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ABSTRACT 

Background. Physical activity is lower in people with multiple sclerosis (pwMS) compared to 

healthy controls. Previous work focused on studying activity levels or activity volume, but 

studies of daily-living rest-activity fragmentation patterns, circadian rhythms, and fractal 

regulation in pwMS are limited. Based on findings in other cohorts, one could suggest that 

these aspects of daily-living physical activity will provide additional information about the 

health and well-being of pwMS. Therefore, here, we aimed to (1) identify which 

fragmentation, fractal, and circadian amplitude measures differ between pwMS and healthy 

controls, (2) evaluate the relationship between fragmentation, fractal, and circadian 

amplitude measures and disease severity, and (3) begin to evaluate the added value of those 

measures, as compared to more conventional measures of physical activity (e.g., mean 

signal vector magnitude (SVM). a global measure of the overall volume of physical activity).  

Methods. 132 people with relapsing-remitting MS (47±11 yrs, 69.7% female, Expanded 

Disability Status Scale, EDSS, median (IQR): 3(2-4)) and 90 healthy controls (46±11 yrs, 47.8 

%female) were asked to wear a 3D accelerometer on their lower back for 7 days. Rest-

activity fragmentation, circadian amplitude, fractal regulation, and mean SVM metrics were 

extracted. PwMS and healthy controls were compared using independent samples t-tests 

and linear regression, including comparisons adjusted for mean SVM to control for the effect 

of physical activity volume. Spearman correlations between measures and logistic 

regressions were used to identify the clinical condition based on the measures that differed 

significantly after adjusting for SVM. All analyses included adjustments for demographic and 

clinical parameters (e.g., age, sex).  

Results. Multiple measures of activity fragmentation significantly differed between pwMS 

and healthy controls, reflecting a more fragmented active behavior in pwMS. PwMS had a 

lower circadian rhythm amplitude, indicating a smaller amplitude in the circadian changes of 

daily activity, and weaker temporal correlations as based on the fractal analysis. When 

taking into account physical activity volume, one circadian amplitude measure and one 

fractal measure remained significantly different in pwMS and controls. Fragmentation 

measures and circadian amplitude measures were significantly associated with disability 

level as measured by the EDSS; the association with circadian amplitude remained 

significant, even after adjusting for the mean SVM.  

Conclusion. The physical activity patterns of pwMS differ from those of healthy individuals in 

rest-activity fragmentation, the amplitude of the circadian rhythm, and fractal regulation. 

Measures describing these aspects of activity provide information that is not captured in the 

total volume of physical activity and could, perhaps, augment the monitoring of disease 

progression and evaluation of the response to interventions.  

KEYWORDS Multiple sclerosis; Daily living; Accelerometer; Activity fragmentation; Fractal 

regulation; Circadian amplitude 

  



1. INTRODUCTION 

People with multiple sclerosis (pwMS) are less physically active compared to healthy 

individuals [1][2][3][4][5][6]. While early work documented these changes via self-report, in 

recent years, wearable sensors have been used to quantify daily-living activity and mobility 

outcomes in pwMS [7][8][9]. These efforts have produced valuable insights into the effects 

of MS on the quality of life of patients and on the association of physical activity levels with 

disease severity and disability level [4], [5][6]. However, most of the work quantifying and 

studying physical activity in free-living environments has focused on the amount of activity, 

rather than the patterns of activity and active-sedentary behavior throughout the day.  

The fragmentation of rest and activity patterns is altered in a wide variety of clinical 

conditions. For example, rest-activity patterns are altered in preclinical Alzheimer's disease 

[10], Parkinson's disease [11], and older adults with cognitive impairments [12] and with 

fatigability [13]. Activity fragmentation was also previously associated with mortality rates in 

older adults [14][15][16]. Together, these studies suggest that there is clinically relevant 

information that can be gleaned from investigating how physical activity changes during the 

day and that fragmentation provides a measure that is, at least theoretically, independent of 

the total volume of activity (e.g., see Figure 1 in the supplementary material, SM).  

