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Abstract: Currently, the computational power present in the sensors forming a wireless sensor
network (WSN) allows for implementing most of the data processing and analysis directly on the
sensors in a decentralized way. This shift in paradigm introduces a shift in the privacy and security
problems that need to be addressed. While a decentralized implementation avoids the single point of
failure problem that typically applies to centralized approaches, it is subject to other threats, such
as external monitoring, and new challenges, such as the complexity of providing decentralized
implementations for data mining algorithms. In this paper, we present a solution for privacy-aware
distributed data mining on wireless sensor networks. Our solution uses a permissioned blockchain
to avoid a single point of failure in the system. Contracts are used to construct an onion-like structure
encompassing the Hoeffding trees and a route. The onion-routed query conceals the network identity
of the sensors from external adversaries, and obfuscates the actual computation to hide it from
internally compromised nodes. We validate our solution on a use case related to an air quality-
monitoring sensor network. We compare the quality of our model against traditional models to
support the feasibility and viability of the solution.

Keywords: WSN; air quality; privacy; blockchain; data mining

1. Introduction

Currently, wireless sensor networks (WSNs) are widely used in various application do-
mains (e.g., healthcare, supply chains, or agriculture). They support collecting and storing
data about the state of monitored objects (e.g., patients, products, or crops), enabling further
analysis that benefits stakeholders (e.g., better health, traceability, increased productivity).
As typical WSNs rely on cloud infrastructures to handle the large amount of collected data,
they are subject to diverse issues related to maintenance, scalability, and vulnerability to
security threats. Most cloud-related issues originate from its centralized design, naturally
opening the way to decentralized systems as an alternative to handle data. In addition,
the recent development of embedded technology available in sensors is a strong incentive
for the design of decentralized solutions. Present-day smart sensors have such strong
computational capacities that they can handle demanding tasks, including hosting an
entire operating system and the full web protocol stack, including a web server, or they are
directly connected to one. Therefore, they become part of the web, supporting the vision of
a worldwide sensor web [1]. Such a context makes the decentralized operation of the data
collection and management processes very appealing.

Indeed, decentralized systems have seen quite a strong development since the release
of Bitcoin, a practical blockchain implementation that provides decentralized trust, leading
to the development of various other implementations. While, for centralized WSNs, security
attacks target specific weak points of the system, in decentralized WSNs, attacks consist in
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observing the flow of messages that go through the network, and in identifying the role of
each node to better target further attacks. Additionally, the data mining tasks performed
in centralized databases, usually in the cloud, need some adjustments to be realized in a
decentralized WSN.

Therefore, there is a major need to (1) rethink data mining tasks so that they better fit
the decentralized underlying system where they should be executed, and (2) protect the
privacy of these tasks with moderate additional computing requirements. Several trends of
work exist in this direction; however, most are very computationally intensive, or show
high communication costs.

In this paper, we present a solution for privacy-preserving DM (PPDM) that relies on
the blockchain to provide trust, and on onion routing (OR) to preserve the privacy of the
DM tasks that are executed in WSNs.

In particular, our contribution features smart contracts to provide for role-based access
control and secure DM execution , so that nodes can trust each other. Our solution, instead
of sharing data between nodes, is to share the partially constructed models so that each
sensor node only has access to the partial model that is the result of the computation of the
previous sensor nodes.

The remainder of this paper is structured as follows: In Section 2, we overview the
most relevant work on PPDM, OR, and blockchain, and highlight the research gap which
our work covers. In Section 3, we present our architecture and detail how its different
components are articulated. In Section 4, we detail the methodology followed to enable
its operation over a use case related to indoor air quality monitoring. In Section 5, we
present the results obtained and compare them to the closest work in the literature. Finally,
we summarize our main contributions and present some guidelines for future work in
Section 6.

2. Related Work

In this section, the related work relevant to our research is presented, and knowledge
gaps are identified. Section 2.1 gives an overview of the state of the art in privacy-preserving
data mining in WSNs, Section 2.2 presents the recent research on the use of onion routing
in WSNs, and Section 2.3 lists the relevant applications of the blockchain on WSNs.

2.1. Privacy-Preserving Data Mining in WSNs

Conventionally, DM on WSN data is realized in a centralized processing point external
to the WSN. While it is simple to implement, such an approach raises privacy concerns
due to the required relocation of sensor node data to the external system through the WSN,
a multi-hop wireless network operated by resource-constrained devices. There are many
studies addressing privacy concerns in WSNs [2–4], several of them indicating that, in
addition to data privacy, contextual privacy must also be considered.

