
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 43

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Modeling and Simulation of Real-Time Virtual

Machine Allocation in a Cloud Data Center

S. Jason

Abstract: For dynamic resource scheduling in cloud data

centers, a novel lightweight simulation system is proposed; two

existing simulation systems at the application level for cloud

computing are reviewed; and results gained using the suggested

simulation system are examined and discussed. The usage of

resources and energy efficiency in cloud data centers can be

improved by load balancing and the consolidation of virtual

machines. An aspect of dynamic virtual machine consolidation

that directly affects resource usage and the quality of service the

system is delivering is the timing of when it is ideal to reallocate

Virtual Machines from an overloaded host [1]. Because server

overloads result in a lack of resources and a decline in application

performance, they have an impact on quality of service. In order

to determine the best answer, existing approaches to the problem

of host overload detection typically rely on statistical analysis

inspired by nature. These strategies' drawbacks include the fact

that they provide less-than-ideal outcomes and prevent the explicit

articulation of a Quality-of-Service target. By optimizing the mean

inter-migration time under the defined Quality of Service target

ideally, we present a novel method for detecting host overload for

any stationary workload that is known and a particular state

configuration [2]. We demonstrate that our technique exceeds the

best benchmark algorithm and offers over 88% of the performance

of the ideal offline algorithm through simulations with real-world

workload traces from more than a thousand Virtual Machines.

Keywords: Cloud Computing; Data Centers; Dynamic Resource

Scheduling; Lightweight Simulation System

I. INTRODUCTION

The emergence of cloud computing is based on a number

of recent developments in virtualization, grid computing, web

computing, utility computing, and related fields. Through the

internet or intranet, cloud computing offers both platforms

and applications on demand [1]. The concealment and

abstraction of complexity, the efficient utilization of remote

resources, and the virtualization of resources are some of the

main advantages of cloud computing. The Google App

Engine [2], the IBM Blue Cloud [3], Amazon EC2 [4], and

Microsoft Azure [5] are a few examples of new cloud

computing platforms. Software, computational, and storage

network resources can be shared, allocated, and aggregated

using cloud computing on demand. As there are still many

difficult problems to be solved, cloud computing is still seen

as being in its infancy [1,6,7,8].

Manuscript received on 18 May 2023 | Revised Manuscript

received on 26 May 2023 | Manuscript Accepted on 15 June 2023

| Manuscript published on 30 June 2023.
*Correspondence Author(s)

S. Jason*, Department of Information Technology, AUCA University,

Kigali 2461, Rwanda. Email: sebagenzij@gmail.com, ORCID ID:

https://orcid.org/0000-0002-0073-4691

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC-
BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1 illustrates the full ontology developed by Youseff

et al. [9] for segmenting the cloud into five primary levels

from top to bottom:

 Figure 1. Layered Architecture of Cloud Computing [9].

The relationships and interdependencies with earlier

technologies are also depicted in Figure 1. We concentrate

on infrastructure as a service (IaaS) in cloud data centers in

this study. A distributed network with multiple computational

nodes (such servers), storage nodes, and network devices can

form the structure of a CDC. A variety of resources, including

CPU, memory, network bandwidth, etc., are used to create

each node. Each resource has matching properties that go

with it. For cloud service providers, there are many distinct

kinds of resources. This essay concentrates on IaaS. This

paper's definition and model are meant to be sufficiently all-

encompassing for usage by a range of cloud service

providers. Applications in a traditional data center are

connected to particular physical servers, which are frequently

over-provisioned to handle workload spikes and unplanned

outages. Due to wasted energy and floor space, low resource

efficiency, and high administration overhead, such layout

rigidity makes data centers expensive to maintain. Current

CDCs can be made more adaptable, secure, and capable of

on-demand allocating by using virtualization technologies.

With virtualization, CDCs ought to be able to move

applications without causing any disruption from one set of

resources to another. With virtualization, CDCs ought to be

able to move applications without causing any disruption

from one set of resources to another. The technique of

resource scheduling is crucial to CDCs. Algorithms for

scheduling have been the subject of extensive research. The

majority of them are used for server farms or traditional web

servers' load balancing. Considering the allocation and

migration of reconfigurable virtual machines (VMs) and

integrated features of hosting physical machines is one of the

difficult scheduling problems in CDCs.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523
mailto:sebagenzij@gmail.com
https://orcid.org/0000-0002-0073-4691
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib9
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib9
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E4182.0612523&domain=www.ijeat.org

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 44

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

New algorithms approach CPU, memory, and network

bandwidth as integrated for both PMs and VMs, in contrast

to classic load balancing scheduling algorithms that only take

physical servers with one factor (such as CPU) into account.

Real-time VM allocation for numerous simultaneous

processes and PMs is also taken into account.

