
Lightweight and Generic RDMA Engine Para-
Virtualization for the KVM Hypervisor

Angelos Mouzakitis, Christian Pinto, Nikolay
Nikolaev, Alvise Rigo, Daniel Raho

Virtual Open Systems
17, Rue Lakanal
Grenoble, France

Babis Aronis, Manolis Marazakis
Foundation for Research and Technology – Hellas (FORTH)

Nikolaou Plastira 100
Heraklion, Crete, Greece

Abstract—Remote DMA (RDMA) engines are widely used in
clusters/data-centres to improve the performance of data
transfers between applications running on different nodes of a
computing system. RDMAs are today supported by most network
architectures and distributed programming models. However,
with the massive usage of virtualization most applications will use
RDMAs from virtual machines, and the virtualization of such I/O
devices poses several challenges. This paper describes a generic
para-virtualization framework based on API Remoting,
providing at the same time the flexibility of software based
virtualization, and the low overhead of hardware-assisted
solutions. The solution presented in this paper is targeting the
KVM hypervisor, but is not bound to any target network
architecture or specific RDMA engine, thanks to the
virtualization at the level of the programming API. In addition,
two of the major limitations of para-virtualization are addressed:
data sharing between host and guest, and interactions between
guests and hypervisor. A set of experimental results showed a
near to native performance for the final user of the RDMA (i.e.,
maximum transfer bandwidth), with a higher overhead only to
simulate the API functions used to initialize the RDMA device or
allocate/deallocate RDMA buffers.

Keywords - Virtualization, HPC, RDMA, API Remoting

I. INTRODUCTION

Data transfers have always been a main concern in large
clusters and data-centres, amplified by a constant request by
applications in terms of higher bandwidth and lower
communication latency. Remote DMA (RDMA) engines are
the response to this type of problem, enabling Network
Interface Cards (NIC) to perform DMA-like memory data
transfers between nodes of the same computing system.
Various network interconnection protocols used in data-centres,
such as Infiniband [3] and Ethernet through RDMA over
Converged Ethernet (RoCE) [16], are already providing
support for RDMA engines. The main advantage of this
approach is the drastic reduction of latency, reduced
involvement of CPU and thus higher bandwidth compared to
other communication paradigms such as network sockets. User
libraries based on RDMA transfers are being used for
databases, scientific computing and cloud computing in order
to optimize communication and data movement between

application instances. In parallel, large clusters/data-centres are
extensively relying on virtualization as a tool for improved
utilization of system resources (e.g., memory, disk, CPU) and
hardware consolidation. This is achieved by running multiple
virtual instances of a system on the same hardware machine. In
addition virtualization is used for resilience thanks to facilities
like virtual machines live migration and snapshots.

The virtualization of an I/O peripheral such as an RDMA
can be implemented mainly in the following ways: direct
device pass-through, exploiting hardware support from the
hardware with PCI Single-Root I/O Virtualization (SR-IOV)
[10,4] or by para-virtualization [14]. Direct device pass-
through, although enabling almost native performance, creates
a 1-to-1 mapping between the device and one virtual machine.
This means that an RDMA device on a compute node could not
be shared among multiple virtual machines, losing the benefits
of virtualization in terms of better distribution of available
hardware resources. PCI SR-IOV overcomes the problem of
sharing the device between multiple virtual machines, but
requires support from the hardware that is not always available
and reduces the effectiveness of snapshots and live migration.
Finally, para-virtualization offers the highest level of flexibility
compared with the previous two solutions by being a software-
based technique, but suffers from a major drawback: high
virtualization overhead due to frequent interactions with the
hypervisor and data-sharing handling. RDMA devices can
usually be programmed either at the bare metal level, or via a
dedicated user-space API. Virtualizing the bare metal interface
would lead to a dedicated virtualization solution for each
device on the market, while virtualizing at the API level creates
a generic solution that can be easily adapted to new APIs, and
enables devices using the same programming API to be
virtualized with the same implementation of the framework.

