On cohomology and zeta functions of generalized Suzuki curves
in characteristic two
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Abstract

We study cohomology of generalized Suzuki curves in characteristic two as representa-
tions of their automorphism groups. We calculate the number of rational points and the
zeta functions of the curves.

1 Introduction

Let p be a power of 2. Let t > 1 be a positive integer and ¢ := p?'~!. Let S be the smooth affine
curve defined by y? — y = 2#' (z?7 — ) in AIQFQ = SpecFy[z,y]. The smooth compactification S

of S is called a Suzuki curve if p = 2 and ¢t > 2. In this paper, we call S a generalized Suzuki
curve in characteristic two. The Suzuki curve has been studied in so many aspects (cf. [BC,
Introduction]).

Let F be an algebraic closure of F,. A structure of the automorphism group @ of S is
known. First, @ consists of F-automorphisms. The group is isomorphic to the Suzuki group
whose order is ¢?(q — 1)(¢? + 1) if p = 2. If p > 2, the structure of @ is determined in [BC,
Theorem 1.3 and Introduction]. The group is a 3-step solvable group of order ¢*(q — 1).

Let ¢ # 2 be a prime number. We consider the first /-adic étale cohomology group of Sp
which is denoted by H'(Sy, Q). Let Gr, denote the Galois group of the extension F/F,. In
this paper, we explicitly study H'(Sf, Q) as a Q x Gp ,-representation. Further, we explicitly
determine the L-polynomial and the numbers of the rational points of S. Counting rational
points on an algebraic curve over a finite field is an interesting and important problem in
number theory and coding theory (cf. [Se3]). In general, it can be so difficult to calculate them
exactly. Maximal curves are often used in coding theory. We give a criterion whether S is
maximal over a finite extension of [F,.

Let n > 1 be a positive integer. Let C(Fyn) denote the set of the Fyn-rational points on
an algebraic curve C over F,. A projective smooth geometrically connected curve C is said
to be Fn-maximal (resp. Fyn-minimal) if and only if |C(Fyn)| = ¢" + 1 + 29(C)q"™? (resp.
|IC(Fpn)| = ¢* +1 —2g(C)q"?), where g(C) denotes the genus of C.

We state two main theorems in this paper. We note g(S) = p'(q¢ — 1)/2.

Theorem 1.1. We write p = 2/ with an integer f > 1.

(1) Assume 21 f. We have

™n

z n 29(9)a"” (P iy Py
|SFgn)| =¢" +1— 5 \2 (=17 +1) 44 /5 (=1)" = 1) J cos —~.
In particular, S is Fyn-maximal (resp. Fyn-minimal) if and only if n =4 (mod 8) (resp.
8| n).
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(2) Assume 2 | f. We have

o QY /2
BEI =a+ 1= 2 (B cap i i)+ (1) ).

In particular, S is Fyn-minimal if and only if 4 | n. Moreover, S is not F,»-maximal for
any n > 1.

For a projective smooth geometrically connected curve C over F,, we define
Leyr, (T) := det(1 — FriT; H' (Cr, Qp)),

where Fr, is the Frobenius endomorphism of Cy (cf. Notation). This rational polynomial is
called the L-polynomial of C. We show the following theorem.

Theorem 1.2. (1) Assume 21 f. We have

pt—l(q_l)
L, (1) = (14 V3T +47%) (1= /aqr + %)),

1/p P L(p D
! 2<2+ 2)’ 2 2(2 2)

(2) Assume 2 | f. We have

where

Lo, @) = (L= VaT)" (14 yaT)2 (4 g7y )"

where
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If f =1, these theorems are shown in [Ha, Proposition 4.3] and [Se3, 5.4.1]. Our proofs of
these theorems restricted to f = 1 are different from the ones there.

For g € Z~q, let Ny(g) denote the maximum number of [ -rational points on a curve of
genus g over F,. This quantity has been studied in many aspects (cf. [GV2] and [Se3]).

Let 1 <i < f(2t — 1) be a positive integer and g; := p*(2¢ — 1)/2. Assume that f is odd
and n =4 (mod 8). As an application of Theorem 1.1, we show

Ngn(9i) =¢"+1+ 29iq”/2.

We briefly describe the structure of H'(SF, Q) as a Q x Gy ,-representation. Let Frob, €
G, be the geometric Frobenius automorphism defined by Frobg(z) = 29" for z € F.

For a finite abelian group A, let AV := HomZ(A,@Z). Let Z = F, x F, be the abelian
group defined by (b,c) - (V/,¢) = (b+ b, e+ +bV). Let Z)y, = {¢ € Z¥ | ¥ljoyxr, # 1}-
We define an action of F; > a on Zg/rim > ¢ by (a)(b,c) = (ab,a?c) for (b,c) € Z. Let
Z = ZI\)/rim /F; . Let & be the character of G, which sends Frob, to the character sum

Ty 1= —pt1 Z (b, 0),

beF,,

which depends only on the class [¢)] € Z. We define distinct irreducible @Q-representations
{py}iyjez of dimension p'~*(q — 1) (cf. Definition 3.11).