A considerable amount of literature has been published on privacy-preserving data
aggregation since it is particularly suited to WSNs’ characteristics [5,6]. The concept is based
on aggregating data as it travels through the multi-hop network towards the sink node,
and on applying privacy-preservation techniques during aggregation points to prevent the
disclosure of the data of individual sensor nodes. Although the data aggregate does not
disclose individual sensor privacy, aggregating the data may also reduce the knowledge
obtainable using DM.

Local differential privacy (LDP) is well established in DM applications that require
the privacy of individual data sources [7]. Data is encoded or perturbed at the origin or
intermediate point, and then sent to the consumer. Therefore, LDP techniques also leverage
the trade-off between privacy and data utility. The authors in [8] discuss the application of
LDP in decentralized IoT networks. An LDP IoT framework is presented in [9]; however,
LDP is applied only at edge servers.

Homomorphic encryption was proposed for preserving privacy, both in DM [10] and
WSN applications [6]. Privacy is assured since computations are performed on crypto-
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graphically secured data without decryption. However, the technique is computationally
intensive [11,12], and reasonable solutions for WSNs are designed only to compute addition
and multiplication on encrypted data.

Secure multi-party computation (SMC) [13] allows multiple parties to jointly compute
a function over their inputs while keeping those inputs private. Many studies [10,14] use
the SMC technique to preserve the privacy of individual data sources during DM operations.
However, traditional solutions relying on SMC require high computation and communica-
tion costs; thus, they are not convenient for application in WSNs. Therefore, SMC in WSNs
is limited to low-complexity tasks, such as data aggregation [15].

Data mining algorithms that are performed over a WSN are inherently distributed,
which has shifted the focus from traditional data mining (DM) approaches to the paradigm
of distributed data mining (DDM) in recent years. The authors of [16] provide a relatively
recent survey of state-of-the-art DDM techniques, focusing also on privacy-preserving
distributed data mining (PPDDM). On the other hand, [17] introduces the notion of de-
centralized spatial data mining (DSDM), where individual sensor-enabled computing
nodes possess only local knowledge about their immediate neighborhood, but derive
global knowledge through local collaboration and information exchange. This is especially
relevant for our research, where we aim at monitoring indoor air quality over a WSN.

2.2. Onion Routing in WSNs

Onion routing has a long tradition in enabling anonymous communication in public
networks, first using layered objects to establish anonymous connections [18], and now
being implemented in the TOR network to construct anonymous connections one hop at a
time using a key-agreement protocol [19].

Although combined applications in the context of PPDM are rare [20], onion routing
remains a privileged technique to protect from external monitoring attacks, as is proven by
existing work on the topic [21].

De Cristofaro et al. [22] used a layered object to retrieve data from a WSN without
disclosing the identity of the queried sensor node. Although the technique preserves
privacy effectively, it only allows for data retrieval from individual nodes. One important
work related to query privacy over WSNs is the work of Carbunar et al. [23], which
proposes a similar solution, although with different underlying architectural choices (i.e.,
no region-based servers and a different trust model). The solution works by using source
routing to privately route a declarative query to the aggregator nodes of a WSN. However,
aggregator nodes are a point of failure for the network since they collect data from the
sensor nodes in their proximity.

In general, we noted that most related work adopts a strong separation between data
collection/querying and data mining. This highlights the originality of our work, where
the data remains on the sensors, with a direct decentralized implementation of the data
mining process that involves using onion routing for the purpose of protecting the tasks
together with the processed data.

2.3. Blockchain Applications in WSNs

The unique properties that blockchain networks have, and how they can benefit IoT
and WSNs, has been studied extensively. Early research focused on using a blockchain
network as an external component of systems that are mainly used as databases for key
storage and WSN management [24,25]. Blockchain networks have been used in combination
with WSNs for data security, sensor node authentication [26], removing single points of
failure in WSNs [27], and secure data accumulation [28].

Recent advances in blockchain protocols have enabled the design of light clients,
which are nodes participating in the network without needing to maintain the entire
chain. This enables clients to run on sensor nodes with low computing power and storage
requirements. Coupled with smart contract platforms, new applications, such as malicious
node detection [29] and anomaly detection [30], have surfaced.
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Although we use blockchain for access control, which is a typical way to ensure trust
between actors in a decentralized setup, the originality of our work lies in the use of smart
blockchain contracts to ensure the authenticity of the onion messages, which is a novel
approach to blockchain when combined with onion routing, as in this context.

