
Research Software Workshop Session A
metadata property analysis

Exercise 1: metadata property analysis

Step A: Choose a group
Step B: Click on the name of the property to fill the dedicated template
Step C: Fill the template asking you: Why? Who? Where? How?
Step D: If your small group encounters complexities with the term, capture the difficulties in the “Discussion” section
Step E: If you agree the term or description should be modified in CodeMeta, open an issue here:
https://github.com/codemeta/codemeta/issues

Links
○ CodeMeta repository (vocabulary and crosswalk)

○ CodeMeta description: https://github.com/codemeta/codemeta/blob/master/properties_description.csv
○ Issue-tracker

○ CodeMeta generator hosted version

■ Contributions are welcome on the code repository

#RS_workshop_RDAP20

https://github.com/codemeta/codemeta/issues
https://github.com/codemeta/codemeta
https://github.com/codemeta/codemeta/blob/master/properties_description.csv
https://github.com/codemeta/codemeta/issues
https://codemeta.github.io/codemeta-generator/
https://github.com/codemeta/codemeta-generator

Table of Contents
Instructions for exercise 1
author | Type: Organization or Person,
buildInstructions | Type: URL
dateCreated | Type: Date or DateTime
datePublished | Type: Date
description | Type: Text
developmentStatus | Type: Text
embargoDate | Type: Date
funder | Type: Organization or Person
identifier | Type: PropertyValue or URL
keywords | Type: Text
license | Type: CreativeWork or URL
name | Type: Text
operatingSystem | Type: Text
programmingLanguage | Type: ComputerLanguage or Text
readme | Type: URL
referencePublication | Type: ScholarlyArticle
relatedLink | Type: URL
runtimePlatform | Type: Text
supportingData | Type: DataFeed
version | Type: Number or Text (see also SoftwareVersion)
softwareRequirements | Type: SoftwareSourceCode

#RS_workshop_RDAP20

Instructions for exercise 1

What? Why? Where? Who? How? Bonus: Metrics

(Description from
CodeMeta, highlight added
information)

(Use case, purpose to use term) (Intrinsic, extrinsic
or both, which
platform?
Information source,
provenance)

(Provider of
metadata)

(availability of the information, metadata
creation process - manual or automatic)

(Which metric can be used to
verify this metadata and it’s
quality)

Examples of values:
(add 1-3 examples)

Challenges Priority: MUST / SHOULD / MAY
(highlight match)

(add 1-3 challenges) Bonus: Reference to existing guidelines:
(provide link or quote from the guidelines collection)

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
(add 1-3 ideas)

Difficulty level to complete quality metadata term:
easy | medium | hard
(highlight match)

#RS_workshop_RDAP20

author | Type: Organization or Person,

What? Why? Where? Who? How? Bonus: Metrics

The author of this content
or rating. Please note that
author is special in that
HTML 5 provides a
special mechanism for
indicating authorship via
the rel tag. That is
equivalent to this and
may be used
interchangeably.

You want to know the
creator of the
software/code, and have
them credited for their
work. You may want to
contact the person

(ORCID, ROR,
or the curator of
the software

Curator,
repository of
software/cod
e

Manual entry, harvesting from other
repositories (ORCID, CROSSREF,
ROR, github, DataCite), semantic
enrichment

PIDs, structure,
authority file

Examples of values:

Research Data Alliance

https://orcid.org/0000-0001-5605-912
2

Challenges Priority: MUST

Disambiguation
Actual names and not github or login type names
ORCID profiles are nonexistent or out of date
Need roles
Authors may change over time with large projects

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Use PIDS for each author
Structure for roles
Stable contact information
Ability to periodically send automated
request for contact updates (using
automatic harvesting)

Difficulty level to complete quality metadata term:
easy | medium | hard

Medium to Hard

#RS_workshop_RDAP20

Discussion
Actual names:

- There are pros and cons between strict disambiguation between authorName and an author identifier. Are there any use cases for
requiring a "legal name" apart from copyright?