For a representation p; of a group G; for i = 1,2, let p; X po denote the tensor product
representation of Gp x Ga.

We give an irreducible decomposition of H'(Sp,Q,) as a Q x Gp ,-representation in the
following.



Theorem 1.3. (Theorem 3.13) We have an isomorphism

H'(Sr, Q) ~ P (py R &y)
[vlez

as () x G, -representations.

The exponent p'~'(q — 1) in Lg /F, (T') is regarded as the dimension of py.

Our main results in this paper are Theorems 1.1-1.3. First we show Theorem 1.3 in a
cohomological and representation-theoretic manner. Using this theorem, we show Theorems
1.1 and 1.2. We describe the strategy roughly. We identify Q, ~ C. Then we can prove

Ty c {ei%,ei%} if f is odd,
Va {+1, +i} if f is even.

Computing the values Z[w}e z Ty and Z[w]e z :L‘%/), we can determine the set of the Frobenius
eigenvalues: {zy | [¢] € Z} (cf. Lemma 3.18). Theorems 1.1 and 1.2 follow from this.
We study the curve S in the case where p is a power of an odd prime number in [T2].
This work was supported by JSPS KAKENHI Grant Numbers 20K03529/21H00973.

Notation

For a scheme X over a field k£ and a field extension /k, let X; denote the base change of X to
l.

For a scheme X over g, let F': X — X be the ¢g-th power Frobenius endomorphism. Let
F be an algebraic closure of F,. Let Fr,: Xg — X denote the base change of F' to F. Let
¢4 q be a prime number. For a variety X over F, and an integer i > 0, let H!(Xp, Q) denote
the i-th f-adic étale cohomology group of Xy with compact support. For a proper morphism
between F-varieties f: Y — X and an integer i > 0, let f*: H{(Xp, Q,) — H(Yr, Q) denote
the pull-back. We refer to the Grothendieck trace formula (cf. [De, (1.9.1) and Remarque 1.9.4
in Sommes trig.]) as the trace formula.

Let C denote the smooth compactification of an algebraic curve C' over F,.

For a vector space V over a field k and a k-endomorphism f: V — V, let Tr(f;V) € k
denote the trace of f.

For a group G, Let Z(G) denote its center.

For a finite field extension Fyr /Fys, let Tryr /s
the trace map and the norm map, respectively.

For a representation M of a finite abelian group A and a character x € AV, let M[x| denote
the y-isotypic part of M.

: Fpr — Fps and Nrpr Jps: Fp» — Fps denote

2 Review on generalized Suzuki curve

In this section, we build notation and collect fundamental facts on S used in the proceeding
section. Let D be the affine curve defined by w? + w = 2P L 4 't We relate the
cohomology of S to the one of D (cf. Proposition 2.15). The curve D is regarded as a quotient
of S.

2.1 Generalized Suzuki curve and its automorphisms

Definition 2.1. (1) Let Q = Fy x F; x F; be the group defined by
(a,b,c)-(d,b,c) = (aa’, b4a ', c4+a PH( + abb’pt)) .
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(2) Let Q act on S by (z,y) - (a,b,c) = (a(az+b),apt+1(y+bptx+c)) for (z,y) € S and
(a,b,c) € Q.
3) We define Q, := {(a,b,c) € Q | a € FX}, which is a normal subgroup of Q.
P p

All automorphisms of Sy are F-rational. The automorphism group of Sg is isomorphic to
@ as in [BC, Introduction and Theorem 1.3] if f > 1. This result is independent of the parity
of p. If p = 2, the group @ is regarded as a Borel subgroup of the Suzuki group.

We simply write (b, ¢) for (1,b,¢) € Q and write a for (a,0,0) € Q. Then

(b,c)a = (a,b,c), a1(b,c)a= (ab, aptHc) for a € F; and (b,c) € Q. (2.1)

2.2 Quotient of (), and certain representations

Definition 2.2. (1) Let

t—1
R(x):=a?"" +a? €Flz], flz,y):=a"" y+ > (zRy))" €Fplz,yl.
=0

(2) Let Qg := {(a,b,c) € F)¥ x F2 | ¢* + ¢ = bR(b)} be the group defined by
(a,b,c) - (d',b,) = (ad',b+a 'V, c+a (' + f(ab,}))).

Let Pr := {(va C) € QR} < QR.

