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Abstract—Remote  DMA (RDMA)  engines  are  widely  used  in
clusters/data-centres  to  improve  the  performance  of  data
transfers  between applications running on different nodes of a
computing system. RDMAs are today supported by most network
architectures  and  distributed  programming  models.  However,
with the massive usage of virtualization most applications will use
RDMAs from virtual machines, and the virtualization of such I/O
devices poses several challenges. This paper describes a generic
para-virtualization  framework  based  on  API  Remoting,
providing  at  the  same  time  the  flexibility  of  software  based
virtualization,  and  the  low  overhead  of  hardware-assisted
solutions.  The solution presented in this  paper is  targeting the
KVM  hypervisor,  but  is  not  bound  to  any  target  network
architecture  or  specific  RDMA  engine,  thanks  to  the
virtualization at the level of the programming API. In addition,
two of the major limitations of para-virtualization are addressed:
data sharing between host and guest,  and interactions between
guests  and hypervisor.  A set  of  experimental  results  showed a
near to native performance for the final user of the RDMA (i.e.,
maximum transfer bandwidth), with a higher overhead only to
simulate the API functions used to initialize the RDMA device or
allocate/deallocate RDMA buffers.
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I.  INTRODUCTION

Data transfers have always been a main concern in large
clusters and data-centres,  amplified by a constant  request  by
applications  in  terms  of  higher  bandwidth  and  lower
communication  latency.  Remote  DMA (RDMA) engines  are
the  response  to  this  type  of  problem,  enabling  Network
Interface  Cards  (NIC)  to  perform  DMA-like  memory  data
transfers  between  nodes  of  the  same  computing  system.
Various network interconnection protocols used in data-centres,
such  as  Infiniband  [3]  and  Ethernet  through  RDMA over
Converged  Ethernet  (RoCE)  [16],  are  already  providing
support  for  RDMA  engines.  The  main  advantage  of  this
approach  is  the  drastic  reduction  of  latency,  reduced
involvement of CPU and thus higher bandwidth compared to
other communication paradigms such as network sockets. User
libraries  based  on  RDMA  transfers  are  being  used  for
databases, scientific computing and cloud computing in order
to  optimize  communication  and  data  movement  between

application instances. In parallel, large clusters/data-centres are
extensively  relying  on  virtualization  as  a  tool  for  improved
utilization of system resources (e.g., memory, disk, CPU) and
hardware consolidation. This is achieved by running multiple
virtual instances of a system on the same hardware machine. In
addition virtualization is used for resilience thanks to facilities
like virtual machines live migration and snapshots.

The virtualization of an I/O peripheral such as an RDMA
can  be  implemented  mainly  in  the  following  ways:  direct
device  pass-through,  exploiting  hardware  support  from  the
hardware  with PCI  Single-Root  I/O Virtualization  (SR-IOV)
[10,4]  or  by  para-virtualization  [14].  Direct  device  pass-
through, although enabling almost native performance, creates
a 1-to-1 mapping between the device and one virtual machine.
This means that an RDMA device on a compute node could not
be shared among multiple virtual machines, losing the benefits
of  virtualization  in  terms  of  better  distribution  of  available
hardware  resources.  PCI SR-IOV overcomes  the problem of
sharing  the  device  between  multiple  virtual  machines,  but
requires support from the hardware that is not always available
and reduces the effectiveness of snapshots and live migration.
Finally, para-virtualization offers the highest level of flexibility
compared with the previous two solutions by being a software-
based  technique,  but  suffers  from  a  major  drawback:  high
virtualization  overhead  due  to  frequent  interactions  with  the
hypervisor  and  data-sharing  handling.  RDMA devices  can
usually be programmed either at the bare metal level, or via a
dedicated user-space API. Virtualizing the bare metal interface
would  lead  to  a  dedicated  virtualization  solution  for  each
device on the market, while virtualizing at the API level creates
a generic solution that can be easily adapted to new APIs, and
enables  devices  using  the  same  programming  API  to  be
virtualized with the same implementation of the framework.