2.4. Main Contributions

1. We develop a fully decentralized PPDDM framework for building incremental models
where data never leaves the sensor, further improving data privacy and security;

2. By using onion routing, we are able to obfuscate computations between participating
sensors and external adversaries;

3. We remove any SPOF by implementing RBAC and key storage using blockchain;
4. We show that the PPDDM approach achieves comparable accuracy to traditional DM

approaches for the air quality monitoring use case.

3. Architecture

Our architecture is built over a set of sensor nodes that have the computing power of
a Raspberry Pi, and is connected to an IAQ sensor that collects temperature (in Celsius),
relative humidity, dew point, absolute humidity, CO2, VOC index, and luminance.

Each sensor node gathers local data from its attached sensor, and at the same time,
is a blockchain node. The proposed architecture requires a blockchain supporting smart
contract functionality. The term “smart contract” was first defined in [31] as a computerized
transaction protocol that executes the term of a contract. Today, the term “smart contract”
is adopted for software that is recorded on the blockchain and that is executed by nodes
maintaining the blockchain as part of transaction processing. Ethereum [32] was the
first blockchain to implement Turing-complete smart contracts. This was achieved by
introducing the Ethereum Virtual Machine (EVM), the gas concept, and the account-based
transaction model. In addition to allowing the encoding of arbitrary state transition
functions, the smart contract functionality implemented in the Ethereum network allows
the smart contract to maintain a state; therefore, more complex applications can be built.

The OpenEthereum private network could serve our system as a secure, decentralized,
and immutable smart contract platform. The permissioned Ethereum network operates the
proof of authority (PoA) [33] consensus; therefore, the network is maintained by a selected
set of validator nodes. Other nodes do not contribute to the state transition processing;
therefore, these nodes can run an Ethereum light client [34].

An illustration of the system architecture is given in Figure 1. The use of onion routing
for PPDDM is described in Section 3.1. The operation of the proposed architecture and a
smart contract description is given in Section 3.2.
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Figure 1. The figure displays the architecture of the proposed system and the interaction between the
user, the WSN, and the blockchain.

3.1. Onion Routing for Privacy-Preserving Decentralized Data Mining

This section describes how to use the onion routing technique for privacy-preserving
decentralized data mining. The onion routing technique builds upon messages consisting
of encryption layers ciphered using public-key cryptography. Each layer of a message
contains the necessary encryption key material and the address of the node that possesses
the secret key, which will decipher the next layer. Therefore, the layered object is deciphered
following the path given at message construction and delivers encryption key material to
in-path systems. The encryption key material is used to establish a connection between the
layered object origin and the last receiver. The connection is anonymous since none of the
systems involved in the communication will know the whole connection route, apart from
the layered object origin.

To achieve privacy-preservation for DDM, we rely on a new use of onion routing that
was first described in [35]. Similar to onion routing, this technique uses messages consisting
of several encryption layers, and each layer includes path details. However, the encryption
key material is not included in each layer of the layered object, and it is not used to establish
an anonymous connection. Instead, the encryption key material gives access to the payload
accompanying the layered object. Therefore, only specific nodes in the message path are
able to access the message payload, and their identity is concealed among the set of nodes
routing the layered object.

Our system uses this technique to convey a DM model to WSN nodes. Figure 2 illus-
trates a message in our system. The DM model is enclosed in the payload accompanying
the layered object. Nodes receiving encryption key material from the layered object perform
model processing on their local data. Therefore, model processing is realized on WSN
nodes without a central processing point. The technique ensures data privacy since the
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private sensed data of nodes does not leave the origin node. The generated communica-
tion traffic is uniform; nodes performing model processing are concealed among the set
of nodes routing the message, the message path and sojourn time are randomized, the
message size is uniform, and the messages are indistinguishable by encryption and are
mixed when routed in the network. Therefore, external actors eavesdropping on a wireless
communication cannot learn information from the network traffic.

s
a

s
b

next hop ip

data mining model

pair of symmetric encryption keys

public key encryption symmetric encryption

Layered object:

Message

Payload:
s
b

s
cIP:237

IP:42

IP:877 IP:11

IP:22

Figure 2. A message of the privacy-preserving protocol described in [35], adapted for DM model
processing. The layers of the layered object, containing pairs of symmetric encryption keys, include
distinct keys. The first key is used for payload decryption, and the second key for payload encryption
after DM model processing. Please note that encryption key pairs are chained through layers of the
layered object.