We note that f(z,y) is bilinear form in a natural sense. We write (b, ¢) and a for (1,b,¢) €
Pg and (a,0,0) € Qg respectively. Then

(b,¢)a = (a,b,c), a *(b,c)a= (ab,a’c) forac F, and (b,c) € Pp. (2.2)

We have |Qr| = pq(p — 1).

Lemma 2.3. We have the surjective group homomorphism
t—1
7 (t—1
¢: Qp — Qr; (a,b,c) — <a, b, Tryp(c) + pr (p +1)>'
i=0

Proof. By """ = b for b € F,, one knows that ¢ is well-defined. Surjectivity of ¢ follows
from | Ker ¢| = p?*~2. O

2.2.1 Representations of Pp

For elements g, g’ of a group G, let [g,4'] := gg'g g’ .

Lemma 2.4. (1) For g = (b,c) and ¢’ = (V/, ) € Pgr, we have [g,¢'] = (0, f(b,0') + f(V',)).
Moreover, we have f(b,b') + f(V/,b) = Trq/p(b’bpi +bbP").

(2) We have Z(Pg) = {(b,c) | b,c € F,}, which is isomorphic to (Z/4Z)/ with p = 2/.
(3) We identify {(0,¢) | c € Fp} = Fp; (0,¢) — c. The pairing
w: (Pr/Z(Pr)) x (Pr/Z(Pr)) — Fy; (9,9") = [9,9]

is a non-degenerate symmetric form.



Proof. We have (b,¢)™! = (b,c+ f(b,b)). Then (1) is easily verified.

We show (2). The former claim follows from (1) and F, NF, = F,. We take a basis
bi,...,bs of F, over Fa. Then we set z; := (b;,0) € Z(Pg). By f(b;,b;) = b2, we have
z7 = (0,b7). We can easily check that the homomorphism

(Z/AZ)! — Z(PR); (i1, if) = aft -2}

is surjective. Hence this is injective. Thus we obtain the claim. o
We show (3). We identify Pr/Z(Pr) — F,/F,; (b,c) — b. Then w is given by (b,V/) —
Try/p (0 b + bb'P"). The claim follows from Fpoe NFy = Fp. O

The above lemma implies the following.

Lemma 2.5. ([Bu, Exercise 4.1.8: The Stone-Von Neumann Theorem]) Let ¢ € Z(Pr)"\{1}.

There exists a unique irreducible representation 7, of Pgr containing 1 restricted to Z(Pg).
Moreover, we have an isomorphism 7|z (p,) =~ w@pt_l.

2.3 Quotients of S and first analysis of cohomology
Let o € Fy and let Cy be the affine curve defined by 27 + 2 = ax?' (z1 + x) over F,.

~ pi=1
Lemma 2.6. We have the isomorphism C, — C1; (z,2) — (az;—l z, Nrg/p(a)z).

24
Proof. The claim is checked using Nrg/,()a = Nrg/, ()P = = O

The curve C, appears as a quotient of S naturally as follows. We have the finite Galois
étale morphism

2—2
Tt S Cot (2.) <x Z<ay>P’>,
i=0
whose Galois group is the kernel of the homomorphism Try: Fy — Fp; v+ Trg/,(ay).

The cohomology group of S is understood via the ones of {Ca}aeF;'

Lemma 2.7. Let ¢ # 2 be a prime number. For a € FY, let W, := 7}(H (Cor, Q) C V :=
H(Sw, Q).

(1) The subspace W, depends only on the class o, € F; /F.
(2) We have V = Z&]F;; E]F;/]F;; Wa.
Proof. For a, o € F,
of f = o'F) € F) /F = Ker Tr, = Ker Trq .

If a finite group G acts on a vector space V, let V& denote its G-fixed part. Since the Galois
group of the finite Galois étale morphism 7, is isomorphic to Ker Tr,, we know W, = VKerTra
Thus W, depends only on the class off, .

We show (2). We take ¢ € F \ {1}. For a € FY, we define 1o € F;/\ {1} by ¢u(z) =

Y(Trq(x)) for € Fy. Then V = @WEFX\{I} V'l = @O{GF; V[ta]. Thus the claim follows
from V[i),] C VEer e = W, and (1). O



Lemma 2.8. (1) We regard F as a subgroup of @ by a + (a,0,0). For a € F} C Q, we
have the commutative diagram

S—+—=9

7Tapt+1l \Lﬂ'l

Capt+1 — C].?
a

f
where f, is given by (z, z) — (az, z).

(2) Let the notation be as in Lemma 2.7. Then the subgroup IFqX C @ permutes the subspaces
{Wa}aﬂr; €F} /X in V transitively.

Proof. The assertion (1) is directly checked. We show (2). For a € F, we have a*(W;) =

W 41 by (1). Since ged(p'+1,g—1) = 1 by 2| p, the map Fy —FF am a1 is a bijection.