In this paper we present a  generic and lightweight RDMA
para-virtualization framework for the KVM [5] hypervisor that
overcomes  the  limitation  of  hardware  assisted  solutions,
eliminating  also  the  overheads  of  para-virtualization.  The
solution virtualizes the RDMA engine at the user-space library
level by using a technique called API Remoting, based on an
API interception mechanism and a split-driver architecture. The
benefits of this solution are threefold:



1. One  virtualization  framework  core  for  multiple
devices/APIs.

2. Native sharing of the device among multiple virtual
machines.

3. Low  virtualization  overhead  due  to  reduced
interactions between guests and hypervisor.

From  the  application  perspective  the  virtualization
framework will be completely transparent, since the part of the
driver installed in each guest frontend will export the same stub
as  the  original  programming  API.  Internally  the  frontend
intercepts API function calls and re-directs them to the host. On
the host side, the second part of the virtualization framework
backend is in charge of collecting requests  from the various
guest frontends to be relayed on the physical  device.  It  then
becomes  the  responsibility  of  the  backend  to  orchestrate
requests from multiple guests, creating the illusion of multiple
RDMA  devices  available  on  the  platform.  This  approach
separates  the  specific  API  implementation  from  the
virtualization core, making it easy to extend API Remoting to
new APIs. The communication between frontend and backend
is ensured by a third component, the transport layer, in charge
of actually passing the requests from frontends to the backend
process

However, this is not enough for a full solution, since for the
virtualization  of  a  device  like  an  RDMA additional  factors
should be taken into account: interactions with the hypervisor,
and  guest-host  data  sharing.  The  former  starts  becoming  a
performance issue when the frequency of interactions is high,
and  should  be  minimized  since  every  interaction  with
hypervisor (hypercall) implies a guest exit that is a renowned
expensive  operation  [18,  7].  The  solution  presented  in  this
paper reduces the interaction between the virtual machine and
hypervisor  to  the  control-plane only,  while  completely
avoiding such interactions during regular  RDMA operations.
The  control-plane  is  implemented  in  the  proposed  solution
using virtio [15], a well-known para-virtualization framework
using circular buffers  vrings in shared memory for guest-host
communication. The second problem, guest-host data sharing
also known as the data-plane, is also of utmost relevance and
in this paper  is  addressed within the RDMA transport  layer.
RDMA operations involve data transfer of buffers allocated by
user-space applications, and in the bare metal operation of the
device do not  imply data copies  since the RDMA hardware
have direct access to those buffers. When virtualization comes
into the picture data buffers have to be shared between guest
user-space and the RDMA device, and guest-host data copies
should be avoided in order minimize the performance loss due
to  virtualization.  In  this  paper  guest-host  data  sharing  is
implemented with a zero-copy mechanism [13], enabling true
memory sharing between guest and host extended down to the
RDMA device.

The RDMA virtualization solution presented in this paper
has been tested with an FPGA implementation of an RDMA
engine designed for the Unimem Global Address Space (GAS)
memory  system.  Unimem  has  been  developed  within  the

Euroserver  [8]  FP7 project,  to  enable  a  system-wide  shared
memory abstraction between the nodes of a data-centre.  The
prototyping  system  is  based  on  ARMv8  processors,  but  it
should be noted that the API Remoting RDMA virtualization
framework  has no limitations with respect  to the target  host
processor.

The rest  of the paper is  organized as follows: Section II
provides a comparison with the state-of-the-art solutions for the
virtualization  of  RDMA devices.  Section  III  describes  the
target  RDMA  device  and  its  user-space  API.  Section  IV
provides  the  detail  of  the  API  Remoting  based  RDMA
virtualization.  In  Section  V a  set  of  experimental  results  is
presented to validate the proposed solution. Finally, Section VI
concludes the paper and identifies possible extensions.

II. RELATED WORK

Various studies  have been performed on virtualization of
RDMA devices, covering both hardware based solutions with
the support of PCI SR-IOV [4, 9], and also para-virtualization
solutions [2, 12, 14, 11, 7]. Most of the previous work in this
field was focused on the InfiniBand architecture [3], followed
by RoCE and iWARP.

Musleh  et  al.  [9]  demonstrated  an  RDMA  SR-IOV
virtualization solution targeting InfiniBand networks,  with an
overall performance overhead of 15-30% compared to native
performance.  Also  in  [4]  authors  analyzed  the  SR-IOV
virtualization impact on HPC field, with evaluation results for
applications based on MPI and Unified Parallel C paradigms.

Authors in [2] have presented a guest driver for the Xen
hypervisor to provide DomU support  for InfiniBand devices.
With hypervisor cooperation, DomU is able to perform direct
accesses  to  device  mapped  regions  e.g.,  the  User  Access
Region,  bypassing  hypervisor  involvement  for  queue  pairs
handling. Data accesses and event handling can be performed
directly  from  the  guest  user-space  application,  reducing
overhead and featuring performance near to native.