- This one is tricky. Schema.org indicates it should be a Person or an Organization. So IN THEORY, it should be a URL/resolvable
identifier

Disambiguation
- ORCID is a good start as its the established identifiers for researchers and contributors

Author roles
- CREDIT taxonomy could be an option
- the author is already a role, no?
- Author isn't a role, it's a status that is linked to the question who gets credit. A role is what did you do for the software and there are

many options, writing code isn't the only role.
- Here is the CodeMeta issue to introduce roles: https://github.com/codemeta/codemeta/issues/240
- Will be available in CodeMeta 2.0

#RS_workshop_RDAP20

https://github.com/codemeta/codemeta/issues/240

buildInstructions | Type: URL

What? Why? Where? Who? How? Bonus: Metrics

Provide a URL that
describes
step-by-step how to
get the development
environment set and
running.
“link to installation
instructions/document
ation”

A user needs to install or run
the software locally or in its
own hardware (such as a
HPC, or cloud)

In the code, can
be in README
file

(Provider of
metadata)

Existing or not
Link to dependencies
and other requirements
(OS, hardware, etc.)

Examples of values: Challenges Priority: MUST / SHOULD / MAY

Build instructions for which OS and what hardware?
This type of documentation is necessary for reuse but is quite
hard to compile.

Bonus: Reference to existing guidelines:
(provide link or quote from the guidelines collection)

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality? Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://docs.google.com/document/d/1E3mZFb0RHpT1cGorzwJj6EQeGArjPHYXZ15LOqB48Ms/edit?usp=sharing

Discussion
There is an ongoing discussion in the CodeMeta community about the necessity of different types of properties to documentation. See these
two issues examples:
https://github.com/codemeta/codemeta/issues/247
https://github.com/codemeta/codemeta/issues/245

#RS_workshop_RDAP20

https://github.com/codemeta/codemeta/issues/247
https://github.com/codemeta/codemeta/issues/245

dateCreated | Type: Date or DateTime

What? Why? Where? Who? How? Bonus: Metrics

A link related to this object,
e.g. related web pages

Identifying when the project first
started to keep a timeline of software
evolution.

Extrinsic and
intrinsic with version
control systems

Software
creator

Automatic with version control systems like git - VCS for the software
- dateCreated

available

Examples of values: Challenges Priority: MUST / SHOULD / MAY

Bonus: Reference to existing guidelines:
(provide link or quote from the guidelines collection)

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
(add 1-3 ideas)

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://docs.google.com/document/d/1E3mZFb0RHpT1cGorzwJj6EQeGArjPHYXZ15LOqB48Ms/edit?usp=sharing

datePublished | Type: Date

What? Why? Where? Who? How? Bonus: Metrics

Date of first
broadcast/publication.

Publishing of a given
version(?) of software/code on
a given platform.
Can be different from creation
date (embargo, publishing on
a different platform,...).

Extrinsic Repository,
code
development
platform
(researcher/
RSE sets the
date if e.g.
setting
embargo)

Examples of values:
2023-03-24

Challenges Priority: MUST / SHOULD / MAY

- extrinsic vs. intrinsic values, may conflict
- Not all repositories comply with FAIR4RS F1.2, different PIDs
for different versions. Should the properties only apply to
repositories that apply it? If not, does it apply to the latest
release? (prone to cause confusion)

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Is the allowed format defined to avoid
trouble with different date
conventions? (couldn’t find it) Applies
to all timepoint-related values.

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

description | Type: Text

What? Why? Where? Who? How? Bonus: Metrics

A description of the
item (44): what is the
software for, what
platform, language.

Help to discover the software

As a software developer I
want to share information
about my software with others

Intrinsic
Development
platform
(GitHub, GitLab,
etc.)

Authors - 21 Manual process when or after
creating a software

Check, if possible, the
presence of “objective”,
“platform”, “language” ?