Thus the claim follows. O
Definition 2.9. (1) Let D be the affine curve defined by w? + w = zR(z) over F,.
(2) Let Qr > (a,b,c) act on D > (x,w) by
(z,w) - (a,b,¢) = (a(x +b),a*(w + c + f(z,b))).
Curves like D have been studied in [GV] in detail if p = 2. Now, we relate C, to D.

Lemma 2.10. We have the isomorphism mp: C1 = D; (,2) = (2,2 + 32y g:pi(Pt*lH)),
Moreover, we have C, — D.

Proof. The first claim is directly checked. Then the latter claim follows from Lemma 2.6. [

Lemma 2.11. Let ¢ be as in Lemma 2.3. Let 7 := mg o m;. For (a,b,c) € @, we have the
commutative diagram

g (a,b,c)
D ¢(a,b,c) D

Proof. The claim is reduced to the equality

2t—2 t—1
Flab) =3 (@) + 3 (@ b ab? )P for be Ry,
1=0 1=0

This equality follows from Z?Z)Z(xbpt)pi =2 = (zb?" )P + Zf;i(xbptfl)pi by P =b. O

In the following, all isomorphisms between cohomology groups are supposed to be isomor-
phisms as Gy, -representations. For a separated scheme X over IF, we often write H{(X) for
Hi(X,Qy) in proofs.

Lemma 2.12. (1) We have g(D) = p!(p — 1)/2 and
HY(Dp, Q) =0, HZ(Dp,Qp) = Qu(-1), dimH;(Dy,Qp) =p'(p—1).
(2) The forgetful map H}(Dy,Q,) — H'(Dp,Q,) is an isomorphism.

Proof. The claims are well-known. For example, see [T1, Lemma 3.28]. O



Lemma 2.13. (1) We have g(S) = p’(¢ — 1)/2 and
HY(Sw, Q) =0, HZ(Sr, Q) = Qu(—1), dim H(Sk, Q) = p'(g— 1),

(2) The forgetful map H}(Sr,Q,) — H' (S, Q,) is an isomorphism.

Proof. As in the proof of Lemma 2.7(2), we have V' = @QE]F(IX V[ta]. Then V[ia] =~ H(Cyr)[].

We will show that the natural map H/!(Sr) — H'(SF) is an isomorphism. For each o € Fy,
we have the commutative diagram

HCI(S]F)[/l/]Oé] —— Hc}(ca,]F) M

H(Sp)[ha] —— H'(Cop)[¥].

From Lemma 2.10 and Lemma 2.12(2), the right vertical map is an isomorphism. Thus ¢ is an
isomorphism. Hence the claim follows. This implies that S\ S consists of one point and (2)
(cf. [T1, Lemma 3.27]). For each o € F, we have dim H}(Cyr)[¢)] = p' by Lemma 2.10 (cf.
[T1, Remark 3.29]). Hence (1) follows. O

Remark 2.14. One can directly check that S\ S consists of one point. Thus Lemma 2.13(2)
follows. To deduce dim H}(Sr) = 2¢(S) = p'(q — 1), one may apply [GS, Proposition 4.1].

Proposition 2.15. We have an isomorphism
HY(Sr, Q) ~ Indg H. (D, Q)
as Q-representations.

Proof. Let the notation be as in Lemma 2.7. We have dim W, = p'~!(p — 1) and dimV =
p""'(q — 1) by Lemmas 2.10, 2.12 and 2.13. Thus V' = @D px cx jpx Wa by Lemma 2.7(2).
Let H be the stabilizer of W7 in Q. By [Se2, Proposition 19 in Chapter 7] and Lemma
2.8(2), we have V ~ Ind% Wy. Hence [Q : H] = (¢q—1)/(p—1). We identify 7*: H}(Dg) = W1.
Lemma 2.11 implies that @, C H. By [Q : Qp] = [Q : H], we have @, = H. Hence the claim
follows. O

3 Cohomology of S

It suffices to study D to show Theorems 1.1 and 1.2 by Proposition 2.15.

3.1 Cohomology of D
3.1.1 Computing dimension

In the following, we compute the dimension of H}(Dg, Q,)[¢] for ¢ € Z(Pg)V.
Let
D — Ag; (z,w) = 2P+, (3.3)

which is a finite Galois étale morphism whose Galois group is Z(Pg). In the following, we will
study the ramification of this covering at oco.
Let F' :=F4((t)), which is regarded as a local field with t-adic valuation. We regard Aﬂ?q

as an open subscheme of ]P’]%q naturally. We regard the ring of integers FF[[t]] of F' as the
completion of IP’Ilgq at oo.



