
ANSWERS TO SELECTED PROBLEMS

Exercises for Chapter 1

(1) We start with the relation
∆ν ∝ √

ρ,

which, if we use the Sun as a standard results in

∆ν

∆ν⊙
=

√

ρ

ρ⊙
,

or in other words

ρ = ρ⊙

(

∆ν

∆ν⊙

)2

.

Assuming that the solar density is 1.408 g cm−3, we derive the density of the given stars to be:

(a) 1.177 g cm−3

(b) 1.113 g cm−3

(c) 0.504 g cm−3

(d) 0.240 g cm−3

(e) 0.067 g cm−3

(f) 0.011 g cm−3

(g) 0.007 g cm−3

Density alone is not a very good indicator of evolutionary state, however, it is enough to separate
dwarfs from giants. Stars (a), (b) and (c) are dwarfs, and stars (f) and (g) are giants. Without a
knowledge of temperature (or without individual mode frequencies), the evolutionary state of stars
(d) and (e) are difficult to judge. They could be subgiants.

(2) The scaling relations tell us that

(

∆ν

∆ν⊙

)2

=
M/M⊙

(R/R⊙)3
, (1)

and
νmax

νmax,⊙
=

M/M⊙

(R/R⊙)2

√

Teff

Teff,⊙
. (2)

On diving Eq. (2) by Eq. (1) and rearranging the terms we get

R

R⊙

=

(

νmax

νmax,⊙

)

(

∆ν

∆ν⊙

)−2
(

Teff

Teff,⊙

)1/2

. (3)

Substituting R/R⊙ from Eq. (3) into Eq. (2) gives us

M

M⊙

==

(

νmax

νmax,⊙

)3 (

∆ν

∆ν⊙

)−4
(

Teff

Teff,⊙

)3/2

. (4)

Eqs. (3) and (4) are the required results.

(4) The evolutionary state of a star can be gauged by the number of avoided crossing, i.e., mixed
modes, seen in the échelle diagram of the star. The classification of the stars is as follows:
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KIC04448777: Red giant, with ∆ν ≈ 17 µHz
KIC05955122: Subgiant with ∆ν ≈ 49.5 µHz
KIC10273246: Subgiant with ∆ν ≈ 48.7 µHz
KIC10920273: Subgiant with ∆ν ≈ 57.2 µHz
KIC11395018: Subgiant with ∆ν ≈ 47.85 µHz
KIC11772920: Main-sequence stars with ∆ν ≈ 157.3 µHz
KIC12069127: Main-sequence stars with ∆ν ≈ 47.8 µHz
KIC12069449: Main-sequence stars with ∆ν ≈ 117.5 µHz
KIC12258514: Main-sequence stars with ∆ν ≈ 74.85 µHz

Exercises for Chapter 2

(1)(a) Since ρ = ρc at r = 0 and ρ = 0 at r = R, it follows that

ρ = ρc(1 − r/R) = ρc(1 − x), (1)

where x = r/R. Mass within any radius r is given by

m(r) =

∫ r

0
4πr2ρ(r)dr =

4π

3
ρcr

3
(

1 − 3

4

)

. (2)

From Eq. (2) we see that

m(R) = M =
π

3
ρcR

3, (3)

thus
m(r) = M(4x3 − 3x4). (4)

(1)(b) From Problem (1)(a), Eq. (3) it follows that

ρc =
3

π

M

R3
. (5)

(1)(c) We start evaluating P using dP/dr = −gρ, using the boundary conditions P − Pc at r = 0
and P = 0 at r = 1. Thus

P = Pc −
∫ r

0

Gm(r)ρ(r)

r2
dr. (5)

Applying the condition P = 0 at r = R in Eq. (5) gives

Pc =
5

4π
GM2R4, (6)

which on substituting in Eq. (5) gives the required result.

(1)(d) From the ideal gas law we get

T =
µ

R
P

ρ
.

