
Session B: Metrics for FAIR Software
Links 1

Session B description 1
FAIR Metrics 2
How will we work during this session? Activity instructions 3

Times (all UTC) 3
Instructions 3

FAIR Metrics (online group) 4
Examples/ideas of metrics for trustworthy repositories for research software 4
Examples/ideas of metrics for I1 & R3 - meeting community standards 7

FAIR Metrics (on-site / in-person group) 11
Examples/ideas of metrics for F2 & R1 - descriptive metadata and attributes 11
Examples/ideas of metrics for F1.1, F1.2 & R2 - identifiers and references 13
Difficulties encountered during exercise 15

Next steps 15
Facilitator Guidance 16

Links
Slides including description of activity: https://doi.org/10.5281/zenodo.7805608

Session B description
● How can metrics can be used to improve the discoverability, access, interoperability and

reuse of research software
● How to extend interoperability and improve the quality of metadata through the use of

the vocabulary
● What are the criteria for trustworthy research software repositories?
● Activity: collect indicators that can be used for FAIR research software metrics

#RS_workshop_P20

https://doi.org/10.5281/zenodo.7805608


FAIR Metrics
The work of the FAIR metrics suggest that a good FAIR metric should be:

● Clear: anyone can understand the purpose of the metric
● Realistic: it should not be unduly complicated for a resource to comply with the metric
● Discriminating: the metric should measure something important for FAIRness; distinguish

the degree to which that resource meets that objective; and be able to provide
instruction as to what would maximize that value

● Measurable: the assessment can be made in an objective, quantitative,
machine-interpretable, scalable and reproducible manner, ensuring transparency of what
is being measured, and how.

● Universal: The metric should be applicable to all digital resources. [however some types
of resources may have specific metrics]

#RS_workshop_P20



How will we work during this session? Activity instructions

Times (all UTC)
9.30-10.45 AM : parallel session
11.15-11.30 AM: report back from parallel session

Activity On site On line Duration

Sub-group introductions and
instructions for activity

Choose rapporteurs
and explain notes

Explain how session
will work and
explain note taking 10’

First task: Indicators of FAIR software
(metadata and repositories)

F2. Rich description
R1: Plurality of
descriptive attributes

Trustworthy
repositories for
research software

20’

Second task: Indicators of FAIR
software (identifiers and community
standards)

F1.1 Component IDs
F1.2 Version IDs
R2 Qualified
references

I1: Community
standards
R3: Community
standards

15’

Closure activity: reflection 10’

Instructions
1. Choose a rapporteur - someone who is responsible for summing up. However everyone

can add to the notes below.
2. For the topics or FAIR4RS principles assigned to your group, discuss

a. Are there any existing metrics that apply to this principle?
b. If not, what would be a good indicator that the principle was being met?
c. What would count as an improvement if this metric / indicator was being applied?

3. Write down the metrics you have identified in the table below
4. After 20 minutes, your group will move on to the second set of FAIR4RS principles

assigned to your group
5. At the end of the second discussion, the session leader will facilitate a reflection on the

discussion - e.g. what were the challenges, are there any “easy to implement” metrics?
6. After the break, rapporteurs will report back - please add a summary of your discussion

to the main session notes document:
a. Metrics you identified
b. Insights you learned from the process (e.g. challenges in defining metrics)

#RS_workshop_P20



FAIR Metrics (online group)

Examples/ideas of metrics for trustworthy repositories for research software

Notes:
- How do we define ‘repository’ in this context?

- Service/organisation where you deposit objects for long term archiving
(SoftwareHeritage)

- Platform where you deposit software for publishing (Github)
It can be both, maybe we shouldn’t use the word ‘repository’ in this context as it creates
confusion. Mechanism? Platform?

Descriptive name
for metric

What is being measured? What counts as success /
improvement?

Filter software The ability of the repository to
distinguish software vs other
deposits e.g. in a search using an
API

The repository enables users to
discover software stored in it, and
refer to them in a persistent way
through proper citation (links to
F1). The repository allows
versions to be distinguished
easily.