We take a separable closure F of F. Let z,w € F be elements satisfying 2”7 +z = ¢t~ and
wP 4w = 2?4 2Pt We define

F C Eq:= F(ZL‘) C By = El(w)

This extension comes from the pull-back of (3.3) via the natural morphism Spec F' — A%Fq.

For a finite Galois extension L/K of local fields, let G := Gal(L/K) denote its Galois
group. let ¢k denote the inverse of the Herbrand function of L/K and {G}i>_1 (resp.
{G;}i>—1) denote the upper (resp. lower) numbering ramification subgroups of G' (cf. [Sel,
IV§3]).

Lemma 3.1. (1) We have

() u ifu<1,
u) =
o p Y u+p—1) otherwise,
( ) U if u < pt +1,
u) =
PR pHu+ (p—1)(p' +1)) otherwise,
u ifu<l,
¢myp(u) = p Hu+p—1) if1<u<p+1,
p2(u+(p—1)(P' +p+1)) otherwise.

(2) We have
Gal(Ey/F) ifi<1,
Gal(Ey/F)" = { Gal(Ey/Ey) if1<i<pt~141,
{1} otherwise.

Proof. We show (1). We note that 2! is a uniformizer of E;. The extension Eo/E; is totally
ramified. Let wp, := w™'2?" ", which is a uniformizer of Ey by w? +w = ' 14 27'*1. Let
vE, () denote the normalized valuation of Ey. Let o € Gal(E2/E1)\ {1}. Then o(w) —w € F)
and vg,(0(wg,) — wg,) = p' + 2 by vg, (w™!) = p' + 1. This implies that

Gal(Eg/El) ifi < pt + 1,
{1} otherwise.

Gal(Eg/El)i = {

Hence we obtain the claim on ¢p,/g,. The claim on ¢g, /r is checked more easily. Thus the
last claim follows from ¢, r = ¢E, /r ° Vg, /E, -
By (1) and [Sel, Proposition 12 in IV§3],

Gal(Ey/F) ifi<1,
Gal(Ey/F); = { Gal(Ey/Fy) if1<i<pt+41,
{1} otherwise.

Hence (2) follows from G¥#2/r() = @;. O
Definition 3.2. (1) Let Z}\)/rim = {x € Z(Pr)" | xl{oyxF, # 1}-

(2) We define an action of F)\ on Z};
and ¢ € ZY. . Let

prim*

by (ay)(b, c) := ¥(ab,a’c) for a € FY, (b,¢c) € Z(Pr)

Z = Z3im/Fy.

T

We have |Z);,| = p(p — 1) and |Z] = p.



Lemma 3.3. Let ¢ € Z,

prim*

We have [¢] # [¢ 1] in Z.

Proof. Assume [¢] = [p~!]. There exists a € IE‘; such that ="' = at. Since p is even, ¥|r,
is a quadratic character. Hence t(0,c) = 1 (0 c) = 1(0,a%c). This implies that a = 1 by
Ylp, # 1. Thus )2 = 1. This contradicts to ¢ € Z O

prlm

Proposition 3.4. Let ¢ € Z prlm Let .%,, denote the smooth Q-sheaf on AIIFQ defined by ¢
in (3.3) and ¢ in [De, Définition 1.7 in Sommes trig.]. Let 7, be as in Lemma 2.5.

(1) We have dim H!(Dg, Q,)[¢] = p'~1.

(2) We have an isomorphism H}(Dg, Q) ~ @Dyczv. Ty as Pr-representations.
prim

Proof. We show (1). Let A! := Aj. For any integer i, H.(Dp)[)] = HI(A',Z,). Let
Sw(.%,) denote the Swan divisor of .%;,. We have deg Sw(.%;) = p'~! + 1 by Lemma 3.1(2)
and ¢ € Zy, . We have xe(Al, Zy) — xc(AY,Qp) = —degSw(%,) by the Grothendieck—
Ogg- Shafarevmh formula in [De, (3.2.1) in Sommes trig.]. Hence the claim follows from
HI(A', Zy) =0 for i # 1.

From (1) and Lemma 2.5, it results that H}(Dg)[s)] ~ 7, for ¢ € Z orim- Hence (2) follows
from Lemma 2.12(1) and |Z};,,| = p(p — 1). O

3.1.2 Frobenius eigenvalues and proof of Theorem 1.3

For ¢ € ZY.

eim» We determine the Frobenius eigenvalues on H; (Dr,Qy)[1)] and show Theorem

1.3. For an F-endomorphism 7 of a scheme X over I, let X7 denote the fixed point subscheme
of T. If X7 is finite over F, let | X”| denote the degree of X7 — F.

Lemma 3.5. Let (b,c) € Z(Pg). We have

‘DFrqo(b,c) _

pq if ¢ = b2,
0 otherwise.

