
Kotlin and Python: A Comparative Performance Analysis

Thanh Cong Nguyen

Abstract

Performance of a programming language is crucial to developers as it directly impacts the

efficiency, speed, and scalability of their software applications. Developers rely on performance

evaluations to make informed decisions when selecting a language, enabling them to maximize

resource utilization, minimize bottlenecks, deliver high-performing applications and ensure

optimal user experience and responsiveness. Especially, in context of Ecommerce applications,

where response times have direct revenue impact: Amazon discovered that even a slight 100-

millisecond delay in response time leads to a 1% decrease in sales [1], while other studies have

indicated that a mere 1-second slowdown can cause a significant 16% drop in customer satisfaction

[2,3]. This technical report presents an empirical study that aims to compare the performance of

Kotlin and Python.

1. Introduction

Kotlin and Python, two popular programming

languages, have gained significant attention in

recent years. In the realm of software

development, performance is a critical factor

that directly impacts the success of

applications. As developers seek to create

efficient and high-performing software, the

choice of programming language plays a

pivotal role. Kotlin, a statically typed language

with full interoperability with Java, has

emerged as a versatile choice for a wide range

of applications. Its concise syntax, robust type

inference, and modern features have attracted

developers, particularly for development of

Android applications and micro-services.

Python, on the other hand, is a dynamically

typed language known for its simplicity,

readability, and extensive library ecosystem.

Python's popularity has soared across domains

such as data science due to its ease of use and

community support. The outcomes of this

research endeavor will serve as a valuable

resource for software developers, architects,

and decision-makers who are considering

adopting Kotlin and Python for their projects.

The findings will facilitate informed decision-

making by providing empirical evidence of the

performance characteristics of these languages.

2. Methodology

The performance measurement was carried out

using the following methodology:

§ Objective: Measure execution times for

computing common functions in Kotlin

and Python.

§ Functions: Three common functions,

which include generating the last digit

Fibonacci number sequence, performing

heapsort, and estimating π using Monte

Carlo simulation, were used for

performance measurements.

§ Setup: The operations were performed by

utilizing Kotlin running on JVM version

1.8 and Python 3.6 on a MacBook Pro 15-

inch 2019 model. The MacBook Pro is

powered by a 2.6 GHz 6-Core Intel Core i7

processor, accompanied by 16 GB of 2400

MHz DDR4 RAM. The operating system

in use is macOS Big Sur Version 11.6.

§ Data collection: Execute the performance

tests on both Kotlin and Python

implementations of the same functions and

collect performance data for each test run.

§ Statistical Analysis: Apply statistical

method of averaging to analyze the

collected performance data.

3. Results

3.1. Last-digit Fibonacci sequence generation

§ Kotlin version implementation:

Figure 1 Last-digit Fibonacci sequence - Kotlin

§ Python version implementation:

Figure 2 Last-digit Fibonacci sequence - Python

§ The obtained results reveal an astounding

difference, demonstrating that the Kotlin

version performs a staggering 49 times

faster than its Python counterpart,

providing substantial evidence for the

significant performance gap between the

two programming languages:

Table 1 Result - last-digit Fibonacci sequence

 Array size Test size Average time
Python 100000000 100 19582 ms
Kotlin 100000000 100 399 ms

3.2. Heapsort

§ Kotlin version implementation:

Figure 3 Heapsort - Kotlin

§ Python version implementation:

Figure 4 Heapsort - Python

§ The results of the performance tests

conducted on the heapsort function show

that the Kotlin version performs 31 times

faster than the Python version, thus

reinforcing the significant performance

advantage that Kotlin has over Python:

Table 2 Performance result - Heapsort

 Array size Test size Average time
Python 1000000 100 4310 ms
Kotlin 1000000 100 139 ms

3.3. Estimate π - Monte Carlo Simulation

§ Kotlin version implementation:

Figure 5 Estimate π - Kotlin

§ Python version implementation:

Figure 6 Estimate π - Python

§ Once again, the results of the performance

tests show that the Kotlin version

outperformed the Python version by a

factor of 7.69 times in the estimation of π

using Monte Carlo Simulation:

Table 3 Performance results - π estimation

 N Test size Average time
Python 100000000 100 27897 ms
Kotlin 100000000 100 3983 ms

4. Discussion

In this section, I present a discussion on the

performance tests conducted between Kotlin

and Python, as well as considerations regarding

their respective ecosystems and libraries.