In  [14],  VMware  proposes  the  vRDMA  interface  for
VMware  ESXi  guests.  Such  a para-virtualization  framework
provides  RDMA capabilities  to  guest  applications  through a
user-space library, compatible with the RDMA ibverbs library
[1].  The  interfaced  library  cooperates  with  the  guest  device
driver,  which  redirects  API  calls  to  the  hypervisor.  This
solution enables also support for virtual machine checkpoints
and live-migration (vMotion).

Pfefferle  et  al.  [12]  demonstrated  the  HyV  para-
virtualization  framework  for  RDMA-capable  network
interfaces, virtualizing an RDMA device at device driver level.
The proposed framework consists of a split  driver model,  in
host  and guest  kernels,  while guest  applications can use the
OpenFabrics OFED RDMA API [1] to interact with the RDMA
device. This hybrid framework supports InfiniBand and iWarp
NICs,  and  the  design  of  the  split  driver  model  is  able  to
separate  para-virtualized  control  operations  from  data
operations. Data path operations do not involve the hypervisor,



since  the  host  driver  is  responsible  to  provide  guests  direct
access to device resources.

The work presented in this paper has commonalities with
the above mentioned studies, but also main differences that go
mostly  in  the  direction  of  a  more  flexible  and  hardware
agnostic  RDMA  virtualization  solution  without  sacrificing
performance.  The  main  difference  with  hardware  assisted
solutions [9, 4] (SR-IOV) lies in the core of the virtualization
approach.  The  solution  proposed  in  this  paper  is  based  on
software and provides a more flexible virtualization interface,
with a better support for device sharing and easily extensible to
support  virtual  machines  migration  migration.  Due  to  the
hardware design of the RDMA device [8] targeted in this paper,
the proposed solution has to separate RDMA buffers handling
from target network architectures such as InfiniBand, helping
the resulting virtualization technology in being agnostic with
respect to any target network technology. The RDMA buffers
considered in this paper must be contiguous in host physical
memory,  while  in  other  virtualization  works  targeting
InfiniBand  devices  [12]  RDMA  buffers  are  contiguous  in
virtual memory. The work presented in this paper overcomes
this problem since RDMA buffers are always allocated by the
host  following  device's  requirements.  Virtual  machines  will
access  such buffers  through a specific  mapping,  without the
need  to  know  the  physical  organization  of  the  buffers.
Compared to [12] the solution proposed in this paper leverages
on the user-space API used to program the RDMA device. With
this  approach  all  the devices  adopting the same API can  be
virtualized  using  the  same  framework,  without  the  need  of
major  adaptations  (e.g.,  dedicated  virtualized  kernel  device
driver). The binary implementation of the API for each specific
device is the only requirement behind the approach proposed.
The  extension  to  diverse  APIs  is  seamlessly  simple,  since
requires only the fronted library to be adapted together with the
corresponding  part  in  the  backend.  While  the  core  of  the
virtualization solution can be kept untouched. In addition, even
if  API  Remoting  is  based  on  para-virtualization,  the  global
overhead  is  minimized  thanks  to  the  separation  of  data  and
control  path.  With  the  latter  being  the  only  requiring
interactions with the hypervisor.

III. RDMA DEVICE OVERVIEW

This section provides an overview of the RDMA hardware
used for testing and its API exposed to user-space applications.
The information  in  this  section  is  needed  in order  to  better
understand the technical  choices  taken for  the design of  the
virtualization solution.

A. RDMA device hardware

The  RDMA block  is  based  on  the  AXI  Central  Direct
Memory Access  IP from Xilinx  [17].  This  block  contains  a
slave  AXI4-Lite  interface  which  exports  a  set  of  memory
mapped registers to configure and program device operations.
There  are  two  AXI4  master  interfaces:  one  to  perform  the
transfers  between  the  source  and  destination  memory
addresses,  and  one  to  fetch  DMA  descriptors  from  main

memory  and  initiate  memory  transfers  without  CPU
involvement. Transfers can be programmed to notify the host
CPU in case of success or failure. The RDMA engine performs
memory transfers between the nodes of a cluster over a global
address space defined by the Unimem memory system.

B. User-space API

The RDMA user-space API is centered around objects that
represent cluster nodes, DMA buffers and DMA transfers. Each
object  is  associated  with  a  unique  identifier.  The operations
enabled by this API are the following: 

 initialization/clean-up of the RDMA library,

 allocation/deallocation of DMA buffers,

 transfer initiation,

 transfer querying,

 association of objects with identifiers, and vice versa. 

API calls for DMA buffer allocation and transfer initiation
with an asynchronous completion notification are handled with
particular attention since these operations have distinct cases in
the virtualization context.