Age of the
repository of each
entry

How long the repository has been
available

The longer it has been there the
higher the chances it will be
available

Capability to
capture
provenance
metadata

Presence of key fields relating to
the origins of the software

Increase if detail for the same
record. Linkage to other records.

Continuity plan The repository should have a plan
to ensure continuity of service and a
succession/disaster plan in case
their service ceases

It could be a yes/no, or certain
elements of information need to
be checked off for it to be
complete enough

Use of persistent
identifiers

The repository should use widely
used recognized persistent
identifiers for software (including
versioning) and other digital objects

Implementation of PIDs

Openness Can the content be freely accessed
and exported (to avoid lock-in)

The content and its metadata can
freely be accessed/exported.
For repos like github: the
associated artifacts and
associated data can also freely

#RS_workshop_P20



Descriptive name
for metric

What is being measured? What counts as success /
improvement?

be accessed/exported (like
contributors, history, issues, etc.).

Number of reused
software

The number of software is actually
re-used to produce research
outputs

Increased number of re-use

Ownership Reliability of the ownership
(background)

Notoriety, reputation of the owner

Versioning Version 1,2,3, .. of the software It is clear what counts as a (new)
version and this version is clearly
indicated

Scientific context The research for which the software
was created

A list of scientific outputs for
which the software was
created/used

Last modification
Granularity and
identifiers

Measure of activity, when it was last
modifiedIt should be allowed to
persistently identify research
objects of different granularity, e.g.
collections, datasets for richer
information about research.

Different levels of granularity are
available for citing and it is
possible to provide different
identifiers to these levels.

Type of repository Archive for immutable objects
(versions of
software/documents/data), archive
of mutable objects (software being
developed)

Quality checks /
curation

The repository should perform
certain quality checks when
ingesting new software, to ensure
it’s reusability and preservation for
the long term

Certain levels of curation should
be defined, depending on the
activities carried out and the
needed curation. I don’t think one
specific level of curation would
count as a success, but rather
knowledge on what curation is
needed in which cases

Existence of
certification

Classic measures of conventional
data repositories (is there a
statement of commitment to
maintain records, are protocols for
depot and retention publicly
available etc)

Achievement of certification,
incremental improvements inline
with certification levels

Number of The size of the community using Increasing number of software

#RS_workshop_P20



Descriptive name
for metric

What is being measured? What counts as success /
improvement?

software in the
repository

this repository deposited

Presence of a
clear
documentation for
users

Presence/absence
Frequency of updates

Increasing number of
view/download - decreased n of
days from the last update

Scholarly society
endorsement, or
complementary
policy instruments

Does the scholarly society flag the
publication infrastructure as a
preferred option

Inclusion in policy

Existence of
software data
curators

Measure if the software deposited
are curated by “professional”
software curators.

List of people acting as software
curators for the repository. Also
clear guidelines on how to
become such a curator.

Citation of the
software

The repository should support the
citation of the software and also
count statistics related to citations

Increasing the number of citations

Licensing The repository should support
suitable license options to assign to
the software

Different license options should
be clearly communicated to
depositors and other users

Existence of PIDs PIDs for different versions and parts
of the software(tests, core/libraries,
tutorials)

PIDs are assigned by users and
curators check that is is enforced

List of
dependencies

If software require dependencies
they need to be listed (with PIDs?)

Software may not be executable
in the absence of specific
versions of dependencies (later
versions may/may not work).

Funding A trustworthy repository should be
able to show they have funding
secured to continue operational, as
well as back-up plans when funding
fails

In many cases, long term funding
cannot be proved in advance, but
the focus could maybe be on
back-up plans in case funding
fails? Having a plan is then a sign
of trustworthiness.

Curatorial
protocols

The existence of public
documentation describing how
software is curated (or not)

Existence as a binary feature.
Improvements would require met

Clear
storage/disaster

Presence/absence of this
documentation

#RS_workshop_P20



Descriptive name
for metric

What is being measured? What counts as success /
improvement?

recovery policy
documentation

Active test
framework

The software still works Whether the software still works

Support policy If you encounter a problem will you
obtain any support or are you on
your own

Support a
Software Bill of
Materials

Which dependency does the
software have? Where can they be
found, how trustworthy are those?

