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Modeling and Simulation of Real-Time Virtual 

Machine Allocation in a Cloud Data Center 

S. Jason 

Abstract: For dynamic resource scheduling in cloud data 

centers, a novel lightweight simulation system is proposed; two 

existing simulation systems at the application level for cloud 

computing are reviewed; and results gained using the suggested 

simulation system are examined and discussed. The usage of 

resources and energy efficiency in cloud data centers can be 

improved by load balancing and the consolidation of virtual 

machines. An aspect of dynamic virtual machine consolidation 

that directly affects resource usage and the quality of service the 

system is delivering is the timing of when it is ideal to reallocate 

Virtual Machines from an overloaded host [1]. Because server 

overloads result in a lack of resources and a decline in application 

performance, they have an impact on quality of service. In order 

to determine the best answer, existing approaches to the problem 

of host overload detection typically rely on statistical analysis 

inspired by nature. These strategies' drawbacks include the fact 

that they provide less-than-ideal outcomes and prevent the explicit 

articulation of a Quality-of-Service target. By optimizing the mean 

inter-migration time under the defined Quality of Service target 

ideally, we present a novel method for detecting host overload for 

any stationary workload that is known and a particular state 

configuration [2]. We demonstrate that our technique exceeds the 

best benchmark algorithm and offers over 88% of the performance 

of the ideal offline algorithm through simulations with real-world 

workload traces from more than a thousand Virtual Machines. 

Keywords: Cloud Computing; Data Centers; Dynamic Resource 

Scheduling; Lightweight Simulation System 

I. INTRODUCTION 

The emergence of cloud computing is based on a number 

of recent developments in virtualization, grid computing, web 

computing, utility computing, and related fields. Through the 

internet or intranet, cloud computing offers both platforms 

and applications on demand [1]. The concealment and 

abstraction of complexity, the efficient utilization of remote 

resources, and the virtualization of resources are some of the 

main advantages of cloud computing. The Google App 

Engine [2], the IBM Blue Cloud [3], Amazon EC2 [4], and 

Microsoft Azure [5] are a few examples of new cloud 

computing platforms. Software, computational, and storage 

network resources can be shared, allocated, and aggregated 

using cloud computing on demand. As there are still many 

difficult problems to be solved, cloud computing is still seen 

as being in its infancy [1,6,7,8].    
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Figure 1 illustrates the full ontology developed by Youseff 

et al. [9] for segmenting the cloud into five primary levels 

from top to bottom: 

 

 Figure 1. Layered Architecture of Cloud Computing [9]. 

The relationships and interdependencies with earlier 

technologies are also depicted in Figure 1.  We concentrate 

on infrastructure as a service (IaaS) in cloud data centers in 

this study. A distributed network with multiple computational 

nodes (such servers), storage nodes, and network devices can 

form the structure of a CDC. A variety of resources, including 

CPU, memory, network bandwidth, etc., are used to create 

each node.  Each resource has matching properties that go 

with it. For cloud service providers, there are many distinct 

kinds of resources. This essay concentrates on IaaS. This 

paper's definition and model are meant to be sufficiently all-

encompassing for usage by a range of cloud service 

providers.  Applications in a traditional data center are 

connected to particular physical servers, which are frequently 

over-provisioned to handle workload spikes and unplanned 

outages. Due to wasted energy and floor space, low resource 

efficiency, and high administration overhead, such layout 

rigidity makes data centers expensive to maintain. Current 

CDCs can be made more adaptable, secure, and capable of 

on-demand allocating by using virtualization technologies. 

With virtualization, CDCs ought to be able to move 

applications without causing any disruption from one set of 

resources to another. With virtualization, CDCs ought to be 

able to move applications without causing any disruption 

from one set of resources to another. The technique of 

resource scheduling is crucial to CDCs. Algorithms for 

scheduling have been the subject of extensive research. The 

majority of them are used for server farms or traditional web 

servers' load balancing. Considering the allocation and 

migration of reconfigurable virtual machines (VMs) and 

integrated features of hosting physical machines is one of the 

difficult scheduling problems in CDCs.  
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New algorithms approach CPU, memory, and network 

bandwidth as integrated for both PMs and VMs, in contrast 

to classic load balancing scheduling algorithms that only take 

physical servers with one factor (such as CPU) into account.  

Real-time VM allocation for numerous simultaneous 

processes and PMs is also taken into account. 