DMA memory management calls are responsible to handle
the hardware prerequisites, i.e., buffer alignment, and to update
the consistent view of DMA buffers among the network. Once
a  local  allocation/deallocation  takes  place,  the  connected
cluster  nodes  are  informed  for  the  DMA  buffer
registration/deletion,  as a  safeguard against  incorrect  RDMA
transfers.  The  RMDA  engine  is  capable  to  transfer  data
between  contiguous  physical  memory  regions  and,  the
allocation mechanism must ensure that buffers are physically
contiguous. Generic kernel allocators do not guarantee to serve
large  allocations  of  contiguous  memory  (e.g.  maximum  of
4MiB  with  the  Linux  slab  allocator).  Consequently,  DMA
buffers  (allocation/de-allocation)  are  handled  by  a  dedicated
memory allocator. A global pool for DMA buffers is carved out
from the main memory of each of the nodes during the start-up
phase, and is later assigned to the DMA allocator. Dealing with
physical  contiguous  buffers  creates  complications  for  the
virtualization  of  the  RDMA device;  however,  the  solution
proposed  in  this  paper  overcomes  all  these  problems  as
described in Section IV-D.

RDMA transfers  can  be  initiated  between  two  allocated
DMA buffers, where one of them must reside on the local node.
The RDMA initiator can determine the completion status of an
active  transfer  using  the  transfer  polling  function,  or  by
registering a callback function. The transfer initiation API calls
are  always  non-blocking and  return  to  the process  a  unique
transfer  identifier  which  can  be  later  used  with  the  polling
function. The alternative method is to specify a user-defined
function  as  the  transfer  callback  which  will  be  called  upon
transfer completion.



IV. IMPLEMENTATION OF THE RDMA VIRTUALIZATION

This section describes the implementation of the proposed
virtualization solution,  to  provide  RDMA services  to  virtual
machines  running  on  top  of  the  KVM  hypervisor.  The
virtualization of RDMA implies passing commands from the
guest to the host and finally to the device, and also enabling
virtual machines to handle DMA buffers by still conforming to
the requirements of the RDMA hardware device (e.g. buffers
need to be contiguous regions of physical memory).

The  virtualization  solution  demonstrated  in  this  paper  is
based  on  API  Remoting,  a  software  para-virtualization
technique enabling sharing of a device among multiple virtual
machines,  by intercepting API function calls  and forwarding
them over a cooperating set of software layers from the guest to
the  host  system.  Our  solution  consists  of  three  layers:  the
backend,  the  frontend  and  the  transport  layer.  The  frontend
layer,  in the guest,  is  a shared library that  exports the same
interface  as  the  original  API  and  forwards  user-space
applications  requests  over  the  transport  layer.  Passing  the
RDMA buffer's content between the host and the guest using
methods such as TCP/IP sockets would significantly increase
the  performance  overheads,  due  to  memory  copies  and  the
complexity of the protocols involved. The proposed data-plane
is optimized to avoid memory copies which heavily impact the
overall performance.

The  backend layer  is  a  host  user  process,  listening  for
incoming requests over the transport layer. When it receives a
request from a guest, it reads the command and their arguments
and programs the device accordingly. Return values and error
notifications are propagated back to the source frontend. This
layer  is  the  only  one  actually  interacting  with  the  RDMA
hardware engine.

The transport layer is responsible for delivering data from
the backend to the frontend layer, and vice versa. In our case,
the transport  layer relies on shared memory regions between
the host and the guest system to avoid performance degradation
due to memory copies.

The overall architecture of the solution is illustrated in Fig.
1, based on the split driver model, with frontend and backend
components connected over the transport layer. Guest and host
kernels  can asynchronously transfer  data between them over
virtio  [15],  a  para-virtualization  framework  supporting
configurable buffers and asynchronous notifications. The host
handles the virtio transport  queues (virtqueues)  in the kernel
through  the  vhost  framework  [6].  The  host  utilizes  virtio
transfers to inform the guest about a transfer completion event,
a synchronization event or to initialize a shared buffer using the
guest-to-host zero-copy shared memory framework described
in  [13].  The  guest  uses  virtio  to  provide  information  about
shared  memory  buffers  or  synchronization  events.  Transfers
over  virtio  involve  a  guest  exit,  which  increases  the
performance  overhead.  For  this  reason,  only  control-plane
messages are sent via virtio, while data transfers to and from
DMA buffers are handled over shared memory.

A. Zero-copy Shared Memory Transport Layer

The transport layer used in this work is based on zero-copy
shared  memory,  to  avoid  potential  performance  degradation
due to frontend-backend communication and synchronization.
The zero-copy shared memory mechanism adopted is based on
[13], which has been improved for the purposes of our work. 