Examples of values:
(add 1-3 examples)
*no time

Challenges Priority: MUST / SHOULD / MAY

Should not be a “burden”, if it repeats the readme file content.
How to address this : description should be less detailed,
more concise (3-4 lines) / Generate the readme.file from the
Codemeta.json content.
So many things in the git lists it will always be a challenge to
select carefully.
Description is a fairly non-specific introduction whereas the
readme is the action document
There are different types of descriptions: e.g., 1 line summary
(almost like a title) vs a 5 line description vs an abstract (what
you would include in a paper)

Bonus: Reference to existing guidelines:
We do not know, but are interested in having some
guidelines to write description

- HAL - Create deposit guide: description
isn’t mandatory but suggested

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match from FAIR4RS)

How to improve metadata quality?
With guidelines!

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://hal.science/hal-01872189v2

Discussion
The difference between readme and description

- https://github.com/codemeta/codemeta/issues/247
- readme is a special case of description,

- Maybe worth mentioning that usually package metadata files (such as pyproject.toml / setup.py or package.json) have a description
field that is exactly this... 1-4 sentences describing the project. But a similar case is for keywords, license, and developmentStatus (and
possibly others). Keeping all this in sync is usually a burden...

- CodeMeta strives to keep the the number of codemeta properties small, documentation property is preferable over readme because it can
include it

Metrics:
- Checking presence of certain keywords isn’t convincing
- I would check first whether it exists or not as a sign of quality.
- what would be the sign for "quality"? How do you assess quality? For different disciplines this could be assessed very differently.

#RS_workshop_RDAP20

https://github.com/codemeta/codemeta/issues/247

developmentStatus | Type: Text

What? Why? Where? Who? How? Bonus: Metrics

Description of
development status,
e.g. Active, inactive,
suspended. See
repostatus.org

Inform the public if a software
is live or outdated.

Important information to
decide, if I - as a researcher -
want to use or build on this
software for my research

Intrinsic, via
README or
codemeta file

Developers Should be an explicit decision made
and maintained by the developers.

Could be - to a certain degree -
automatically inferred by the activity
logs of git repo

Check according to last
commit, if information is
valid

Examples of values:
● Concept
● WIP
● Suspended
● Abandoned
● Active
● Inactive
● Unsupported.
● Moved.

Challenges Priority: MUST / SHOULD / MAY

If software is suddenly abandoned, information will not be
updated

Maturity of a research software is somehow integrated, but not
really.

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Including maturity information into the
repostatus list

Inform developers to update this value
during the software development

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

http://www.repostatus.org/

embargoDate | Type: Date

What? Why? Where? Who? How? Bonus: Metrics

Date when the
embargo is over

Some software might be
restricted for a period of time.
The users need to know when
this period of restriction has
ended.

Extrinsic via the
repository
ensuring this
embargo

Authors
when
publishing
software via
any sort of
repository?

Examples of values:
Input for date when the embargo ended:
01/01/2000

Challenges Priority: MUST / SHOULD / MAY (pref. MAY
NOT)

Identifying use cases for embargo dates for software Bonus: Reference to existing guidelines:
(provide link or quote from the guidelines collection)

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality? Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://docs.google.com/document/d/1E3mZFb0RHpT1cGorzwJj6EQeGArjPHYXZ15LOqB48Ms/edit?usp=sharing

Discussion

We (workshop participants) would be interested in hearing about user stories related to software embargo dates, we can imagine it happening
for publication or valorisation purposes, but never encountered such a situation.

#RS_workshop_RDAP20

funder | Type: Organization or Person

What? Why? Where? Who? How? Bonus: Metrics

A person or
organization that
supports (sponsors)
something through
some kind of financial
contribution.

To acknowledge the funder
who supported the software
development, to be
transparent about the genesis
of the software

Crossref,
OpenAire,
VIAF, Library
of Congress
AF

Manually entered into record by
curator, harvest from Crossref or
other source

Examples of values:
Sloan Foundation

Challenges Priority: MUST / SHOULD / MAY

Many different funders may be involved in one software, and
the information about them is scattered across different places

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Using authoritative PIDs
Use registries and semantic artifacts
Have a “funder” role

Difficulty level to complete quality metadata term:
medium

#RS_workshop_RDAP20

identifier | Type: PropertyValue or URL

What? Why? Where? Who? How? Bonus: Metrics

The identifier property
represents any kind of
identifier for any kind of
Thing, such as ISBNs,
GTIN codes, UUIDs etc.
Schema.org provides
dedicated properties for
representing many of
these, either as textual
strings or as URL (URI)
links. See background
notes for more details.