In this paper we present a generic and lightweight RDMA
para-virtualization framework for the KVM [5] hypervisor that
overcomes the limitation of hardware assisted solutions,
eliminating also the overheads of para-virtualization. The
solution virtualizes the RDMA engine at the user-space library
level by using a technique called API Remoting, based on an
API interception mechanism and a split-driver architecture. The
benefits of this solution are threefold:

1. One virtualization framework core for multiple
devices/APIs.

2. Native sharing of the device among multiple virtual
machines.

3. Low virtualization overhead due to reduced
interactions between guests and hypervisor.

From the application perspective the virtualization
framework will be completely transparent, since the part of the
driver installed in each guest frontend will export the same stub
as the original programming API. Internally the frontend
intercepts API function calls and re-directs them to the host. On
the host side, the second part of the virtualization framework
backend is in charge of collecting requests from the various
guest frontends to be relayed on the physical device. It then
becomes the responsibility of the backend to orchestrate
requests from multiple guests, creating the illusion of multiple
RDMA devices available on the platform. This approach
separates the specific API implementation from the
virtualization core, making it easy to extend API Remoting to
new APIs. The communication between frontend and backend
is ensured by a third component, the transport layer, in charge
of actually passing the requests from frontends to the backend
process

However, this is not enough for a full solution, since for the
virtualization of a device like an RDMA additional factors
should be taken into account: interactions with the hypervisor,
and guest-host data sharing. The former starts becoming a
performance issue when the frequency of interactions is high,
and should be minimized since every interaction with
hypervisor (hypercall) implies a guest exit that is a renowned
expensive operation [18, 7]. The solution presented in this
paper reduces the interaction between the virtual machine and
hypervisor to the control-plane only, while completely
avoiding such interactions during regular RDMA operations.
The control-plane is implemented in the proposed solution
using virtio [15], a well-known para-virtualization framework
using circular buffers vrings in shared memory for guest-host
communication. The second problem, guest-host data sharing
also known as the data-plane, is also of utmost relevance and
in this paper is addressed within the RDMA transport layer.
RDMA operations involve data transfer of buffers allocated by
user-space applications, and in the bare metal operation of the
device do not imply data copies since the RDMA hardware
have direct access to those buffers. When virtualization comes
into the picture data buffers have to be shared between guest
user-space and the RDMA device, and guest-host data copies
should be avoided in order minimize the performance loss due
to virtualization. In this paper guest-host data sharing is
implemented with a zero-copy mechanism [13], enabling true
memory sharing between guest and host extended down to the
RDMA device.

The RDMA virtualization solution presented in this paper
has been tested with an FPGA implementation of an RDMA
engine designed for the Unimem Global Address Space (GAS)
memory system. Unimem has been developed within the

Euroserver [8] FP7 project, to enable a system-wide shared
memory abstraction between the nodes of a data-centre. The
prototyping system is based on ARMv8 processors, but it
should be noted that the API Remoting RDMA virtualization
framework has no limitations with respect to the target host
processor.

The rest of the paper is organized as follows: Section II
provides a comparison with the state-of-the-art solutions for the
virtualization of RDMA devices. Section III describes the
target RDMA device and its user-space API. Section IV
provides the detail of the API Remoting based RDMA
virtualization. In Section V a set of experimental results is
presented to validate the proposed solution. Finally, Section VI
concludes the paper and identifies possible extensions.

II. RELATED WORK

Various studies have been performed on virtualization of
RDMA devices, covering both hardware based solutions with
the support of PCI SR-IOV [4, 9], and also para-virtualization
solutions [2, 12, 14, 11, 7]. Most of the previous work in this
field was focused on the InfiniBand architecture [3], followed
by RoCE and iWARP.

Musleh et al. [9] demonstrated an RDMA SR-IOV
virtualization solution targeting InfiniBand networks, with an
overall performance overhead of 15-30% compared to native
performance. Also in [4] authors analyzed the SR-IOV
virtualization impact on HPC field, with evaluation results for
applications based on MPI and Unified Parallel C paradigms.

Authors in [2] have presented a guest driver for the Xen
hypervisor to provide DomU support for InfiniBand devices.
With hypervisor cooperation, DomU is able to perform direct
accesses to device mapped regions e.g., the User Access
Region, bypassing hypervisor involvement for queue pairs
handling. Data accesses and event handling can be performed
directly from the guest user-space application, reducing
overhead and featuring performance near to native.

In [14], VMware proposes the vRDMA interface for
VMware ESXi guests. Such a para-virtualization framework
provides RDMA capabilities to guest applications through a
user-space library, compatible with the RDMA ibverbs library
[1]. The interfaced library cooperates with the guest device
driver, which redirects API calls to the hypervisor. This
solution enables also support for virtual machine checkpoints
and live-migration (vMotion).

Pfefferle et al. [12] demonstrated the HyV para-
virtualization framework for RDMA-capable network
interfaces, virtualizing an RDMA device at device driver level.
The proposed framework consists of a split driver model, in
host and guest kernels, while guest applications can use the
OpenFabrics OFED RDMA API [1] to interact with the RDMA
device. This hybrid framework supports InfiniBand and iWarp
NICs, and the design of the split driver model is able to
separate para-virtualized control operations from data
operations. Data path operations do not involve the hypervisor,

since the host driver is responsible to provide guests direct
access to device resources.