3.2. Role-Based Access Control and Secure Data Mining with Smart Contract

The smart contract enabling our architecture supports the following functionalities:

• Authentication: allows sensor node authentication and stores the sensor node public
key in the KeyStore;

• Role-Based Access Control (RBAC): verifies user permissions. The smart contract con-
tains the roles assigned to the public keys of authorized users. Roles enforce the set of
DM algorithms that a user can execute on nodes of the WSN;

• Query Submission: authenticates the user with RBAC and writes the message authenti-
cation material in the MessageStore;

• Message Authentication: a view function called by sensor nodes to verify the message
origin and permissions using the message authentication material;

• Result Submission: allows authenticated sensor nodes to submit the message result and
remove the corresponding message authentication material from the MessageStore.

The outlined architecture allows for the management of user roles with RBAC func-
tionalities. A user entrusted with a specific role is allowed to construct a message made of
the layered object and the payload, as is described in Section 3.1. The payload content is
constrained by the user role, as defined by the RBAC.

The user interrogates the KeyStore to learn sensor node addresses for message construc-
tion. After message construction, the user calls the query submission functionality providing
the message authentication material. The message authentication material consists of a
Merkle proof [36] constructed from the layered object layers, and the signature of the
Merkle proof produced using the user’s private key. The user then feeds the constructed
message to the WSN.

Each sensor node receiving a message performs the following tasks. The layer of the
layered object that is dedicated to this specific node is deciphered, and the message is
authenticated by calling the Message Authentication function. The message authentication is
performed by verifying the hash of the layered object’s content against the Merkle proof in
the MessageStore. The user’s role and permission for DM model execution are also verified;
this is conducted using the signature attached to the Merkle proof.

The penultimate layer of the layered object holds a flag signaling its position. The sen-
sor node detecting this flag calls the Result Submission function and stores the message result.
For simplicity, we assume that the message result is stored on the blockchain; however,
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the result could be stored in a separate data store, submitting on-chain only the message
authentication material, the hash of the result, and the resource locator.

The user that issued the request tracks the chain for results associated with the message
authentication material of the query submission. The obtained message result consists of
the last layer of the layered object and the accompanying payload enclosing the DM model.
Next, the user decrypts the layered object with its private key, revealing the symmetric
encryption key that gives access to the payload content.

Please note that problems related to Byzantine faults are out of the scope of our work,
so we assume in this paper that the nodes collect the data properly, and execute exactly the
tasks assigned to them.

4. Methodology

This section presents the methodology behind the experimental evaluation of our
proposed PPDDM method in detail. Section 4.1 gives an outline of the dataset that was
used in the experiments—the GAMS IAQ dataset [37]. In Section 4.2, the “traditional”
data mining algorithms that were used for comparison against our PPDDM are presented.
Finally, Section 4.3 provides all the details about our PPDDM method and describes how
the experimental evaluation was performed.

4.1. Indoor Air Quality Dataset

In order to validate the proposed distributed data mining approach, we look at the
GAMS indoor air quality (IAQ) dataset, which is publicly available in [37]. This dataset
was used for experimenting and benchmarking in several research works [38–40]. In this
work, we use the GAMS dataset to compare the distributed data mining approach with
traditional centralized data mining.

As reported in Table 1, the GAMS dataset includes observations from six IAQ indica-
tors. Observations were collected from 21 November 2016 to 28 March 2017 on a minute
basis. From further dataset inspection, we identified that, for benchmarking, it could be
interesting to estimate the CO2 level from T, RH, and VOC.

Table 1. The IAQ indicators of the GAMS dataset.

Feature Sample Value Unit

Carbon dioxide (CO2) 708.0 ppm
Relative humidity (RH) 40.09 %

Particulate matter 2.5 micron (PM2.5) 10.2 µg/m3

Particulate matter 10 micron (PM10) 9.0 µg/m3

Temperature (T) 20.83 Celsius
Volatile organic compounds (VOC) 0.093 ppm

The data were pre-processed by averaging observations on a six-minute interval.
Table 2 summarizes the statistics of the pre-processed GAMS dataset.

Table 2. Summary of the statistics of the pre-processed GAMS dataset.