The CDC's size and density increased along with the 

difficulties that need to be resolved with the growth of cloud 

computing. These issues include, for instance, how to 

dynamically and intensively manage physical and virtual 

resources, how to increase elasticity and flexibility (which 

can enhance service while lowering costs and risk 

management), and how to assist clients in creating flexible, 

dynamic, and adaptive infrastructure that enables businesses 

to ensure sustainable future growth without increasing 

spending. Because the application developers cannot control 

and handle the network environment, it is very challenging to 

conduct extensive research on all these issues in real internet 

platforms.  Furthermore, although being unpredictable and 

uncontrollable, network conditions nevertheless have an 

impact on how well the solutions are evaluated.  Building a 

data center simulation system that offers visualized modeling 

and simulation in large-scale applications in cloud 

infrastructure would enable the study of dynamic and large-

scale distributed settings. The application workload 

statement, which comprises user information, data center 

position, the number of users and data centers, and the 

quantity of resources in each data center, can be described by 

a data center simulation system. The data center simulation 

system creates response requests based on this data and 

distributes these requests to VMs. Application developers can 

assess appropriate tactics, such as assigning reasonable data 

center resources, choosing a data center to meet particular 

needs, cutting expenses, etc. by using a data center simulation 

system. The GridSim toolbox for modeling and simulating 

distributed resource management for grid computing was 

introduced by Buyya et al. [7]. The GridSim tool was 

introduced by Dumitrescu and Foster [8]. Buyya et al.'s [7] 

introduction of modeling and simulation of cloud computing 

systems at the application level included discussion and 

comparison of straightforward scheduling methods like time- 

and space-sharing.  A cloud computing simulator called 

Cloud Sim [7] performs the following tasks: 

1. supporting both a single physical computing node and 

a Java VM data center's modeling of a large-scale 

cloud computing architecture. 

2. data center modeling, service provider, and 

scheduling and distribution tactics. 

3. supplying virtual engines that are useful for 

establishing and overseeing a number of independent 

and cooperative virtual services in a data center node. 

Time- and space-sharing should enable quick and simple 

switching between processing cores. Cloud Analyst [12] 

seeks to achieve the best scheduling across user groups and 

data centers depending on the existing configuration. 

SimJava [11] and GridSim [10] are the foundations for 

both CloudSim and CloudAnalyst, which makes them 

complex. Additionally, CloudSim and Cloud Analyst only 

take into account workloads at the application-level and 

regard a CDC as a sizable resource pool. They might not be 

appropriate for an IaaS simulation where each VM is treated 

as a resource that must be requested and allocated. 

Wood et al. [13] presented VM migration methodologies 

and suggested migration algorithms.  

Major load balancing scheduling techniques for 

conventional web servers were compared by Zhang [15].  By 

taking into account both servers and storage in cloud 

computing, Singh et al. [14] introduced an unique load 

balancing technique called Vector Dot to tackle the 

hierarchical and multidimensional resource restrictions.  

There aren't many resources available to help developers 

compare different resource scheduling techniques with 

relation to the geographic distribution of both compute 

servers and user workloads in order to assess the needs of 

large-scale cloud applications.  In this study, we suggest using 

CloudSched for dynamic resource scheduling in a CDC to 

close the gap in tools for evaluating and modeling cloud 

environments and applications. Multiple scheduling 

algorithms are supported by CloudSched, and it is appropriate 

for their application and comparison. Traditional scheduling 

algorithms take into account only one aspect, such the CPU, 

which can frequently result in hotspots or bottlenecks. 

CloudSched, however, treats multidimensional resources. In 

this chapter, the real-time restriction of both VMs and PMs—

which is frequently disregarded in the literature—is 

discussed. This paper's primary contributions are: 

1. putting forth a simulation system to simulate cloud 

computing environments and assess how well various 

resource scheduling policies and algorithms perform; 

Creating and putting into practice a lightweight simulator that 

combines real-time, multidimensional resource data. 

Offering the following innovative characteristics is Cloud 

Sched: 

1. Large-scale cloud computing ecosystems, including 

data centers, VMs, and PMs, are modeled and 

simulated. 

2. Providing a framework for cloud IaaS to model 

various resource scheduling strategies and algorithms. 

3. Support is provided for both graphical and text 

outputs. 

The remaining sections of this chapter are structured as 

follows: The Cloud Sched architecture and its key 

components are introduced in Section 2. The performance 

evaluations of various scheduling methods are covered in 

Section 3.  The architecture and implementation of 

CloudSched are presented in Section 4.  Section 5 compares 

a few different scheduling strategies and explains the 

simulation findings.  Finally, Section 6 offers conclusions. 

II. RELATED WORK 

The simplified layered architecture is shown in Figure 2: 

1. Web portal. Users can choose resources and submit 

requests via a web interface at the top layer, where a few 

preset VM kinds are fundamentally available. 

2. Core layer of scheduling. Once user requests are made, 

they move on to the next level of CloudSched 

scheduling, where the right data centers and PMs are 

chosen based on the user's requirements.  In particular, 

CloudSched supports allocating VMs (consisting of 

CPU, memory, storage, bandwidth, etc.) to appropriate 

PMs while modeling and simulating CDCs.  This layer 

is capable of managing massive CDCs made up of tens 

of thousands of PMs. 
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Depending on the characteristics of the consumers, 

different scheduling algorithms might be used in various 

data centers. 

3. concentrating on the scheduling simulation on an IaaS 

layer where relevant tools are still absent; cloud-based 

resource Cloud resources at the lowest tier include PMs 

and VMs, each of which have a set amount of CPU, 

memory, storage, and bandwidth. 

 

Figure 2. Simplified Layered Architecture of Cloud Sched. 