Substituting for ρ and P , we get

T =
µ

R
GM

12R

(

9x3 − 19x2 + 5x + 5
)

. (7)
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Figure 1: Top to bottom: The échelle diagrams of KIC12069449, KIC11395018 and KIC04448777. Triangles
are l = 0 modes, squares are l = 1 modes and circles l = 2 modes
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(1)(e) We are given that

ǫ = ǫ0ρ
k

(

T

T0

)n

= ǫ0ρ
k
c

[(

µ

R

)

GM

12RT0

]n

(1 − x)k(9x3 − 19x2 + 5x + 5)n. (8)

Thus

L = 4πR3ǫ0ρ
k+1
c

[(

µ

R

)

GM

12RT0

]n ∫ x

0
x2(1 − x)k+1(9x3 − 19x2 + 5x + 5)ndx.

But 9x3 − 19x2 +5x+5 = (1−x)(5+10x− 9x2) which means that luminosity may be expressed
as

L = L0

∫ 1

0
x2(1 − x)k+n+1(5 + 10x − 9x2)ndx.

For k = 1, n = 4 the integral is

625x3)/3 + (625x4)/2 − 2025x5 − 1250x6 + (77025x7)/7 − (20025x8)/4 −
(83735x9)/3 + 42972x10 + (14571x11)/11 − (392033x12)/6 +

(1084465x13)/13 − (380070x14)/7 + 20493x15 − (34263x16)/8 + (6561x17)/17

(2)(a) We use
R⊙ = 6.96 × 1010 cm
M⊙ = 1.989 × 1033 g
G = 6.67 × 10−8 cm3 g−1 s−2

Thus we find that

ρc =
3

π

M⊙

R3
⊙

= 5.63g cm3, (1)

and

Pc =
5

4π

GM2
⊙

R4
⊙

= 4.47 × 1015 dyne cm−2. (2)

Note that modern solar models that agree well with helioseismic results have ρc ∼ 154 g cm−3,
and Pc ∼ 2.4 × 1017dyne cm−2.

(2)(b) We are given that X = 0.74, Z = 0.02 which means Y = 0.24. And we are asked to
assume that the ‘Sun’ is chemically homogeneous. Thus the mean molecular weight µ in the core is
approximately 0.6. The gas constant in cgs units is R = 8.31 × 107 ergs K−1 g−1. Thus

Pc =
µ

R
Pc

ρc
= 5.73 × 106K.

Modern solar models have Tc ∼ 1.5 × 107K.

(3) The difference between the two models is whether or not diffusion and gravitational settling of
helium has been included. SolarModel1.txt lists the data for the model with diffusion and gravita-
tional settling SolarModel2.txt is for the model without.

The inference about the settling can be inferred from the surface abundance of hydrogen and
heavy elements. In Model 2, the abundances remain constant. For Model 1, the surface value of
Z decreases due to settling, while the surface X increases (since X+Y +Z = 1). From Xsure and
Zsure one can calculate Ysure to show that Ysure decrease with age in Model 1 but remains constant
in Model 2. One can also see that the metallicity in the core keeps increasing in Model 1, but is
a constant in Model 2. Since these are main-sequence models, the Z in the core cannot increase
because of nuclear reactions.
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Figure 2: l-ν diagram of modes in SolarFreq MDI.txt that have lower turning points between 0.9 and 0.95
R⊙.

The convection-zone Y and Z of a star are always uniform because of fast mixing by convective
eddies; diffusion causes Helium and heavy elements to accumulate at the convection-zone base.
The increase in metallicity increases opacity, and as a result, models with diffusion have deeper
convection zone (since opacity is larger at a higher temperature, ∇rad exceed ∇ad in layers with
higher temperature, which in a star means a deeper layer). While the convection zone deepens in
both models, the rate of change in Model 1 is higher because of the increasing metallicity at the
base.

Exercises for Chapter 3

(1)(b) Yes, in stars 2 and 3.

(2) α needs to be about 1.5 to get a good curve. Even better results are obtained is α is allowed to
be a function of frequency.