The CDC's size and density increased along with the

difficulties that need to be resolved with the growth of cloud

computing. These issues include, for instance, how to

dynamically and intensively manage physical and virtual

resources, how to increase elasticity and flexibility (which

can enhance service while lowering costs and risk

management), and how to assist clients in creating flexible,

dynamic, and adaptive infrastructure that enables businesses

to ensure sustainable future growth without increasing

spending. Because the application developers cannot control

and handle the network environment, it is very challenging to

conduct extensive research on all these issues in real internet

platforms. Furthermore, although being unpredictable and

uncontrollable, network conditions nevertheless have an

impact on how well the solutions are evaluated. Building a

data center simulation system that offers visualized modeling

and simulation in large-scale applications in cloud

infrastructure would enable the study of dynamic and large-

scale distributed settings. The application workload

statement, which comprises user information, data center

position, the number of users and data centers, and the

quantity of resources in each data center, can be described by

a data center simulation system. The data center simulation

system creates response requests based on this data and

distributes these requests to VMs. Application developers can

assess appropriate tactics, such as assigning reasonable data

center resources, choosing a data center to meet particular

needs, cutting expenses, etc. by using a data center simulation

system. The GridSim toolbox for modeling and simulating

distributed resource management for grid computing was

introduced by Buyya et al. [7]. The GridSim tool was

introduced by Dumitrescu and Foster [8]. Buyya et al.'s [7]

introduction of modeling and simulation of cloud computing

systems at the application level included discussion and

comparison of straightforward scheduling methods like time-

and space-sharing. A cloud computing simulator called

Cloud Sim [7] performs the following tasks:

1. supporting both a single physical computing node and

a Java VM data center's modeling of a large-scale

cloud computing architecture.

2. data center modeling, service provider, and

scheduling and distribution tactics.

3. supplying virtual engines that are useful for

establishing and overseeing a number of independent

and cooperative virtual services in a data center node.

Time- and space-sharing should enable quick and simple

switching between processing cores. Cloud Analyst [12]

seeks to achieve the best scheduling across user groups and

data centers depending on the existing configuration.

SimJava [11] and GridSim [10] are the foundations for

both CloudSim and CloudAnalyst, which makes them

complex. Additionally, CloudSim and Cloud Analyst only

take into account workloads at the application-level and

regard a CDC as a sizable resource pool. They might not be

appropriate for an IaaS simulation where each VM is treated

as a resource that must be requested and allocated.

Wood et al. [13] presented VM migration methodologies

and suggested migration algorithms.

Major load balancing scheduling techniques for

conventional web servers were compared by Zhang [15]. By

taking into account both servers and storage in cloud

computing, Singh et al. [14] introduced an unique load

balancing technique called Vector Dot to tackle the

hierarchical and multidimensional resource restrictions.

There aren't many resources available to help developers

compare different resource scheduling techniques with

relation to the geographic distribution of both compute

servers and user workloads in order to assess the needs of

large-scale cloud applications. In this study, we suggest using

CloudSched for dynamic resource scheduling in a CDC to

close the gap in tools for evaluating and modeling cloud

environments and applications. Multiple scheduling

algorithms are supported by CloudSched, and it is appropriate

for their application and comparison. Traditional scheduling

algorithms take into account only one aspect, such the CPU,

which can frequently result in hotspots or bottlenecks.

CloudSched, however, treats multidimensional resources. In

this chapter, the real-time restriction of both VMs and PMs—

which is frequently disregarded in the literature—is

discussed. This paper's primary contributions are:

1. putting forth a simulation system to simulate cloud

computing environments and assess how well various

resource scheduling policies and algorithms perform;

Creating and putting into practice a lightweight simulator that

combines real-time, multidimensional resource data.

Offering the following innovative characteristics is Cloud

Sched:

1. Large-scale cloud computing ecosystems, including

data centers, VMs, and PMs, are modeled and

simulated.

2. Providing a framework for cloud IaaS to model

various resource scheduling strategies and algorithms.

3. Support is provided for both graphical and text

outputs.

The remaining sections of this chapter are structured as

follows: The Cloud Sched architecture and its key

components are introduced in Section 2. The performance

evaluations of various scheduling methods are covered in

Section 3. The architecture and implementation of

CloudSched are presented in Section 4. Section 5 compares

a few different scheduling strategies and explains the

simulation findings. Finally, Section 6 offers conclusions.

II. RELATED WORK

The simplified layered architecture is shown in Figure 2:

1. Web portal. Users can choose resources and submit

requests via a web interface at the top layer, where a few

preset VM kinds are fundamentally available.

2. Core layer of scheduling. Once user requests are made,

they move on to the next level of CloudSched

scheduling, where the right data centers and PMs are

chosen based on the user's requirements. In particular,

CloudSched supports allocating VMs (consisting of

CPU, memory, storage, bandwidth, etc.) to appropriate

PMs while modeling and simulating CDCs. This layer

is capable of managing massive CDCs made up of tens

of thousands of PMs.

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 45

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Depending on the characteristics of the consumers,

different scheduling algorithms might be used in various

data centers.

3. concentrating on the scheduling simulation on an IaaS

layer where relevant tools are still absent; cloud-based

resource Cloud resources at the lowest tier include PMs

and VMs, each of which have a set amount of CPU,

memory, storage, and bandwidth.

Figure 2. Simplified Layered Architecture of Cloud Sched.

The simulation system is particularly large and complex because several other tools, like CloudSim and CloudAnalyst, are

based on already-existing simulation tools, such JavaSim and GridSim. These factors in mind, CloudSched focuses on resource

scheduling methods and adopts a lightweight design. The main features of CloudSched are the following:

1. Focus on the IaaS layer. As opposed to current tools that concentrate on the application (task) level, such as CloudSim

and CloudAnalyst, CloudSched concentrates on scheduling VMs at the IaaS layer, meaning that each request requires

one or more VMs, whereas in CloudSim and CloudAnalyst, each request only uses a small portion of a VM's total

capacity.

2. Providing a uniform view of all resources. CloudSched offers a uniform view of all physical and virtual resources to

make system management and user selections simpler, just like genuine Amazon EC2 apps do.