Performance: Kotlin, being statically typed and

compiled to bytecode, exhibits faster execution

times compared to Python, which is

dynamically typed and interpreted. Kotlin's

compiled nature allows it to take advantage of

optimizations during the compilation process,

resulting in improved performance. Python's

interpreted nature, on the other hand, can

introduce some overhead, leading to slower

execution times, especially in computationally

intensive tasks.

Ecosystem and Libraries: The ecosystem and

availability of libraries greatly influence the

efficiency and productivity of developers.

Python boasts an extensive ecosystem with a

wide range of libraries and frameworks. This

rich ecosystem contributes to Python's

versatility and makes it a popular choice for

diverse tasks such as data analysis, and

machine learning. Kotlin, being a relatively

newer language, has a growing ecosystem, but

it may not possess the same breadth and depth

of libraries as Python. However, Kotlin can

leverage the vast collection of existing Java

libraries, providing access to numerous well-

established and performant solutions.

Thus, the choice between Kotlin and Python

should be made based on the specific

requirements of the research project,

considering factors such as performance,

development speed, available libraries, and the

trade-offs between them. Researchers and

developers should carefully evaluate the

unique needs of their projects to select the most

suitable language for optimal performance and

productivity. For tasks where computing time

is not as important as developing time such as

numerical computations, data analysis and

scientific simulations, Python is a good choice

thanks to its extensive library ecosystem,

simplicity and versatility. On the other hand,

Kotlin's performance advantages become more

pronounced in scenarios where computational

efficiency is crucial, such as Ecommerce

applications, algorithmic trading, or large-

scale data processing.

5. Conclusion

In this report, I conducted a performance

comparison between Kotlin and Python, two

popular programming languages. My findings

indicate that Kotlin generally outperforms

Python in terms of execution speed. Kotlin's

static typing and compilation to bytecode

provide inherent advantages, resulting in faster

execution times compared to Python's dynamic

typing and interpretation. However, it is

important to note that Python excels in other

areas, such as its extensive ecosystem and vast

collection of libraries. The availability of these

libraries enhances development productivity.

Ultimately, the choice between Kotlin and

Python for a specific project should consider

the trade-offs between performance,

ecosystem, and development productivity. If

computational efficiency is paramount, Kotlin

is a favorable choice. On the other hand,

Python's extensive library ecosystem and ease

of use make it a versatile language suitable for

a wide range of applications.

As future research directions, it would be

valuable to delve deeper into memory

management for both languages. Memory

management is a critical aspect of

programming languages and can impact

overall performance. Kotlin and Python

employ different memory management

approaches. Kotlin, similar to Java, utilizes

automatic memory management through

garbage collection. Python, on the other hand,

combines garbage collection with a reference

counting mechanism. While Python's reference

counting can introduce additional memory

overhead, both languages generally handle

memory management efficiently, and the

performance impact is typically not significant

for most applications.

Overall, this technical report provides valuable

insights into the performance characteristics of

Kotlin and Python, empowering researchers

and developers to make informed decisions

based on their specific project requirements,

balancing performance considerations with

ecosystem support and development

productivity.

References

[1] Greg Linden: “Make Data Useful,” slides

from presentation at Stanford University Data

Mining class (CS345), December 2006.

[2] Tammy Everts: “The Real Cost of Slow

Time vs Downtime,” slideshare.net, November

5, 2014.

[3] Jake Brutlag: “Speed Matters,”

ai.googleblog.com, June 23, 2009.