(3)(b) For the given solar frequencies and sound speed, one finds that modes with 20 ≤ 0 ≤ 30 have
lower turning points between about 0.36 and 0.87 R⊙. Thus the maximum depth that we can probe
with these modes is 0.36 R⊙.

(3)(c) See Fig. 2 for the l − ν range of the modes that have lower turning points between 0.9 and
0.95R⊙.

(4)(a) See Fig. 3(a).

(4)(b) See Fig. 3(b).

(4)(c) As the peak is shifted from large r to smaller r, the frequency differences, when plotted as a
function of frequencies become more oscillatory.

Exercises for Chapter 4

(1) We start from the general expression for photometric observations:

Sl = 2
√

2l + 1

π/2
∫

0

Pl(cos θ)W (cos θ) cos θ sin θdθ.
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Figure 3: Answer to Problem 4(a) and 4(b) of Chapter 3. The points have been joined by a line to guide the
eye.

With only one coefficient, the limb-darkening law takes the form

W (cos θ) = a + b cos θ,

with (cf. Eq. 4.2) a ≡ 1 − c1 = 2/5, and b ≡ c1 = 3/5.
Also, at l = 1, we have

Pl(cos θ) = cos θ.

We therefore write:

S1 = 2
√

3

π/2
∫

0

cos2 θ(a + b cos θ) sin θdθ.

We make the substitution x = cos θ, so that dx = − sin θdθ. The limits change to 0 (upper limit)
and −1 (lower limit). This gives:

S1 = −2
√

3

0
∫

1

x2(a + bx)dx,

S1 = 2
√

3

1
∫

0

(ax2 + bx3)dx.

It then follows that:

S1 = 2
√

3

[

ax3

3
+

bx4

4

]1

0

= 2
√

3

[

2

15
+

3

20

]

.

Now, we also need to calculate the visibility for l = 0, which is:

S0 = 2

π/2
∫

0

cos θ(a + b cos θ) sin θdθ.
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This becomes:

S0 = 2

1
∫

0

(ax + bx2)dx,

giving:

S0 = 2

[

ax2

2
+

bx3

3

]1

0

= 2

[

2

10
+

3

15

]

.

The ratio is therefore:
(S0/S1)

2 = (1.23)2 ≃ 1.51

(2) We start once more from the general expression for photometric observations:

Sl = 2
√

2l + 1

π/2
∫

0

Pl(cos θ)W (cos θ) cos θ sin θdθ.

Ignoring limb darkening, we have W (cos θ) = 1. At l=3, we have

P3(cos θ) = 1/2(5 cos3 θ − 3 cos θ).

We therefore write:

S3 =
√

3

π/2
∫

0

(5 cos3 θ − 3 cos θ) cos θ sin θdθ.

We make the same substitutions as in the first problem. This gives:

S3 =
√

3

1
∫

0

(5x4 − 3x2)dx,

so that:

S3 =
√

3
[

x5 − x3
]1

0
= 0.

The visibility is zero! It is only when we include limb-darkening, to give a non-uniform intensity
over the disc, that the l = 3 modes have non-zero visibility.

(3) We start from:
L ∝ R2T 4

The amplitude of the oscillations in luminosity (the bolometric amplitude) is therefore given by:

δL/L = 2δR/R + 4δT/T

Guided by the question, we neglect the contribution from changes in radius, implying:

δL/L = 4δT/T.

The relevant temperature is close to the effective temperature of 5777 K. So, putting in the numbers,
we have an implied change of just 5 milli-K.

To convert to narrow-band amplitudes, we use:

(

δFbol

Fbol

)

≃
(

λ

623 nm

) (

Teff

5777 K

) (

δFλ

Fλ

)

.
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The value of 3.5 ppm corresponds to the bolometric amplitude. So we just need to substitute and
re-arrange the above, to give the sought-for narrow=band amplitudes. They are 4.4 ppm (500 nm)
and 2.7 ppm (800nm).