The work presented in this paper has commonalities with
the above mentioned studies, but also main differences that go
mostly in the direction of a more flexible and hardware
agnostic RDMA virtualization solution without sacrificing
performance. The main difference with hardware assisted
solutions [9, 4] (SR-IOV) lies in the core of the virtualization
approach. The solution proposed in this paper is based on
software and provides a more flexible virtualization interface,
with a better support for device sharing and easily extensible to
support virtual machines migration migration. Due to the
hardware design of the RDMA device [8] targeted in this paper,
the proposed solution has to separate RDMA buffers handling
from target network architectures such as InfiniBand, helping
the resulting virtualization technology in being agnostic with
respect to any target network technology. The RDMA buffers
considered in this paper must be contiguous in host physical
memory, while in other virtualization works targeting
InfiniBand devices [12] RDMA buffers are contiguous in
virtual memory. The work presented in this paper overcomes
this problem since RDMA buffers are always allocated by the
host following device's requirements. Virtual machines will
access such buffers through a specific mapping, without the
need to know the physical organization of the buffers.
Compared to [12] the solution proposed in this paper leverages
on the user-space API used to program the RDMA device. With
this approach all the devices adopting the same API can be
virtualized using the same framework, without the need of
major adaptations (e.g., dedicated virtualized kernel device
driver). The binary implementation of the API for each specific
device is the only requirement behind the approach proposed.
The extension to diverse APIs is seamlessly simple, since
requires only the fronted library to be adapted together with the
corresponding part in the backend. While the core of the
virtualization solution can be kept untouched. In addition, even
if API Remoting is based on para-virtualization, the global
overhead is minimized thanks to the separation of data and
control path. With the latter being the only requiring
interactions with the hypervisor.

III. RDMA DEVICE OVERVIEW

This section provides an overview of the RDMA hardware
used for testing and its API exposed to user-space applications.
The information in this section is needed in order to better
understand the technical choices taken for the design of the
virtualization solution.

A. RDMA device hardware

The RDMA block is based on the AXI Central Direct
Memory Access IP from Xilinx [17]. This block contains a
slave AXI4-Lite interface which exports a set of memory
mapped registers to configure and program device operations.
There are two AXI4 master interfaces: one to perform the
transfers between the source and destination memory
addresses, and one to fetch DMA descriptors from main

memory and initiate memory transfers without CPU
involvement. Transfers can be programmed to notify the host
CPU in case of success or failure. The RDMA engine performs
memory transfers between the nodes of a cluster over a global
address space defined by the Unimem memory system.

B. User-space API

The RDMA user-space API is centered around objects that
represent cluster nodes, DMA buffers and DMA transfers. Each
object is associated with a unique identifier. The operations
enabled by this API are the following:

 initialization/clean-up of the RDMA library,

 allocation/deallocation of DMA buffers,

 transfer initiation,

 transfer querying,

 association of objects with identifiers, and vice versa.

API calls for DMA buffer allocation and transfer initiation
with an asynchronous completion notification are handled with
particular attention since these operations have distinct cases in
the virtualization context.

DMA memory management calls are responsible to handle
the hardware prerequisites, i.e., buffer alignment, and to update
the consistent view of DMA buffers among the network. Once
a local allocation/deallocation takes place, the connected
cluster nodes are informed for the DMA buffer
registration/deletion, as a safeguard against incorrect RDMA
transfers. The RMDA engine is capable to transfer data
between contiguous physical memory regions and, the
allocation mechanism must ensure that buffers are physically
contiguous. Generic kernel allocators do not guarantee to serve
large allocations of contiguous memory (e.g. maximum of
4MiB with the Linux slab allocator). Consequently, DMA
buffers (allocation/de-allocation) are handled by a dedicated
memory allocator. A global pool for DMA buffers is carved out
from the main memory of each of the nodes during the start-up
phase, and is later assigned to the DMA allocator. Dealing with
physical contiguous buffers creates complications for the
virtualization of the RDMA device; however, the solution
proposed in this paper overcomes all these problems as
described in Section IV-D.

RDMA transfers can be initiated between two allocated
DMA buffers, where one of them must reside on the local node.
The RDMA initiator can determine the completion status of an
active transfer using the transfer polling function, or by
registering a callback function. The transfer initiation API calls
are always non-blocking and return to the process a unique
transfer identifier which can be later used with the polling
function. The alternative method is to specify a user-defined
function as the transfer callback which will be called upon
transfer completion.

