	٢	1				٠	۲	*		*	٠	۲	*	٠	🥒	1	*	*	*	*	*	<i>*</i>	2	" "	*	**	*	1	1
					*	٨	۲	٢	٨	**		*		*	1	1		2	1	*	*	1	*	. *	1	1	2	\$	*
*			rh		Ri	2	1			A	Ň		cc			Ń	n	O	13		M		ń	on	1	m		×.	
		4										1						5,									" *	1	*
۲		in		a	a)	KİG	2S	A	cr	05	S.	M	Ö 1	p	h) k)g	y	an	d	Er	V	r	on	n	le	nt	٠	1
*			*		2		۲.										M	1	<i>.</i>	*			*	*	1	1	1	1	?
۲	*	S	*	\$		*	÷	*		*	*			1			*	2	()	\$	1	2	1	\$	1		1	<i>,</i>	ø
*		۲			*		<i>3</i>	1	3	*	*	\$	۲	1	1	1			1	\$	1	\$	1	2	2	1	٠	*	*
			*					٢	۲		27	*	*	3	1	4	*	*		<i>.</i> ,*	*	٠	1	1	1	*	2	<i>"</i>	٢
		۵	٢	*		٢		۲	1	*	٢	\$, *	*	١		\$	1	,*	*	*	2	1	?	1		-	٢	<i>"</i> *
		1	-			۲	۲	*		es	Ċ		là	n	d	ð	5:		d	ð	1	*	٢	2	*	*	2	¢	1
٢		*	**												1					*	8	۵	4	<i>.</i> ?	*		-	1	**
	٩	۲	\$			٩		S	yc	Ine	y∗I	ns	tit	ute	e fo	or .	As	tro	onc	pm	y ,	-	1	1	*	*	*	1	1
۰	<u> </u>	٨	*	۱	۲	\$	۲	*					2	?		1		٠	<i>🌮</i>	₫	1		1	2	1	1		2	1
٢		۲	4		olla	bòr	ati	on	wit	h:J	oss	Bla	nd	Ha	wt	hởr	n, S	Sara	h E	Brou	ugh	, J u	lia	Bry	ant	<u>,</u>	1	0	1
-	٩	\$	B	ıca	Co	orte	se,	Car	oli	ne	Fos	ter,	Nic	c Sc	ott	, ar	nd S	SAN	NI- 7	Fea	m"	ø	¢*	\$		1	\$	1	1

THE UNIVERSITY OF

JEY

Galaxy Evolution Across Time Paris, June 2017

majority of early-type galaxies have regular 2D velocity fields

ATLAS^{3D} results suggest two kinematic families: 1) ~85% nearly oblate fast-rotators &

2) ~15% slow rotators with complex dynamical structures

Link between morphology and kinematic structure?

Cappellari 2016; Fogarty+ 2015; Falćon-Barroso+2015

Jesse van de Sande Sydney Institute for Astronomy

4

What are the physical processes responsible for galaxy transformations?

How does mass and angular momentum build up?

How do we dissect the assembly history of individual galaxies?

THE BUILD-UP OF MASS AND ANGULAR MOMENTUM IN GALAXIES ACROSS MORPHOLOGY AND ENVIRONMENT WITH SAMI

		8 N					
	- / # # # # * * *	1 × 5 m + 5			1	# # / N # * *	- # X X # -
	1	N		FREE NAMES OF TAXABLE &		/ / / = (x \ \ =	
		1 1 m + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	* X (* * * * * * * * * *	*********	S ~ 8 S S 3		
		N	1 1 1 a a a a a a a a a	**********			
		1.001			S / S S / S M S / S		
			1 444 m m m m mm	2.1.1.1.			
\$ \$ m + / *			/	Reven X an and		A	
				A 10 10 10 10 10	A		
		· · · · · · · · · · · · · · · · · · ·	***/**/***		Sector Sector		
				× · · · · · ·	A A Frank I		
				St. + + (St. +) +	1 N + 1 N N +		
						· · · · · · · · · · · · · · · · · · ·	
	I CAR BERN	I S I I M MICH					

		(m. n	1	S	··· · · · ·		
					A 14 4 14 4 4		
	1						
			1102 11/21				
				A + A # #	A 14 1 1 1 1 1		
	2 ×						