The simulation system is particularly large and complex because several other tools, like CloudSim and CloudAnalyst, are 

based on already-existing simulation tools, such JavaSim and GridSim. These factors in mind, CloudSched focuses on resource 

scheduling methods and adopts a lightweight design. The main features of CloudSched are the following: 

1. Focus on the IaaS layer. As opposed to current tools that concentrate on the application (task) level, such as CloudSim 

and CloudAnalyst, CloudSched concentrates on scheduling VMs at the IaaS layer, meaning that each request requires 

one or more VMs, whereas in CloudSim and CloudAnalyst, each request only uses a small portion of a VM's total 

capacity. 

2. Providing a uniform view of all resources. CloudSched offers a uniform view of all physical and virtual resources to 

make system management and user selections simpler, just like genuine Amazon EC2 apps do. 

3. Lightweight design and scalability. CloudSched focuses on resource scheduling policies and algorithms in contrast to 

other simulation tools currently available, such as CloudSim and CloudAnalyst, which are built on GridSim (may cause 

issues). In a few minutes, Cloud Sched can mimic tens of thousands of queries. 

4. High extensibility. Modular design is applied in CloudSched. For performance evaluation, several resource scheduling 

policies and algorithms can be plugged in and contrasted with one another. A extremely expansive distributed architecture 

can be created by modeling many CDCs.  

5. Easy to use and repeatable. Simulator setup is simple and quick with CloudSched thanks to its user-friendly graphical 

user interfaces and outputs. Text files can be used as input sources and as output destinations. Modelers can repeat 

experiments by saving simulation inputs and outcomes with CloudSched. CloudSched makes guarantee that repeated 

simulations provide the same outcomes. Figures 3 and 4 depict a few GUIs, respectively. 
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 Figure 3. Main interface of Cloud Sched [1] 

 

Figure 4. Main interface of Cloud Sched [2]. 

A. Modeling CDCs 
A data center component for managing VM requests models 

the main hardware architecture pertaining to clouds in the 

simulator. A data center is primarily made up of a number of 

hosts, which are in charge of managing virtual machines 

(VMs) throughout their life cycles. A host is a cloud 

computing component that simulates a real computing node. 

It is given preconfigured processing power (measured in CPU 

units), memory, bandwidth, storage, and a scheduling policy 

for allocating processing cores to virtual machines. Similar 

representations are possible for VMs. 

B. Modeling VM allocation 

The flexibility in resource allocation offered by cloud 

computing is made possible by virtualization technologies. A 

PM with two processing cores, for instance, can run two or 

more VMs simultaneously on each core. Virtual machines 

(VMs) can only be allocated if the total processing power 

consumed by all VMs on a host does not exceed the amount 

of processing power the host has available. We demonstrate 

that it is feasible to have an unified view of various VM types 

using the frequently used example of Amazon EC2. Eight 

different types of virtual machines are shown in Table 1.1 

based on online data from Amazon EC2. Information on 

Amazon EC2's hardware setup is not available.  
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However, based on compute units, we can create three 

different sorts of PMs (or PM pools). For instance, a PM with 

268.4 GB of memory, 16 cores, and 3.25 units of storage can 

be offered in a genuine CDC. This could lead to the formation 

of an unified perception of the various VM kinds. 

 However, based on compute units, we can create three 

different sorts of PMs (or PM pools). For instance, a PM with 

268.4 GB of memory, 16 cores, and 3.25 units of storage can 

be offered in a genuine CDC. This could lead to the formation 

of an unified perception of the various VM kinds.  

Table 1. Eight types of VMS in Amazon EC2 

MEM CPU (units) BW (or Sto) VM 

1.7 1 (1 cores×1 units) 160 1-
1(1) 

7.5 4 (2 cores×2 units) 850 1-

2(2) 

15.0 8 (4 cores×2 units) 1690 1-

3(3) 

17.1 6.5 (2 cores×3.25 
units) 

420 2-
1(4) 

34.2 13 (4 cores×3.25 

units) 

850 2-

2(5) 

68.4 26 (8 cores×3.25 

units) 

1690 2-

3(6) 

1.7 5 (2 cores×2.5 
units) 

350 3-
1(7) 

7.0 20 (8 cores×2.5 

units) 

1690 3-

2(8) 

Table 2. Three types of PMs suggested 

PM CPU (units) MEM BW (or Sto) 

1 16 (4 cores×4 units) 160 1-1(1) 

2 52 (16 cores×3.25 units) 850 1-2(2) 

3 40 (16 cores×2.5 units) 1690 1-3(3) 

The current scheduling techniques used by CloudSched 

include dynamic load balancing, optimal utilization, and 

energy-efficient scheduling. It is also possible to use other 

algorithms, like reliability- and cost-oriented ones. 