IV. IMPLEMENTATION OF THE RDMA VIRTUALIZATION

This section describes the implementation of the proposed
virtualization solution, to provide RDMA services to virtual
machines running on top of the KVM hypervisor. The
virtualization of RDMA implies passing commands from the
guest to the host and finally to the device, and also enabling
virtual machines to handle DMA buffers by still conforming to
the requirements of the RDMA hardware device (e.g. buffers
need to be contiguous regions of physical memory).

The virtualization solution demonstrated in this paper is
based on API Remoting, a software para-virtualization
technique enabling sharing of a device among multiple virtual
machines, by intercepting API function calls and forwarding
them over a cooperating set of software layers from the guest to
the host system. Our solution consists of three layers: the
backend, the frontend and the transport layer. The frontend
layer, in the guest, is a shared library that exports the same
interface as the original API and forwards user-space
applications requests over the transport layer. Passing the
RDMA buffer's content between the host and the guest using
methods such as TCP/IP sockets would significantly increase
the performance overheads, due to memory copies and the
complexity of the protocols involved. The proposed data-plane
is optimized to avoid memory copies which heavily impact the
overall performance.

The backend layer is a host user process, listening for
incoming requests over the transport layer. When it receives a
request from a guest, it reads the command and their arguments
and programs the device accordingly. Return values and error
notifications are propagated back to the source frontend. This
layer is the only one actually interacting with the RDMA
hardware engine.

The transport layer is responsible for delivering data from
the backend to the frontend layer, and vice versa. In our case,
the transport layer relies on shared memory regions between
the host and the guest system to avoid performance degradation
due to memory copies.

The overall architecture of the solution is illustrated in Fig.
1, based on the split driver model, with frontend and backend
components connected over the transport layer. Guest and host
kernels can asynchronously transfer data between them over
virtio [15], a para-virtualization framework supporting
configurable buffers and asynchronous notifications. The host
handles the virtio transport queues (virtqueues) in the kernel
through the vhost framework [6]. The host utilizes virtio
transfers to inform the guest about a transfer completion event,
a synchronization event or to initialize a shared buffer using the
guest-to-host zero-copy shared memory framework described
in [13]. The guest uses virtio to provide information about
shared memory buffers or synchronization events. Transfers
over virtio involve a guest exit, which increases the
performance overhead. For this reason, only control-plane
messages are sent via virtio, while data transfers to and from
DMA buffers are handled over shared memory.

A. Zero-copy Shared Memory Transport Layer

The transport layer used in this work is based on zero-copy
shared memory, to avoid potential performance degradation
due to frontend-backend communication and synchronization.
The zero-copy shared memory mechanism adopted is based on
[13], which has been improved for the purposes of our work.

Shared memory between guest and host is enabled by
exploiting a feature of the KVM hypervisor that bases its
memory virtualization capabilities on a two-level page table.

In the specific case of an ARM system, a memory access
from guest is subject to two memory translations. First the
guest virtual address (VA) is translated to a guest or
intermediate physical address (IPA), and from IPA to a physical
address (PA). An IPA is to be considered as a physical address
from the guest's point of view, and as virtual address from the
host's point of view. The zero-copy shared memory framework
allows buffers allocated in guest memory to be mapped by a
user-space process in the host, exploiting the two-level
translation. Physical memory pages associated with guest
memory are intercepted to be remapped into the host process'
virtual memory map. To perform this mapping the host needs
to know the guest physical frames (PFN) information for each
page composing the buffer to be remapped. Upon request by
the host, the guest kernel sends all the PFNs to the host kernel
using virtio. Once the host kernel has gathered this information,
it can inspect the second-stage page table entries to construct a
virtual memory area based on the pages that compose the guest
buffer. After the mapping procedure, both processes (in the
guest and the host) have in their page tables corresponding
entries that point to the same physical memory. It has to be
noted that this approach can be used also with other CPU
architectures, such as x86.

Figure 1. API Remoting abstract infrastructure

Figure 2. Interactions between the overall architecture components

B. Frontend and Backend API Forwarding

This section describes how RDMA API calls are forwarded
from frontend to backend, as well as how return values are sent
back. At the basis of this implementation there is the shared
memory mechanism described in Section IV-A, used for
communication between frontend and host backend.

To avoid the performance overhead of existing transport
mechanisms e.g., sockets or virtio, the frontend allocates during
initialization phase a region of memory that is shared with the
backend (see Fig. 2). Such memory region is used by both
cooperative processes to exchange information about the
forwarded calls without any intervention of the hypervisor.