To identify the software
LJ: But in codemeta it is
not clear what the “Thing”
is, what the
object/concept/entity
described is.

Extrinsic
It can become intrinsic if you
add it to the code/binary
files. It depends on when it
is added but most likely it is
created after the software
starts existing

Intrinsic when calculated
based on the content, e.g.,
hash, checksum (as those in
SWH).

The Who is dependant on the
What, i.e. each identifier is
provided by the relevant body

PID provider gives the ID,
probably through a publisher
or repository (extrinsic)

System, e.g., SWH, calculating
the checksum or so

It can be used by anyone, e.g.,
authors, to identify the
software (or a version of it)

Extrinsic identifiers
are provided by
external actors:
RRID, identifiers.org,
W3ID (?), DOI, etc.
Intrinsic identifiers
are computed from
the software itself:
SWHID

The characteristics of the
PID can be measured:

● Existence
● Persistence
● Unicity
● Machine

actionable

Examples of values:
DOI
SWHID
RRID

Challenges Priority: MUST / SHOULD / MAY

Choice, knowing which to get
Granularity, e.g., version, release, modules
The identifier is not necessarily in the metadata file as a
property, as metadata there is always a type and an identifier
so maybe no need to have it in the property

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Make them unique, persistent, global
and machine readable/actionable,
complete (e.g., full DOI rather than
just the last bit)

Difficulty level to complete quality metadata term:
Easy to medium, easy to get but requires time to get it (e.g.,
filling in a form)

#RS_workshop_RDAP20

Discussion
- What does How mean? How is the identifier accessed? How is the identifier used?

- How can we get this property? What's the method to have an identifier for a software artifact?
- Borrowing the Dublin Core wording as a starting point, what about “an unambiguous reference to the resource within a given context

described by the codemeta metadata”. Noting that the contexts can be many and varied (e.g., reference/citation vs retrieval). I’d say the
string ideally conforms to a formal identification scheme, rather than list specific instances, because that’s ambiguous as to future
schemes, and schemes that are not explicitly mentioned. The scheme may or may not provide a resolver, but it should provide an
unambiguous namespace.

- Are intrinsic identifiers considered intrinsic metadata even if it is stored externally in a repository?
- The key thing is SWH as an external provider of the PID rather than how it calculates it (based on a counter unrelated to the code itself or a

hash that is based on the code)
- SWHID can be calculated also locally on any machine, no need for SWH for the SWHID at the content, directory or revision

granularity levels
- The key thing is the intended context of use: the purpose for which the identification system exists.
- Wouldn't manual entry be a common method?

- even with manual entry, you need an external infrastructure to have a PID

#RS_workshop_RDAP20

keywords | Type: Text

What? Why? Where? Who? How? Bonus: Metrics

Keywords or tags used to describe this
content. Multiple entries in a keywords list are
typically delimited by commas.
Topics of the resource represented by terms
within literal value (string, symbol, acronym)
that Well known terms of the research field
identifies the ressource’s features or functions,
preferably in a controlled vocabulary. Should
exclude items that are already mentioned
elsewhere in the codemeta (like
programmingLanguage, systemRequirement,
OS etc.)

Help in findability of
the resource, but
also in the
classification of it.

Could be used in
Associated
Controlled
Vocabularies/Ontolo
gies and referred to
URI

From well known terms of
the Research Field

Also targeting a given
research community

Keywords should be
derived from domain
specific semantic
resources (thesauri,
ontologies..)