Proof. Let (x,w) € D. Assume z? = x + b. Then we compute

2t—2 2t—-2

wl +w = Z(wp + w)pi _ Z (xpz‘(pt—1+1) n xpi(phrl))
1=0 =0
t-2 t-1
o Z t 1+1) + Z z+t(pt l+1) + Z xpz(pt+1) + Z xpz+t71(pt+1)
=0 =0 =0
t—2 t—2 t—1
T (t—1 '3 ) % (ot t—1 7 t—1
= pr D L3 @ @+ )P+ Y D £ N @ (@ b)) = ba?
=0 =0 =0 =0

where we substitute w? +w = 27"~ 1 4+ 2P'*1 at the second equality and use z¢ = x + b at the
fourth one. The endomorphism Fr, o (b, ¢) of D is given by (z,w) — (z?+b, (w+ ba?' " +)7).
Thus

DFraolbe) — { yeD|zt9=z+b, (w+ b+ +c) = w}
:{ )JED |x'=x+b, wl+ w:b:cpt71+bz+c}
={(z,w)eD|z?=x+b, b*+c=0}.
Hence we obtain the claim. O



Lemma 3.6. For ¢ € Z prims W€ have

Tr(FrZ;Hcl(DF,@g)) =—q(p—1), Tr(Fry; H!(Dr, Qp)[¢ Z Y(b,0).

=

Proof. The former equality follows from Lemma 3.5 for (b,¢) = (0,0) and the trace formula.
We show the latter equality. By the trace formula (cf. [DL, the proof of Proposition 3.3]),

_ Tr((Frq o (b, C))*; Hg(DF)) +q= ‘DFrqo(b,c) )

We note (b,c)~! = (b,c + b?). By Lemma 3.5, we obtain

TR HNDDW) = 5 3 (b)) Tr((Fr, o (0.6))"s HL (D)
(bc)EZ(PR)
pﬂ( S ub0ap -1+ 3 w(b,c>q)= 95" 4(b,0).
belF, (b,c)€Fp xF) beF

O]

Definition 3.7. For ¢ € ZY; . let &, be the character of G, which sends Frob, to the

prim?

zy = —p 1> p(b,0),

beF,,

character sum

which depends only on the class [¢] € Z.

Corollary 3.8. For ¢ € Z let 7y, be as in Lemma 2.5.

pr1m7
(1) We have isomorphisms

H'(Dr, Q) <= H¢(Dr, Q) ~ @ (T K &y)

(ISVAS

prim

as Pr x Gy, -representations.

2) The isomorphism class of the induced representation Ind%F 7, depends only on the class
Pr "

[¢] € Z. Furthermore, we have an isomorphism H'(Dy, Q) ~ Dyjez ((Indg: Ty) X 51/,)
as Qr X G, -representations.

Proof. We show (1). The first isomorphism follows from Lemma 2.12(2) and the second one
follows from Schur’s lemma, Proposition 3.4 and the latter equality in Lemma 3.6.
We show (2). Let Wy, := HY(Dg)[y)] for ¢ € Z We have H!(Dy) = EBweZV W,y and

an isomorphism Wy, ~ 7, as Pg-representations by Lemma 2.5. An automorphlsm a € ]FX
Qr sends Wey, to Wy, by (2.2), where ai) is defined in Definition 3.2(2). Hence we obtaln the
former claim and an isomorphism

b wy~ @ Ind@" 7,

\/
we prim

pI‘lIIl

as Qg-representations. Thus the latter claim follows from this and (1). O
Corollary 3.9. We have Lp/w, (T) = (H[¢}ez(1 — wa))ptil(pfl).

Proof. The claim follows from dim 7, = p'™!, [Qg : Pr] = p — 1 and Corollary 3.8(2). O
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Corollary 3.10. We have

(1) Tr(Fr}na; H(Dp, Q) =p" '(p—1) Ty, = 25(D) Z -

Wiez P ez
— 2g(D
) DE| =g +1- 2P 5
[Ylez
Proof. The claim (1) follows from Corollary 3.8(2). The claim (2) follows from (1), Lemma
2.12(2) and the trace formula. O

Definition 3.11. Let ¢ € Z[\)/rim’ We regard Ind%f Ty as a (Qp-representation via ¢ in Lemma
2.3 and consider the inflation of it to @, for which we write p,,. The isomorphism class of py,
depends only on [¢)] € Z by Corollary 3.8(2).

Lemma 3.12. (1) Let ¢ € Zg/rim. The @ g-representation Indg}f Ty is irreducible.
(2) The Q-representations {py }[yjcz are irreducible and distinct.

Proof. We show (1). Let a € F C Qg and let 7,, denote the conjugate of 7y by a. Lemma
2.5 implies that
T = Tay (3.4)

and hence 7y, 2 7 for a € F \ {1}. Since the Pp-representation 7, is irreducible, (1) follows
from Mackey’s irreducibility criterion in [Se2, §7.4].