To forward an API call, the frontend layer stores in the
control shared memory area the information related to the
specific API function. This information consist of an unique
call identifier and the function call arguments. API call
identifiers are unique for each function and known to both
backend and frontend. Each identifier is an integer that
corresponds to an entry in the functions table used by the host
backend to perform the correct API call.

The control shared memory area must be protected from
concurrent accesses to avoid conflicts. To make sure that
accesses will be exclusive, synchronization can take place with
memory spin-locks which reside in the shared memory itself.
Spin-locks provide a simple solution but could starve the
system by taking the whole scheduled process quantum of a
process spinning on the lock, thus degrading the overall system
performance. An alternative solution is to asynchronously
inform the remote process for a synchronization event via
virtio. Virtio communication is capable to trigger an interrupt
on the remote system. This asynchronous behavior is useful for
a synchronization primitive. The caller process (e.g., frontend)
will be put into sleep state until the remote process (e.g., the
backend) will call for a synchronization event. The procedure
of processes synchronization is the following: the local process
calls the Forwarding an API call kernel interface to notify the
remote kernel for a synchronization event. A virtio message
will be transferred to the counterpart driver to indicate a
pending synchronization event. When the remote process will
call the synchronization event, a virtio message will be send
back to the local kernel. In this way only one process will use
the shared memory at a time, while the other is put to sleep.
However both solutions have drawbacks: spin-locks burn
precious CPU cycles, while communication over virtio is
slower and involves guest exits. A possible optimization
consists of a mixed solution. Synchronization could by default
start using spin-locks. In case of long lasting RDMA
operations, if no synchronization point is reached after a certain
time quantum, the synchronization method can be switched to
virtio and the calling process goes into sleep state releasing the
CPU. With this approach short RDMA operations can benefit
from the high speed reaction provided by spin-locks, while for
long lasting operations CPU is not kept active polling on a
spin-lock. This will be considered as an enhancement for future
extensions of this work.

Sharing of the virtualized device with multiple guest
systems is a central point of our para-virtualization solution.
The internal structure of the backend process is shown in Fig.
3. A monitor thread listens to a socket interface and is
responsible manipulate the guest workers. Each worker thread
is associated to one guest identified by the process identifier of
the host machine virtualizer (i.e., QEMU). The socket is
currently used by frontend processes during initialization to
notify the backend of their presence. Upon guest registration a
new worker thread is created, and a common initialization
procedure takes place: the thread opens a private file descriptor
to the extended zero-copy kernel interface. The descriptor is
used by the host kernel interface to distinguish the target guest
and its resources e.g., virtqueues. A control shared memory
area is maintained between each thread and the related frontend
process to forward API calls and to place return values.

Figure 3. Backend internals

Figure 4. RDMA buffer mapping to guest memory

Figure 5. The transfer completion event forwarding procedure.

C. RDMA Buffer Manipulation

As described in Section III the RDMA engine targeted by
this work is able to transfer data from/to contiguous physical
memory regions. However each guest physical address space is
allocated from a host user-space application (i.e., QEMU), and
from the host point of view is not necessarily physically
contiguous. This means that RDMA buffers should be actually
allocated by the host, to ensure they are physically contiguous,
and then mapped to the guest physical memory space. One
possible solution to this memory layout issue is to actually

copy the buffer to be transferred from guest to host, and then
program the actual transfer. This solution leads to a
performance degradation proportional to the size of the data to
be transferred and thus is not a viable solution. In this work this
problem is overtaken by extending the existing zero-copy
framework in [13], to be able to map buffers allocated from the
host into the memory map of a guest user-space process. The
goal is to provide guests direct access to RDMA buffers
allocated by the host.

Upon the request of allocation of an RDMA buffer the
frontend will locally allocate a buffer of the same size, and
forwards the allocation call to the host backend together with
the PFNs of all the pages composing the buffer just allocated.
From the guest perspective the buffer allocated will be seen as
the actual RDMA buffer. When the backend process receives
the allocation request, it calls the native user-space library to
allocate a new RDMA buffer. The allocation is handled by a
custom kernel allocator and the memory is physically
contiguous and not swappable, thus suitable for RDMA
transfers.

Once allocation is done on both sides, all the pages of the
actual RDMA buffer allocated in the host are remapped on top
of the physical pages backing the buffer allocated by the
frontend. To implement this behavior, the guest PFNs received
with the allocation call are used to identify the physical pages
backing the frontend buffer on the host side, and change the
second stage mapping in order to point to the physical pages of
the host RDMA buffer (Fig. 4).

