Welcome!

Translating workflows into Nextflow with Janis

Bioinformatics Workflows

Chain multiple tasks to perform an analysis.
Has inputs, produces outputs.

Can be written in essentially any language.

= %
Galaxy twd 1} BASH Eg i—» SRRO9123.bam

nexiflow g % perl

s snakemake e PUThOﬂ Bpipe

SRRO9123 .'Fq — P reads

mmle.fa ——» re

Choosing a Workflow Language

Each language has different users & use-cases

- Standard in field
- Properties / features

- Compute environments

Workflow languages are an investment

- Existing pool of knowledge, talent (researchers/
staff), local legacy workflows
- Ongoing support & active community?

- Learning new language takes weeks / months

Galaxy Workflow Editor

Pipelines

\\\\\\\\\\\\\\

Nextflow Tower

(o e

| [v | [@ar ot | (sam_ e] oo | (v] s ows._vrme wsrr same | s oot (s |

CWL viewer

Choosing a Workflow Language

Workflow languages come and go over time.

- Can we be sure our investment will still be usable in 5 years?

@ nextflow ® Common wor Kflow..

Search term Search term Search term Search term Search term
Worldwide 61113116123 ¥ All categories v Web Search ¥
Interest over time @ s o<

AIT!l, J4&Baﬁu{MAmQﬁa	é£2;;¥§§;52222§£Ziﬁfffﬁjg«ﬁAJz

2018

USA Il

USA [—

Choosing a Workflow Language

Workflow space highly divided
No ‘standard’ workflow language

- New specs continually created
- Old specs become stale

- Can’t know which spec will ‘win’

Might not even be the correct question

- There are multiple programming languages

- Which will ‘win’?

Existing Workflow systems

Michael R. Crusoe edited this page 7 days ago - 320 revisions

Permalink: https://s.apache.org/existing-workflow-systems
Cite as (update dates):

Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojsa Tijani¢, Samuel Lampa, et al. (2022): Existing Workflow systems.
Common Workflow Language wiki, GitHub. https://s.apache.org/existing-workflow-systems updated 2022-06-20, accessed
2022-06-20.

Computational Data Analysis Workflow Systems

An incomplete list
Please add new entries at the bottom.

In addition to this list, actively developed free/open-source systems should be registered at
https://workflows.community/systems

See also: https://github.com/pditommaso/awesome-pipeline

1. Arvados - CWL-based distributed computing platform for data analysis on massive data sets. https://arvados.org/
https://github.com/arvados/arvados

2. Apache Taverna http://www.taverna.org.uk/ https://taverna.incubator.apache.org/

3. Galaxy http://galaxyproject.org/

4. SHIWA https://www.shiwa-workflow.eu/

3

2. SimTool/Sim2Ls: Jupyter notebook-based pipelines of Simulation Tools for the HUBzero platform lead by nanoHUB
https://github.com/hubzero/simtool https://simtool.readthedocs.io/ https://doi.org/10.1371/journal.pone.0264492
3

3. SidelO: A Side 1/O system framework for hybrid scientific workflow _(no project/source code available)_
https://doi.org/10.1016/j.jpdc.2016.07.001

314. Flyte https://flyte.org/

315. StreamFlow https://streamflow.di.unito.it/

316. Jupyter Workflow https://jupyter-workflow.di.unito.it/

317. Nnodes: a simple workflow manager for Python functions and command line tools https://github.com/icui/nnodes

Janis

Portable Pipelines Project

Janis was developed as part of the Portable Pipelines
Project, a collaboration between:

Peter MacCallum Cancer Centre

Melbourne Bioinformatics (University of Melbourne)
Walter and Eliza Hall Institute of Medical Research (WEHI)
Australian BioCommons

Initial aim was to develop shared cancer bioinformatics
pipelines across Parkville biomedical institutes.

But the question back then in 2018 was; which

workflow language should they be written in?
[CWL/ WDL/ snakemake/ nextflow]

Australion
BioCommons

=

y<'\, PeterMac

I Peter MacCallum Cancer Centre
ﬁ Victoria Australia

THE UNIVERSIY OF M W E H I
MELBOURNE

brighter together

Melbourne Bioinformatics

BIOINFORMATICS + DATA SERVICES + INFRASTRUCTURE, FOR LIFE SCIENCES TODAY

Janis

Instead of committing to a single language...