We show (2). We show the former claim. Let 7, denote the inflation of In
¢: Qp — Qr in Lemma 2.3. By definition, py, = Indgp Ty We set ¢, = ¥lioyxr, € Fy \ {1}.
For & € F,, we define ¢, € Fy by 9,(y) := ¢r,(Try/p(xy)) for y € Fy. Let a € FX C Q. Let
7, denote the conjugate of 7 by a. Recall that a1(1,0,c)a = (1,0,apt+1c) in Q for c € Fy
by (2.1). We identify the subgroup {(1,0,¢) | c € F;} C @ with F,. By Mackey’s formula and
Lemma 2.5, we have isomorphisms

~ t—1 - t—1
7—¢|Fq = @ d}?p ) T’lZ’Fq = @ ¢§,€+1x- (35)

z€Fy z€Fy

d%’: Ty via

Hence 7y ~ 7)) <= a € F;. Similarly as (1), the former claim follows.
Let a € F,’. By Frobenius reciprocity and (3.4),

HomQR(Indgg m,mdgg ) = @ Homp, (74, Taar) # {0} <= W] =[W]€Z.  (3.6)
xGF?

Let b € F and ' € Z

prim*

Homg, (7, 7y) # {0} <= beFy, [¥] = [¢'].

Assume that Homg, (7, ?3,) # {0}. By (3.5), ¢1 = w[l)Pt+1y with some y € F\. We take ¢ € F

such that IZJI/F,, (z) = Yr,(cx) for € F). Hence 1 = W'+ lye. Thus b e Fs. This and (3.6) imply
that [¢)] = [¢/']. We can show the converse using (3.4) and (3.6).
From Frobenius reciprocity, it results that

Homq(py, py) >~ P Homg, (7, 7) # {0} < [¥] = [/].
bF, €F; /Fy

‘We will show that

Thus the required claim follows. ]

11



Theorem 3.13. We have an irreducible decomposition

H'(Sr, Q) < H, (S, Q) ~ @ (pyp X Eyp)

as ) X G, -representations.

Proof. The claim follows from Proposition 2.15 and Corollary 3.8(2). O

3.1.3 Explicit determination of L-polynomial of D

Our aim in the following is to show Theorems 3.19 and 3.20. We write p = 2/ as before.

Lemma 3.14. Assume that z,y € Z satisfy 22 + y?> = p. Then we have

T+ 1y c {ei%,ei%} if fis odd,
VD {+1, +i} if f is even.

Proof. Assume 2 { f. Then x # 0, y # 0. We write z = 2"z; and y = 2%y; with r < s,
2t z1,y1. Then 23 +226="y2 = 2/=2" If s > r, 2} f implies that 2 | 2;. Hence s = 7.
This implies that 2% + y? = 2/=2". By 2? + y? = 2 (mod 4), we must have f = 2r + 1. Thus

ot =yi = 1.

Assume that 2 | f and = # 0, y # 0. We write x = 2"x; and y = 2%y with r < s,
24 x1,y1. Then 22 + 2267792 = 2f=2" If s > r we have f = 2r by 2 { z;. This implies
x? + 2257792 — 1. This is a contradiction. Hence s = r and z7 + y? = 2/~ This is a
contradiction by 2 | f, since 22 + 3? =2 (mod 4). Hence = 0 or y = 0. O

We take an isomorphism Q, ~ C.

Corollary 3.15. Let ¢ € Z Then we have

prlm

Z (b {{eif,eigf} if f is odd,

beIE‘ {£1, i} if f is even.

Proof. Lemma 2.4(2) implies that > ,cp 1(b,0) € Z[i]. By the Weil conjecture for curves,
‘Zber (b, O)’ = /p. Hence the claim follows from Lemma 3.14. O

Lemma 3.16. We have Z[w]ez Ty = —p' and ZMGZ x?p =0.

Proof. The former equality follows from HZ(Dp) = Dyjez H}(Dg)[t)] and Lemma 3.6.
We show the latter equality. Let vy, := Zbeyp ¥(b,0) for ¢ € Z(Pr)". Then we compute

S =3 3 w(mo).0)=p (3.7)

weZ(PR)V b,b' €Fpy e Z(PR)V

where we use (b,0)(0/,0) = (0,0) <= b =1V = 0 at the second equality. Let g: Z(Pr) —
Fp; (b,c) — b. By g, we regard ]F;f as a subgroup of Z(Pg)". Then

Yowi= > > wb+)=p" (3.8)

PeFY bb/ €T, EFY

We obtain ZweZV y;, = 0by (3.7), (3.8) and Zy;,,, = Z(Pr)¥\Fy. Hence (p—1) 3oy 1cz 25, =

prim prlm

Zd)EZv x,d} p2t 2 ZlﬁEZv de — 0

prim prim

(I
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Definition 3.17. Let ¢ € Z

prim*

We define

3

k= {4l € Z]ay = \/ge s}
if f is odd and

o ko= () € 2 @y = Vae ™)

W=l e Zlay=vall, L:={W]e€Z|zy=-Va},
ly: =Yl € 2| zy =iV}l
if f is even.