The
developer
of the
resource

The process could be
a mix of automatic
and manual editing. A
first automatic
process could be
done, and then
manual editing can be
performed to sharpen
information

The keywords
have a thesaurus
or and ontology
connected

Examples of values:
(Coming from Photon&Neutron SCientific Research field):
X-Ray Spectroscopy, BioCristallography, etc
(and the related scientific discipline): Quantum Physics,
Chemistry: etc
(and the mathematical technique used): Monte Carlo
method, etc
Examples: functions of the software, techniques, field of
research.

Challenges Priority: MUST / SHOULD / MAY

Identify pertinent thesaurus
Choose the right term to target the right
community (be it Experts in the field,
Academic researchers, Students,...)

Bonus: Reference to existing guidelines:
- HAL - Create deposit guide: keywords are

recommended but not mandator
Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Try to give hints to the provider from well known
ontologies in the field

Difficulty level to complete quality
metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://hal.science/hal-01872189v2

license | Type: CreativeWork or URL

What? Why? Where? Who? How? Bonus: Metrics

A license document
that applies to this
content, typically
indicated by URL.

To make a clear statement,
what are the conditions and
terms that apply to use the
product/software

Intrinsic via a
LICENSE file(s)

Authors of
the software

Usually, has to be decided at any time
before publishing the software

Manually added

If LICENSE file(s) is existing, can be
automatically extracted to extrinsic
metadata

Checking, if license is in
the SPDX license list
Checking if license is
OSI approved
Checking, if license is
approved by funders or
institution

Examples of values:
SPDX License identifier

AGPL-3.0-or-later
BSD-3-Clause

Challenges Priority: MUST

Little interest in PI minds about the choice of the license
Poor understanding of legal implications and license
compatibility
Handling non-standardized licenses

Bonus: Reference to existing guidelines:
Ex:
https://webcampus.pasteur.fr/upload/docs/applicati
on/pdf/2021-04/fiche_diffusion_logiciel_en_v1.pdf

- HAL - Create deposit guide: license is
mandatory

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Encouraging people to use
standardized licenses

Using SPDX-IDs for identifying
licenses

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://spdx.org/licenses/
https://spdx.org/licenses/
https://hal.science/hal-01872189v2

name | Type: Text

What? Why? Where? Who? How? Bonus: Metrics

Schema : Thing
The name of the item
(software,
Organization) (46)

To describe and identify
software (31?)

Intrinsic (in
codmeta) and
extrinsic
(repositories,
etc.)

Authors/Crea
tors

Manual Existence or absence of
the metadata

Check consistency with
readme and description

Examples of values:

Ocaml (OCaml · GitHub)

Challenges Priority: MUST / SHOULD / MAY

Finding appropriate metadata in codemeta (you need not agree!)
Do we need to know, in the name, if the item is a library, a
component, a whole software ?
Should be : unique, not too short, not too long, not too complex,
utf8

Bonus: Reference to existing guidelines:
- HAL - Create deposit guide: name is

mandatory

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)How to improve metadata

quality?
With guidelines !

Difficulty level to complete quality metadata term:
easy | medium | hard

Discussion
- How specific should the name be to characterize the item ?

#RS_workshop_RDAP20

https://github.com/ocaml
https://hal.science/hal-01872189v2

operatingSystem | Type: Text

What? Why? Where? Who? How? Bonus: Metrics

Operating systems
supported (Windows
7, OSX 10.6, Android
1.6).

Very important for re-use. Maintainer of
the resource

Can be provided automatically by the
build system of the resource

Examples of values:
Windows 7, OSX 10.6, Android 1.6

Challenges Priority: MUST / SHOULD / MAY

In the new era of cloud computing, it is becoming more and
more important to provide the build system (Docker,
Kubernetes…) than the Operating system by itself

Bonus: Reference to existing guidelines:

- HAL - Create deposit guide: operating
system is a recommendation

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
Me automatic from a recipe for
example
Allow for more than one operating
system and version to be listed
Encourage open OS usage

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://hal.science/hal-01872189v2

programmingLanguage | Type: ComputerLanguage or Text

What? Why? Where? Who? How? Bonus: Metrics

A text field that
describes the
programming
languages and
versions.