The memory mappings of the guest physical memory reside
in a virtual memory area (VMA), created by the process that
spawned the virtual machine i.e., the QEMU process. The
procedure of remapping the RDMA buffer pages to the correct
QEMU virtual memory area is handled by a kernel interface,
which is an extension of the zero-copy framework in [13]. On
the host side, the guest PFNs are converted into host virtual
addresses (HVA in Linux terminology). A page walk on the
host virtual addresses is sufficient to retrieve the page
structures that need to be remapped. The existing pages are
unmapped from the QEMU virtual memory, and second stage
mapping updated to point to the pages of the actual RDMA
buffer. The unmapped pages are also freed so to avoid wasting
memory. As result of the allocation procedure, the backend
returns to the guest the RDMA buffer object. From now on,
guest and host are able to access the same RDMA buffer
allocated in the host, and the buffer initially allocated by the
guest was used as a place holder to create the page table
entries. Note that no memory overhead is added with this
procedure, since the pages originally allocated by the guest are
freed. Remapping of the memory offers to the guests native
access to the DMA buffer, with a slight initial overhead while
performing the mapping due to the hardware page-walk of the
second stage memory translations.

D. Transfer Completion Event Forwarding

The RDMA device can be programmed to generate a
transfer completion event towards the calling process. This

behavior has been maintained in the virtualized RDMA
framework, and guest applications receive regular transfer
completion events. The RDMA library uses a call-back
mechanism in order to register a completion event notification.
User-space applications register their completion callback that
is invoked by the RDMA library when the completion IRQ is
signaled by the device. The RDMA driver uses a Unix signal to
notify the RDMA library of the event, and in turn call the
correct user-registered call-back. In this proposal completion
notification is still based on a call-back mechanism, but
distributed in two layers. Fig. 5 illustrates how the RDMA
completion interrupt is first handled by the RDMA user-space
library, and how the backend process forwards it to a guest
process. The RDMA interrupt is connected to the interrupt
controller of the host CPU, where the host kernel registers a
dedicated interrupt service routine. This routine dispatches the
IRQ to the RDMA driver handler (1), which informs the
RDMA API of the transfer completion using a Unix signal (2).
The signal handler is registered during the RDMA library
initialization routine, and it is responsible to handle signals
from the RDMA s. Once a signal is received, the handler calls
the user defined call-back registered by the user-space process
when initializing the RDMA transfer (3). In this case the user-
space process is the API Remoting backend that registered its
own completion backend. The backend process is then in turn
able to identify the destination guest (4), and forward the
transfer completion event (5). Event forwarding is done by
sending to the guest a message over a virtio queue. The
message is caught by the guest virtio driver (6) that raises a
Unix signal to inform the frontend about the event (7). Finally,
the frontend signal handler invokes the completion call-back
registered by the guest application (8).

This mechanism enables to preserve the original behavior
of the RDMA library, with the minimum possible number of
guest exits (only one when sending the virtio message).

V. EXPERIMENTAL RESULTS

This section describes the experiments performed and the
results obtained, in order to validate the RDMA virtualization
solution proposed in this paper. All the experiments have been
performed on a prototype system composed by six nodes
equipped with the RDMA device. Each node is based on the
ARM Juno R2 development board which the FPGA is loaded
with the UNIMEM IP.

A set of test cases has been identified in order to study
various aspects of RDMA virtualization based on API
Remoting, either at the global level as perceived from the user
and also of the individual components of the virtualization
framework. The test cases are listed below:

 DMA buffer allocation time

 Maximum bandwidth utilization for variable sized
burst transfers

 Overhead of transfer completion event forwarding

 Comparison with the micro-benchmark set of work in
[12]

The first three test cases have been executed in two
scenarios: 1) Native, where the RDMA device is directly
accessed from applications running on the host; 2) Virtualized,
where the RDMA is used by virtual machines via API
Remoting. In both scenarios two nodes of the prototype are
involved in the data transfers.

DMA buffer allocation: The time needed for an RDMA
buffer allocation is different in the native and virtualized
scenarios. In the native scenario, the allocation is almost not
affected by the size of the buffer to be allocated. In contrast, in
the virtualized scenario the time needed to serve an RDMA
buffer allocation issued by a guest is proportional to the size of
the buffer. The main source of overhead is the page inspection
and the remapping procedure, which is necessary to reconstruct
the mapping of a physically contiguous DMA buffer in the
guest's process address space. To be noted is that this overhead
is paid only while allocating the buffer, while all subsequent
accesses (read/write) will be served with native performance.
Fig. 6 shows the time (ms) needed to allocate an RDMA buffer
of size varying from 512KiB to 8MiB.