Shared  memory  between  guest  and  host  is  enabled  by
exploiting  a  feature  of  the  KVM  hypervisor  that  bases  its
memory virtualization capabilities on a two-level page table.

In the specific case of an ARM system, a memory access
from guest  is  subject  to  two  memory  translations.  First  the
guest  virtual  address  (VA)  is  translated  to  a  guest  or
intermediate physical address (IPA), and from IPA to a physical
address (PA). An IPA is to be considered as a physical address
from the guest's point of view, and as virtual address from the
host's point of view. The zero-copy shared memory framework
allows buffers allocated in guest memory to be mapped by a
user-space  process  in  the  host,  exploiting  the  two-level
translation.  Physical  memory  pages  associated  with  guest
memory are intercepted to be remapped into the host process'
virtual memory map. To perform this mapping the host needs
to know the guest physical frames (PFN) information for each
page composing the buffer to be remapped. Upon request by
the host, the guest kernel sends all the PFNs to the host kernel
using virtio. Once the host kernel has gathered this information,
it can inspect the second-stage page table entries to construct a
virtual memory area based on the pages that compose the guest
buffer.  After  the  mapping  procedure,  both  processes  (in  the
guest  and  the  host)  have  in  their  page  tables  corresponding
entries that point  to the same physical  memory.  It has to be
noted  that  this  approach  can  be  used  also  with  other  CPU
architectures, such as x86.

Figure 1. API Remoting abstract infrastructure

Figure 2.  Interactions between the overall architecture components



B. Frontend and Backend API Forwarding

This section describes how RDMA API calls are forwarded
from frontend to backend, as well as how return values are sent
back. At the basis of this implementation there is the shared
memory  mechanism  described  in  Section  IV-A,  used  for
communication between frontend and host backend.

To avoid  the  performance  overhead  of  existing transport
mechanisms e.g., sockets or virtio, the frontend allocates during
initialization phase a region of memory that is shared with the
backend  (see  Fig.  2).  Such  memory  region  is  used  by  both
cooperative  processes  to  exchange  information  about  the
forwarded calls without any intervention of the hypervisor.

To forward  an  API  call,  the  frontend  layer  stores  in  the
control  shared  memory  area  the  information  related  to  the
specific  API function.  This information consist  of  an unique
call  identifier  and  the  function  call  arguments.  API  call
identifiers  are  unique  for  each  function  and  known to  both
backend  and  frontend.  Each  identifier  is  an  integer  that
corresponds to an entry in the functions table used by the host
backend to perform the correct API call. 

The control  shared memory area must be protected from
concurrent  accesses  to  avoid  conflicts.  To  make  sure  that
accesses will be exclusive, synchronization can take place with
memory spin-locks which reside in the shared memory itself.
Spin-locks  provide  a  simple  solution  but  could  starve  the
system by taking the whole scheduled process quantum of a
process spinning on the lock, thus degrading the overall system
performance.  An  alternative  solution  is  to  asynchronously
inform  the  remote  process  for  a  synchronization  event  via
virtio. Virtio communication is capable to trigger an interrupt
on the remote system. This asynchronous behavior is useful for
a synchronization primitive. The caller process (e.g., frontend)
will be put into sleep state until the remote process (e.g., the
backend) will call for a synchronization event. The procedure
of processes synchronization is the following: the local process
calls the Forwarding an API call kernel interface to notify the
remote kernel  for  a  synchronization event.  A virtio  message
will  be  transferred  to  the  counterpart  driver  to  indicate  a
pending synchronization event. When the remote process will
call the synchronization event, a virtio message will be send
back to the local kernel. In this way only one process will use
the shared memory at a time, while the other is put to sleep.
However  both  solutions  have  drawbacks:  spin-locks  burn
precious  CPU  cycles,  while  communication  over  virtio  is
slower  and  involves  guest  exits.  A  possible  optimization
consists of a mixed solution. Synchronization could by default
start  using  spin-locks.  In  case  of  long  lasting  RDMA
operations, if no synchronization point is reached after a certain
time quantum, the synchronization method can be switched to
virtio and the calling process goes into sleep state releasing the
CPU. With this approach short RDMA operations can benefit
from the high speed reaction provided by spin-locks, while for
long lasting operations CPU is  not  kept  active  polling on a
spin-lock. This will be considered as an enhancement for future
extensions of this work. 