Due to the impaired mobility of pwMS, which potentially affects the ability to sustain 

physical activity for long periods, one can speculate that the fragmentation patterns are 

altered in pwMS. In their pilot study, Blikman et al. reported differences in the active-

sedentary patterns of fatigued pwMS compared to healthy controls [3]. Although the study 

was limited to severely fatigued patients, these findings hint at the possibility of extracting 

potentially valuable information from outcomes related to rest-activity fragmentation in 

pwMS.  

Fractal analysis of human motor activity provides an alternative means of examining the 

changes in physical activity during the day. This approach evaluates correlations in the 

temporal fluctuations of the activity signal over varying time scales [17][18]. When applied 

to recorded accelerometer data, measures based on fractal analysis predict frailty, disability, 

and mortality [19] as well as cognitive decline and Alzheimer's disease [20] in older adults. Li 

et al. found that the degradation of motor fractal regulation, which occurs in association 

with aging [21][22][23][24], is accelerated in Alzheimer's disease, and that acceleration 

worsens after diagnosis of cognitive impairment and worsens further after the clinical onset 

of Alzheimer’s dementia [25]. In a pilot study, differences in the scaling exponent derived 

from the fractal analysis were observed between groups of patients with different self-

reported disability level and ambulatory status, and an association with patient-rated 

walking impairment measures were also observed, with a lower scaling exponent being 

linked to greater impairment [26]. These preliminary results suggest that fluctuations in 

physical activity during the day are not simply noise; rather, they may provide important 

information about MS-related physical activity patterns.  

The circadian rhythm amplitude (the maximum range of daily activity) decreases with aging 
[27] and was associated with an increased risk of developing Parkinson's and Alzheimer's 
disease [28][29]. There is, however, little information about circadian amplitude metrics in 
pwMS. Nonetheless, due to the general decrease in physical activity that is associated with 
disease progression among pwMS, a relationship similar to what is seen in older adults 
might emerge in pwMS. Preliminary evidence of a negative relationship between circadian 



amplitude and disability level, as assessed by the Expanded Disability Status Scale (EDSS) [30] 
provides some initial support for this possibility. Together, these findings, along with those 
related to aging and Parkinson's disease, suggest that measures of circadian activity 
amplitude could potentially be valuable in the study of pwMS. 

To explore these largely unaddressed questions in the context of MS, we evaluated daily-

living activity patterns in pwMS and healthy controls. We aimed to (1) identify which 

fragmentation, fractal, and circadian amplitude measures differ between pwMS and healthy 

controls, (2) evaluate the relationship between fragmentation, fractal, and circadian 

amplitude measures and disease severity, and (3) begin to assess the added value of those 

measures compared to more conventional volume-based measures of physical activity (e.g., 

signal vector magnitude (SVM)).  

 

2. METHODS 

2.1 Participants  

The analysis was based on the baseline data of patients with relapsing-remitting MS (n=132) 

and healthy controls (n=90) who were recruited as part of three studies. 41 pwMS and 30 

controls participated in an observational study. The data of the other 91 MS patients were 

collected from the baseline assessment of a multi-center intervention designed to 

ameliorate motor-cognitive interactions in MS patients using virtual-reality (NCT02427997). 

For all pwMS, the inclusion criteria were: relapsing-remitting type of MS according to 

McDonald criteria 2010 [31], ages 18-65 years, free of relapse in the past 30 days, mild to 

moderate disability (i.e., Expanded Disability Status scale (EDSS) score of 0 to 6). PwMS were 

excluded if they had neurological, orthopedic, or psychiatric disorders that are likely to 

affect gait. The rest of the control subjects (n=60) participated in a study that was designed 

to evaluate Parkinson’s disease. Controls were included if they had no neurological, 

orthopedic, or psychiatric disorders that may affect gait and no substantial cognitive 

impairment (Montreal Cognitive Assessment score > 21). All subjects provided informed 

written consent, as approved by local human studies, before participation.  

2.2 Assessment of demographics and disease severity 

Age, sex, and other demographic characteristics were collected. Disease severity among the 
pwMS was assessed using the Expanded Disability Status Scale (EDSS)[32].  
 