Built a framework which can transpile to CWL
or WDL.

Wanted type-safety due to importance of file-
types in bioinformatics

Would need to allow flexible execution across
different compute environments of the
respective stakeholders

If a new workflow system became popular in
future, could add transpilation support for the
format

class BcfToolsAnnotateBase(BcfToolsToolBase, ABC):

def tool(self):
return "bcftoolsAnnotate"

def base_command(self):
return ["bcftools", "annotate"]

def inputs(self):
return [
ToolInput("vcf", Vcf(), position=10),
ToolInput(
"outputFilename",
Filename(extension=".vcf"),
prefix="--output",
doc="[-0] see Common Options",
)
]

def outputs(self):
return [ToolOutput("out", Vcf, glob=InputSelector("outputFilename"))]

COMMON ®.
WORKFLOW ¢® {Wd l}

LANGUAGE

First released in June 2019

Execution Compute
engine environment

/ local
CW.LTool R ——
COMMON ,
WORKFLOW <
LANGUAGE ——
slurm
v Toil
% Janis /- ge{wdljx~— | =
b
o " Cromwell oes
Me—————1

Specification

~——
future miniwDL

future

-7 - partial support

Janis in 2021

Fast-forward to 2021.

Had built and run more than a dozen pipelines for
real-world cancer analysis @ PeterMac.

Nextflow was booming. Name of the game had
changed.

CW.L, Snakemake and Nextflow all developed
systems for flexible execution in different
environments.

Reflected on our product & realised that going
forward, translation was the unigue value of Janis.

— Started work on janis-translate

Janis in 2021

2018
Fast-forward to 2021. Portable Pipelines ’:‘ {Wdl}
Project o
Had built and run more than a dozen pipelines for 5 .
real-world cancer analysis @ PeterMac. «o Ja NIS -,
Nextflow was booming. Name of the game had >§ LANGUAGE.

changed.

CW.L, Snakemake and Nextflow all developed
systems for flexible execution in different
environments.

Reflected on our product & realised that going
forward, translation was the unique value of Janis.

— Started work on janis-translate

Janis in 2021

Fast-forward to 2021.

Had built and run more than a dozen pipelines for
real-world cancer analysis @ PeterMac.

Nextflow was booming. Name of the game had
changed.

CW.L, Snakemake and Nextflow all developed
systems for flexible execution in different
environments.

Reflected on our product & realised that going

forward, translation was the unique value of Janis.

— Started work on janis-translate

Portable Pipelines
Project

2018
/,,——>::‘{Wdl}

’
1

0§ Janis

e{wdl} .

\

= Galaxy

PROJECT

/7
COMMON -7
WORKFLOW = =~
LANGUAGE

oL COMMON
== -»& WORKFLOW
LANGUAGE

2021
rer{wdl}

Portable Pipelines
Project 1

0§ Janis - »nexcflow

\
Y
S COMMON
== WORKFLOW
LANGUAGE

Janis Translate

This is our best attempt at realising our goal.

Janis-translate helps you migrate workflows /
tools from one specification to another.

- Productivity tool to cut down boilerplate.
- Aims for human-readable translations.

= Galaxy

PROJECT

Janis Translate

"position’: {
“botton": 365.32054730315707,
198.4874725341797
eft": 1368.7010807777517,
ight™: 1502.7010502601736,
0p": 16.83307476897736,
3.99996945242188,
+ 1368.7010807777517,
166.83307476897738

734" "toolshed. g2.bx.psu. edu/repos/devtean/fastac/fastac/0. T2sgalay1”,
"to01_shed_repository”: {

hangeset_revision’: "e7b220befea’,

ane”: "fastqc”

wner”: "devean”,
“tool_shed": "toolshed.g2.bx.psu.edu”

*tool_state": *{\"adapters\": {\"
\"RuntineValue\"}, \"input_file\"s
\"_class_\": \"Runtinetalue\"}, \"
\ job_id_\": null}",