C. Modeling customer requirements 

By randomly generating various VM kinds and assigning 

VMs based on suitable scheduling algorithms in various data 

centers, CloudSched models customer requirements. Random 

processes can be used to produce the arrival process, service 

time distribution, and necessary capacity distribution of 

requestsIt is possible to regulate the rate at which consumer 

inquiries arrive. It is also possible to distribute the various 

VM requirements. An interval vector called vmID can be 

used to describe a real-time VM request. For instance, the 

expression vm1(1, 0, 6, 0.25) indicates that the request ID is 

1, the VM is of type 1 (equivalent to integer 1), the start time 

is 0, the finish time is 6 (here, 6 can represent that the sixth 

slot ended at time 6), and the capacity that a VM occupies 

from a specific PM is 0.25. Similar representations can be 

used for other requests. Figure 5 illustrates the life cycles of 

VM allocation using two PMs in a slotted time window. PM1 

hosts VMs 4, 5, and 6, while PM2 hosts VMs 1, 2, and 3. 

III. MATERIALS AND METHODOLOGY 

CloudSched treats multidimensional resources, such as CPU, 

memory, and network bandwidth integrated for both PMs and 

VMs, as opposed to typical scheduling algorithms that simply 

take into account one component, which can frequently result 

in hotspots or bottlenecks. There aren't enough relevant 

metrics available for scheduling algorithms that take multiple 

dimensions into account. There are several metrics for 

various scheduling goals. The measurements for load 

balancing, energy efficiency, and utilization are discussed in 

the sections that follow. It is simple to add new metrics for 

additional goals. 

IV. THEORY/CALCULATION 

A. Metrics for multidimensional load balancing 

Following an examination of various current metrics, we 

create an integrated measurement that accounts for both the 

average imbalance level across all servers and the overall 

imbalance level of the CDC. A few VM migration approaches 

were introduced by Wood et al. [13]. The following is how 

one integrated load balance metric is used: 

                   (1) 

where CPUu, MENu, and NETu represent the average CPU, 

memory, and network bandwidth usage during each observed 

period, respectively. The higher the combined usage, the 

larger the value of V. Thus, this measurement can serve as the 

foundation for migration algorithms. By transforming three-

dimensional (3D) resource information into a one-

dimensional (1D) value, this technique actually aims to 

reduce integrated resource use. Information in many 

dimensions couldbe lost during this transfer. Zheng et 

al. [16] proposed another integrated load balancing metric as 

follows: 

https://www.openaccess.nl/en/open-publications
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://www.doi.org/10.35940/ijeat.E4182.0612523
https://learning.oreilly.com/library/view/optimized-cloud-resource/9780128014769/xhtml/chp011.xhtml#bib16


 

Modeling and Simulation of Real-Time Virtual Machine Allocation in a Cloud Data Center 

                                         48 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijeat.E41820612523 

DOI: 10.35940/ijeat.E4182.0612523 

Journal Website: www.ijeat.org   

                 (2) 

First, the suggested physical server m is chosen. Then server 

m is contrasted with other physical servers i. The CPU 

capability is N1i, the memory capability is N2i, and the hard 

drive is N3i. Here, Ci and Mi stand for the average CPU and 

memory use, respectively. Hard disk transfer rate is 

represented by Di, and network throughput is represented by 

Neti. The weighting factors for the CPU, RAM, hard drive, 

and network bandwidth are indicated above by the letters a, 

b, c, and d, respectively. The main goal of this algorithm is to 

allocate virtual machines to the physical servers with the 

lowest value of B. This method also transforms 3D resource 

data into a 1D value. 

In order to take into account integrating variables of load 

balance for flow channels in data centers, Singh et al. [14] 

devised a novel Vector Dot algorithm. The average CPU, 

memory, and network bandwidth usage of a server are shown 

by the node fraction vectors CPUU, memU, and netU, 

respectively. The terms CPUCap, memCap, and netCap, 

respectively, stand for the overall CPU, memory, and network 

bandwidth of a server. And the node utilization threshold 

vector is represented by CPUT, memT, netT, ioT>, where 

CPUT, memT, netT, and ioT, respectively, stand for the CPU, 

memory, and network bandwidth usage thresholds. The 

concept of an imbalance score is used to assess the level of 

overload in a node and the system. A node's imbalance score 

is determined by:  

                    (3) 

The system's overall imbalance score is calculated by adding 

the scores of all the nodes. This nonlinear measurement 

has the advantage of being able to tell apart between two 

pairs of nodes that are both at 2T and 3T. A useful metric 

for comparing average usage to its threshold is the 

imbalance score. An integrated measurement for the total 

imbalance level of a CDC as well as the average 

imbalance level of each server has been designed for load 

balancing technique after taking into account the benefits 

and drawbacks of existing metrics for resource 

scheduling. There is also room for developing more 

measures for other scheduling approaches. The following 

criteria are taken into account: 

1. A single server's typical CPU use is i. The average CPU 

usage throughout the course of an observational period is 

what is meant by this. The average of six recorded values 

for server i, for instance, if the observing period is 1 min 

and the CPU utilization is recorded every 10 s. 

2. Average CPU use across the whole CDC. Suppose that 

there are CPUs on server i in total. 