2.3 Collection of free-living physical activity data 
 
Subjects wore a small, body-fixed, water-proof tri-axial accelerometer (Axivity AX3 or AX6, 

York, UK; about 23.0×32.5×7.6 mm; weight: 11 g; 100 Hz sampling rate) on their lower 
back (lumbar vertebrae 4–5), as previously described [33]. The device recorded 3D 
accelerations in a free-living setting for a continuous period of seven days. The subjects were 
asked to carry on with their daily activities while wearing the device and send it back to the 
study site at the end of the seven days.  
 
2.4 Measures of physical activity behavior  
 
For a detailed description of the measures and their extraction process, see supplementary 

material.  



Mean SVM was used to quantify the amount of physical activity [34]. Fragmentation 

measures included an active fragmentation index, which is the number of active bouts 

divided by the total active time [3][35], the average bout duration for each state 

(sedentary/active), the Gini index, a measure of the distribution of the time spent in each 

state [14][36], the average hazard, an estimate of the hazard function in the context of 

transitioning between the states [14], and 𝐾𝐴𝑅 and 𝐾𝑅𝐴, measures of the state transition 

probability [37]. The scaling exponent of the detrended fluctuation analysis (DFA) was used 

to quantify fractal regulation. It was estimated in two time scale ranges: 𝛼1 in the range of 

1.5-90 minutes, and 𝛼2 in the range of 2-10 hours [25]. An un-normalized circadian 

amplitude (CA) measure and a relative amplitude (RA) measure were also extracted [37][38] 

[39].  

2.5 Statistical Analysis 

 Details of the statistical analysis are reported in the SM.  Briefly, when comparing the pwMS 

to the healthy controls, we used t-tests and linear regression models to adjust for age, sex, 

study site, and the number of valid days, and mean SVM. To assess associations between 

measures, nonparametric Spearman's correlations were used. Binary logistic regression 

models were used to assess the ability to classify the subject grouping.  A Benjamini–

Hochberg [40] correction was used to account for possible false-positives due to multiple 

comparisons, and significance was defined as p<0.05.  

 

 

3. RESULTS 

3.1 Subject characteristics 

 All characteristics except for sex were similar between the MS group and the control groups 

(Table 1). The percentage of female participants was higher in the MS group, as might be 

expected in a study of MS [41].  

 

Table 1: Subject characteristics (entries presented as mean±SD unless stated otherwise) 

Variable pwMS (n=132) HCs (n=90) P-value 

Age (yrs) 47.13±11.24 46.06±11.26 0.488 

Sex (% female) 69.70 47.78 0.001* 

Height (cm) 168.81±9.71 171.02±8.51 0.052 

Weight (kg) 75.57±21.00 74.40±14.17 0.980 

BMI (kg/m2) 26.21±6.95 25.07±4.96 0.798 

EDSS median(IQR): 3(2-4) ---  

EDSS: Expanded Disability Status scale Status scale 
* p<0.05 

 

3.2 Between-group differences in measures of physical activity behavior 

Participants in the MS group wore the sensor for 6.0±1.2 valid days and controls for 6.4±1.0 

(p=0.006) days. The differences in activity measures are described in Table 2. After adjusting 

for age, sex, and the number of valid days, pwMS had significantly higher active 



fragmentation index values (p=0.048), indicating more fragmented active bouts. Their active 

periods were also characterized by a significantly lower Gini index (p=0.002), indicating that 

the time spent in an active state was distributed more equally and in shorter bouts. Their 

sedentary time showed a non-significant trend of being less equally distributed, and spread 

over fewer, longer bouts, as indicated by a higher sedentary Gini index (p=0.055). 

Additionally, patients had a higher active average hazard (p=0.013), supporting the idea of 

higher activity fragmentation, along with 𝐾𝐴𝑅, which was also higher in the MS group 

(p=0.003). As for the circadian amplitude metrics, CA differed significantly between the 

groups (p<0.001), with patients showing a smaller amplitude of daily activity. The fractal 

analysis (see for example the analysis of two subjects in Figure 3 in the SM) showed positive 

temporal correlations for both groups (scaling exponent 𝛼>0.5), with significantly stronger 

correlations in the control group, both in the time scale range of 1 to 90 minutes (𝛼1, 

p=0.001), and 2-10 hours (𝛼2, p=0.002).  

