Dataset for "Reduced ice loss from Greenland under stratospheric aerosol injection"

(submitted to Journal of Geophysical Research: Earth Surface)

- README -

John C. Moore^{1,2,3}, Ralf Greve^{4,5}, Chao Yue¹, Thomas Zwinger⁶, Fabien Gillet-Chaulet⁷, Liyun Zhao^{1,8}

14 model experiments (each run with the ice-sheet models SICOPOLIS and Elmer/Ice; for details see the manuscript)

- HIST: Historical simulation 1990–2015.
- CTRL: Unforced projection control experiment 2015–2090.
- <GCM>-<Scenario>-Rmed: Future climate experiments 2015–2090, where <GCM> = {BNU-ESM, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM} and <Scenario> = {RCP85, RCP45, G4}.

Variables

The variable names follow closely the ISMIP6 convention (e.g., Table A1 of https://tinyurl.com/ismip6-wiki-gris). However, years are used instead of seconds as the time unit (1 a = 3.1556925445×10^7 s). Time itself is counted in days since 1990-01-01 00:00:00, using a 365-day calendar (no leap years, i.e., all years are 365 days long).

2D variables for SICOPOLIS are provided on the native 5-km grid (EPSG:3413), while for Elmer/Ice, they were resampled from the unstructured finite-element mesh to this grid.

¹College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

² Arctic Centre, University of Lapland, Rovaniemi, Finland

³ CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China

⁴Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

⁵ Arctic Research Center, Hokkaido University, Sapporo, Japan

⁶ CSC-IT Center for Science, Espoo, Finland

⁷ Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France

⁸ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China

2D state variables (in Output_{SICOPOLIS, ElmerIce}_2D.zip)

lithk – Ice thickness (m)

orog – Surface elevation (m)
base – Ice base elevation (m)
topg – Bedrock elevation (m)

Surface velocity in x-direction (m a⁻¹) *
 yvelsurf - Surface velocity in y-direction (m a⁻¹) *
 zvelsurf - Surface velocity in z-direction (m a⁻¹) *

velsurf – Surface velocity in horizontal direction (m a⁻¹) *

xvelbase - Basal velocity in x-direction (m a^{-1}) * yvelbase - Basal velocity in y-direction (m a^{-1}) * zvelbase - Basal velocity in z-direction (m a^{-1}) *

velbase – Basal velocity in horizontal direction (m a⁻¹) *

xvelmean – Mean velocity in x-direction (m a⁻¹)
 yvelmean – Mean velocity in y-direction (m a⁻¹)

velmean – Mean velocity in horizontal direction (m a⁻¹)

Iitemptop – Surface temperature (K) *Iitempbot – Basal temperature (K) *

strbasemag – Basal drag (Pa)

sftgif – Land ice area fraction (–)

sftgrf – Grounded ice area fraction (–) †
sftflf – Floating ice area fraction (–) †

These variables are provided as yearly snapshots for the years 2016–2090 [historical: 1991–2015]. Time variable: 'time'.

2D flux variables (in Output {SICOPOLIS, ElmerIce} 2D.zip)

acabf – Surface mass balance flux (kg m⁻² a⁻¹)

libmassbfgr
 Basal mass balance flux beneath grounded ice (kg m⁻² a⁻¹)
 Basal mass balance flux beneath floating ice (kg m⁻² a⁻¹) †
 Mass loss due to calving and ice front melting (kg m⁻² a⁻¹)

ligroundf – Mass flux through the grounding line (kg m⁻² a⁻¹) †

dlithkdt – Ice thickness imbalance (m a⁻¹) hfgeoubed – Geothermal heat flux (W m⁻²) *

These variables are provided as yearly averages over the intervals bounded by the years 2015–2090 [historical: 1990–2015]. Time variables: 'time', 'time bnds'.

Scalar state variables (in Output_{SICOPOLIS, ElmerIce}_Scalar.zip)

lim – Total ice mass (kg)

Iimnsw – Mass above floatation (kg)
 iareagr – Grounded ice area (m²)
 iareafl – Floating ice area (m²) †

These variables are provided as yearly snapshots for the years 2016–2090 [historical: 1991–2015]. Time variable: 'time'.

Scalar flux variables (in Output_{SICOPOLIS, ElmerIce}_Scalar.zip)

tendacabf – Total surface mass balance flux (kg a⁻¹) tendlibmassbf – Total basal mass balance flux (kg a⁻¹)

tendlibmassbffl - Total basal mass balance flux beneath floating ice (kg a⁻¹) † tendlifmassbf - Total mass loss due to calving and ice front melting (kg a⁻¹)

tendligroundf – Total mass flux through the grounding line (kg a⁻¹) †

These variables are provided as yearly averages over the intervals bounded by the years 2015–2090 [historical: 1990–2015]. Time variables: 'time', 'time bnds'.

Scripts related to the ISIMIP-method downscaling, SEMIC code, as well as configuration and input files for SICOPOLIS and Elmer/Ice are available in Repo_ISIMIP_downscale.zip, Repo_SEMIC.zip, Repo_SICOPOLIS.zip and Repo_ElmerIce.zip. See the separate README files in these folders for details.

^{*} Only for the SICOPOLIS results which include a vertical velocity profile and temperature.

[†] Only for the Elmer/Ice results which include floating ice.