(4) The results depend upon whether or not the Mach-number dependence is included in the scaling
relations for the granulation parameters.

We begin by using Eq. 4.41 to compute the maximum radial p-mode amplitudes, v, of both stars
in Doppler velocity, using the data on L ∝ R2T 4

eff and M provided in the question, and scaling by
the given solar value. For the main-sequence star we obtain v1 ≃ 21 cm s−1, and for the evolved star
we obtain v1 ≃ 65 cm s−1.

Next, to compute the corresponding bolometric amplitudes, (δFbol/Fbol), we use Eq. 4.53 to scale
from Doppler velocity to intensity but with the exponent in Teff adjusted from 0.5 to unity (note the
comment in the text below the equation). This gives (δFbol/Fbol)1 ≃ 3.9 ppm and (δFbol/Fbol)2 ≃
15.7 ppm.

The granulation amplitudes in intensity follow from Eq. 4.58. We have that σc,I,1 ≃ 46 ppm
and σc,I,2 ≃ 128 ppm We then use Eq. 4.86 to convert the granulation amplitudes from intensity to
Doppler velocity. Using the simpler scaling, which neglects the dependence on the Mach number,
we obtain σc,v,1 ≃ 48 cm s−1 and σc,v,2 ≃ 117 cm s−1. With the Mach-number dependence included,
we have σc,v,1 ≃ 67 cm s−1 and σc,v,2 ≃ 124 cm s−1.

Putting this all together, we find oscillation-to-granulation ratios of:

– 0.08 for star 1 and 0.12 for star 2, for observations in bolometric intensity;

– 0.44 for star 1 and 0.56 for star 2, for observations in Doppler velocity, and no dependence of
the scalings on the Mach number; and

– 0.31 for star 1 and 0.52 for star 2, for observations in Doppler velocity, with the dependence on
the Mach number included.

The choice of scaling does have some effect on the ratios in Doppler velocity – most notably for
the less evolved star. The most striking aspect of the results is, however, that the ratio stays much
lower in intensity than in Doppler velocity.

(5) To compute the granulation amplitude in Doppler velocity, σc,v, we use the same procedures
as those outlined in the question above. We do so for scalings with and without the Mach-number
dependence. Figure 4 shows the estimated velocities as a function of stellar age, t. Results without
the Mach-number dependence follow the dotted line, while those with follow the dashed line.

To estimate the activity signal, σact,v, we use Eq. 4.88. First, we took values of (δI/I) ≃ 0.45
and (δa/a) ≃ 0.3 % (see Section 4.3.2, which gives ranges of suitable values). To estimate the surface
rotation period, we use the t1/2 dependence and scale against the solar value of ≃ 25 days, i.e.,

Prot ≃ 25 (t/4.6)1/2 ,

with ages t in Gyr, suitably scaled to the solar age of 4.6 Gyr. We may then convert to the required
v sin i using:

v sin i ≡
(

2πR

Prot

)

sin i,

where R is the stellar radius. For our calculations we assume the star is viewed edge-on, so that
v sin i = 1. The solid line in Figure 4 shows the predicted σact,v.

Exercises for Chapter 5
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Figure 4: Solid line: predicted activity amplitude in Doppler velocity, σact,v. Dotted and dashed lines show
predicted granulation amplitude in Doppler velocity, σc,v, with and without the dependence on Mach number.

(1) We start from Eq. 5.79, i.e.,
Ptot ∝ HenvΓenv.

Next, Eq. 5.91 gives the dependence of the oscillation power envelope width on νmax, i.e., Γk
env,

where for Sun-like stars we have k ≈ 1.
To get the dependence of Henv on νmax and Teff we must go through several steps. First, Eq.

5.76 gives
Henv ∝ A2

max/∆ν.