After adjusting for mean SVM (i.e., taking into account total activity volume), CA (p=0.003) 

and 𝛼1 (p=0.014) remained significantly different in pwMS and controls. A significant 

difference appeared in the sedentary average hazard as well (p=0.045), with a slightly higher 

mean for the MS group.  

Table 2: Between-group differences between pwMS and HCs in daily measures of fragmentation and activity 
distribution. 

 
PwMS 

(mean±SD) 

Healthy 
Controls 

(mean±SD) 

T-test 
(P-value) 

 

Adjusted for 
age, sex, no. 

of valid 
days, and 
study site 

(P-value) 
 

Adjusted for 
age, sex, no. 

of valid 
days, study 

site, and 
mean SVM 
(P-value) 

Active 
fragmentation 

index (Hz) 

0.018±0.003 0.016±0.003 0.009* 0.048* 0.371 

Active average 
bout duration (s) 

38.009±5.660 37.238±5.148 0.328 0.554 0.221 

Sedentary 
average bout 
duration (s) 

73.738±28.567 65.302±17.267 0.067 0.096 0.208 

Active Gini index 
(nu) 

0.426±0.045 0.451±0.045 <0.001* 0.002* 0.252 

Sedentary Gini 
index (nu) 

0.699±0.068 0.673±0.061 0.009* 0.055 0.251 

Active average 
hazard (nu) 

0.298±0.057 0.272±0.044 0.001* 0.013* 0.402 

Sedentary 
average hazard 

(nu) 

0.142±0.014 0.142±0.014 0.853 0.823 0.080 

𝐾𝐴𝑅  (nu) 0.212±0.068 0.178±0.057 <0.001* 0.003* 0.603 

𝐾𝑅𝐴 (nu) 0.043±0.010 0.047±0.010 0.013* 0.135 0.211 

RA (nu) 0.247±0.070 0.270±0.060 0.016* 0.508 0.056 

CA (mg) 6257.279±2320.801 9613.411±4613.367 <0.001* <0.001* 0.015* 



𝛼1 (nu) 0.982±0.081 1.046±0.092 <0.001* 0.001* 0.044* 

𝛼2 (nu) 0.805±0.110 0.850±0.135 0.016* 0.002* 0.066 

SVM: Signal vector magnitude; CA: Circadian amplitude; RA: Relative amplitude 
* p<0.05 after adjusting for multiple comparisons 

   

 

 

3.3 Correlations between measures of activity fragmentation, activity distribution, activity 

level and disability level in pwMS 

Correlations between measures of physical activity and disability level among the pwMS are 

presented in Figure 1. Among the fragmentation-related measures, all measures excluding 

active average bout duration were significantly associated (p<0.05) with EDSS.  Among the 

circadian amplitude and fractal measures, CA (rho: -0.439, p<0.001) and RA (rho=-0.358, 

p<0.001) were significantly associated with EDSS.  Measures indicating a more fragmented 

pattern in the active state were positively correlated with EDSS, while the measure 

indicating a less fragmented activity pattern (active Gini index) was negatively correlated 

with EDSS. An opposite trend was seen in the measures describing the sedentary state. The 

circadian amplitude measures were both negatively correlated with disability level. After 

adjusting for mean SVM, only CA remained significantly associated with EDSS.  

  

Figure 1: Correlations between different measures of physical activity and disability level measured by EDSS in pwMS. Values presented are Spearman's rho 

values in correlations adjusted for age, sex, no. of valid days and study site.  