Sharing  of  the  virtualized  device  with  multiple  guest
systems is a central  point of our para-virtualization solution.
The internal structure of the backend process is shown in Fig.
3.  A  monitor  thread  listens  to  a  socket  interface  and  is
responsible manipulate the guest workers. Each worker thread
is associated to one guest identified by  the process identifier of
the  host  machine  virtualizer  (i.e.,  QEMU).  The  socket  is
currently  used  by  frontend  processes  during  initialization  to
notify the backend of their presence. Upon guest registration a
new  worker  thread  is  created,  and  a  common  initialization
procedure takes place: the thread opens a private file descriptor
to the extended zero-copy kernel  interface.  The descriptor is
used by the host kernel interface to distinguish the target guest
and  its  resources  e.g.,  virtqueues.  A control  shared  memory
area is maintained between each thread and the related frontend
process to forward API calls and to place return values.

Figure 3. Backend internals

Figure 4. RDMA buffer mapping to guest memory

Figure 5. The transfer completion event forwarding procedure.

C. RDMA Buffer Manipulation

As described in Section III the RDMA engine targeted by
this work is able to transfer data from/to contiguous physical
memory regions. However each guest physical address space is
allocated from a host user-space application (i.e., QEMU), and
from  the  host  point  of  view  is  not  necessarily  physically
contiguous. This means that RDMA buffers should be actually
allocated by the host, to ensure they are physically contiguous,
and  then  mapped to  the  guest  physical  memory space.  One
possible  solution  to  this  memory  layout  issue  is  to  actually



copy the buffer to be transferred from guest to host, and then
program  the  actual  transfer.  This  solution  leads  to  a
performance degradation proportional to the size of the data to
be transferred and thus is not a viable solution. In this work this
problem  is  overtaken  by  extending  the  existing  zero-copy
framework in [13], to be able to map buffers allocated from the
host into the memory map of a guest user-space process. The
goal  is  to  provide  guests  direct  access  to  RDMA buffers
allocated by the host.

Upon  the  request  of  allocation  of  an  RDMA buffer  the
frontend will  locally  allocate  a  buffer  of  the same size,  and
forwards the allocation call to the host backend together with
the PFNs of all the pages composing the buffer just allocated.
From the guest perspective the buffer allocated will be seen as
the actual RDMA buffer. When the backend process receives
the allocation request, it calls the native user-space library to
allocate a new RDMA buffer. The allocation is handled by a
custom  kernel  allocator  and  the  memory  is  physically
contiguous  and  not  swappable,  thus  suitable  for  RDMA
transfers.

Once allocation is done on both sides, all the pages of the
actual RDMA buffer allocated in the host are remapped on top
of  the  physical  pages  backing  the  buffer  allocated  by  the
frontend. To implement this behavior, the guest PFNs received
with the allocation call are used to identify the physical pages
backing the frontend buffer on the host side, and change the
second stage mapping in order to point to the physical pages of
the host RDMA buffer (Fig.  4).

The memory mappings of the guest physical memory reside
in a virtual memory area (VMA), created by the process that
spawned  the  virtual  machine  i.e.,  the  QEMU  process.  The
procedure of remapping the RDMA buffer pages to the correct
QEMU virtual memory area is handled by a kernel interface,
which is an extension of the zero-copy framework in [13]. On
the host side,  the guest PFNs are converted into host virtual
addresses  (HVA in Linux terminology).  A page walk on the
host  virtual  addresses  is  sufficient  to  retrieve  the  page
structures  that  need to  be remapped.  The existing pages are
unmapped from the QEMU virtual memory, and second stage
mapping updated to point to the pages of the actual RDMA
buffer. The unmapped pages are also freed so to avoid wasting
memory.  As  result  of  the  allocation  procedure,  the  backend
returns to the guest  the RDMA buffer  object. From now on,
guest  and  host  are  able  to  access  the  same  RDMA buffer
allocated in the host, and the buffer initially allocated by the
guest  was  used  as  a  place  holder  to  create  the  page  table
entries.  Note  that  no  memory  overhead  is  added  with  this
procedure, since the pages originally allocated by the guest are
freed.  Remapping of the memory offers  to the guests native
access to the DMA buffer, with a slight initial overhead while
performing the mapping due to the hardware page-walk of the
second stage memory translations.