3. Lightweight design and scalability. CloudSched focuses on resource scheduling policies and algorithms in contrast to

other simulation tools currently available, such as CloudSim and CloudAnalyst, which are built on GridSim (may cause

issues). In a few minutes, Cloud Sched can mimic tens of thousands of queries.

4. High extensibility. Modular design is applied in CloudSched. For performance evaluation, several resource scheduling

policies and algorithms can be plugged in and contrasted with one another. A extremely expansive distributed architecture

can be created by modeling many CDCs.

5. Easy to use and repeatable. Simulator setup is simple and quick with CloudSched thanks to its user-friendly graphical

user interfaces and outputs. Text files can be used as input sources and as output destinations. Modelers can repeat

experiments by saving simulation inputs and outcomes with CloudSched. CloudSched makes guarantee that repeated

simulations provide the same outcomes. Figures 3 and 4 depict a few GUIs, respectively.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 46

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

 Figure 3. Main interface of Cloud Sched [1]

Figure 4. Main interface of Cloud Sched [2].

A. Modeling CDCs
A data center component for managing VM requests models

the main hardware architecture pertaining to clouds in the

simulator. A data center is primarily made up of a number of

hosts, which are in charge of managing virtual machines

(VMs) throughout their life cycles. A host is a cloud

computing component that simulates a real computing node.

It is given preconfigured processing power (measured in CPU

units), memory, bandwidth, storage, and a scheduling policy

for allocating processing cores to virtual machines. Similar

representations are possible for VMs.

B. Modeling VM allocation

The flexibility in resource allocation offered by cloud

computing is made possible by virtualization technologies. A

PM with two processing cores, for instance, can run two or

more VMs simultaneously on each core. Virtual machines

(VMs) can only be allocated if the total processing power

consumed by all VMs on a host does not exceed the amount

of processing power the host has available. We demonstrate

that it is feasible to have an unified view of various VM types

using the frequently used example of Amazon EC2. Eight

different types of virtual machines are shown in Table 1.1

based on online data from Amazon EC2. Information on

Amazon EC2's hardware setup is not available.

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib1
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib1
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib2
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib2

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 47

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

However, based on compute units, we can create three

different sorts of PMs (or PM pools). For instance, a PM with

268.4 GB of memory, 16 cores, and 3.25 units of storage can

be offered in a genuine CDC. This could lead to the formation

of an unified perception of the various VM kinds.

 However, based on compute units, we can create three

different sorts of PMs (or PM pools). For instance, a PM with

268.4 GB of memory, 16 cores, and 3.25 units of storage can

be offered in a genuine CDC. This could lead to the formation

of an unified perception of the various VM kinds.

Table 1. Eight types of VMS in Amazon EC2

MEM CPU (units) BW (or Sto) VM

1.7 1 (1 cores×1 units) 160 1-
1(1)

7.5 4 (2 cores×2 units) 850 1-

2(2)

15.0 8 (4 cores×2 units) 1690 1-

3(3)

17.1 6.5 (2 cores×3.25
units)

420 2-
1(4)

34.2 13 (4 cores×3.25

units)

850 2-

2(5)

68.4 26 (8 cores×3.25

units)

1690 2-

3(6)

1.7 5 (2 cores×2.5
units)

350 3-
1(7)

7.0 20 (8 cores×2.5

units)

1690 3-

2(8)

Table 2. Three types of PMs suggested

PM CPU (units) MEM BW (or Sto)

1 16 (4 cores×4 units) 160 1-1(1)

2 52 (16 cores×3.25 units) 850 1-2(2)

3 40 (16 cores×2.5 units) 1690 1-3(3)

The current scheduling techniques used by CloudSched

include dynamic load balancing, optimal utilization, and

energy-efficient scheduling. It is also possible to use other

algorithms, like reliability- and cost-oriented ones.

C. Modeling customer requirements

By randomly generating various VM kinds and assigning

VMs based on suitable scheduling algorithms in various data

centers, CloudSched models customer requirements. Random

processes can be used to produce the arrival process, service

time distribution, and necessary capacity distribution of

requestsIt is possible to regulate the rate at which consumer

inquiries arrive. It is also possible to distribute the various

VM requirements. An interval vector called vmID can be

used to describe a real-time VM request. For instance, the

expression vm1(1, 0, 6, 0.25) indicates that the request ID is

1, the VM is of type 1 (equivalent to integer 1), the start time

is 0, the finish time is 6 (here, 6 can represent that the sixth

slot ended at time 6), and the capacity that a VM occupies

from a specific PM is 0.25. Similar representations can be

used for other requests. Figure 5 illustrates the life cycles of

VM allocation using two PMs in a slotted time window. PM1

hosts VMs 4, 5, and 6, while PM2 hosts VMs 1, 2, and 3.

III. MATERIALS AND METHODOLOGY

CloudSched treats multidimensional resources, such as CPU,

memory, and network bandwidth integrated for both PMs and

VMs, as opposed to typical scheduling algorithms that simply

take into account one component, which can frequently result

in hotspots or bottlenecks. There aren't enough relevant

metrics available for scheduling algorithms that take multiple

dimensions into account. There are several metrics for

various scheduling goals. The measurements for load

balancing, energy efficiency, and utilization are discussed in

the sections that follow. It is simple to add new metrics for

additional goals.