Next, from Eq. 5.87 we have:
Amax ∝ ν−s

maxT
3.5s−r+1−βbol

eff .

where for Kepler observations βbol = 0.8. Finally, we need:

∆ν ∝ νβ
max,

where we take the value β ≃ 0.77. Putting this all together, we have:

Henv ∝ ν−2s
maxT

7s−2r+2−2βbol

eff ,

and so:
Ptot ∝ ν−2s−β+k

max T 7s−2r+2−2βbol

eff .

We also adopt k ≃ 1, s ≃ 0.7 and r ≃ 3.5, from which we then get the required relation:

Ptot ∝ ν−1.2
max T−1.7

eff .

(2) We begin by recalling that for main-sequence stars the width of the oscillation envelope is
assumed to follow the scaling Γenv = νmax/2 (Eq. 5.91). We then assume that the frequency range
±νmax/2 about νmax will capture most of the observed power. The total power due to the flat
shot-noise component is then equal to its power spectral density, i.e., 2σ2∆t, multiplied by the range
νmax.

To estimate the contribution from the granulation, we start from Eq. 5.99, i.e.,

Pc(ν) =
bc

1 + (2πντc)βc

.
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To progress to the approximate final expression provided in the answer, we make two assumptions.
First, we assume that in the frequency vicinity of the mode spectrum, (2πντc)

βc ≫ 1. We may then
write the above as:

Pc(ν) ≈ bc

(2πντc)βc

.

Second, we assume we may approximate the required area under the limit spectrum of the granulation
as the power spectral density at νmax, i.e.,

Pc(νmax) ≈
bc

(2πνmaxτc)βc

,

multiplied by the range νmax. This gives the granulation contribution

ν(1−βc)
max

(

bc

(2πτc)βc

)

,

from which it then follows that:

Btot ≈ 2νmaxσ
2∆t + ν(1−βc)

max

(

bc

(2πτc)βc

)

.

(3) There are various ways one could approach calculating the results needed for this question. To
compute the global SNR in the oscillations spectrum we use the following steps:

– We use Eqs. 5.76 and 5.79 to compute the solar value for the total detected power in the
oscillations spectrum, Ptot, which is ≃ 231 ppm2. We then use Eq. 5.92 to compute Ptot along
the evolutionary track, using the coefficients t = −1.2 and u = −1.7.

– We use the equation in the question above for the total background power, Btot. The shot-noise
per cadence was estimated using (see also Eq. 6.49):

σ(Kp) = 70 × 10 [(Kp−9)/5] ppm,

where 70 ppm is the shot noise at Kp = 9. We estimated the granulation noise using Eq. 4.58
(scaled by the solar value given in the question). We also needed the granulation timescale,
and for that we used Eq. 4.63, scaled to the solar value of 200 sec in the text.

The resulting SNR predictions are shown in Figure 5, for Kepler apparent magnitudes of Kp = 8
(solid line), Kp = 10 (dotted line) and Kp = 12 (dashed line). Predictions with and without
the Mach-number dependence give very similar results, and so here we show those for the simpler
predictions without the dependence. Note the low numbers associated with the global values.

(4) We begin by computing the respective νmax values for both stars, obtaining νmax,1 = 459µHz
for star 1 and νmax,1 = 233µHz for star 2. Notice already that the frequency for star 1 lies well above
the Kepler long-cadence (LC) Nyquist frequency (of ≃ 283 µHz).

Next, we have A1 ≃ 13.4 ppm and A2 ≃ 21.8 ppm. With estimates of the average large frequency
separations also in hand, courtesy of the ∆ν scaling relation (∆ν1 ≃ 29.6 µHz and ∆ν2 ≃ 17.7 µHz),
we may then use Eq. 5.76 to estimate the heights of the respective oscillation envelopes. We obtain
Henv,1 ≃ 9.4 ppm2 µHz−1 and Henv,2 ≃ 41.6 ppm2 µHz−1.