CO2 T RH VOC

mean 712.1 23.00 28.40 0.1168
std 405.61 2.08 5.46 0.086
min 370.2 18.04 22.05 0.062
25% 431.70 21.43 34.70 0.0635
50% 494.0 22.89 38.30 0.0740
75% 900.1 24.73 42.05 0.1405
max 2603.0 27.95 72.09 0.8702

All measured features include 29,420 observations.
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4.2. Traditional Data Mining

Here, by “traditional” data mining, we mean machine learning (ML) algorithms run
in a centralized fashion on data that is available in memory. The data used to learn and
evaluate the “traditional” ML algorithms were the same pre-processed GAMS IAQ data
with summary statistics that are presented in Table 2.

For the ML algorithms selected in this phase of the experimental evaluation, we used
the WEKA ML framework [41]—an open-source data mining (DM) framework developed
in the University of Waikato in New Zealand, containing over 200 implementations of
various ML and DM algorithms.

Since all the attributes that describe our GAMS dataset are of numeric type, it was
natural to select regression algorithms for the comparisons. Three well-known regression
algorithms were selected, namely, linear regression, model trees (the M5’ algorithm [42,43]),
and random forest [44]. The linear regression algorithm was selected as a baseline, be-
cause it is the most well-known and studied algorithm; the M5’ model trees algorithm was
selected because it can produce more sophisticated, yet still well-explainable models, and
the Random Forest was selected with the hope of producing a highly accurate result.

All three ML algorithms were run with their default parameters on the first 90% of
the GAMS IAQ dataset to learn a model, which was then evaluated on the remaining 10%
of the data. This rather unintuitive evaluation protocol was used (instead of the standard
k-fold cross validation) because of the time-series nature of the GAMS dataset.

4.3. Distributed Data Mining

The distributed data mining setting described in Section 3 characterizes a network of
nodes that store the last historical data about locally sensed IAQ features. A DM algorithm
is then privately conveyed from node to node and executed in situ. Therefore, the DM
model cannot access the global data—only the data provided by the node on which the DM
model is executing is accessible to the model. Moreover, conveying large DM models from
node to node in a WSN is resource-demanding and significantly affects the response times
of the proposed architecture. Therefore, it is necessary to send the least amount of data.

To validate the distributed data mining approach, we first partition the GAMS IAQ
dataset to simulate the described context according to Section 4.3.1. Section 4.3.3 gives the
selected DDM algorithm for comparison with traditional centralized DM and outlines the
DDM algorithm processing on the partitioned data. Section 4.3.4 details the experiment
design for assessing the message propagation time at different DM model sizes.

4.3.1. Data Partitioning

The GAMS pre-processed dataset was partitioned into ten subsets to resemble a WSN
of 10 closely located nodes. As shown in Figure 3, we applied round-robin partitioning.
Therefore, each subset holds data from the entire monitored period, and data is chronologi-
cally ordered. As can be read from Figure 3, each observation summarizes a 1-hour interval
of a sensor node.
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sensor node

observation #

time

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

1 hour
6 min

... ...

Figure 3. Data partitioning according to the round-robin method.

4.3.2. Design of the Experiment

Each sensor node collects its own data (in our simulation, there is actually a round-
robin data assignment scheme that simulates sensor node data collection, as is depicted
in Figure 3). The sensor node data is then used to “augment” the Hoeffding tree received
from the previous sensor node, producing an updated Hoeffding tree that is then passed to
the next sensor node. The whole procedure is depicted in Figure 4 and has already been
proved effective in [45].

Figure 4. Incremental learning with Hoeffding trees.

As can be observed from Figure 4, the initial Hoeffding tree (HT1) is first learned in the
batch from the data provided by the first sensor node—Sensor1 (Data1). This tree is then
propagated through the WSN, and in each subsequent WSN node (Sensork), an updated
Hoeffding tree is generated (HTk) from the previous Hoeffding tree (HTk−1) and the data
from the current sensor node—Sensork (Datak). The final Hoeffding tree is then represented
by the last tree in this chain—HTn.

Such a partial Hoeffding tree’s (HTk’s) propagation through the WSN (instead of the
actual sensor data being propagated) is most suitable for preserving privacy, and also
diminishes the load on the WSN.

4.3.3. Distributed Data Mining Algorithm

Due to the context of distributed data, where only limited local data is available for
processing, we cannot run the same algorithms as in Section 4.2. Instead, we look at the
Hoeffding tree [46], a very fast decision tree algorithm proposed for stream data. The
algorithm builds a decision tree as data arrives, without the need to reuse instances from
already-processed data. This is achieved by maintaining the statistics needed for splitting
attributes in each leaf node and determining when a split should occur as data arrives,
using the Hoeffding’s bound [47]. The Hoeffding probability bound enables us to compute
ε, which can be used as a confidence interval for the estimation of the split.