Having a clear list of
dependencies. Being able to flag
trust issues (security, quality,
bugs) in software based on its
dependencies.

The infrastructure
enforces or
encourages
community
standards

Existence of mechanisms in the
service or guidance/documentation

Introduction of
mechanism/guidance, rewarding
uptake, enforcement of standards

Examples/ideas of metrics for I1 & R3 - meeting community standards
I1. Software reads, writes and exchanges data in a way that meets domain-relevant community
standards.
R3. Software meets domain-relevant community standards.

Descriptive
name for metric

What is being measured? What counts as success /
improvement?

Data standard
read/write support

If a community standard exists, then
does the software support
read/writing/exchanging (as
appropriate).

If data is read/written/exchanged
by the software and if community
standards exist then are they
supported.

The object uses a
recognised
language or
format including
version or
standard
observed

For software you would find the
code uses one (or more recognised
languages) - C, FORTRAN,
COBOL, Python, R, etc

Number of software with standard
and open languages increases

#RS_workshop_P20



Descriptive
name for metric

What is being measured? What counts as success /
improvement?

Openness of the
standards used
(for I1)

Can these standards be freely
used? Are they open, do they have
a license, proper definition, etc.

Standards used have an open
license, are well defined,
documented, etc.

List of best
practices/standard
s used

If the software has put effort in
following community standards and
best practices.

Source code is
available

Whether source code is available. Yes counts as a success

Clear statement of
the communities
the software
supports

Whether software supports multiple
communities

Input
requirements/dep
endencies

To operate data or other in a
particular format must be made
available

Recognised standards are used

Listing of Open
standards that are
observed

List of recognised standards that
are used

Contact point
and/or link to
website containing
community
standards

Existence of community standards Yes is success

File format follows
community-standa
rds

Or is converted to one that follows
community-standards

Is the software
written in a
language
commonly used
by the audiences
likely to use it, or
is it in a form that
enables reuse
within the norms
of that community
(e.g., discrete
modular tools for

What are the norms of a community
and does the software fit within
those.

Must be able to extract measures
of norms first, and note that they
can change over time. This will
be hard!

Improvement may be the
codification of norms.

#RS_workshop_P20



Descriptive
name for metric

What is being measured? What counts as success /
improvement?

use in workflows,
rather than
monolithic
frameworks)

Existence of
software
management plan
and templates

Measure if the community agreed
on the tools to use and offer
templates for software management
plan.

Existence of
contributing
guidelines

Measure the openness (not
technically) and if there is any
onboarding procedure for new
contributors

CONTRIBUTING file in each
software repo

Domain specific
certification for the
software.

If the software has received the
relevant certifications. For example,
for medical software, security
related software, AI regulations
(introduced in EU), etc.)

It has the standards.

The output of the
software uses a
recognised
standard or the
outputs are well
specified.

In order for the outputs to be
reusable they should observe a
recognised standard or the output
format should be well specified.

Endorsement from
specific
communities/user
s

A star based system as in GitHub or
dare I say it as in Amazon?

Produce a standard way for
encoding this that repository
providers could use

Software is linked
to a relevant
community or
communities

As a first step is their evidence that
the software is cognizant of
community needs or norms. This
could be references to a broad array
of “communities”
(user/creator/developer/maintainer/
contributor, researcher
communities, methods
communities, general public norms,
policy makers)

A mention of this detail first,
possibly with more formal
measures over time.

Workflow
integration

The software can be used in
workflows commonly used by the
community

#RS_workshop_P20



#RS_workshop_P20



FAIR Metrics (on-site / in-person group)

Examples/ideas of metrics for F2 & R1 - descriptive metadata and
attributes
F2. Software is described with rich metadata.
R1. Software is described with a plurality of accurate and relevant attributes.

Descriptive
name for metric

What is being measured? What counts as success /
improvement?