  Mean SVM 
Active 

fragmentation 
index 

Active 
average 

bout 
duration 

Sedentary 
average 

bout 
duration 

Active Gini 
index 

Sedentary 
Gini index 

Active 
average 
hazard 

Sedentary 
average 
hazard 

𝑲𝑨𝑹 𝑲𝑹𝑨 CA RA 𝛼1 𝛼2 

EDSS 

-0.390* 0.252* 0.008 0.189* -0.256* 0.242* 0.325* -0.228* 0.310* -0.188* -0.439** -0.358* -0.055 0.031 

Mean SVM  
-0.607* 0.099 -0.736* 0.462* -0.787* -0.750* 0.337* -0.706* 0.703* 0.871* 0.653* 0.202* 0.162 

Active 
fragmentation 

index 

  
-0.401** 0.292** -0.856** 0.255** 0.901** -0.284* 0.775** -0.200** -0.592* -0.306* -0.172 -0.208* 

Active 
average bout 

duration 

   
0.018 0.375** 0.074** -0.333** 0.144 -0.103 -0.103** 0.073 0.081 -0.282** -0.006 

Sedentary 
average bout 

duration 

    
-0.115** 0.890** 0.492* -0.485** 0.463* -0.766** -0.629* -0.644** -0.006** -0.168 

Active Gini 
index 

     
-0.132** -0.794** 0.172 -0.755** 0.130** 0.503** 0.275* 0.294** 0.123 

Sedentary 
Gini index 

      
0.495** -0.291* 0.480* -0.854** -0.684* -0.658** -0.060 -0.125 

Active 
average 
hazard 

       
-0.325* 0.907** -0.445* -0.722** -0.492* -0.195* -0.185* 



 

 

Some of the measures showed associations with each other (see Figure 1). Among the 

fragmentation measures, active fragmentation index was strongly associated with the active 

Gini index and active average hazard. The sedentary Gini index was also strongly correlated 

with 𝐾𝑅𝐴 and active average hazard with 𝐾𝐴𝑅. Other measures were not as strongly 

correlated with each other, excluding CA, which, being a measure of un-normalized activity 

amplitude, had a strong association with mean SVM.  

 

3.4 Classification of clinical condition based on measures with significant differences between 

patients and controls after adjusting for mean SVM 

The classification success of the logistic regression models is summarized in Table 3. CA and 

𝛼1 (in addition to the adjustment parameters) showed slightly better performances 

compared to the other models.  

 

Table 3: Classification of patients groups 

 

 Model 1 Model 2 Model 3 Model 4 

 Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 
pwMS vs health controls 0.679 0.727 0.607 0.777 0.833 0.693 0.751 0.780 0.708 0.786 0.848 0.693 
pwMS with EDSS<4* vs controls 0.750 0.529 0.966 0.783 0.701 0.864 0.739 0.621 0.854 0.777 0.690 0.864 
pwMS with EDSS≥4 **vs controls 0.813 0.467 0.989 0.880 0.778 0.932 0.843 0.711 0.910 0.895 0.822 0.932 
pwMS with EDSS<4 vs EDSS≥4 0.705 0.267 0.931 0.780 0.600 0.874 0.750 0.511 0.874 0.750 0.533 0.862 

*87 pwMS had EDSS <4 
**45 pwMS had EDSS ≥4 
CA: Circadian amplitude; EDSS: Expanded disability status scale; Acc.: Accuracy; Sens.: Sensitivity; Spec.: Specificity 
Model 1: Predictors were age, sex, no. of valid days, and study site 
Model 2: Predictors were age, sex, no. of valid days, study site, CA, and 𝛼1 
Model 3: Predictors were age, sex, no. of valid days and study site, and mean SVM.  
Model 4: Predictors were age, sex, no. of valid days, study site, CA, 𝛼1, and mean SVM 

 

 

Sedentary 
average 
hazard 

        
-0.275* 0.270* 0.307* 0.367** -0.084 0.176* 

𝑲𝑨𝑹          
-0.453* -0.714** -0.459* -0.304** -0.191* 

𝑲𝑹𝑨           
0.586* 0.588** -0.019* 0.116 

CA            
0.707** 0.368** 0.066 

RA             
0.186* 0.047 

𝛼1 
             -0.167** 

 

SVM: Signal vector magnitude; CA: Circadian amplitude; RA: Relative amplitude; EDSS: Expanded disability status scale 
* p<0.05 after adjusting for age, sex, no. of valid days and study site ** p<0.05 after adjusting for age, sex, no. of valid days, study site and mean SVM. 



