Dataset for "Reduced ice loss from Greenland under stratospheric aerosol injection" (submitted to Journal of Geophysical Research: Earth Surface) ### - README - ### John C. Moore^{1,2,3}, Ralf Greve^{4,5}, Chao Yue¹, Thomas Zwinger⁶, Fabien Gillet-Chaulet⁷, Liyun Zhao^{1,8} ## 14 model experiments (each run with the ice-sheet models SICOPOLIS and Elmer/Ice; for details see the manuscript) - HIST: Historical simulation 1990–2015. - CTRL: Unforced projection control experiment 2015–2090. - <GCM>-<Scenario>-Rmed: Future climate experiments 2015–2090, where <GCM> = {BNU-ESM, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM} and <Scenario> = {RCP85, RCP45, G4}. ### **Variables** The variable names follow closely the ISMIP6 convention (e.g., Table A1 of https://tinyurl.com/ismip6-wiki-gris). However, years are used instead of seconds as the time unit (1 a = 3.1556925445×10^7 s). Time itself is counted in days since 1990-01-01 00:00:00, using a 365-day calendar (no leap years, i.e., all years are 365 days long). 2D variables for SICOPOLIS are provided on the native 5-km grid (EPSG:3413), while for Elmer/Ice, they were resampled from the unstructured finite-element mesh to this grid. ¹College of Global Change and Earth System Science, Beijing Normal University, Beijing, China ² Arctic Centre, University of Lapland, Rovaniemi, Finland ³ CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China ⁴Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan ⁵ Arctic Research Center, Hokkaido University, Sapporo, Japan ⁶ CSC-IT Center for Science, Espoo, Finland ⁷ Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France ⁸ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China ### 2D state variables (in Output_{SICOPOLIS, ElmerIce}_2D.zip) lithk – Ice thickness (m) orog – Surface elevation (m) base – Ice base elevation (m) topg – Bedrock elevation (m) Surface velocity in x-direction (m a⁻¹) * yvelsurf - Surface velocity in y-direction (m a⁻¹) * zvelsurf - Surface velocity in z-direction (m a⁻¹) * velsurf – Surface velocity in horizontal direction (m a⁻¹) * xvelbase - Basal velocity in x-direction (m a^{-1}) * yvelbase - Basal velocity in y-direction (m a^{-1}) * zvelbase - Basal velocity in z-direction (m a^{-1}) * velbase – Basal velocity in horizontal direction (m a⁻¹) * xvelmean – Mean velocity in x-direction (m a⁻¹) yvelmean – Mean velocity in y-direction (m a⁻¹) velmean – Mean velocity in horizontal direction (m a⁻¹) Iitemptop – Surface temperature (K) *Iitempbot – Basal temperature (K) * strbasemag – Basal drag (Pa) sftgif – Land ice area fraction (–) sftgrf – Grounded ice area fraction (–) † sftflf – Floating ice area fraction (–) † These variables are provided as yearly snapshots for the years 2016–2090 [historical: 1991–2015]. Time variable: 'time'. #### 2D flux variables (in Output {SICOPOLIS, ElmerIce} 2D.zip) acabf – Surface mass balance flux (kg m⁻² a⁻¹) libmassbfgr Basal mass balance flux beneath grounded ice (kg m⁻² a⁻¹) Basal mass balance flux beneath floating ice (kg m⁻² a⁻¹) † Mass loss due to calving and ice front melting (kg m⁻² a⁻¹) ligroundf – Mass flux through the grounding line (kg m⁻² a⁻¹) † dlithkdt – Ice thickness imbalance (m a⁻¹) hfgeoubed – Geothermal heat flux (W m⁻²) * These variables are provided as yearly averages over the intervals bounded by the years 2015–2090 [historical: 1990–2015]. Time variables: 'time', 'time bnds'. Scalar state variables (in Output_{SICOPOLIS, ElmerIce}_Scalar.zip) lim – Total ice mass (kg) Iimnsw – Mass above floatation (kg) iareagr – Grounded ice area (m²) iareafl – Floating ice area (m²) † These variables are provided as yearly snapshots for the years 2016–2090 [historical: 1991–2015]. Time variable: 'time'. Scalar flux variables (in Output_{SICOPOLIS, ElmerIce}_Scalar.zip) tendacabf – Total surface mass balance flux (kg a⁻¹) tendlibmassbf – Total basal mass balance flux (kg a⁻¹) tendlibmassbffl - Total basal mass balance flux beneath floating ice (kg a⁻¹) † tendlifmassbf - Total mass loss due to calving and ice front melting (kg a⁻¹) tendligroundf – Total mass flux through the grounding line (kg a⁻¹) † These variables are provided as yearly averages over the intervals bounded by the years 2015–2090 [historical: 1990–2015]. Time variables: 'time', 'time bnds'. Scripts related to the ISIMIP-method downscaling, SEMIC code, as well as configuration and input files for SICOPOLIS and Elmer/Ice are available in Repo_ISIMIP_downscale.zip, Repo_SEMIC.zip, Repo_SICOPOLIS.zip and Repo_ElmerIce.zip. See the separate README files in these folders for details. _____ ^{*} Only for the SICOPOLIS results which include a vertical velocity profile and temperature. [†] Only for the Elmer/Ice results which include floating ice.