Clear software
license

Is there an easily identifiable license
for the software

Inclusion of license files with
standard names
Use of SPDX

Software purpose Is it easy to understand the domain
and problem being solved by the
software within a couple of
sentences

- README with clear first
paragraph

- Language specific way of
describing software

Programming
Language

The language is identified, Language includes version,
platform, dependencies
e.g., in codemeta field
“programminglanguage”.
Related to “software components”
metric

Uses a standard
API

The software uses a
community-standard API

Uses a standard API; the API that
is used is named

Software
components
(libraries,
middlewares)

Description of the software's
components

A list of external libraries used in
the software with, ideally,
versions used

Attributes are
ontological, and
based on a
published
vocabulary

The domain of the software’s
applicability/use needs to be
described using machine actionable
concepts

Utilisation of ontological concepts
as attributes

Clear
documentation

Whether there are installation
instructions, usage instructions.
Does the software component have
a link to a documentation
document?

A documentation file (e.g.,
readme, install.md) contains clear
sections stating how to install and
invoke a software component

Version/Versionin
g concept

Is there a clear version with release
notes

Version with attached release
notes and a definition of version

#RS_workshop_P20



scheme documentation exist and
linkages between versions exist

Authors A list of the authors of the software Are all names available.
Are real names available
Are ORCIDs included
Associated with their role /
contribution

Build/install
information

Human and machine readable
information about building or
installing the software is provided

The software can be
built/installed by a human; the
software can be built/installed by
a machine without detailed
human action

Clear reference to
related outputs

All outputs/data related with the
software to be retrievable

To be linked back and forth

Clear workflow to
report issues /
bugs etc

Is there a place to add newly found
issues?
Timeliness of responses in that
system

Existence of an issue tracker of
some sort (github/gitlab etc;
redmine, …)
Past time until first triaging new
issues

Link to software
from a
registry/catalog

Working, verifiable link to the
software

Purpose of the
research software

In what context is the research
software developed. PhD, research
project, infrastructure

Link to grant proposal,
publication,

Creation date is
present

Code metadata includes a creation
date

Basic: in the readme. More
advanced: in codemeta field

Requirements file
is available

Documentation/machine readable
file exists to state the libraries the
component depends on

A requirement file (e.g.,
requirements.txt, pom.xml), a
section (human-readable) in
readme stating this information

Governance A group of responsible persons or a
committee is provided with their
responsibilities

documented governance
structure

Citation for
software
component is
clear

A citation is available, stating how
the software component should be
provided credit

Link to citation file, or section in
readme stating what the citation
should be. Ideally, cff file

Example data is Code includes sample data or link to Minimum: description of the data

#RS_workshop_P20



available dataset (input or output) Better: sample table
Best DOI for a dataset

Original use is
described

The original research project is
described,

minimum, in readme.
Better: keywords
Best: semantic

Use of design
patterns

Design patterns

Contribution
instructions

Are there any descriptions on how
to help improve/report bugs etc?

CONTRIBUTING file
Field in the README with
instructions on contribution

Constraints Clear description of what software
can or can’t be used for

Intellectual constraints
Legal constraints

Use potential What could the software (perhaps
also) be used for?

Gauging re-use of software in
new domains

Software has
been vetted by a
language
community

Languages with user-groups have
vetting systems (e.g., CRAN for R,
Matlab file exchange(?)) with some
level of vetting or quality control

Code or package is available thru
a user-group

Examples/ideas of metrics for F1.1, F1.2 & R2 - identifiers and references
F1. Software is assigned a globally unique and persistent identifier.
F1.1. Components of the software representing levels of granularity are assigned distinct
identifiers.
F1.2. Different versions of the software are assigned distinct identifiers.
R2. Software includes qualified references to other software.

Descriptive
name for metric

What is being measured? What counts as success /
improvement?