- The Sydney-AAO Multi-object Integral field spectrograph (Croom et al. 2012).
- 1 degree diameter field-of-view.
- 13 x 61 fibre IFUs using hexabundles (Bland-Hawthorn et al. 2011; Bryant et al. 2014).
- Fused fibre bundles; high fill factor, 75%.
- 15" diameter IFUs, 1.6" diameter fibres.
- Feeds AAT's ground-based AAOmega spectrograph.
- Wavelength coverage/resolution: Blue: 3700-5800A, R~1800, sigma=70km/s Red: 6300-7400A, R~4260, sigma=30km/s

galaxy survey IFS Survey of 3600 galaxies

- Total of ~200 nights, due to complete in mid-2018.
- Primary fields using GAMA (Driver et al. 2010)
 - Robust group/pairs catalogue (Robotham et al. 2011).
 - GALEX, SDSS, VST, UKIDSS, VISTA, WISE, Herschel imaging. •
- HI 21cm from ALFALFA (half the area), and in the future ASKAP.
- 8 clusters targeted (~800 gals) (Owers et al. 2017)

Coming Soon: Data Release 1

772 galaxies, reduced spectral cubes, emission-line & star-formation maps

SAMI Galaxy Survey Target Selection

- Median major axis Re=4.4" (10-90% range 1.8-9.4")
- IFU samples to median 1.7Re.
- ~2/3 of galaxies in GAMA group cat (Robotham+11).

The diversity of SAMI science so far

- Kinematics and Angular Momentum Fogarty++ 2014; Fogarty++ 2015; Cecil++ 2016; Oh++ 2016; Cortese++ 2016; van de Sande++ 2017; Bloom++ 2017a, Bassett++ 2017; Taranu++ 2017; Brough++ 2017; Foster++ 2017.
- Stellar populations Scott++ 2017
- Scaling relations Cortese++ 2014; Scott++2015, Bloom++ 2017b
- Winds and outflows Fogarty++ 2012; Ho++ 2014; Ho++ 2016
- Star formation Richards++ 2014; Richards++ 2016; Schaefer++ 2017a; Federrath ++ 2017; Schaefer++ 2017b; Zhou++ 2017, Medling++ 2017
- **AGN** Allen++ 2015.
- Instrument/Survey Croom++2012; Sharp++2015; Allen++2015; Bryant++2015;
 Owers++ 2017; Green++ 2017

Galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution (Cortese et al. 2016)

large-scale morphology of a galaxy is likely regulated by its mass and dynamical state (Cortese+16)

The correlation between the offset from the M_* -j relation and spin parameter λ_R shows that at fixed M_* the contribution of ordered motions to dynamical support varies by >3x

Late *and* Early-type fast-rotators form a continuous class in terms of their kinematic properties

The role of environment in building slow rotators

 Increased fraction of slow rotators in cluster centres (Cappellari et al. 2011b; Cappellari 2013; Houghton et al. 2013; D'Eugenio et al. 2013; Scott et al. 2014; Fogarty et al. 2014). (Brough+17)

X/R₂₀₀

Fraction of slow rotators correlates stronger with stellar mass than environment (Brough+17)

- The cluster kinematic morphology-density relationship likely due to mass segregation via dynamical friction.
- Also recently seen in ATLAS3D+MASSIVE (Veale et al. 2017).

Hydro Simulations suggest that galaxies with similar λ_{re} - \mathcal{E} values can have very different assembly histories

Naab et al. 2014

14

- **A.** FRs with **gas-rich** minor-mergers
- **B.** FRs with late **gas-rich** major mergers.
- D. FRs with late **gas-poor** major mergers.
- C. E. F. Slow rotators

To better understand the assembly and merger history of individual galaxies, we have to study high-order kinematic features.

Jesse van de Sande Sydney Institute for Astronomy

FRs with gas-rich mergers show a strong h_3 -(v/ σ) anticorrelation

FRs with gas-rich mergers show a strong h_3 -(v/ σ) anticorrelation; **FRs with gas-poor mergers do not**

16

Galaxies with similar $\lambda_{re} \in \mathcal{E}$ values can show different $h_3 - V / \sigma$ signatures

Revisiting galaxy classification through high-order stellar kinematics with SAMI van de Sande+17

Take Home Message

- IFS surveys (SAMI, MaNGA, CALIFA, ATLAS^{3D}, MASSIVE) are now mass-producing 2D spatially resolved stellar population and kinematic measurements in galaxies (N> 2500)
- SAMI Galaxy Surveys highlighted here today:
 - Galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution (Cortese+16)
 - Fraction of slow rotators correlates stronger with stellar mass than environment (Brough+17)
 - Galaxies with similar λ_{re} - ϵ values can show different h_3 -V/ σ signatures that can be linked to their individual assembly history (van de Sande+17)