 

4. DISCUSSION 

The results of the present study revealed differences in the rest-activity fragmentation, the 

amplitude of the circadian rhythm, and the fractal regulation of pwMS, compared to healthy 

controls. Multiple measures reflecting active-state fragmentation were altered in the pwMS 

after adjusting for demographic parameters. The differences indicate higher activity 

fragmentation in pwMS, as well as a smaller variability in the active bout length. No 

measures of sedentary period distribution showed significant differences between pwMS 

and controls, suggesting that examining the active period distribution might provide more 

valuable information. In addition, lower CA in pwMS suggests a smaller amplitude 

(difference between the ten most active and five least active hours of the day) of daily 

activity in pwMS. A lower scaling exponent of the detrended fluctuation amplitude provides 

evidence that the fractal regulation of motor activity was degraded in pwMS. 

When examining associations between the fragmentation measures, we found that some 

measures were strongly related to each other and may be assumed to reflect similar 

features of the activity pattern. Regarding relationships with disease progression, it appears 

that SVM is a strong predictor, making the associations between EDSS and the other 

measures (excluding CA) insignificant after adjustment. Although 𝛼1 and 𝛼2 were different 

between patients and controls, unlike measures of fragmentation and circadian amplitude, 

they were not associated with EDSS. This suggests that they reflect other MS factors not 

related to disability level.   

Although various outcomes describing the rest-activity patterns of pwMS were different 

compared to the controls, when taking into account the effect of total activity volume by 

further adjusting for mean SVM, the differences in fragmentation were generally 

attenuated. Nonetheless, CA and 𝛼1 remained significantly different in pwMS and controls. 

Based on these results, it appears that total activity volume is a strong marker of the disease 

when compared to activity fragmentation measures. Circadian amplitude and DFA, however, 

seem to contain important, independent information on the rest-activity patterns of pwMS 

and remain valuable as possible motor measures even when compared to physical activity 

levels. A regression-based model combining CA and 𝛼1 (Table 3) resulted in slightly better 

performances in terms of classification accuracy than a model based on mean SVM, when 

trying to differentiate between patients and controls, or between controls and patients with 

both high and low EDSS scores. While 𝛼1 is not correlated with mean SVM, CA and mean 

SVM are highly correlated, due to CA being a measure of the daily activity amplitude. 

However, it should be noted that while mean SVM quantifies the average total activity per 

day, CA is more indicative of the daily range between the amount of activity during the most 

active part of the day and that during the least active part (normally, the sleeping hours). 

From a theoretical standpoint, range and totals do not necessarily reflect the same 

properties (recall Figure 1 in the supplementary material). 

The differences in the fragmentation measures that we observed are consistent with the 
findings of Blikman et al. They suggested that fatigued pwMS tend to have a more 
fragmented activity pattern [3]. Here we expand those findings and show that pwMS who 
are not necessarily severely fatigued also have alterations in their fragmentation. The 
differences in CA and RA are consistent with the association between a smaller RA and a 
higher disability level among pwMS reported previously [30]. These measures indicate that 



not only is the total volume of activity affected by MS, but circadian rhythm characteristics 
are abnormal. Still, further exploration is needed to determine whether the differences in 
both activity fragmentation and circadian characteristics are mediated by direct disease-
related factors like fatigue or motor impairment, by "external", habitual behavior that is 
indirectly affected, or both [42]. Blikman et al. [3] also found a less fragmented rest pattern 
in fatigued pwMS, a finding that generally does not correspond with the results of the 
present study – and could potentially indicate that rest patterns are related mainly to 
fatigue, while activity bout distribution is different. Further analyses including fatigue data or 
other demographic parameters (such as occupational status) are needed to explore these 
questions.   