IV. THEORY/CALCULATION

A. Metrics for multidimensional load balancing

Following an examination of various current metrics, we

create an integrated measurement that accounts for both the

average imbalance level across all servers and the overall

imbalance level of the CDC. A few VM migration approaches

were introduced by Wood et al. [13]. The following is how

one integrated load balance metric is used:

 (1)

where CPUu, MENu, and NETu represent the average CPU,

memory, and network bandwidth usage during each observed

period, respectively. The higher the combined usage, the

larger the value of V. Thus, this measurement can serve as the

foundation for migration algorithms. By transforming three-

dimensional (3D) resource information into a one-

dimensional (1D) value, this technique actually aims to

reduce integrated resource use. Information in many

dimensions couldbe lost during this transfer. Zheng et

al. [16] proposed another integrated load balancing metric as

follows:

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib16

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 48

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

 (2)

First, the suggested physical server m is chosen. Then server

m is contrasted with other physical servers i. The CPU

capability is N1i, the memory capability is N2i, and the hard

drive is N3i. Here, Ci and Mi stand for the average CPU and

memory use, respectively. Hard disk transfer rate is

represented by Di, and network throughput is represented by

Neti. The weighting factors for the CPU, RAM, hard drive,

and network bandwidth are indicated above by the letters a,

b, c, and d, respectively. The main goal of this algorithm is to

allocate virtual machines to the physical servers with the

lowest value of B. This method also transforms 3D resource

data into a 1D value.

In order to take into account integrating variables of load

balance for flow channels in data centers, Singh et al. [14]

devised a novel Vector Dot algorithm. The average CPU,

memory, and network bandwidth usage of a server are shown

by the node fraction vectors CPUU, memU, and netU,

respectively. The terms CPUCap, memCap, and netCap,

respectively, stand for the overall CPU, memory, and network

bandwidth of a server. And the node utilization threshold

vector is represented by CPUT, memT, netT, ioT>, where

CPUT, memT, netT, and ioT, respectively, stand for the CPU,

memory, and network bandwidth usage thresholds. The

concept of an imbalance score is used to assess the level of

overload in a node and the system. A node's imbalance score

is determined by:

 (3)

The system's overall imbalance score is calculated by adding

the scores of all the nodes. This nonlinear measurement

has the advantage of being able to tell apart between two

pairs of nodes that are both at 2T and 3T. A useful metric

for comparing average usage to its threshold is the

imbalance score. An integrated measurement for the total

imbalance level of a CDC as well as the average

imbalance level of each server has been designed for load

balancing technique after taking into account the benefits

and drawbacks of existing metrics for resource

scheduling. There is also room for developing more

measures for other scheduling approaches. The following

criteria are taken into account:

1. A single server's typical CPU use is i. The average CPU

usage throughout the course of an observational period is

what is meant by this. The average of six recorded values

for server i, for instance, if the observing period is 1 min

and the CPU utilization is recorded every 10 s.

2. Average CPU use across the whole CDC. Suppose that

there are CPUs on server i in total.

The system's overall imbalance score is calculated by adding

the scores of all the nodes. This nonlinear measurement

has the advantage of being able to tell apart between two

pairs of nodes that are both at 2T and 3T. A useful metric

for comparing average usage to its threshold is the

imbalance score. An integrated measurement for the total

imbalance level of a CDC as well as the average

imbalance level of each server has been designed for load

balancing technique after taking into account the benefits

and drawbacks of existing metrics for resource

scheduling. There is also room for developing more

measures for other scheduling approaches. The following

criteria are taken into account:

1. A single server's typical CPU use is i. The average CPU

usage throughout the course of an observational period is

what is meant by this. The average of six recorded values

for server i, for instance, if the observing period is 1 min

and the CPU utilization is recorded every 10 s.

2. Average CPU use across the whole CDC. Suppose that

there are CPUs on server i in total.

 (4)

where N is the total number of physical servers in a CDC.

Similarly, the average utilization of memory, network

bandwidth of server i, all memories, and all network

bandwidth in a CDC can be defined

as ,

respectively.

3. ILBi, or integrated load imbalance value, for server I In

statistics, variance is frequently used to quantify how

widely apart a collection of numbers are from one another.

An integrated load imbalance value (ILBi) of server I is

defined using variance:

 (5)

Where

 (6)

(ILBi) is a term used to describe the degree of load imbalance

when comparing a single server's CPU, memory, and

network bandwidth usage.

4. The imbalance value of all CPUs, memories, and network

bandwidth. Using variance, the imbalance value of all

CPUs in a data center is defined as

 (7)

Memory and network bandwidth imbalance values can also

be computed. The total imbalance values across all servers in

a CDC are then calculated as follows:

 (8)

5. Average imbalance value of physical server i. A physical

server's average imbalance value is defined as:

 (9)

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 49

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

where N represents the overall server count. This statistic is

used to gauge the level of imbalance on all physical

servers, as its name implies.

6. Average imbalance value of a CDC. The average

imbalance value of a CDC is defined as

 (10)

7. Average times for running. It is possible to compare the

average running times of the same number of jobs for

various scheduling algorithms.

8. Makespan. The maximum load (or average utilization) for

each PM is what is meant by this.

9. Utilization efficiency. This is determined in this instance

by dividing the minimum load on any PM by the highest

load on any PM.

B. Metrics for energy efficiency

Power consumption model

1. The server's estimated power usage model. Data centers'

cooling, disk storage, networks, and computation systems

use the most electricity. A power consumption model for

blade servers was proposed by the authors in Reference

[17], where P is defined as

 (11)

where UCPU, Umem, Udisk, and Unet represent,

respectively, the utilization of the CPU, memory, hard drive,

and network interface. Other elements like RAM, hard drives,

and network interfaces can be observed to have very little

effect on overall power consumption. The authors of Ref. [3]

discovered that CPU usage is frequently proportional to the

total system load and proposed the following power model:

 (12)

where U is the CPU usage, k is the percentage of power

consumed by the idle server (studies show that on average it

is roughly 0.7), and Pmax is the maximum power consumed

when the server is completely employed. In contrast to other

resources like memory, disk storage, and network devices, the

CPU consumes the majority of the energy in this paper.