Bandwidth utilization: Fig. 7 shows the transfer rate
obtained in case of single DMA transfer of variable size. While
Fig. 8 shows the average bit-rate measured when transferring a
total amount of 1GiB, with multiple bursts of variable size. It is
immediate to see how in case of a single transfer the
performance overhead of the virtualized solution is negligible,
reaching its maximum of 7% for a transfer of 512KiB. The
transfer time used to compute the transfer rate is measured
between the actual guest transfer call, and the moment when
the guest application receives the transfer completion
notification. Fig. 8 shows the average bandwidth to transfer
1GiB of data in bursts of variable size (from 512KiB to 8MiB).
In this case the overall virtualization overhead is proportional
with the number of transfers issued. However the highest
overhead measured is ~4% with bursts of 2MiB. Even in this
scenario, higher completion time is measured with bursts of
smaller size. As visible from the graphs, burst transfers have
lower virtualization overhead (4% versus 7% in case of single
transfer) thanks to the support for multiple outstanding
transactions enabled by asynchronous API calls. Applications
in the guest receive the transfer ID even if the transfer is not yet
submitted by the backend to the device. The backend tracks
subsequent transfers from the guest, reducing the overall time
required for the submission of burst transfers. This way the
virtualization overhead to process one burst is overlapped with
the transfer of the previous burst.

Completion notification latency: Asynchronous RDMA
transfers register a completion callback that in the case of the
virtualized scenario is delayed, crossing the various layers of
the virtualization stack. This delay is not fully predictable,
since it is affected by the current load of the host and guest
system. The completion event forwarding delay has been
measured on a system under normal working conditions where
there are other processes competing for the CPU. We conclude

that events notifications have an average delay of 130 - 140μs.
In comparison with an RDMA buffer allocation of 512KiB, the
event notification latency is ~240 times lower. This is to
highlight that in case of a complete RDMA transfer, the
completion notification contribution is negligible over the total
transfer time (initialization + data movement + completion
notification).

Synchronization: Fig. 9 shows the average time required
to synchronize frontend and backend processes using both
synchronization techniques, and as expected synchronization
with spin-locks is orders of magnitude faster than the primitive
based on virtio. This big difference makes the mixed approach
described in Section IV-B an interesting enhancement to
consider as a next step. In both cases, measurements include
the system call overhead used to measure the time elapsed.

Figure 6. DMA buffer allocation time, from 512KiB to 8MiB.

Figure 7. Maximum transfer rate for a single transfer.

Figure 8. Average bit-rate for a transfer of 1GiB split in burst transfers from
512KiB to 8MiB.

Figure 9. Spinlock and Virtio average time.

Figure 10. Virtualization overhead on the latency test

In order to quantify the overhead that this RDMA solution
introduces with respect to a native RDMA execution, the
micro-benchmarks object of this work [12] have been used to
measure throughput and latency performance. In [12] the
experimental hardware was based on a cluster with Intel Xeon
nodes connected through the Mellanox ConnectX-3 VPI
56Gb/s FDR Infiniband RNICs. The HyV virtualization
framework showed latency and throughput values similar to a
native execution, with message sizes of 4B and 16KB and on
the latency test with 1B and 64KB on the throughput. Using
HyV, the guest system was able to handle the network’s card
resources, e.g., the completion poll queues, from the guest
process without any hypervisor or OS involvement.

In our case, since the device virtualization is taking place
on the user-space API and the framework has no direct access
to device’s resources, some minimal communication overhead
had to be introduced between the function initiator (VM
application) and the executor (backend thread) for a control
operation. The introduced overhead is near to 3μs and does not
depends on to the transfer’s size as shown on Fig. 10, 11 using
polled transfers. However, the event based solution did not
performed as well as the polling counterpart due to the
mechanism of software IRQ injection into the guest.

Figure 11. Virtualization overhead on the throughput test

VI. CONCLUSIONS

This paper presented a generic RDMA para-virtualization
solution based on API Remoting, providing at the same time
high bandwidth and low latency transfers to applications
running within virtual machines. The separation of the RDMA
operation framework between control-plane and data-plane
minimizes the overall overhead to control operations only. In
addition the solution presented enables applications running in
virtual machines to directly access physically contiguous
RDMA buffers, with no virtualization overhead thanks to guest
memory remapping. The experimental results discussed in
Section V demonstrate close to native performance, and
identify memory management as the most expensive type of
operations. Further extensions of this work will go in the
direction of reducing the latency of completion event
forwarding, by injecting a physical interrupt directly to the
guest system to reduce the delay caused by virtio
communication. Also by monitoring the frequency of the
guest's RDMA calls, an adaptive synchronization method will
be implemented, with mixed virtio messages and polling spin-
locks, in order to reduce the synchronization overhead. Finally,
DMA buffer memory management procedures will be studied
in-depth to further reduce the virtualization overhead.