To ease the search for language
specific tools
To enable interoperability with other
tools written in the same language
To allow reuse by users who can use
that language
Mentioning version helps in reaching
reproducibility of computational work in
an embedded environment (compilation
or interpretation)

Intrinsic
But also, if there
is some library
dependency,
might be
extrinsic

The author or
maintainer

This should be a pre
populated field to choose
one or many

At least one text field
must be filled

Examples of values:
● Python 3.04
● R 2.1
● Go

Challenges Priority: MUST / SHOULD / MAY

● Could it be more than one text?
● How to have more than one language listed?
● Do we also need to add how much percentage of the code is written

in one language? Github allows for this, but many registries will only
allow one value

● Some softwares are now developed as micro-services and can mix
different languages (one per service)

Bonus: Reference to existing guidelines:
(provide link or quote from the guidelines collection)

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve
metadata quality?
Add more detail to the text,
specially if more language
is sed

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://docs.google.com/document/d/1E3mZFb0RHpT1cGorzwJj6EQeGArjPHYXZ15LOqB48Ms/edit?usp=sharing

readme | Type: URL

What? Why? Where? Who? How? Bonus: Metrics

A URL that links to
the Readme file of the
source code, might
be linked directly to
the root folder of the
code repository - 68

A Readme file helps the user
(person) with instructions on how
to use the software.
Provides a description of
minimum requirements (as in
other tools or libraries, test
dataset) It might also link to a
citation file or reference etc). It
might describe the structure of
your project for people to
navigate it better

Extrinsic (but can
appear in the
metadata file as
intrinsic
information)

Development
platform (GitHub,
GitLab, etc.)

The Author, or
maintainer

A Readme file is usually manually
created. But there can be templates
to replicate

● https://www.makeareadme.co
m/

● https://www.readme-templates
.com/

(Which metric can be used to
verify this metadata and it’s
quality)

Examples of values:
● https://www.freecodecamp.org/news/

how-to-write-a-good-readme-file/

Challenges Priority: MUST / SHOULD / MAY

(add 1-3 challenges)
● A Readme file is not standard across projects.

○ not standard to have? or not standard in terms of
format (plain, md, rst, ...), contents (sections to
have there), location (root, subdirs) or filename?

○ This file is a bit free form and challenging for
machine actionability

● Different development environments display them in different ways
depending on the format used

Bonus: Reference to existing guidelines:
(provide link or quote from the guidelines collection)

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality?
● Provide a Readme template for

reuse
● Automatically generate the

readme file with some of
Codemeta.json content

Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://www.makeareadme.com/
https://www.makeareadme.com/
https://www.readme-templates.com/
https://www.readme-templates.com/
https://www.freecodecamp.org/news/how-to-write-a-good-readme-file/
https://www.freecodecamp.org/news/how-to-write-a-good-readme-file/
https://docs.google.com/document/d/1E3mZFb0RHpT1cGorzwJj6EQeGArjPHYXZ15LOqB48Ms/edit?usp=sharing

relatedLink | Type: URL

What? Why? Where? Who? How? Bonus: Metrics

A link related to this
object, e.g. related
web pages

To provide additional context
and information located
elsewhere (not directly in the
project)

Extrinsic
probably

Author Manual Valid URL check
Resolvable

Examples of values: Challenges Priority: MUST / SHOULD / MAY

- Decide what is still really relevant for the described project
- Maintain links that work (URL does not resolve)
- Linked content changes (and it is not relevant anymore)
- Other than HTTP links (e.g. FTP) or links accessible only internally

or after authentication
- The links will be probably duplicated in README with additional

context

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality? Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

runtimePlatform | Type: Text

What? Why? Where? Who? How? Bonus: Metrics

Runtime platform or
script interpreter
dependencies
(Example - Java v1,
Python2.3, .Net
Framework 3.0).
Supersedes runtime.

- Use of software,
reproducibility

Intrinsic,
property related
to the code /
SW itself.