RuntineValue\'}, \"contaminants'
_\": \"RuntineValue\"}, \"kners\

length\": mull, \"nagroup\": \'false\", \

"uid®: "d0e16801-e8f6-4889-9502-c5Taa6blas36”,
“workflow_outputs”: [

label": null,
“output_nare”: “htnl_file",
“uid"; "c6227aef-2290-4F46-906c-acbeafeBLigu"

1
{
abel”: null,
utput_name”: “text_file",
wuid": " 40db4e2-8e9F-4db9-59fe-6c2cE54bc 70"
}
1
+
h
“tags™ [
‘assembly”
“UUid": "45997880-06f5-4733-ba38-S59160320503"

= Galaxy
PROJECT

1\7_class_\
V7V, \limits\"
null,

page.

WORKFLOW DECLARATION
- Workflowduilder(

doc-"Unicycler Assembly”

P1: FAST
et (“fas o
oput(*fasta
nput(*fasta
ot (*fa
ot (*fa
step(
"fastae”,
" 4 reats,
adapters=u. fastqc adapters,
mits-u. fastqe_Linits,
option.fou. fastac option f,
outdir-u. fastac_outdir,
act [Boste:
quiet [Boote
kmers (1nt] [GAl
ourpurs
autput(
stac_out_husl_file,
sl
source: (. fastac, out_htal_file")
autput(
“fastac out_text file”,
Text
source-(u. fastac, “out_text_file")

tratning_imported_fron_uploaded_file" xé Janis

janis translate --from galaxy --to nextflow ./unicycler_wf.ga

Janis Tools (translated)

TextFLowenable 4512

include { FASIQC as FASTQCL) from *
include { FASTQC as FASTQC2 } from *
include { UNICYCLER } from
include
include { QUAST } from
include { BUSCO } From

nexiflow

Fastact_adaptors = file(params.fastqc1_adapters)
Fastac_contaminants - file(params. fastqcl_contaminants)

Fastael_lmits

fastac2_contaninants - File(params. fastqc2_contaminants)

Fastaca 1 - file(params it

in_long file(parans

in_short_r1 file(parans)

i short 12 = file(params.in_short r2)
unicycler_Lr_align_contamination = file(params.unicycler_lr_align_contamination)
unicycler_rotation start_genes - file(params.unicycler_rolation start_genes)

workflow {

FASTQCI(

parans. fastacl fornat_string,
parans. fastact_outdir

FaSTaCH(

_string,

in_tong,
unicycler_Lr_align_contanination,

=Ll

=Ll

nexiflow

Nextflow Processes (translated)

Janis Translate

"position’: {
“botton": 365.32054730315707,
198.4874725341797
eft": 1368.7010807777517,
ight™: 1502.7010502601736,
0p": 16.83307476897736,
3.99996945242188,
+ 1368.7010807777517,
166.83307476897738

“tool_shed_repository
hangeset_revision’: “e7b2202befea’,
ane”: "fastc’

wner”: "devean”,
“tool_shed": "toolshed.g2.bx.psu.edu”

*tool_state": *{\"adapters\": {\"
\"RuntineValue\"}, \"input_file\"s
\"_class_\": \"Runtinetalue\"}, \"
\ job_id_\": null}",

"uid®: "d0e16801-e8f6-4889-9502-c5Taa6blas36”,
“workflow_outputs”: [

label": null,
“output_nare”: “htnl_file",
“uid"; "c6227aef-2290-4F46-906c-acbeafeBLigu"

1
{
abel”: null,
utput_name”: “text_file",
wuid": " 40db4e2-8e9F-4db9-59fe-6c2cE54bc 70"
}
1
+
h
“tags™ [
‘assembly”
“UUid": "45997880-06f5-4733-ba38-S59160320503"

RuntineValue\'}, \"contaminants'
\": \"RuntineValue\"}, \"kners\

= Galaxy
PROJECT

taolshed. g2.bx. psu. edu/repos/evtean/ fastac/fastac/0. T2galaxy1”,
{

1\7_class_\
V7V, \limits\"

length\": mull, \"nagroup\": \"false\", \"_page_\": null,

WORKFLOW DECLARATION
- Workflowduilder(

doc-"Unicycler Assembly”