Because workloads fluctuate in the real world, CPU

utilization may change over time. The CPU utilization is

therefore a function of time and is denoted by the symbol u.

As a result, the total energy used by a PM (Ei) can be

calculated as an integral of the power consumption function

over time using the formula:

 (13)

If u(t) is constant over time (e.g., average utilization is

adopted, u(t)=u), then Ei=P (u)(t1−t0).

2. The total energy consumption of a CDC is computed as

 (14)

It is the total amount of energy used by all PMs. It should be

noted that the energy usage of all VMs running on PMs

is included.

The CPU utilization is therefore a function of time and is

denoted by the symbol u.

3. The overall quantity of PMs used. The total number of PMs

utilized for the specified set of VM requests is shown

below. It is crucial for energy effectiveness.

4. The entire amount of time that each PM was powered on.

The total power-on time is the most important aspect

according to the energy consumption equation of each

PM.

C. Metric for maximizing resource utilization

1. Average use of the resources. You may compute the

average usage of the CPU, memory, hard drive, and

network bandwidth. You can also utilize the combined

usage of all these resources.

2. The overall quantity of PMs used. It is directly tied to a

CDC's average and overall utilization.

V. RESEARCH DESIGN AND IMPLEMENTATION

OF CLOUDSCHED

We give information about the conception and execution of

CloudSched in this part. Implemented is a Java discrete

simulator. Following is a brief description of the

CloudSched's main components.

A. IaaS resources considered

IaaS resources considered in this chapter include:

1. PMs: The actual computers that make up data centers. Each

PM can manage a number of virtual machines, and each

PM can have different combinations of CPU, memory,

hard drives, network cards, and other associated parts.

2. Physical clusters: These are made up of the required

network, storage, and number of PMs.

3. VM: an on-the-PM virtual computing environment that

makes use of virtualization software. There are several

virtual CPUs, as well as memory, storage, network cards,

and related hardware elements.

4. Virtual cluster: includes a number of virtual machines

(VMs) and the required network and storage

infrastructure.

B. Scheduling process in CDC

A typical architecture of CDCs and key resource scheduling

procedures are shown in Figure 6:

1. User requests: Through the internet, the user makes the

request (for example, by logging into the online portal of

the cloud service provider).

2. Scheduling management: Based on the user's identity (e.g.,

location, etc.) and the operational details of the request,

Scheduler Center takes choices. The appropriate data

center receives the request, which is subsequently sent to

Scheduler Center through the data center management

program. Based on scheduling methods used in CDCs, the

Scheduler Center allocates the request.

3. Feedback: The user is given access to the resources through

the scheduling mechanism.

4. Execute scheduling: The following stage receives the

scheduling outcomes (such as deploying actions).

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 50

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

5. Updating and optimization: According to the optimizing

objective functions, the scheduler optimizes resources

among several data centers by updating resource

information.

Figure 5. Referred architecture of CDCs.

The primary resources in CDCs are shown in general and detailed UML diagrams, respectively, in Figures 7 and 8. Figure 7

depicts the primary resources and their connections in CDCs, while Figure 8 details each major resource's characteristics. The

core methods of the class ScheduleDomain manage the jobs in each queue by invoking other classes. Task requests are

generated by the classes CreateRandVM and VmTaskInfo. Requests from VMs are allocated using Class Allocate and Sort.

Figure 6. Example of user request

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 51

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Figure 7. UML diagram of main resources in CDCs.

Figure 8. Detailed UML diagram of main resources in CDCs.

C. Scheduling algorithms: taking the LIF algorithm

as an example

The least imbalance level first (LIF) algorithm's pseudocodes

for a CDC's dynamic load balance are shown in Figure 9. The

method takes as inputs the state of the currently active tasks,

PMs, and the current VM request r. The placement scheme

for request r is what is produced via dynamic scheduling.

Basically, when a new VM request is placed, the system

compares several imbalance numbers to determine which PM

has the lowest total imbalance value for the data center. The

PM with the lowest integrated load is found by the algorithm.

The result will be the lowest overall imbalance number across

all servers in a CDC. The placement scheme for request r is

what is produced via dynamic scheduling. Basically, when a

new VM request is placed, the system compares several

imbalance numbers to determine which PM has the lowest

total imbalance value for the data center.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 52

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Figure 9. LIF algorithm.

The LIF algorithm's primary class diagram and sequence diagram, respectively, are shown in Figures 10 and 11.

The core methods of the class Schedule Domain manage the jobs in each queue by invoking other classes.

Task requests are generated by the classes CreateRandVM and VmTaskInfo. Requests from VMs are allocated using Class

Allocate and Sort.

VMs can be moved using Class Migrate and Allocate-Alg. Printing and output tasks are handled by Record, PrintPM, and

BalanceLevel. Physical servers and virtual machines are operated by the server, PM, and VM.

LIF algorithm: Always chooses PMs with the lowest integrated imbalance value (as stated in Eq. (5)) and available resource

to assign VMs based on needs characteristics (e.g., CPU intensive, high memory, high bandwidth requirements, etc.).

Figure 10. Main class diagram.