ε =

√
R2 ln(1/δ))

2N
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R is the range of the random variable r. By performing N-independent observations
of the variable r, and computing their mean r, the Hoeffding bound enables us to state with
confidence 1− δ that r is within ε distance from the true mean of the variable r.

In [46], it was shown that the Hoeffding tree output is asymptotically nearly identical
to that of a traditional batch learner in infinitely many examples.

We use the Python implementation provided in the scikit-multiflow [48] library, specif-
ically, the regression variant named HoeffdingTreeRegressor. Development of the scikit-
multiflow library stopped in the year 2020, when the developers of scikit-multiflow and
Creme [49], another Python library for data stream mining, decided to merge their efforts
and release a new library named River [50]. Even though the state of the art of data stream
mining is currently implemented in the River library, we decided to employ the Hoeffd-
ingTreeRegressor implemented in the scikit-multiflow since this implementation allowed
us to control the tree size in bytes. The HoeffdingTreeRegressor algorithm at the base of the
implementation in River is identical to the one in scikit-multiflow. The algorithm is based
on the Fast and Incremental Model Trees (FIMT-DD) method described in [51], without
concept drift adaptation.

The pseudo-code is given in Algorithm 1. From the code, it is possible to notice that
the algorithm starts with an empty tree that keeps statistics at the leaves from arriving
data. Each time k values arrive at a leaf, the algorithm finds the best split for each attribute
and ranks the attributes according to the standard deviation reduction (SDR) measure [51].
Therefore, attributes are ranked such that the standard deviation is maximally reduced,
if splitting by the highest ranked attribute, by considering the ratio of the SDR values
between any of the attributes and the highest-ranked attribute as the random variable r
with range R ∈ [0, 1]. If the inequality r + ε < 1 holds, then the highest-ranked attribute is
the best split over the whole distribution for that portion of data.

Algorithm 1: Pseudo-code of the HoeffdingTreeRegressor.

1 Begin with an empty leaf (root)
2 repeat
3 Read the next example;
4 Traverse the example to a leaf ;
5 Update statistics in the leaf ;
6 if k examples were read then
7 Find best split per attribute;
8 Rank attributes using the SDR measure;
9 if splitting criterion is satisfied then

10 Make a split on the best attribute;
11 make two new branches leading to (empty) leaves;
12 end
13 end
14 until End of the stream;

We ran the ML algorithm with the sample average leaf predictor for the following
maximal model sizes: M = {5k, 10k, 25k, 50k, 100k, 250k, 500k, 1M, 2.5M, 5M} (bytes). In
the provided code snippet (Listing 1), the MAX_TREE_SIZE parameter on line 8 corresponds
to one of the values of M. The algorithm was run on the partitioned pre-processed GAMS
IAQ dataset. To closely simulate the architecture described in Section 3, we design the
experiment as if model processing occurs once a day, processing 24 h of data from each
node following the round-robin approach. Therefore, the HoeffdingTreeRegressor processes
24 h of data from subset #0, then moves to data from subset #1, and so on. After processing
at subset #9, the model moves to the next-day data from subset #0 and repeats until it
reaches the end of data.
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Listing 1. Hoeffding Tree training and evaluation.
1 from skmultiflow.trees import HoeffdingTreeRegressor
2 data = pd.read_csv("gams_aq/gams_preprocessed.csv")
3 X = data[['temperature', 'humidity', 'voc']]
4 Y = data['co2']
5 y_actual = []
6 y_predicted = []
7

8 model = HoeffdingTreeRegressor(max_byte_size=MAX_TREE_SIZE, leaf_prediction="mean")
9

10 for i in range(len(Y)):
11 prediction = model.predict(X[i])
12 y_predicted.append(prediction)
13 y_actual.append(Y[i])
14 model.partial_fit(X[i], Y[i])

We say that the HoeffdingTreeRegressor is processing data because when a data instance
is provided to the algorithm, it first estimates the response variable value and then uses
the observed value for model learning. These operations are shown in the provided code
snippet (Listing 1) on lines 11 and 14, respectively. To hold consistency with Section 4.2,
in Section 5, we report the model evaluation results on the last 10% of the data.