ACKNOWLEDGMENT

This work was supported by the ExaNeSt project. This
project has received funding from the European Union's
Horizon 2020 research and innovation programme under grant
agreement No. 671553. The work presented in this paper
reflects only authors' view and the European Commission is not
responsible for any use that may be made of the information it
contains.

REFERENCES

[1] Open Fabrics Alliance. https://www.openfabrics.org

[2] Huang, W., Liu, J., Abali, B., Panda, D.K.: Infiniband support in xen
virtual machine environment. Tech. rep., Technical Report OSU-CISRC-
10/05-TR63 (2005)

[3] Infiniband Trade Association: Architecture Specification, Release 1.3.
https://cw.infinibandta.org/document/dl/7859

[4] Jose, J., Li, M., Lu, X., Kandalla, K.C., Arnold, M.D., Panda, D.K.: SR-
IOV sup-port for virtualization on infiniband clusters: Early experience.
In: Cluster, Cloudand Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposiumon. pp. 385–392. IEEE (2013)

[5] Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux
virtualmachine monitor. In: Proceedings of the Linux symposium. vol. 1,
pp. 225–230(2007)

[6] Linux Foundation: Vhost. http://events.linuxfoundation.org/sites/events/
files/slides/vhost_sharing_v6.pdf

[7] Liu, J., Huang, W., Abali, B., Panda, D.K.: High performance vmm-
bypass i/o in virtual machines. In: USENIX Annual Technical
Conference, General Track. pp.29–42 (2006)

[8] Marazakis, M., Goodacre, J., Fuin, D., Carpenter, P., Thomson, J.,
Matus, E., Bruno, A., Stenstrom, P., Martin, J., Durand, Y., et al.:
EUROSERVER: Share-anything scale-out micro-server design. In: 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE).
pp. 678–683. IEEE (2016)

[9] Musleh, M., Pai, V., Walters, J.P., Younge, A., Crago, S.: Bridging the
virtual-ization performance gap for hpc using sr-iov for infiniband. In:
2014 IEEE 7th International Conference on Cloud Computing. pp. 627–
635. IEEE (2014)

[10] PCI SIG: Single Root I/O Virtualization.
https://pcisig.com/specifications /iov/

[11] Pfefferle, J.: vverbs (2014)

[12] Pfefferle, J., Stuedi, P., Trivedi, A., Metzler, B., Koltsidas, I., Gross, T.R.:
A hy-brid i/o virtualization framework for rdma-capable network
interfaces. In: ACM SIGPLAN Notices. vol. 50. ACM (2015)

[13] Pinto, C., Reynal, B., Nikolaev, N., Raho, D.: A zero-copy shared
memory frame-work for host-guest data sharing in KVM. In:
International IEEE Conference on Scalable Computing and
Communications. pp. 603–610. IEEE (2016)

[14] Ranadive, A., Davda, B.: Toward a paravirtual vrdma device for vmware
esxi guests. VMware Technical Journal, Winter 2012 1(2) (2012)

[15] Russell, R.: virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review 42(5), 95–103 (2008)

[16] Subramoni, H., Lai, P., Luo, M., Panda, D.K.: RDMA over EthernetA
prelimi-nary study. In: 2009 IEEE International Conference on Cluster
Computing and Workshops. pp. 1–9. IEEE (2009)

[17] Xilinx: AXI Central Direct Memory Access.
https://www.xilinx.com/support/documentation/ip_documentation/axi_cd
ma/v4_1/pg034-axi-cdma.pdf

[18] Zhang, B., Wang, X., Lai, R., Yang, L., Wang, Z., Luo, Y., Li, X.:
Evaluating and optimizing I/O virtualization in kernel-based virtual
machine (KVM). In: IFIP In-ternational Conference on Network and
Parallel Computing. pp. 220–231. Springer(2010)

http://events.linuxfoundation.org/sites/events/

	I. Introduction
	II. Related Work
	III. RDMA Device Overview
	A. RDMA device hardware
	B. User-space API

	IV. Implementation of the rdma virtualization
	A. Zero-copy Shared Memory Transport Layer
	B. Frontend and Backend API Forwarding
	C. RDMA Buffer Manipulation
	D. Transfer Completion Event Forwarding

	V. Experimental Results
	VI. Conclusions
	Acknowledgment
	References