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 53

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Figure 11. Sequence diagram.

Sequence diagram shows the following sequences of the algorithm:

1. Initialize the system;

2. Obtain task requests;

3. Allocate VM requests in the waiting queue;

4. Operate migrating queues;

5. Operate requesting queues;

6. Operate deleting queues;

One of the interfaces for installing CDCs in CloudSched is shown in Figure 2. The manager first chooses a data center using

various IDs, after which the quantity and kind of PMs are configured. Data centers may be added or removed by the manager.

One of the user request configuration interfaces is shown in Figure 13. It is possible to set up probability distributions for the

various VM types, the overall number of simulated VMs, and preferred data centers. Figure 10 shows the primary classes'

design diagram.

Figure 12. One interface of configuring CDCs.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 54

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Figure 13. One interface of configuring user requests.

VI. RESULT AND DISCUSSION

For the simulation, we utilize a standard Pentium PC with a 2

GHz CPU and 2 GB of RAM.

A. Random configuration of VMs and PMs

In this section, we compare simulation results from four

distinct load-balancing scheduling strategies. For your

convenience, a short name for each algorithm is provided

as follows:

1. ZHCJ algorithm: As described in Ref. [16], the method

allocates VMs to PMs with the available resources and

the lowest V value (as stated in Eq.

2. To allocate VMs, the ZHJZ method chooses a reference

PM [16], calculates the value, and then selects PMs with

the lowest B value (as given in Eq. (2)) and available

resources.

3. LIF algorithm: Always chooses PMs with the lowest

integrated imbalance value (as stated in Eq. (5)) and

available resource to assign VMs based on needs

characteristics (e.g., CPU intensive, high memory, high

bandwidth requirements, etc.).

4. Requests (VMs) are assigned at random to PMs with

available resources using the Rand algorithm.

Round-Robin algorithm: One of the simplest scheduling

algorithms, it assigns tasks to each physical server in

equal portions and in circular order, handling all tasks

without priority (also known as cyclic executive).

 Figure 14. Running time of Cloud Sched.

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 55

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Three different types of heterogeneous PMs are taken into

account for the simulation, and each PM pool contains a

certain number of PMs. Both CPU and RAM are configured

with a big size, which may be set dynamically, for the

simulation of a lot of VM requests:

PM type 1: CPU=6 GHz, memory=8 G, and

bandwidth=1000 M

PM type 2: CPU=12 GHz, memory=16 G, and

bandwidth=1000 M

PM type 3 CPU=18 GHz, memory=32 G, and

bandwidth=1000 M.

Eight different types of virtual machines (VMs) with equal

probabilities of requests are generated at random and are

similar to eight Amazon EC2 instances with high CPU,

high RAM, and standard specifications (but not exactly

the same) as follows (may be dynamically configured):

Type 1: CPU=1.0 GHz, memory=1.7 G, bandwidth=100 M

Type 2: CPU=4.0 GHz, memory=7.5 G, bandwidth=100 M

Type 3: CPU=8.0 GHz, memory=15.0 G,

bandwidth=100 M

Type 4: CPU=5.0 GHz, memory=1.7 G, bandwidth=100

Type 5: CPU=20.0 GHz, memory=7.0 G,

bandwidth=100 M

Type 6: CPU=6.5 GHz, memory=17.1 G,

bandwidth=100 M

Type 7: CPU=13.0 GHz, memory=34.2 G,

bandwidth=100 M

Type 8: CPU=26.0 GHz, memory=68.4 G, and

bandwidth=100 M.

All simulations employ a Pentium PC with a CPU speed

of 2 GHz and 2 GB of RAM, with a range of PM counts from

100 to 600 and VM request counts from 1000 to 6000. The

eight different types of virtual machines (VMs) listed earlier

are all considered equally frequently while generating the

input data for user requests. Of course, various (random)

probability for various VM types can be produced. For

steady-state analysis, the transitory period is dropped in favor

of a warm-up period (the first 2000 queries). Figure 15 shows

the average imbalance level, defined in Eq. (10), of a CDC. It

can be seen that the LIF algorithm has the lowest average

imbalance level when the total number of VMs and PMs are

varied.

Figure 15. Average imbalance values of a CDC.

Figure 16 displays the overall physical server's average imbalance level as stated by Eq. When the combined number of VMs

and PMs is changed, the LIF algorithm once more has the lowest average imbalance level for all PMs.

Figure 16. Average imbalance values of each physical server.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#eqn10

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 56

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

When the total number of physical servers is fixed but the number of VMs is variable, Figure 17 depicts the average imbalance

level of a CDC, as specified in Eq. (10).

Figure 17. Average imbalance values of a CDC when PMs=100.

When the overall number of physical servers is fixed but the number of VMs is variable, Figure 18 displays the average

imbalance level of the entire physical server as described in Eq. (5). Similar outcomes are seen after lengthy simulation.

Figure 18. Average imbalance values of each physical server when PMs=100.

B. Divisible size configuration of PMs and VMs

Section 2.2 provides an explanation of how VMs and PMs are

configured. We display the average CPU, memory,

bandwidth, and the average of these three utilizations in

Figures 19–21. We also demonstrate the overall data centers'

imbalance value (IBL, as in Eq. (10), using five distinct

algorithms: Round-Robin, ZHJZ, ZHCJ, and LIF. As can be

shown, LIF consistently has the greatest average CPU,

memory, and bandwidth consumption but the lowest

imbalance value (when the total number of VMs and PMs

varies). These findings show that metrics from divisible

situations are substantially more accurate than metrics from

random configuration cases. As a result, cloud service

providers like Amazon can use these settings to better meet

customer demands for load balancing, energy efficiency, and

other performance-related needs.