Lemma 3.18. We have
oy LN
2 2

S S

+
|
S~
5

(V)
I
N —
7 N
[NRS]
|
I3
~
=
)
—
s

L —

1
2
_bp
4

oS

Proof. Assume 2t f. We have k1 + k2 = p/2 by Lemma 3.3 and Corollary 3.15. Lemma 3.16
implies that —kq + ko = —m. Hence the claim follows.

Assume 2 | f. From Lemma 3.3 and Corollary 3.15, it results that I; + lo + 2[3 = p. From
Lemma 3.16, it results that Iy — Iy = —/p and [1 + Iz — 2[3 = 0. Thus the claim follows. O

Theorem 3.19. (1) Assume 21 f. We have

_29(D)q"? (p
2

(=)™ +1) + g((—l)” . 1)) cos %

[D(Fgn)| = ¢" +1
In particular, D is Fyn-maximal if and only if n =4 (mod 8).
(2) Assume 2 | f. We have

_ ) on/2
D) = ¢ +1 - 29D (p

Z(1+(—1) +i" 4+ (1) )+7((—1) —1)).

In particular, D is F,n-minimal if and only if 4 | n.
Proof. We show (1). Assume that f is odd. By Lemma 3.18,
Z Ty, = g2 <2k1 cos 37an + 2k3 cos Zn) = ¢"/? (g((—l)" +1)+ g((—l)" — 1)) .
[v]e2

The claim follows from Corollary 3.10(2). The claim (2) is shown in the same manner. O

Theorem 3.20. We have

=lp—1) .
PR ((CEREr A1) (1~ VAT + %)) =1 pay g,
DI (1 aT)! (1 + @D (1 + qT?)s)" 7Y if2] f.
Proof. The assertions follow from Corollary 3.9. O

3.2 Proof of Theorems 1.1 and 1.2

For an integer n > 1, we have

n — g—1, , — q=1
0"+ 1= [SEp) = T + 1= DER)). Ly, (T) = Ly, (1)

by Lemmas 2.12, 2.13 and Proposition 2.15. Hence the theorems follow from ¢(S) = p'(q—1)/2
in Lemma 2.13(1), Theorems 3.19 and 3.20.
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3.3 Application

Let A(T') € F4[T] be an additive polynomial all whose roots are contained in F,. Let C4 be
the affine smooth curve over F, defined by A(y) = a? (29 — z).

Proposition 3.21. Assume that f is odd and n =4 (mod 8). The curve C 4 is Fyn-maximal
with genus p'(deg A — 1) /2.

Proof. By the assumption on A(T'), we can write 7?7 — T = A(B(T)) with an additive poly-
nomial B(T') € Fy[T]. The finite étale morphism w: S — Cy; (z,y) — (z, B(y)) extends to a
non-constant morphism 7: S — C4. Then Fyn-maximality follows from Theorem 1.1(1) and
[Se3, Theorem 5.2.1].

We consider the commutative diagram

HY(Cap) —— H'(Cap)

|- |-

H}(Sy) —— H'(Sy),

where the bottom horizontal isomorphism follows from Lemma 2.13(2). Since 7* is injective,
so is v. Since v is surjective, this is bijective. To compute the genus of C 4, it suffices to show
dim H} (Car) = p'(deg A —1). Let B: Fy — Fy; x +— B(x) and Fip := {¢ € F | ¢(Ker B) =
1}. We have HY(Cap) = HL(Sp)XrB = @we%\{l} H}(SF)[1)]. Hence we obtain the claim
by dim H}(Sg)[¥)] = p' in the proof of Lemma 2.13(1). O

Recall that N, (g) is the maximum number of F-rational points on a curve of genus g over
F,. The following result give new entries in [GV2].

Corollary 3.22. Let t be a positive integer, p = 2f and ¢ = p?~!. Let 1 <i < f(2t — 1) be
a positive integer and g; := p'(2° — 1)/2. Assume that f is odd and n =4 (mod 8). Then we
have

Nygn(gi) = ¢" + 1+ 294"

Proof. We take an Fa-vector subspace V' C I, of dimension ¢ and take an additive polynomial
A(T) € Fy[T) of degree 2 such that V = {x € F, | A(z) = 0}. Then the claim follows from
Proposition 3.21. O
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