The system's overall imbalance score is calculated by adding 

the scores of all the nodes. This nonlinear measurement 

has the advantage of being able to tell apart between two 

pairs of nodes that are both at 2T and 3T. A useful metric 

for comparing average usage to its threshold is the 

imbalance score. An integrated measurement for the total 

imbalance level of a CDC as well as the average 

imbalance level of each server has been designed for load 

balancing technique after taking into account the benefits 

and drawbacks of existing metrics for resource 

scheduling. There is also room for developing more 

measures for other scheduling approaches. The following 

criteria are taken into account: 

1. A single server's typical CPU use is i. The average CPU 

usage throughout the course of an observational period is 

what is meant by this. The average of six recorded values 

for server i, for instance, if the observing period is 1 min 

and the CPU utilization is recorded every 10 s. 

2. Average CPU use across the whole CDC. Suppose that 

there are CPUs on server i in total. 

                    (4) 

where N is the total number of physical servers in a CDC. 

Similarly, the average utilization of memory, network 

bandwidth of server i, all memories, and all network 

bandwidth in a CDC can be defined 

as , 

respectively. 

3. ILBi, or integrated load imbalance value, for server I In 

statistics, variance is frequently used to quantify how 

widely apart a collection of numbers are from one another. 

An integrated load imbalance value (ILBi) of server I is 

defined using variance: 

            (5) 

Where 

                               (6) 

(ILBi) is a term used to describe the degree of load imbalance 

when comparing a single server's CPU, memory, and 

network bandwidth usage. 

4. The imbalance value of all CPUs, memories, and network 

bandwidth. Using variance, the imbalance value of all 

CPUs in a data center is defined as 

                     (7) 

Memory and network bandwidth imbalance values can also 

be computed. The total imbalance values across all servers in 

a CDC are then calculated as follows: 

                      (8) 

5. Average imbalance value of physical server i. A physical 

server's average imbalance value is defined as: 

                     (9) 
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where N represents the overall server count. This statistic is 

used to gauge the level of imbalance on all physical 

servers, as its name implies. 

6. Average imbalance value of a CDC. The average 

imbalance value of a CDC is defined as 

           (10) 

7. Average times for running. It is possible to compare the 

average running times of the same number of jobs for 

various scheduling algorithms. 

8. Makespan. The maximum load (or average utilization) for 

each PM is what is meant by this. 

9. Utilization efficiency. This is determined in this instance 

by dividing the minimum load on any PM by the highest 

load on any PM. 

B. Metrics for energy efficiency 

Power consumption model 

1. The server's estimated power usage model. Data centers' 

cooling, disk storage, networks, and computation systems 

use the most electricity. A power consumption model for 

blade servers was proposed by the authors in Reference 

[17], where P is defined as 

 (11) 

where UCPU, Umem, Udisk, and Unet represent, 

respectively, the utilization of the CPU, memory, hard drive, 

and network interface. Other elements like RAM, hard drives, 

and network interfaces can be observed to have very little 

effect on overall power consumption. The authors of Ref. [3] 

discovered that CPU usage is frequently proportional to the 

total system load and proposed the following power model: 

   (12) 

where U is the CPU usage, k is the percentage of power 

consumed by the idle server (studies show that on average it 

is roughly 0.7), and Pmax is the maximum power consumed 

when the server is completely employed. In contrast to other 

resources like memory, disk storage, and network devices, the 

CPU consumes the majority of the energy in this paper. 

Because workloads fluctuate in the real world, CPU 

utilization may change over time. The CPU utilization is 

therefore a function of time and is denoted by the symbol u. 

As a result, the total energy used by a PM (Ei) can be 

calculated as an integral of the power consumption function 

over time using the formula: 

                    (13) 

If u(t) is constant over time (e.g., average utilization is 

adopted, u(t)=u), then Ei=P (u)(t1−t0). 

2. The total energy consumption of a CDC is computed as 

                   (14) 

It is the total amount of energy used by all PMs. It should be 

noted that the energy usage of all VMs running on PMs 

is included. 

The CPU utilization is therefore a function of time and is 

denoted by the symbol u. 

3. The overall quantity of PMs used. The total number of PMs 

utilized for the specified set of VM requests is shown 

below. It is crucial for energy effectiveness. 

4. The entire amount of time that each PM was powered on. 

The total power-on time is the most important aspect 

according to the energy consumption equation of each 

PM. 

C. Metric for maximizing resource utilization 

1. Average use of the resources. You may compute the 

average usage of the CPU, memory, hard drive, and 

network bandwidth. You can also utilize the combined 

usage of all these resources. 

2. The overall quantity of PMs used. It is directly tied to a 

CDC's average and overall utilization. 

V. RESEARCH DESIGN AND IMPLEMENTATION 

OF CLOUDSCHED 

We give information about the conception and execution of 

CloudSched in this part. Implemented is a Java discrete 

simulator. Following is a brief description of the 

CloudSched's main components. 

A. IaaS resources considered 

IaaS resources considered in this chapter include: 

1. PMs: The actual computers that make up data centers. Each 

PM can manage a number of virtual machines, and each 

PM can have different combinations of CPU, memory, 

hard drives, network cards, and other associated parts. 