D. Transfer Completion Event Forwarding

The  RDMA device  can  be  programmed  to  generate  a
transfer  completion  event  towards  the  calling  process.  This

behavior  has  been  maintained  in  the  virtualized  RDMA
framework,  and  guest  applications  receive  regular  transfer
completion  events.  The  RDMA  library  uses  a  call-back
mechanism in order to register a completion event notification.
User-space applications register their completion callback that
is invoked by the RDMA library when the completion IRQ is
signaled by the device. The RDMA driver uses a Unix signal to
notify  the  RDMA library  of  the  event,  and  in  turn  call  the
correct  user-registered  call-back.  In  this  proposal  completion
notification  is  still  based  on  a  call-back  mechanism,  but
distributed  in  two layers.  Fig.  5  illustrates  how the  RDMA
completion interrupt is first handled by the RDMA user-space
library,  and how the backend process  forwards  it  to a  guest
process.  The  RDMA interrupt  is  connected  to  the  interrupt
controller of the host CPU, where the host kernel registers a
dedicated interrupt service routine. This routine dispatches the
IRQ  to  the  RDMA driver  handler  (1),  which  informs  the
RDMA API of the transfer completion using a Unix signal (2).
The  signal  handler  is  registered  during  the  RDMA library
initialization  routine,  and  it  is  responsible  to  handle  signals
from the RDMA s. Once a signal is received, the handler calls
the user defined call-back registered by the user-space process
when initializing the RDMA transfer (3). In this case the user-
space process is the API Remoting backend that registered its
own completion backend. The backend process is then in turn
able  to  identify  the  destination  guest  (4),  and  forward  the
transfer  completion  event  (5).  Event  forwarding  is  done  by
sending  to  the  guest  a  message  over  a  virtio  queue.  The
message is caught by the guest virtio driver (6) that raises a
Unix signal to inform the frontend about the event (7). Finally,
the frontend signal handler invokes the completion call-back
registered by the guest application (8). 

This mechanism enables to preserve the original behavior
of the RDMA library, with the minimum possible number of
guest exits (only one when sending the virtio message).

V. EXPERIMENTAL RESULTS

This section describes the experiments performed and the
results obtained, in order to validate the RDMA virtualization
solution proposed in this paper. All the experiments have been
performed  on  a  prototype  system  composed  by  six  nodes
equipped with the RDMA device. Each node is based on the
ARM Juno R2 development board which the FPGA is loaded
with the UNIMEM IP.

A set  of  test  cases  has  been identified in  order  to  study
various  aspects  of  RDMA  virtualization  based  on  API
Remoting, either at the global level as perceived from the user
and  also  of  the  individual  components  of  the  virtualization
framework. The test cases are listed below:

 DMA buffer allocation time

 Maximum  bandwidth  utilization  for  variable  sized
burst transfers

 Overhead of transfer completion event forwarding 



 Comparison with the micro-benchmark set of work in
[12]

The  first  three  test  cases  have  been  executed  in  two
scenarios:  1)  Native,  where  the  RDMA device  is  directly
accessed from applications running on the host; 2) Virtualized,
where  the  RDMA  is  used  by  virtual  machines  via  API
Remoting. In  both scenarios  two nodes of  the prototype are
involved in the data transfers.

DMA buffer allocation: The time needed for an RDMA
buffer  allocation  is  different  in  the  native  and  virtualized
scenarios. In the native scenario,  the allocation is almost not
affected by the size of the buffer to be allocated. In contrast, in
the virtualized scenario the time needed to serve an RDMA
buffer allocation issued by a guest is proportional to the size of
the buffer. The main source of overhead is the page inspection
and the remapping procedure, which is necessary to reconstruct
the  mapping of  a  physically  contiguous DMA buffer  in  the
guest's process address space. To be noted is that this overhead
is paid only while allocating the buffer,  while all subsequent
accesses (read/write) will be served with native performance.
Fig. 6 shows the time (ms) needed to allocate an RDMA buffer
of size varying from 512KiB to 8MiB.

Bandwidth  utilization:  Fig.  7  shows  the  transfer  rate
obtained in case of single DMA transfer of variable size. While
Fig.  8 shows the average bit-rate measured when transferring a
total amount of 1GiB, with multiple bursts of variable size. It is
immediate  to  see  how  in  case  of  a  single  transfer  the
performance overhead of the virtualized solution is negligible,
reaching its  maximum of 7% for  a  transfer  of  512KiB. The
transfer  time used  to  compute  the  transfer  rate  is  measured
between the actual guest transfer call, and the moment when
the  guest  application  receives  the  transfer  completion
notification.  Fig.  8  shows the average  bandwidth to  transfer
1GiB of data in bursts of variable size (from 512KiB to 8MiB).
In this case the overall virtualization overhead is proportional
with  the  number  of  transfers  issued.  However  the  highest
overhead measured is ~4% with bursts of 2MiB. Even in this
scenario,  higher completion time is  measured with bursts of
smaller size. As visible from the graphs, burst transfers have
lower virtualization overhead (4% versus 7% in case of single
transfer)  thanks  to  the  support  for  multiple  outstanding
transactions enabled by asynchronous API calls. Applications
in the guest receive the transfer ID even if the transfer is not yet
submitted by the backend to the device.  The backend tracks
subsequent transfers from the guest, reducing the overall time
required  for  the  submission of  burst  transfers.  This  way the
virtualization overhead to process one burst is overlapped with
the transfer of the previous burst.