We must also not forget to take into account the impact of signal attenuation due to the sampling
of the data. For observations made in short cadence (SC), the respective νmax lie sufficiently far
below the Nyquist frequency that the attenuation will be negligible. However, this is certainly not
the case for LC data. Using Eq. 5.9, we obtain multiplicative attenuation factors in power of
η2 ≃ 0.05 for star 1 and η2 ≃ 0.55 for star 2.

So, the height-to-background ratios we obtain are:
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Figure 5: Predicted global SNR in the oscillation spectrum, for Kepler apparent magnitudes of Kp = 8 (solid
line), Kp = 10 (dotted line) and Kp = 12 (dashed line).

– in short cadence, 9.4/300 ≃ 0.03 for star 1; and 41.6/300 ≃ 0.14 for star 2; and

– in long cadence, 0.05 × 9.4/300 ≃ 0.0015 for star 1; and 0.55 × 41.6/300 ≃ 0.08 for star 2.

The attenuation in LC clearly has a very pronounced effect on the predicted height-to-background
ratio for star 1. The νmax of this star lies above the LC Nyquist frequency, νNyq, and so for LC
data the oscillation spectrum would be aliased down below the Nyquist, to a frequency centered
on νNyq − (νmax − νNyq) ≡ 2νNyq − νmax ≃ 107 µHz. Because the background power is shot-noise
dominated, the background power spectral density below and above the Nyquist will be the same.
However, had granulation noise been the dominant background term, we would have needed to have
used the sub-Nyquist granulation to compute the height-to-background (and, strictly speaking, to
have also worried about the granulation contribution in the super-Nyquist regime, which is aliased
back down below the Nyquist, like the oscillations spectrum).

Even though νmax of star 2 lies ≈ 50 µHz below the LC Nyquist frequency, the attenuation in LC
does affect the observed height-to-background ratio, by a factor of around 2.

Exercises for Chapter 7

(2)(b) The properties of the “stars” are listed in Table . The value of νmax can be calculated from
the listed data using the scaling relation.
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Star No. Mass Rad. Age Teff [Fe/H] ∆ν
M⊙ R⊙ Gyr K dex

1 0.82 0.76 4.20 5534 −0.51 185.86
2 0.96 0.83 0.28 5015 0.29 175.53
3 0.82 0.84 11.80 5416 −0.34 158.09
4 1.14 1.02 0.19 6071 −0.06 139.80
5 1.00 1.00 6.13 5697 −0.07 134.66
6 1.16 1.08 0.41 6420 −0.31 129.22
7 1.68 1.46 0.24 8239 −0.19 99.49
8 1.18 1.39 3.90 6303 −0.38 89.20
9 1.04 1.37 9.14 5834 −0.16 86.28
10 1.20 1.58 3.65 6534 −0.52 74.60
11 1.18 1.73 7.01 5780 0.03 64.65
12 1.68 2.88 1.50 7361 −0.46 35.81
13 1.14 5.86 6.13 4926 −0.39 10.17
14 1.20 8.53 7.76 4533 0.10 5.93
15 2.46 14.28 0.71 5087 −0.45 3.92

Exercises for Chapter 8

(1) The true properties of the models can be found in the paper Reese et al. (2016), A&A
(arXiv:1604.08404) and in the file model properties.txt in the sub-directory Models

(2) The high precision of the solar data makes it very easy to use the ǫ method to determine which
of the five models has the closest structure to the Sun. A simple visual inspection of ǫ differences
between the Sun and the models is enough to show that models (3) has a large mismatch and that
model (4) is bad too. The other three models are quite good, with models (1) and (5) being the
best. Note that ǫ differences must be calculated at the observed frequencies for this to work.

Exercises for Chapter 9

(2) MHD and OPAL give difference results for the amplitude for the same helium abundance. More
about this can be found in Basu et al., 2004, Mon. Not. R. Astron. Soc., 350, 277. In particular,
see Fig. 8 of the paper.

(3) The true value of ∆Π1 for models RGB ModelA, RGB ModelB and RGB ModelC are 77.4s,
29.08s and 263.9s respectively.
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