4.3.4. Message Propagation Time

The system we are presenting makes use of the onion routing technique described
in Section 3.1 to convey a DM model through the nodes of a WSN. Therefore, messages
are routed through several nodes of a wireless multi-hop network and relayed multiple
times, introducing substantial latency before receiving the result. To assess the response
time of the proposed architecture operating over a large WSN, we look at the publicly
released NS3-based simulator described in [52]. NS3 [53] is a discrete-event network
simulator for internet systems, and it is the most-used network simulator by the IoT
research community [54]. The simulator described in [52] is designed to simulate the
technique described in Section 3.1 over a WSN that varies in node number, topology,
routing, etc. Furthermore, it allows for the manipulation of message structures by defining
nodes in the message path (corresponding to layers of the layered object), detailing the
payload content, and other settings such as maintaining message uniformity.

We set up a simulation that constructs a WSN of 200 nodes. Nodes are deployed
at random locations on a disc-shaped plane with a radius of 300 m. We selected the
deployment scheme affected by randomness to model the usually non-uniform node
density of WSNs. Nodes have a wireless communication range of approximately 30 m,
operating based on the IEEE 802.11n standard at 2.4 GHz and with a data rate of 13 Mbps.
The maximum transmission unit and maximum segment size are set to the ns3 default
value, namely, 2296 bytes and 536 bytes, respectively.

Messages are transmitted over the TCP protocol, multi-hop routing is conducted using
the Optimized Link State Routing Protocol (OLSR) [55], and cryptography is completed
with the Libsodium library [56].

The simulator is set up to issue 20 messages for each value of M, with M being the
size in bytes of the model carried in the message payload. The layered object included
in the message is constructed to lead the message through 20 randomly selected nodes.
Our previous work [35] stated that for privacy requirements, half the nodes in the message
path are only performing routing operations, without access to the payload content (decoy
nodes). Therefore, this setup allows for estimations of the propagation time of messages
constructed to perform model processing at 10 nodes. Message size is maintained as
uniform after the onion routing operation, with padding when necessary. Figure 5 shows
the simulated WSN and an onion message routed through 20 sensor nodes.



Appl. Sci. 2022, 12, 5646 12 of 18

sink node

sensor node

onion message

onion routing 
of the message 
at other 16 nodes

Figure 5. Example of the disc-shaped WSN with random node placement generated in the simula-
tor [52]. The sink node is deployed in the center of the network, issuing onion messages sequentially.
Each onion message is onion-routed at 20 nodes and ends its path at the sink node. In the figure, we
indicate an onion routing operation with the change in color of the packet.

5. Results
5.1. Distributed Data Mining Approach

To validate our approach, we analyze the accuracy of Hoeffding trees in predicting
CO2, depending on the set tree size. Figure 6 shows the accuracy of predicted CO2 com-
pared to observed values from sensors, depending on the tree size. The last 10% of the
chronologically ordered data was used in the evaluation phase. We observe that the over-
all accuracy of Hoeffding trees improves with the increase in tree size. As discussed in
Section 4.3.3, Hoeffding trees store attribute statistics in leaves; therefore, as new leaves are
formed due to split decisions, the model size increases, and also the prediction accuracy
should increase.
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time axis

C
O

2

Legend: observed predicted, tree size 1000k predicted, tree size 100k predicted, tree size 10k

Figure 6. Comparison between predicted CO2 using Hoeffding trees and observed for different
tree sizes.
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While training Hoeffding trees, we make continuous predictions in order to monitor
the progressive improvements in accuracy through time. Figure 7 illustrates four different
tree sizes and their respective prediction accuracies. The box plots show the aggregated
weekly data points for clarity. We observe that, in all cases, the variance and mean decrease
with time. Moreover, we observe that a small tree size (5 Kb) is worse overall when
compared to the other sizes, while increasing the size of the tree beyond 100 Kb has no
marginal effect on the accuracy.
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Figure 7. Overall prediction accuracy of different-sized Hoeffding trees while learning.