2. Physical clusters: These are made up of the required 

network, storage, and number of PMs. 

3. VM: an on-the-PM virtual computing environment that 

makes use of virtualization software. There are several 

virtual CPUs, as well as memory, storage, network cards, 

and related hardware elements. 

4. Virtual cluster: includes a number of virtual machines 

(VMs) and the required network and storage 

infrastructure. 

B. Scheduling process in CDC 

A typical architecture of CDCs and key resource scheduling 

procedures are shown in Figure 6: 

1. User requests: Through the internet, the user makes the 

request (for example, by logging into the online portal of 

the cloud service provider). 

2. Scheduling management: Based on the user's identity (e.g., 

location, etc.) and the operational details of the request, 

Scheduler Center takes choices. The appropriate data 

center receives the request, which is subsequently sent to 

Scheduler Center through the data center management 

program. Based on scheduling methods used in CDCs, the 

Scheduler Center allocates the request. 

3. Feedback: The user is given access to the resources through 

the scheduling mechanism. 

4. Execute scheduling: The following stage receives the 

scheduling outcomes (such as deploying actions). 
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5. Updating and optimization: According to the optimizing 

objective functions, the scheduler optimizes resources 

among several data centers by updating resource 

information. 

  

Figure 5.   Referred architecture of CDCs. 

The primary resources in CDCs are shown in general and detailed UML diagrams, respectively, in Figures 7 and 8. Figure 7 

depicts the primary resources and their connections in CDCs, while Figure 8 details each major resource's characteristics. The 

core methods of the class ScheduleDomain manage the jobs in each queue by invoking other classes. Task requests are 

generated by the classes CreateRandVM and VmTaskInfo. Requests from VMs are allocated using Class Allocate and Sort. 

 

Figure 6. Example of user request 
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Figure 7. UML diagram of main resources in CDCs. 

 

  

Figure 8. Detailed UML diagram of main resources in CDCs. 

C. Scheduling algorithms: taking the LIF algorithm 

as an example 

The least imbalance level first (LIF) algorithm's pseudocodes 

for a CDC's dynamic load balance are shown in Figure 9. The 

method takes as inputs the state of the currently active tasks, 

PMs, and the current VM request r. The placement scheme 

for request r is what is produced via dynamic scheduling. 

Basically, when a new VM request is placed, the system 

compares several imbalance numbers to determine which PM 

has the lowest total imbalance value for the data center. The 

PM with the lowest integrated load is found by the algorithm. 

The result will be the lowest overall imbalance number across 

all servers in a CDC. The placement scheme for request r is 

what is produced via dynamic scheduling. Basically, when a 

new VM request is placed, the system compares several 

imbalance numbers to determine which PM has the lowest 

total imbalance value for the data center. 
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Figure 9. LIF algorithm. 

The LIF algorithm's primary class diagram and sequence diagram, respectively, are shown in Figures 10 and 11.  

The core methods of the class Schedule Domain manage the jobs in each queue by invoking other classes.  

Task requests are generated by the classes CreateRandVM and VmTaskInfo. Requests from VMs are allocated using Class 

Allocate and Sort.  

VMs can be moved using Class Migrate and Allocate-Alg. Printing and output tasks are handled by Record, PrintPM, and 

BalanceLevel. Physical servers and virtual machines are operated by the server, PM, and VM. 

LIF algorithm: Always chooses PMs with the lowest integrated imbalance value (as stated in Eq. (5)) and available resource 

to assign VMs based on needs characteristics (e.g., CPU intensive, high memory, high bandwidth requirements, etc.). 

  
Figure 10. Main class diagram. 
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Figure 11. Sequence diagram. 

Sequence diagram shows the following sequences of the algorithm: 

1. Initialize the system; 

2. Obtain task requests; 

3. Allocate VM requests in the waiting queue; 

4. Operate migrating queues; 

5. Operate requesting queues; 

6. Operate deleting queues; 

One of the interfaces for installing CDCs in CloudSched is shown in Figure 2. The manager first chooses a data center using 

various IDs, after which the quantity and kind of PMs are configured. Data centers may be added or removed by the manager. 

One of the user request configuration interfaces is shown in Figure 13. It is possible to set up probability distributions for the 

various VM types, the overall number of simulated VMs, and preferred data centers. Figure 10 shows the primary classes' 

design diagram. 

 

Figure 12. One interface of configuring CDCs. 
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Figure 13. One interface of configuring user requests. 

VI. RESULT AND DISCUSSION 

For the simulation, we utilize a standard Pentium PC with a 2 

GHz CPU and 2 GB of RAM. 

A. Random configuration of VMs and PMs 

In this section, we compare simulation results from four 

distinct load-balancing scheduling strategies. For your 

convenience, a short name for each algorithm is provided 

as follows: 

1. ZHCJ algorithm: As described in Ref. [16], the method 

allocates VMs to PMs with the available resources and 

the lowest V value (as stated in Eq. 