The fractal analysis of the physical activity of pwMS suggests a stronger effect of the disease 

on the correlations in the time scales of 1.5 to 90 minutes, and less on those in the range of 

2 to 10 hours. This implies different underlying mechanisms of regulation for "short-term" 

and "long term" self-similarity. In their longitudinal study on fractal fluctuations in the 

activity of older adults, Li et al. [19] evaluated 𝛼1 and 𝛼2 in similar time scale ranges, and 

hypothesized that the degradation of fractal correlations in the longer time scale ranges 

might be related to circadian dysfunction, citing evidence of lesions in circuits related to the 

suprachiasmatic nucleus (SCN) in rat studies and loss of SCN neurotransmitters in humans 

being linked to a reduction in 𝛼2. They also suggested that the regulation in the smaller time 

scales degrades with cognitive decline – based on associations with higher brain function 

decline and dementia – although other mechanisms might also be in play. Li et al. [25] 

suggested similar underpinnings 𝛼1 and 𝛼2. Several studies suggest that circadian regulation 

is involved in the fractal regulation of physical activity [19][20][23][24][25]; these studies 

suggest that either circadian rhythm regulation or a more complex integration of regulatory 

processes are responsible for the fractal motor patterns. The present study shows an 

association between circadian amplitude and a higher 𝛼1, but not 𝛼2. To better understand 

the relationship between circadian rhythm and the fractal measure, it may be helpful to 

evaluate other measures of circadian regulation, such as acrophase (time of peak activity), 

and the interdaily stability and intradaily variability of the activity rhythm [29]. 

There is little work regarding the fractal regulation of activity in pwMS. As noted above, 

Sosnoff et al. link the observed changes to disability and motor impairment [26]. The results 

presented here support the value of fractal analysis of physical activity patterns in MS. 

Although the present study does not offer further explanations regarding the process of 

fractal degradation, it is possible that MS accelerates the natural degradation process that 

occurs with aging, similar to what is seen in Alzheimer's disease [25], resulting in the 

observed differences in the scaling exponents between pwMS and controls. It is important 

to note that the present cross-sectional study limits our ability to interpret cause and effect 

and changes over time. Long-term, prospective studies might offer additional insight into the 

degradation of fractal patterns in MS, similar to the work by Li et al. in Alzheimer's disease. 

As noted in the Introduction, prospective studies in different cohorts point to a possible 

long-term relationship between the circadian amplitude and the worsening of 

neurodegenerative symptoms, and even a predictive ability of the amplitude and other 

activity outcomes related to circadian rhythms. Rogers-Soeder et al [43], for instance, found 

that a lower circadian amplitude was associated with greater cognitive decline in older men. 

Further, a lower circadian amplitude was associated with an increased risk of developing 

Parkinson’s disease and Alzheimer's disease [28][29]. In future studies, it would be 



interesting to test the hypothesis that the circadian activity amplitude can predict the risk of 

cognitive decline and changes in disease severity among pwMS.  

This work has several limitations. The analysis was performed on daytime data that was 

selected using a sleep-detection algorithm [44] based on the detection of lying periods. The 

algorithm uses a fixed threshold and makes certain assumptions (i.e. regarding minimal lying 

time for detecting sleep). The fragmentation analysis is based on a binary definition of active 

versus sedentary periods, with a pre-defined SVM threshold. It might be helpful to construct 

a more adaptive method to set the activity threshold, for example by adjusting the threshold 

based on clinical condition or per subject. In addition, the present work does not separate 

the analysis of weekdays and weekends. In the future, separate analyses that account for 

the differences in activity during weekdays and weekends might produce a more specific and 

accurate characterization of the daily activity patterns of pwMS. As mentioned above, this 

study was cross-sectional and as such, does not offer information regarding the causal 

nature of the relationships between the different measures. There are numerous directions 

in which the work presented here can be expanded using longitudinal analyses, as previously 

discussed. In addition, in the future, it might also be interesting to examine the potential 

utility of combining multiple measures in different ways (e.g., machine learning) to further 

enhance the ability to assess group differences and changes over time in disease severity.  

5. CONCLUSIONS 

Daily-living physical activity patterns in pwMS differ from those of healthy controls in 

multiple measures of fragmentation, circadian amplitude, and fractal analysis. Those 

measures may help to enhance the monitoring of disease progression and in the evaluation 

of the response to interventions. The present work suggests that some of these measures 

provide added value even when taking into account total physical activity, while others do 

not. Additional work should further explore the analytic approaches described here and 

their potential for augmenting the objective assessment of pwMS. The present study sets 

the stage for that work. 
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