b′) = p2. (3.8)

We obtain
∑

ψ∈Z∨
prim

y2ψ = 0 by (3.7), (3.8) and Z∨
prim = Z(PR)

∨\F∨
p . Hence (p−1)

∑
[ψ]∈Z x

2
ψ =∑

ψ∈Z∨
prim

x2ψ = p2t−2
∑

ψ∈Z∨
prim

y2ψ = 0.
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Definition 3.17. Let ψ ∈ Z∨
prim. We define

k1 :=
∣∣∣{[ψ] ∈ Z | xψ =

√
qe

3πi
4 }

∣∣∣ , k2 :=
∣∣∣{[ψ] ∈ Z | xψ =

√
qe

πi
4 }

∣∣∣
if f is odd and

l1 : = |{[ψ] ∈ Z | xψ =
√
q}|, l2 := |{[ψ] ∈ Z | xψ = −√q}|,

l3 : = |{[ψ] ∈ Z | xψ = i
√
q}|

if f is even.

Lemma 3.18. We have
k1 =

1

2

(
p

2
+

√
p

2

)
, k2 =

1

2

(
p

2
−
√
p

2

)
if 2 ∤ f,

l1 =
p

4
−
√
p

2
, l2 =

p

4
+

√
p

2
, l3 =

p

4
if 2 | f.

Proof. Assume 2 ∤ f . We have k1 + k2 = p/2 by Lemma 3.3 and Corollary 3.15. Lemma 3.16
implies that −k1 + k2 = −

√
p/2. Hence the claim follows.

Assume 2 | f . From Lemma 3.3 and Corollary 3.15, it results that l1 + l2 + 2l3 = p. From
Lemma 3.16, it results that l1 − l2 = −

√
p and l1 + l2 − 2l3 = 0. Thus the claim follows.

Theorem 3.19. (1) Assume 2 ∤ f . We have

|D(Fqn)| = qn + 1− 2g(D)qn/2

p

(
p

2
((−1)n + 1) +

√
p

2
((−1)n − 1)

)
cos

πn

4
.

In particular, D is Fqn-maximal if and only if n ≡ 4 (mod 8).

(2) Assume 2 | f . We have

|D(Fqn)| = qn + 1− 2g(D)qn/2

p

(
p

4
(1 + (−1)n + in + (−i)n) +

√
p

2
((−1)n − 1)

)
.

In particular, D is Fqn-minimal if and only if 4 | n.

Proof. We show (1). Assume that f is odd. By Lemma 3.18,∑
[ψ]∈Z

xnψ = qn/2
(
2k1 cos

3πn

4
+ 2k2 cos

πn

4

)
= qn/2

(
p

2
((−1)n + 1) +

√
p

2
((−1)n − 1)

)
.

The claim follows from Corollary 3.10(2). The claim (2) is shown in the same manner.

Theorem 3.20. We have

LD/Fq
(T ) =

{(
(1 +

√
2qT + qT 2)k1(1−

√
2qT + qT 2)k2

)pt−1(p−1)
if 2 ∤ f,(

(1−√qT )l1(1 +√qT )l2(1 + qT 2)l3
)pt−1(p−1)

if 2 | f.

Proof. The assertions follow from Corollary 3.9.

3.2 Proof of Theorems 1.1 and 1.2

For an integer n ≥ 1, we have

qn + 1− |S(Fqn)| =
q − 1

p− 1
(qn + 1− |D(Fqn)|), LS/Fq

(T ) = LD/Fq
(T )

q−1
p−1

by Lemmas 2.12, 2.13 and Proposition 2.15. Hence the theorems follow from g(S) = pt(q−1)/2
in Lemma 2.13(1), Theorems 3.19 and 3.20.
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3.3 Application

Let A(T ) ∈ Fq[T ] be an additive polynomial all whose roots are contained in Fq. Let CA be

the affine smooth curve over Fq defined by A(y) = xp
t
(xq − x).

Proposition 3.21. Assume that f is odd and n ≡ 4 (mod 8). The curve CA is Fqn-maximal
with genus pt(degA− 1)/2.

Proof. By the assumption on A(T ), we can write T q − T = A(B(T )) with an additive poly-
nomial B(T ) ∈ Fq[T ]. The finite étale morphism π : S → CA; (x, y) 7→ (x,B(y)) extends to a
non-constant morphism π : S → CA. Then Fqn-maximality follows from Theorem 1.1(1) and
[Se3, Theorem 5.2.1].

We consider the commutative diagram

H1
c (CA,F)

ν //

π∗

��

H1(CA,F)

π∗

��
H1

c (SF)
≃ // H1(SF),

where the bottom horizontal isomorphism follows from Lemma 2.13(2). Since π∗ is injective,
so is ν. Since ν is surjective, this is bijective. To compute the genus of CA, it suffices to show
dimH1

c (CA,F) = pt(degA− 1). Let B : Fq → Fq; x 7→ B(x) and F∨
B := {ψ ∈ F∨

q | ψ(KerB) =

1}. We have H1
c (CA,F)

∼−→ H1
c (SF)

KerB =
⊕

ψ∈F∨
B\{1}H

1
c (SF)[ψ]. Hence we obtain the claim

by dimH1
c (SF)[ψ] = pt in the proof of Lemma 2.13(1).

Recall that Nq(g) is the maximum number of Fq-rational points on a curve of genus g over
Fq. The following result give new entries in [GV2].

Corollary 3.22. Let t be a positive integer, p = 2f and q = p2t−1. Let 1 ≤ i ≤ f(2t− 1) be
a positive integer and gi := pt(2i − 1)/2. Assume that f is odd and n ≡ 4 (mod 8). Then we
have

Nqn(gi) = qn + 1 + 2giq
n/2.

Proof. We take an F2-vector subspace V ⊂ Fq of dimension i and take an additive polynomial
A(T ) ∈ Fq[T ] of degree 2i such that V = {x ∈ Fq | A(x) = 0}. Then the claim follows from
Proposition 3.21.
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