Figure 8 shows the comparison between the Hoeffding tree and the traditional DM
algorithms. We compared the absolute error between the predicted and observed values
on a daily basis. All models were trained using the first 90% of the data, and evaluated
using the last 10%. We observe that the prediction error of the Hoeffding tree is comparable
with traditional algorithms throughout all the reported days in Figure 8. Additionally,
we provide standard model quality metrics in Table 3, obtained from a model evaluation
on the last 10% of the data. From Figure 8, it is possible to notice that the Hoeffding tree
model outperforms the random forest and M5’ models. This can be also read in Table 3.
From Table 3, it appears that the linear regression model is the best predictor, achieving
the highest values for the RMSE, RRSE, and COR metrics. Although the Hoeffding tree
model did not achieve the best results, the quality metrics reported in Table 3 and Figure 8
confirm that the DDM approach using the Hoeffding tree achieves comparable accuracy
to traditional DM approaches. Furthermore, our DDM approach can be compared to the
research in [40], where researchers developed an inference model that was also tested on
the same GAMS IAQ dataset [37]. They report a coefficient of determination of 0.6742
when predicting the CO2 value from other predictors, whereas deriving the coefficient of
determination from Table 3 for the Hoeffding tree results in a value of 0.7109.
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Table 3. Statistical comparison of the prediction accuracy of different models. MAE—mean absolute
error, RMSE—root mean squared error, RRSE—root relative squared error, and COR—correlation co-
efficient.

Algorithm MAE RMSE RRSE COR

Random forest 154.8616 249.2222 61.5162 0.803
M5’ 148.5085 232.2563 57.3284 0.8323

Linear regression 157.7538 212.1302 52.3606 0.8717
Hoeffding tree 135.3154 230.9903 57.0625 0.8432
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Figure 8. Absolute error comparison between the Hoeffding tree and traditional algorithms. The box
plots aggregate the daily absolute error per DM model.

5.2. Validation of the Privacy-Preserving Architecture

The described privacy-preserving architecture builds upon the Ethereum blockchain
running the PoA consensus and the privacy-preserving communication protocol described
in [35]. Since the use of the blockchain in our architecture does not diverge from the typical
use, we focus on evaluating the privacy-preserving communication protocol for distributed
data mining. Moreover, the adoption of blockchain technology for resource-constrained
devices was discussed in several other research works; specifically, we point out [57], which
provides performance analyses of the Ethereum blockchain running the PoA consensus in
IoT networks.

The privacy-preserving communication protocol uses the onion routing technique,
which builds on messages having several layers of public-key cryptography; public-key
cryptography is known for being computationally intensive. However, in the proposed
architecture, multiple public-key cryptography operations are required only at the point of
message creation; therefore, this is conducted by the user on the client, which is supposed to
be running on a typical consumer machine. Nodes of the WSN at the onion message receipt
perform only one public-key cryptography operation. To assess the time required for a
node of our system to decipher a message, we coded a test script that measures the required
time for ciphering several bytes of data using the same cipher as the simulator [52]. The
cipher is based on the elliptic curve Curve2551 [58], and is implemented in the Libsodium
library [56] under the name Sealed Box. By our measurments, encrypting 1 kB and 16 kB of
data using the Sealed Box implementation on a Raspberry Pi4 takes, respectively, 603 and
735 microseconds. Therefore, the processing time required for cryptographic operations
is low compared to the DM model processing and the message propagation time. On the
other hand, DM model processing depends on the amount of data to be processed at each
node and on the computational complexity of the applied DM model. In the proposed
architecture, we describe the use of the DM model known as Hoeffding tree, which is
known to be memory and computationally efficient [59].
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To show the feasibility of the onion-routed approach, we study the impact of message
propagation through the WSN based on different tree sizes. The experiment was designed
to simulate the worst-case scenario with random node deployment, inducing a high packet
drop rate. Figure 9 shows the average propagation time of an onion message relative to
the size of the Hoeffding tree. We observe a low impact of larger trees on encryption,
decryption, and training on total propagation times.
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DM model size (bytes)

t (
se

co
nd

s)

interquartile range mean

Figure 9. The average propagation time of onion messages through 20 WSN nodes, conveying a DM
model of size M. To provide a better overview of the collected data, we report the log transformation
of the y axis.

6. Conclusions

In this paper, we describe an innovative combined use of blockchain and onion routing
to realize privacy-preserving decentralized data mining over wireless sensor networks.
The advantage of such an approach is to avoid problems such as single points of failure
and dependencies on remote infrastructures, while providing qualitatively similar results
to those of traditional data mining techniques.

In effect, our solution relies on smart contracts and onion routing to address further
problems that arise from the decentralized nature of the solution. Onion routing protects
the decentralized data mining process from external monitoring, and smart contracts
introduce a way to trust the computation being realized over the different sensors that
form the network. We rely on a public key infrastructure to provide for data integrity
and confidentiality.

Future work includes exploring advanced methodologies for data processing and
data storage to guarantee properties such as fault tolerance or resilience against network
partition. Pushing the boundaries of data mining on the edge of the network opens doors
for smart, autonomous, embedded systems to support human activities, while reducing
the required environmental impact.
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