 Figure 19. Utilization and imbalance value of the entire

data center when PMs=100 and VMs=1000.

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 57

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

Figure 20. Utilization and imbalance value of the entire

data center when PMs=200 and VMs=4000.

Figure 21. Utilization and imbalance value of the entire

data center when PMs=500 and VMs=5000.

C. Comparing energy efficiency

We considered four algorithms here:

1. Round-Robin: The Round-Robin scheduling algorithm,

which distributes VM requests to each PM in turn, is the

most widely used scheduling algorithm (e.g., by

Eucalyptus and Amazon EC2 [18]). The simplicity of

this algorithm's implementation is a benefit.

2. MBFD: Modified Best Fit Decreasing A bin-packing

algorithm is MBFD. Best Fit Decreasing is

demonstrated to use a maximum of 11/9 optimal

solution (OPT)+1 bins (OPT is the optimal solution's

maximum allowed number of bins) [6]. In order to

determine which host will result in the least increase in

power consumption as a result of this allocation, the

MBFD algorithm [6] first ranks all VMs in decreasing

order of their current CPU utilizations. This enables

utilizing the heterogeneity of resources by prioritizing

the nodes with the lowest power consumption. Because

the power boosting is the same for homogenous

resources (PM), the VM can be assigned to any PM that

is currently running and still capable of hosting. The

algorithm's allocation phase has a complexity of nm,

where n is the total number of virtual machines that must

be distributed and m is the total number of hosts.

Requests must be sorted for MBFD to be used for offline

(or semi-offline) scheduling only.

3. Offline Without Delay (OFWID): OFWID anticipates

all requests and executes them precisely and

immediately. Prior to allocating requests to PMs, it

arranges requests in ascending order of their IDs and

start times. A new PM is activated if none of the

currently active PMs can accommodate the request.

Online Without Delay (ONWID): ONWID only ever

recognizes a single request. Requests are sent to PMs in

ascending order of their IDs. If none of the active PMs can

accommodate the request, a new PM is turned on. If there are

a predetermined number of PMs and all of them are unable to

host the request, the request is blocked.

D. Impact of varying maximum duration of VM

requests

Based on Amazon EC2, eight different types of virtual

machines (VMs) are taken into consideration in this situation.

There are 1000 arrivals (requests) overall, and there are 125

of each sort of VM. The mean interarrival period is set at 5,

the maximum intermediate period is set at 50, and the

maximum duration of requests is set at 50, 100, 200, 400, and

800 slots, respectively. All requests follow the Poisson arrival

process and have exponential service time. Each time slot

lasts for five minutes. For instance, if a virtual machine (VM)

has 20 slots of required service time, its real length is 20*5,

or 100 minutes. The experiments are conducted three times

for each set of inputs (requests), and all of the results shown

in this chapter are the average of the three runs. Eight

different VM types are used to configure PMs, as shown in

Table 2. The overall capacity of a VM and a PM in this setup,

where there are three different types of PMs (heterogeneous

scenario), are inversely correlated. For purposes of

comparison, we assume that every VM is operating at full

capacity. While all other parameters remain the same, Figure

22 displays the total energy usage (in kilowatt hours) of the

four methods for maximum durations ranging from 50 to 800.

Figure 22. Total energy use (measured in kilowatt hours)

when the maximum length of VM requests is changed.

E. Impact of varying the total number of VM requests

The overall number of each sort of PM is then fixed, although

the total number of VM requests is varied. The average arrival

rate () divided by the average service rate () is referred to as

the system load. Service time has a uniform distribution,

while the arrival process has a Poisson distribution. While the

overall number of PMs remains fixed at 15, we change the

maximum time of each request to increase the system burden.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center

 58

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

The comparison of overall energy use is shown in Figure 23.

Figure 23. Total energy consumption (in kilowatt hours) by varying the number of VM requests.

VII. CONCLUSION AND FUTURE SCOPE

In this article, we've explained how the use of nature as

inspiration can aid in the optimization of host overload

detection and load balancing, and we've also provided a

control mechanism for the issue of virtual machine

consolidation. The control policy obtained addresses the issue

of host overload detection and satisfies the Quality of Service

objective for a stationary workload that is well understood

and for a certain configuration of state. In order to assess

effectiveness and determine whether all hosts are balanced,

we have also suggested the best algorithms for the problem

of host overload detection. The results of the experimentally

conducted investigation are as follows:

a. A method for identifying an overloaded host among a

group of several hosts has been demonstrated for the

simulated workload and calls for less complex

calculations.

b. The Nature Inspiration method assists in finding the best

possible answer by improving the level of service in a

straightforward manner.

c. The balanced hosts have been placed next to the

overloaded and underloaded hosts in order to achieve

balance between the two.

d. The algorithms suggested allow for the explicit

specification of a desired Quality of Service goal, which

is successfully accomplished by the resulting value of

the metric, to be given by the system through the

parameter offered. The proposed model is built on an

algorithm that draws inspiration from nature and calls

for a few basic presumptions. Nevertheless,

experimental research involving an excessive amount of

mixed workloads has demonstrated that the method is

effective in managing them [13] and [14]. The method

performed as well as the best offline algorithm under the

simulated workload, which is excellent for an online

approach.