2. To allocate VMs, the ZHJZ method chooses a reference 

PM [16], calculates the value, and then selects PMs with 

the lowest B value (as given in Eq. (2)) and available 

resources. 

3. LIF algorithm: Always chooses PMs with the lowest 

integrated imbalance value (as stated in Eq. (5)) and 

available resource to assign VMs based on needs 

characteristics (e.g., CPU intensive, high memory, high 

bandwidth requirements, etc.). 

4. Requests (VMs) are assigned at random to PMs with 

available resources using the Rand algorithm. 

Round-Robin algorithm: One of the simplest scheduling 

algorithms, it assigns tasks to each physical server in 

equal portions and in circular order, handling all tasks 

without priority (also known as cyclic executive). 

 

 Figure 14. Running time of Cloud Sched. 
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Three different types of heterogeneous PMs are taken into 

account for the simulation, and each PM pool contains a 

certain number of PMs. Both CPU and RAM are configured 

with a big size, which may be set dynamically, for the 

simulation of a lot of VM requests: 

PM type 1: CPU=6 GHz, memory=8 G, and 

bandwidth=1000 M 

PM type 2: CPU=12 GHz, memory=16 G, and 

bandwidth=1000 M 

PM type 3 CPU=18 GHz, memory=32 G, and 

bandwidth=1000 M. 

Eight different types of virtual machines (VMs) with equal 

probabilities of requests are generated at random and are 

similar to eight Amazon EC2 instances with high CPU, 

high RAM, and standard specifications (but not exactly 

the same) as follows (may be dynamically configured): 

Type 1: CPU=1.0 GHz, memory=1.7 G, bandwidth=100 M 

Type 2: CPU=4.0 GHz, memory=7.5 G, bandwidth=100 M 

Type 3: CPU=8.0 GHz, memory=15.0 G, 

bandwidth=100 M 

Type 4: CPU=5.0 GHz, memory=1.7 G, bandwidth=100  

Type 5: CPU=20.0 GHz, memory=7.0 G, 

bandwidth=100 M 

Type 6: CPU=6.5 GHz, memory=17.1 G, 

bandwidth=100 M 

Type 7: CPU=13.0 GHz, memory=34.2 G, 

bandwidth=100 M 

Type 8: CPU=26.0 GHz, memory=68.4 G, and 

bandwidth=100 M. 

All simulations employ a Pentium PC with a CPU speed 

of 2 GHz and 2 GB of RAM, with a range of PM counts from 

100 to 600 and VM request counts from 1000 to 6000. The 

eight different types of virtual machines (VMs) listed earlier 

are all considered equally frequently while generating the 

input data for user requests. Of course, various (random) 

probability for various VM types can be produced. For 

steady-state analysis, the transitory period is dropped in favor 

of a warm-up period (the first 2000 queries). Figure 15 shows 

the average imbalance level, defined in Eq. (10), of a CDC. It 

can be seen that the LIF algorithm has the lowest average 

imbalance level when the total number of VMs and PMs are 

varied. 

  

Figure 15. Average imbalance values of a CDC. 

Figure 16 displays the overall physical server's average imbalance level as stated by Eq. When the combined number of VMs 

and PMs is changed, the LIF algorithm once more has the lowest average imbalance level for all PMs. 

  

Figure 16. Average imbalance values of each physical server. 
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When the total number of physical servers is fixed but the number of VMs is variable, Figure 17 depicts the average imbalance 

level of a CDC, as specified in Eq. (10). 

  

Figure 17. Average imbalance values of a CDC when PMs=100. 

When the overall number of physical servers is fixed but the number of VMs is variable, Figure 18 displays the average 

imbalance level of the entire physical server as described in Eq. (5). Similar outcomes are seen after lengthy simulation. 

  

Figure 18. Average imbalance values of each physical server when PMs=100. 

B. Divisible size configuration of PMs and VMs 

Section 2.2 provides an explanation of how VMs and PMs are 

configured. We display the average CPU, memory, 

bandwidth, and the average of these three utilizations in 

Figures 19–21. We also demonstrate the overall data centers' 

imbalance value (IBL, as in Eq. (10), using five distinct 

algorithms: Round-Robin, ZHJZ, ZHCJ, and LIF. As can be 

shown, LIF consistently has the greatest average CPU, 

memory, and bandwidth consumption but the lowest 

imbalance value (when the total number of VMs and PMs 

varies). These findings show that metrics from divisible 

situations are substantially more accurate than metrics from 

random configuration cases. As a result, cloud service 

providers like Amazon can use these settings to better meet 

customer demands for load balancing, energy efficiency, and 

other performance-related needs. 

 

 

 Figure 19. Utilization and imbalance value of the entire 

data center when PMs=100 and VMs=1000. 
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Figure 20. Utilization and imbalance value of the entire 

data center when PMs=200 and VMs=4000. 

  

Figure 21. Utilization and imbalance value of the entire 

data center when PMs=500 and VMs=5000. 

