## The Build-up of Mass and Angular Momentum

 in Galaxies Across Morphology and Environment : : with SAMIJesse van de Sande
Sydney Institute for Astronomy

In Collaboration with: Joss Bland-Hawthorn, Sarah Brough, Julia Bryant, Luca Cortese, Caroline Foster, Nic Scott, and SAMI-Team
the University of
SYDNEY
Galaxy Evolution Across Time Paris, June 2017

## majority of early-type galaxies have regular 2D velocity fields



ATLAS ${ }^{3 D}$ Krajnović+ 2011; Cappellari 2016

Jesse van de Sande Sydney Institute for Astronomy 2

## ATLAS ${ }^{3 D}$ results suggest two kinematic families:

1) $\sim 85 \%$ nearly oblate fast-rotators \&
2) $\sim 15 \%$ slow rotators with complex dynamical structures


## Link between morphology and kinematic structure?



Cappellari 2016; Fogarty+ 2015; Falćon-Barroso+2015

What are the physical processes responsible for galaxy transformations?

How does mass and angular momentum build up?

How do we dissect the assembly history of individual galaxies?

## THE BUILD-UP OF MASS AND ANGULAR MOMENTUM in GALAXIES ACROSS MORPHOLOGY AND ENVIRONMENT WITH SAMI



- The Sydney-AAO Multi-object Integral field spectrograph (Croom et al. 2012).
- 1 degree diameter field-of-view.
- $13 \times 61$ fibre IFUs using hexabundles (Bland-Hawthorn et al. 2011; Bryant et al. 2014).
- Fused fibre bundles; high fill factor, $75 \%$.
- 15 " diameter IFUs, 1.6 " diameter fibres.
- Feeds AAT's ground-based AAOmega spectrograph.
- Wavelength coverage/resolution:

Blue: $3700-5800 \mathrm{~A}, \mathrm{R} \sim 1800$, sigma $=70 \mathrm{~km} / \mathrm{s}$
Red: 6300-7400A, R~4260, sigma=30km/s

## galaxy survey <br> IFS Survey of 3600 galaxies ~2300 observed

- Total of ~200 nights, due to complete in mid-2018.
- Primary fields using GAMA (Driver et al. 2010)
- Robust group/pairs catalogue (Robotham et al. 2011).
- GALEX, SDSS, VST, UKIDSS, VISTA, WISE, Herschel imaging.
- HI 21 cm from ALFALFA (half the area), and in the future ASKAP.
- 8 clusters targeted ( $\sim 800$ gals) - (Owers et al. 2017)


## Coming Soon: Data Release 1

772 galaxies, reduced spectral cubes, emission-line \& star-formation maps


Jesse van de Sande Sydney Institute for Astronomy

## SAMI Galaxy Survey Target Selection



## The diversity of SAMI science so far

- Kinematics and Angular Momentum - Fogarty++ 2014; Fogarty++ 2015; Cecil++ 2016; Oh++ 2016; Cortese++ 2016; van de Sande++ 2017; Bloom++ 2017a, Bassett++ 2017; Taranu++ 2017; Brough++ 2017; Foster++ 2017.
- Stellar populations - Scott++ 2017
- Scaling relations - Cortese++ 2014; Scott++2015, Bloom++ 2017b
- Winds and outflows - Fogarty++ 2012; Ho++ 2014; Ho++ 2016
- Star formation - Richards++ 2014; Richards++ 2016; Schaefer++ 2017a; Federrath ++ 2017; Schaefer++ 2017b; Zhou++ 2017, Medling++ 2017
- AGN - Allen++ 2015.
- Instrument/Survey - Croom++2012; Sharp++2015; Allen++2015; Bryant++2015; Owers++ 2017; Green++ 2017

Galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution (Cortese et al. 2016)


## large-scale morphology of a galaxy is likely regulated by its mass and dynamical state <br> (Cortese+16)



The correlation between the offset from the $M_{*}-j$ relation and spin parameter $\lambda_{R}$ shows that at fixed $M_{*}$ the contribution of ordered motions to dynamical support varies by > $3 x$


Late and Early-type fast-rotators form a continuous class in terms of their kinematic properties

## The role of environment in building slow rotators

- Increased fraction of slow rotators in cluster centres
(Cappellari et al. 2011b; Cappellari 2013; Houghton et al. 2013;
D'Eugenio et al. 2013; Scott et al. 2014; Fogarty et al. 2014).
(Brough+17)



## Fraction of slow rotators correlates stronger with stellar mass than environment (Brough+17)




- The cluster kinematic morphology-density relationship likely due to mass segregation via dynamical friction.
- Also recently seen in ATLAS3D+MASSIVE (Veale et al. 2017).


## Hydro Simulations suggest that galaxies with similar $\lambda_{r e}-\varepsilon$ values can have very different assembly histories

A. FRs with gas-rich minor-mergers
B. FRs with late gas-rich major mergers.
D. FRs with late gas-poor major mergers.
C. E. F. Slow rotators


To better understand the assembly and merger history of individual galaxies, we have to study high-order kinematic features.

## FRs with gas-rich mergers show a strong $h_{3}-(\mathrm{v} / \sigma)$ anticorrelation





# FRs with gas-rich mergers show a strong $h_{3}-(v / \sigma)$ anticorrelation; FRs with gas-poor mergers do not 




Galaxies with similar $\lambda_{\mathrm{re}}-\varepsilon$ values can show different $\mathrm{h}_{3}-\mathrm{V} / \sigma$ signatures


Jesse van de Sande Sydney Institute for Astronomy

## Revisiting galaxy classification through high-order stellar kinematics with SAMI van de Sande+17



Class 5 FRs are probably edge-on galaxies with counter rotating disc or bar
suggests a dearth of gaspoor mergers among fast rotators.


Jesse van de Sande Sydney Institute for Astronomy

## Take Home Message

- IFS surveys (SAMI, MaNGA, CALIFA, ATLAS ${ }^{3 D}$, MASSIVE) are now mass-producing 2D spatially resolved stellar population and kinematic measurements in galaxies ( $\mathrm{N}>2500$ )
- SAMI Galaxy Surveys highlighted here today:
- Galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution (Cortese+16)
- Fraction of slow rotators correlates stronger with stellar mass than environment (Brough+17)
- Galaxies with similar $\lambda_{\mathrm{re}}-\varepsilon$ values can show different $\mathrm{h}_{3}-\mathrm{V} / \sigma$ signatures that can be linked to their individual assembly history (van de Sande+17)