ACKNOWLEDGEMENTS

In this paper, we presented CloudSched, a simple cloud

resource scheduling emulator. Details about its primary

features, design, and implementation are offered. The

outcomes of simulations for load balancing and energy-

efficient methods are discussed. Developers can find and

investigate suitable solutions by using CloudSched while

taking into account various resource scheduling strategies and

algorithms. We will soon create new indices to assess the

effectiveness of associated algorithms for various scheduling

schemes, such as multidimensional resource maximization.

More simulation data are also gathered using variables in the

probability of each VM request, a fixed total number of

physical servers, and a variable number of VMs. Different

scheduling techniques are currently contrasted inside a CDC,

but they can be readily expanded across multiple data centers.

The purpose of CloudSched is to compare various IaaS

resource scheduling strategies. The system has to be

expanded in order to represent and compare features in SaaS

(software as a service), PaaS (platform as a service), and other

areas.

DECLARATION

Funding/ Grants/

Financial Support
No, I did not receive.

Conflicts of Interest/

Competing Interests

No conflicts of interest to the

best of our knowledge.

Ethical Approval and

Consent to Participate

No, the article does not require

ethical approval and consent

to participate with evidence.

Availability of Data and

Material/ Data Access

Statement

Not relevant.

Authors Contributions
I am only the sole author of the

article.

https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249-8958 (Online), Volume-12 Issue-5, June 2023

 59

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijeat.E41820612523

DOI: 10.35940/ijeat.E4182.0612523

Journal Website: www.ijeat.org

REFERENCES

1. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A,

et al. Above the clouds: a Berkeley view of cloud computing.

Technical Report No. UCB/EECS-2009-28. University of

California at Berkley, CA; February 10, 2009.

2. Google App Engine, <https://appengine.google.com/> [last

accessed 25.03.14].

3. IBM blue cloud, <http://www.ibm.com/grid/> [last accessed

26.03.14].

4. Amazon EC2, <http://aws.amazon.com/ec2/> [last accessed

25.03.14].

5. MicrosoftWindows Azure,

<http://www.microsoft.com/windowsazure> [last accessed

26.03.14].

6. Beloglazov A, Abawajy J, Buyya R. Energy-aware resource

allocation heuristics for efficient management of data centers for

cloud computing accepted by future generation computer systems;

2012. [CrossRef]

7. Buyya R, Ranjan R, Calheiros RN. Modeling and simulation of

scalable cloud computing environments and the CloudSim toolkit:

challenges and opportunities. In: Proceedings of the seventh high

performance computing and simulation conference (HPCS 2009,

ISBN: 978-1-4244-4907-1, IEEE Press, New York, NY), Leipzig,

Germany; June 21–24, 2009. [CrossRef]

8. Dumitrescu CL, Foster I. GangSim: a simulator for grid

scheduling studies. In: Proceedings of the IEEE international

symposium on Cluster Computing and the Grid (CCGrid 2005),

Cardiff, UK; 2005. [CrossRef]

9. Youseff L, Butrico M, Da Silva D. Toward a unified ontology of

cloud computing. In: Proceedings of the grid computing

environments workshop, GCE’08; 2008. IEEE international

conference on advanced information networking and applications

(AINA 2010), Perth, Australia; April 20–23, 2010. [CrossRef]

10. Buyya R, Murshed M. GridSim: a toolkit for the modeling and

simulation of distributed resource management and scheduling for

grid computing. J Concurrency Comput Pract Exp. 2002;14

Wiley Press, Nov.-Dec. [CrossRef]

11. Howell F, Mcnab R. SimJava: a discrete event simulation library

for java. In: Proceedings of the first international conference on

web-based modeling and simulation; 1998.

12. Wickremasinghe B, Calheiros RN, Buyya R. CloudAnalyst: a

CloudSim-based tool for modelling and analysis of large scale

cloud computing environments. In: Proceedings of the 24th.

13. Wood T, Shenoy P, Venkataramani A, Yousif M. Black-box and

gray-box strategies for virtual machine migration. In: Proceedings

of the symposium on networked systems design and

implementation (NSDI); 2007.

14. Singh A, Korupolu M, Mohapatra D. Server-storage

virtualization: integration and load balancing in data centers. In:

Proceedings of the 2008 ACM/IEEE conference on

supercomputing; 2008, p. 1–12. [CrossRef]

15. Zhang W. Research and implementation of elastic network service

[PhD dissertation]. National University of Defense Technology,

China (in Chinese) 2000102353.

16. Zheng H, Zhou L, Wu J. Design and implementation of load

balancing in web server cluster system. J Nanjing University

Aeronaut Astronaut. 2006;38.

17. Economou D, Rivoire S, Kozyrakis C, Ranganathan P. Full-

System power analysis and modeling for server

environments Stanford University 2006 2006; [HP Labs

Workshop on Modeling, Benchmarking, and Simulation (MoBS)

June.

18. Full-System power analysis and modeling for server

environments Stanford University 2006.

AUTHOR PROFILE

Sebagenzi Jason pursed Bachelor of science from

Adventist University of Central Africa (Rwanda),

and Master of Science in information Technology

from Jain University (India) in year 2021.He is

currently Ph.D. In computer science major in cloud

computing from Jain University (India) and Dean

of Information Technology Faculty.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://appengine.google.com/
http://www.ibm.com/grid/
http://aws.amazon.com/ec2/
http://www.microsoft.com/windowsazure
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/CCGRID.2005.1558689
https://doi.org/10.1109/GCE.2008.4738443
https://doi.org/10.1002/cpe.710
https://doi.org/10.1109/SC.2008.5222625