P1: FAST
et (“fas o
oput(*fasta
nput(*fasta
ot (*fa
ot (*fa
step(
"fastae”,
" 4 reats,
adapters=u. fastqc adapters,
mits-u. fastqe_Linits,
option.fou. fastac option f,
outdir-u. fastac_outdir,
act [Boste:
quiet [Boote
kmers (1nt] [GAl
ourpurs
autput(
stac_out_husl_file,
sl
source: (. fastac, out_htal_file")
autput(
“fastac out_text file”,
Text
source-(u. fastac, “out_text_file")

tratning_imported_fron_uploaded_file" xé Janis

janis translate --from galaxy --to nextflow ./unicycler_wf.ga

Janis Tools (translated)

Turns out, perfect translations are really hard!
Manual adjustments needed (often).

TextFLowenable 4512

include { FASIQC as FASTQCL) from *
include { FASTQC as FASTQC2 } from *
include { UNICYCLER } from
include
include { QUAST } from
include { BUSCO } From

nexiflow

Fastact_adaptors = file(params.fastqc1_adapters)
Fastac_contaminants - file(params. fastqcl_contaminants)

Fastael_lmits

fastac2_contaninants - File(params. fastqc2_contaminants)

Fastaca 1 - file(params it

in_long file(parans

in_short_r1 file(parans)

i short 12 = file(params.in_short r2)
unicycler_Lr_align_contamination = file(params.unicycler_lr_align_contamination)
unicycler_rotation start_genes - file(params.unicycler_rolation start_genes)

workflow {

FASTQCI(

parans. fastacl fornat_string,
parans. fastact_outdir

FaSTaCH(

_string,

in_tong,
unicycler_Lr_align_contanination,

=Ll

=Ll

nexiflow

Nextflow Processes (translated)

Today’s Session

Hands-on experience with workflow migration
using Janis Translate.

- CWL — Nextflow
- Galaxy — Nextflow

Aim is to:

- Get familiar with Janis translation output

- Run the translations with test data

- Do some proper Nextflow debugging to bring
translations to a finished, runnable state

(we are here) —

Description Est. Duration
Housekeeping 5 min
Intro to the session & Janis 10 min

CWL — NEXTFLOW TRANSLATIONS

Intro to CWL 10 min
Samtools Flagstat Tool 20 min
GATK HaplotypeCaller Tool 20 min
Align Sort Markdup Workflow 20 min
Break 10 min

Real time (finish)
1:10pm

1:20pm

1:30pm
1:50pm
2:10pm
2:30pm

2:40pm

GALAXY — NEXTFLOW TRANSLATIONS

Intro to Galaxy 10 min
Samtools Flagstat Tool 10 min
Limma Voom Tool 20 min
RNA-Seq reads to counts workflow | 30 min
Wrap up 10 min
EXTENSION

Participant workflow translations 30 min

2:50pm
3:00pm
3:20pm
3:50pm

4:00pm

4:30pm

Acknowledgements

Current Janis team: Workshop Setup:
- Grace Hall (Janis) - Matthew Downton (NCI)
- Richard Lupat (Peter Mac) - Melissa Burke (BioCommons)
- Daniel Park (UoM) - Alex Ip (AARNET)
- Bernie Pope (UoM) - Georgie Samaha (SIH)
- Lisa Phippard (BioCommons) - Audrey Stott (Pawsey)

- Evan Thomas (WEHI)

Previous team members of Portable Pipelines Project:
- Michael Franklin (Janis)
- Juny Kesumadewi (Janis)
- Jiaan Yu (Peter Mac)
- Xinzhe Li (Peter Mac)

Initial proof-of-concept
- Mohammad Bhuyan (WEHI)

Early adopters / community support
- Sebastian Hollizeck (Peter Mac)
- Tom Conway (Peter Mac)
- Kersten Bruer (DKFZ)
- Michael Crusoe (CWL)

y/" PeterMac

Peter MacCallum Cancer Centre

‘/ Victoria Australia

‘:: Melbourne Blomformatlcs

EIDINFORMATICS + DATA SERVIGES + INFRASTAUCTURE, FOR LIFE SCIENCES TODAY

% Walter+Eliza Hall

Institute of Medical Research

DISCOVERIES FOR HUMANITY

Australian
BioCommons

THE U

MELBOURNE

17