Author
(programmers
or maintainers),
users of SW (“I
got it running in
virtual box…”)

Depends on programming
environment: many environments
have a builtin mean to express
that

- Try to run (or
execute tests)
the code in the
given env.

- PID resolves to
env.

Examples of values:
- Java 17
- Python >=3.8, <4, =3.4.5
- Docker
- PID of env published in a

dedicated repo

Challenges Priority: MUST / SHOULD / MAY

- Multiple values (and testing it works for all, test matrix)
- No curated vocabulary (or technology-agnostic format)

of all possible values
- Future version of the runtime platform
- Relation to processorRequirements and

operatingSystem
- Runtime environments do not provide a PID => must

be referenceable
- RT environment is a complex thing to describe, not a

simple scalar property
- In some cases the platform is very general and difficult

to describe

Bonus: Reference to existing guidelines:
Comment: (“should” for now, but maybe “must” in future?)

SHOULD be part of the citation as well

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

#RS_workshop_RDAP20

How to improve metadata quality?

- Unambiguously referencing a
runtime platform and its
dependencies via a PID

Difficulty level to complete quality metadata term:
easy | medium | hard

- Hard

#RS_workshop_RDAP20

supportingData | Type: DataFeed
https://schema.org/supportingData

What? Why? Where? Who? How? Bonus: Metrics

Examples of values: Challenges Priority: MUST / SHOULD / MAY

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality? Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

https://schema.org/supportingData

version | Type: Number or Text (see also SoftwareVersion)

What? Why? Where? Who? How? Bonus: Metrics

The version of the
CreativeWork embodied
by a specified resource.

SoftwareVersion - Version
of the software instance.
(Type-Text)

- Is this version current one
- Encoded info in version string

about major/minor release…
- Citing the exact version that was

used for research
- Reproducibility of experiments

(bugs…)
- Mark a milestone

Intristric, in code
repository (tag)
or constant,
package
metadata (e.g.
pom file)
In the release
artifact

- Auto-generat
ed

- Author or
maintainer of
repo

- Auto-generate
d (e.g. git tag)

- Using consistently
versioning
schema (regex
match?)

- Consistency
across repository /
codebase
(matches git tag?)

Examples of values:

- v3.10.1-rc.2
- 2022.7.1
- 1.0

Challenges Priority: MUST / SHOULD / MAY

- Different versioning schemas (CalVer, SemVer, etc.)
- Should there be “v” prefix before semver in metadata

or not?
- Consistency with tags and version constants in the software

(e.g. “tool --version”)
- Keeping the information up to date (automation?)

- Version string in filenames, codemeta.json…
- Version is volatile metadata
- Auto-generated or reviewed/added by humans

- Name changes
- Find current version
- Branches
- Forks
- Follow Best practices vs. institutional policies
- Not marking different code with the same version

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

#RS_workshop_RDAP20

How to improve metadata quality?
(add 1-3 ideas)
Include provenance to previous published
versions

Possibility to test the code… to see if
it is working?

Difficulty level to complete quality metadata term:
easy | medium | hard

If a consistent approach is selected..
Agree - a best practice that works on a scale of decreasing
consistency:

● If the git/ repository provides a version number automatically,
then always use this.

● If not, then …

#RS_workshop_RDAP20

softwareRequirements | Type: SoftwareSourceCode

What? Why? Where? Who? How? Bonus: Metrics

Required software
dependencies

To ensure all the
pre-requisites for the software
are available before re-use

To inform about dependencies
of the Resource

Must be taken
from the build
system of the
software

The
developer of
the software

Manual information added

Examples of values: Challenges Priority: MUST / SHOULD / MAY

There quit a lot of kinds of dependencies:
Algorithmics (which numerical method,...ect)
Software development frameworks
Libraries (with a variety of maturity levels)
Versions of Languages/platforms

Bonus: Reference to existing guidelines:

Archive | Reference | Describe | Cite
(highlight match from SIRS)
Find | Access | Interoperate | Reuse
(highlight match)

How to improve metadata quality? Difficulty level to complete quality metadata term:
easy | medium | hard

#RS_workshop_RDAP20