C. Comparing energy efficiency 

We considered four algorithms here: 

1. Round-Robin: The Round-Robin scheduling algorithm, 

which distributes VM requests to each PM in turn, is the 

most widely used scheduling algorithm (e.g., by 

Eucalyptus and Amazon EC2 [18]). The simplicity of 

this algorithm's implementation is a benefit. 

2. MBFD: Modified Best Fit Decreasing A bin-packing 

algorithm is MBFD. Best Fit Decreasing is 

demonstrated to use a maximum of 11/9 optimal 

solution (OPT)+1 bins (OPT is the optimal solution's 

maximum allowed number of bins) [6]. In order to 

determine which host will result in the least increase in 

power consumption as a result of this allocation, the 

MBFD algorithm [6] first ranks all VMs in decreasing 

order of their current CPU utilizations. This enables 

utilizing the heterogeneity of resources by prioritizing 

the nodes with the lowest power consumption. Because 

the power boosting is the same for homogenous 

resources (PM), the VM can be assigned to any PM that 

is currently running and still capable of hosting. The 

algorithm's allocation phase has a complexity of nm, 

where n is the total number of virtual machines that must 

be distributed and m is the total number of hosts. 

Requests must be sorted for MBFD to be used for offline 

(or semi-offline) scheduling only.  

3. Offline Without Delay (OFWID): OFWID anticipates 

all requests and executes them precisely and 

immediately. Prior to allocating requests to PMs, it 

arranges requests in ascending order of their IDs and 

start times. A new PM is activated if none of the 

currently active PMs can accommodate the request. 

Online Without Delay (ONWID): ONWID only ever 

recognizes a single request. Requests are sent to PMs in 

ascending order of their IDs. If none of the active PMs can 

accommodate the request, a new PM is turned on. If there are 

a predetermined number of PMs and all of them are unable to 

host the request, the request is blocked. 

D.  Impact of varying maximum duration of VM 

requests 

Based on Amazon EC2, eight different types of virtual 

machines (VMs) are taken into consideration in this situation. 

There are 1000 arrivals (requests) overall, and there are 125 

of each sort of VM. The mean interarrival period is set at 5, 

the maximum intermediate period is set at 50, and the 

maximum duration of requests is set at 50, 100, 200, 400, and 

800 slots, respectively. All requests follow the Poisson arrival 

process and have exponential service time. Each time slot 

lasts for five minutes. For instance, if a virtual machine (VM) 

has 20 slots of required service time, its real length is 20*5, 

or 100 minutes. The experiments are conducted three times 

for each set of inputs (requests), and all of the results shown 

in this chapter are the average of the three runs. Eight 

different VM types are used to configure PMs, as shown in 

Table 2. The overall capacity of a VM and a PM in this setup, 

where there are three different types of PMs (heterogeneous 

scenario), are inversely correlated. For purposes of 

comparison, we assume that every VM is operating at full 

capacity. While all other parameters remain the same, Figure 

22 displays the total energy usage (in kilowatt hours) of the 

four methods for maximum durations ranging from 50 to 800. 

 

Figure 22. Total energy use (measured in kilowatt hours) 

when the maximum length of VM requests is changed. 

E. Impact of varying the total number of VM requests 

The overall number of each sort of PM is then fixed, although 

the total number of VM requests is varied. The average arrival 

rate () divided by the average service rate () is referred to as 

the system load. Service time has a uniform distribution, 

while the arrival process has a Poisson distribution. While the 

overall number of PMs remains fixed at 15, we change the 

maximum time of each request to increase the system burden.  
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The comparison of overall energy use is shown in Figure 23.  

  

Figure 23. Total energy consumption (in kilowatt hours) by varying the number of VM requests. 

VII. CONCLUSION AND FUTURE SCOPE 

In this article, we've explained how the use of nature as 

inspiration can aid in the optimization of host overload 

detection and load balancing, and we've also provided a 

control mechanism for the issue of virtual machine 

consolidation. The control policy obtained addresses the issue 

of host overload detection and satisfies the Quality of Service 

objective for a stationary workload that is well understood 

and for a certain configuration of state. In order to assess 

effectiveness and determine whether all hosts are balanced, 

we have also suggested the best algorithms for the problem 

of host overload detection. The results of the experimentally 

conducted investigation are as follows: 

a. A method for identifying an overloaded host among a 

group of several hosts has been demonstrated for the 

simulated workload and calls for less complex 

calculations. 

b. The Nature Inspiration method assists in finding the best 

possible answer by improving the level of service in a 

straightforward manner. 

c. The balanced hosts have been placed next to the 

overloaded and underloaded hosts in order to achieve 

balance between the two. 

d. The algorithms suggested allow for the explicit 

specification of a desired Quality of Service goal, which 

is successfully accomplished by the resulting value of 

the metric, to be given by the system through the 

parameter offered. The proposed model is built on an 

algorithm that draws inspiration from nature and calls 

for a few basic presumptions. Nevertheless, 

experimental research involving an excessive amount of 

mixed workloads has demonstrated that the method is 

effective in managing them [13] and [14]. The method 

performed as well as the best offline algorithm under the 

simulated workload, which is excellent for an online 

approach. 
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