Software Identifier The software has an identifier that is
globally unique and persistent

The identifier is unique and can
be used to obtain information
about the software, even if the
software is no longer available

The identifier is in identifiers.org
(or provided by some other
service that meets some identifier
standards)

#RS_workshop_P20



Software releases Snapshots of software at a point in
time have a clear identifier

Dependencies are
clear

There is a requirements file that
includes a way of identifying and
understanding all dependencies

This file is machine actionable
The role of a dependency is clear
(dev vs required vs optional)

And also reverse dependency
tree (who relies on your software
again)

Research
software graph

Amount of relations Basic:
Better: components have pids

Software
snapshot is
archived

Whether a public archive contains
one or more software version

The software component is
archived in a public archive like
Zenodo, Software Heritage, etc.

Reference to
paper

Optional: In case a paper is
referenced, it bears a PID

Additional information what is
documented in the paper, e.g.
method or evaluation or software
paper,...

Understanding the context of how
the reference was used - e.g. is it
a comparison, the citation for
paper that contains the method,
the citation for the software paper

(Note Datacite has a vocabulary
for types of references, and their
relationship to data. Might be
adaptable for software refs)

Different version
are assigned a
PID

PID build file Where dependencies have
identifiers, these are published as a
PID dependency tree

This is published so that it can be
linked to others

Identifier and
relationship
resolution

What part of software is being
referenced?
How is it related to other parts of the
software, including the complete
software "unit"

All parts of the software can be
uniquely identified (e.g. lines of
source code, routines, files,
packages, project, executables,
containers, services, etc.), and
the relationships between parts is
clear

#RS_workshop_P20



The datatypes
used in inputs and
outputs uses is
semanticallty
described and
identified

FAIRCORE4EOSC is developing
a data type PID registry

Also enables discoverability (find
me software that processes these
datatypes)

Input data has
quantity identified

Input data is described well enough
for a) code reuse
or b) reproducibility.

Input data is tagged with a
recognizable unit, quantity and/or
type, e.g., with QUDT URI

Standard
benchmark

Declare identifiers for the reference
implementation / benchmark, and
data sets used to compare work
(e.g. In ML research)

Difficulties encountered during exercise
- Hard to think about things that aren’t open source

- How do we apply these indicators for closed source software
- How to engage with the people who have to produce identifiers for their software - how

to persuade them to use a different “better” identifier?
- For FAIR data, a lot relies on the repository you’re using. For software, where to tell them

they can share their software to make it more FAIR
- Metrics for different types of reusability e.g. collaboration vs preservation

- Metrics for the repositories storing the software
- Derivatives of a PID, for versions of software that use each other, and the impact of

provenance when we have copies of an original instance

Next steps
- Participants preferred the use of a Google Doc for providing further input / feedback
- FAIR-Impact should highlight areas in the document we are looking for clarification
- Provide regular email to highlight what’s changed

#RS_workshop_P20



Facilitator Guidance
We are recommending that sessions are facilitated using a guided “parallel silent work”
approach that makes use of Google Docs. This approach scales well, and is appropriate for
both online and in-person sessions, but relies on participants having access to a device that
allows them to view and contribute to the session notes document. If in-person participants do
not have access to such a device, please see below for facilitation suggestions.

Instructions
● Introduce the activity and make sure participants are able to access and edit the notes

document
● Ideally, project/share the table in the document so that all participants can see it being

updated in real time
● Ask participants to separately and in parallel enter suggestions in the rows of the tables
● As these suggestions come in, comment on any interesting things you see in them, e.g.

trends, contradictions.
● Once you have a reasonable number of suggestions (normally about 5-10 minutes) and

the rate has slowed down, take a few interesting ones and invite the person who entered
it to talk about why they suggested it, and facilitate some discussion. Ensure that all
people have a chance to contribute by encouraging specific people to speak and
keeping a watch on whether anybody is dominating discussion.

● At the end of the session, leave some time for facilitated discussion reflecting on any
challenges or unexpected outcomes from doing this exercise

If a participant does not have access to the doc, you can get them to say their suggestion and
add it directly. However, during the initial period of adding suggestions try to avoid the group
breaking into discussion, and for any one person dominating the audio.

#RS_workshop_P20