Completion  notification  latency:  Asynchronous  RDMA
transfers register a completion callback that in the case of the
virtualized scenario is delayed, crossing the various layers of
the  virtualization  stack.  This  delay  is  not  fully  predictable,
since it  is affected by the current load of the host and guest
system.  The  completion  event  forwarding  delay  has  been
measured on a system under normal working conditions where
there are other processes competing for the CPU. We  conclude

that events notifications have an average delay of 130 - 140μs.
In comparison with an RDMA buffer allocation of 512KiB, the
event  notification  latency  is  ~240  times  lower.  This  is  to
highlight  that  in  case  of  a  complete  RDMA transfer,  the
completion notification contribution is negligible over the total
transfer  time  (initialization  +  data  movement  +  completion
notification).

Synchronization:  Fig. 9 shows the average time required
to  synchronize  frontend  and  backend  processes  using  both
synchronization  techniques,  and  as  expected  synchronization
with spin-locks is orders of magnitude faster than the primitive
based on virtio. This big difference makes the mixed approach
described  in  Section  IV-B  an  interesting  enhancement  to
consider as a next step. In both cases, measurements include
the system call overhead used to measure the time elapsed.

Figure 6. DMA buffer allocation time, from 512KiB to 8MiB.

Figure 7. Maximum transfer rate for a single transfer.

Figure 8. Average bit-rate for a transfer of 1GiB split in burst transfers from
512KiB to 8MiB.

Figure 9. Spinlock and Virtio average time.

Figure 10. Virtualization overhead on the latency test



In order to quantify the overhead that this RDMA solution
introduces  with  respect  to  a  native  RDMA execution,  the
micro-benchmarks object of this work [12] have been used to
measure  throughput  and  latency  performance.  In  [12]  the
experimental hardware was based on a cluster with Intel Xeon
nodes  connected  through  the  Mellanox  ConnectX-3  VPI
56Gb/s  FDR  Infiniband  RNICs.  The  HyV  virtualization
framework showed latency and throughput values similar to a
native execution, with message sizes of 4B and 16KB and on
the latency test with 1B and 64KB on the throughput. Using
HyV, the guest system was able to handle the network’s card
resources,  e.g.,  the  completion  poll  queues,  from  the  guest
process without any hypervisor or OS involvement.

In our case, since the device virtualization is taking place
on the user-space API and the framework has no direct access
to device’s resources, some minimal communication overhead
had  to  be  introduced  between  the  function  initiator  (VM
application) and  the executor  (backend  thread)  for  a  control
operation. The introduced overhead is near to 3μs and does not
depends on to the transfer’s size as shown on Fig. 10, 11 using
polled  transfers.  However,  the  event  based  solution  did  not
performed  as  well  as  the  polling  counterpart  due  to  the
mechanism of software IRQ injection into the guest.

Figure 11. Virtualization overhead on the throughput test

VI. CONCLUSIONS

This paper presented a generic  RDMA para-virtualization
solution based on API Remoting, providing at the same time
high  bandwidth  and  low  latency  transfers  to  applications
running within virtual machines. The separation of the RDMA
operation  framework  between  control-plane and  data-plane
minimizes the overall overhead to control operations only. In
addition the solution presented enables applications running in
virtual  machines  to  directly  access  physically  contiguous
RDMA buffers, with no virtualization overhead thanks to guest
memory  remapping.  The  experimental  results  discussed  in
Section  V  demonstrate  close  to  native  performance,  and
identify memory management as the most expensive type of
operations.  Further  extensions  of  this  work  will  go  in  the
direction  of  reducing  the  latency  of  completion  event
forwarding,  by  injecting  a  physical  interrupt  directly  to  the
guest  system  to  reduce  the  delay  caused  by  virtio
communication.  Also  by  monitoring  the  frequency  of  the
guest's RDMA calls, an adaptive synchronization method will
be implemented, with mixed virtio messages and polling spin-
locks, in order to reduce the synchronization overhead. Finally,
DMA buffer memory management procedures will be studied
in-depth to further reduce the virtualization overhead.
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