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Thermal management system (TMS) for commonly used lithium-ion (Li-ion) batteries is an essential requirement
in electric vehicle operation due to the excessive heat generation of these batteries during fast charging/dis-
charging. In the current study, a thermal model of lithium-titanate (LTO) cell and three cooling strategies
comprising natural air cooling, forced fluid cooling, and a flat heat pipe-assisted method is proposed experi-
mentally. A new thermal analysis of the single battery cell is conducted to identify the most critical zone of the
cell in terms of heat generation. This analysis allowed us to maximize heat dissipation with only one heat pipe
mounted on the vital region. For further evaluation of the proposed strategies, a computational fluid dynamic
(CFD) model is built in COMSOL Multiphysics® and validated with surface temperature profile along the heat
pipe and cell. For real applications, a numerical optimization computation is also conducted in the module level
to investigate the cooling capacity of the liquid cooling system and liquid cooling system embedded heat pipe
(LCHP). The results show that the single heat pipe provided up to 29.1% of the required cooling load in the 8C
discharging rate. Moreover, in the module level, the liquid cooling system and LCHP show better performance
compared with natural air cooling while reducing the module temperature by 29.9% and 32.6%, respectively.

1. Introduction

In recent decades, lithium-ion (Li-ion) batteries have gained popu-
larity as a significant power source for different applications including
electric and hybrid vehicles, power grids, and solar energy storage.
Owing to high power density, reliability, and durability, Li-ion batteries
are highly recommended as a power source in a long driving range and
fast acceleration [1,2]. Nonetheless, Li-ion batteries produce heat
throughout fast charge and discharge cycles at a high current level.
Besides, their energy storage capacity and longevity are highly depen-
dent on temperature and inhomogeneity [3,4]. Several studies showed
that the high temperature of the Li-ion battery cells accelerates capacity
degradation and shortens battery life [5-8]. Heat accumulation in
batteries also leads to safety issues and abnormality in the entire system
of electric vehicles. Overheating, burning, and the explosion of batteries
are some of these safety risks. Thus, the design and development of an

effective thermal management system (TMS) remain a crucial challenge
in the electric vehicles industry [9,10]. The optimum operating tem-
perature range for Li-ion batteries is between 25-40 °C [11,12]. This
temperature range within the Li-ion battery results in a balance be-
tween performance and lifetime [13]. In order to reach a higher speed,
acceleration, and lower charging time of the battery pack, fast char-
ging/discharging mods have imposed an urgent challenge on battery
power performance, and the battery TMS. By far, several cooling sys-
tems in the form of active, passive, and hybrid are examined to meet the
heat dissipation requirement of Li-ion batteries. Phase change material
(PCM) and nanomaterials, heat pipe, air, and liquid cooling systems are
used as TMS to control the heat generation of the electronic devices
[14-17] and batteries during operation [18-27]. For this aim PCM, air,
and water have been used as a coolant.

Among the mentioned cooling systems, heat pipes are highly under
the attention because of high heat transfer efficiency, low cost and
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Nomenclature Ay The cross-section of the Heat pipe (m?)
qq Cell Heat Generation (W)
At Time Interval (t) \% Volume (m3)
T Battery Temperature (K) D Total Drag Force
I Discharge Current (Ah) F Friction Drag
14 Operating Voltage (V) k Turbulent Kinetic Energy
v Velocity (m/s) S Second
m

Operating Voltage (V)
[ Specific Heat capacity (J/kg.K)
Tamp Temperature of ambient (K)
Rp: Total Resistance of the Battery Tab (K/W)
Riap Total Resistance of the Battery (K/W)
k Thermal Conductivity (W/m.K)
p Pressure (Pa)
p’ Resistivity (K/W)
S Cross-section of the Tab and Cell (m?)
h Heat Transfer Coefficient (W/m2.K)
Qeony Free Cooling Heat Transfer (W)

Qcet Power Loss of Battery (W)

& Gravity (m/s%)

u Air velocity (m/s)

Less Effective Transport Length of the Heat Pipe (m)

Lq Adiabatic Length of Heat Pipe (m)

L. Condenser Length of Heat Pipe (m)

L, Evaporator Length of Heat Pipe (m)

kg Effective Thermal Conductivity of the Heat Pipe (W/m.K)
Qnp Heat Transferred by Heat pipe (W)

v Volume of Battery Cell (m? /s)
u Dynamic Viscosity (Pa.s)

P Density (kg/m>)

A Heat Generation

€ Energy Dissipation Rate

Uy Turbulent Viscosity

Acronyms

CFD Computational Fluid Dynamics

T™MS Thermal Management System

LCHP Liquid Cooling Embedded with Heat Pipe
HP Heat Pipe

SocC State of Charge
Li-ion Lithium-ion
PCM Phase Change Material

maintenance, lightweight, and high lifetime. The heat pipe is a passive
cooling system with a simple structure and working fluid transport.
They can be used in many cooling applications and particularly electric
vehicles [15,28-32]. Researchers have investigated the heat pipe as-
sisted cooling systems for battery packs because of their advantages—
high heat dissipation efficiency— over inefficient air convection sub-
jected to high-heat flux, or bulky liquid cooling driven by pumps, and
low thermal conductivity of PCMs [33-37]. In brief, the heat pipe
thermal conductivity is almost 90 times higher compared with a copper
bar in the same dimension [38]. Dan et al. [39] employed a micro-heat
pip array in designing a thermal management system for 96 prismatic
batteries. They found that the temperature stability under fast-changing
operating conditions is achievable to a great extent by using the micro
heat pipe array. Behi et al. [40] numerically considered the effect of the
L shaped heat pipe on maximum temperature and temperature uni-
formity of a cylindrical battery module. Rao et al. [41] designed a heat
pipe TMS for the prismatic cells. They kept the temperature of cells
within the preferred range under unstable operating and cycling test
conditions. Feng et al. [42] fabricated a heat pipe cooling device to
reduce the operating temperature and strain. They found that the strain
and temperature decreased after using the heat pipe in a charge-dis-
charge cycle process. Wang et al. [33] recommended a heat pipe TMS
for cooling and heating purposes. They found if the heat generation is
less than 10 W/cell, the system can control the battery temperature in
the optimum temperature range. Most of the thermal management
system are focusing on the low C rates(1.5C [40]; 0.5C-1C [42]; 1C-3C
[39]; 1C-4C [33]). The C rate indicates the speed of charging/dis-
charging of the cell respect to its maximum capacity. For example, in
the 1C rate current, the entire capacity of a cell will be discharged in
one hour. In the same way for the fast charging/discharging, the battery
cell is required to be charged/discharged at a high C rate in 10 minutes
[43]. It is necessary to mention that as the C rate goes higher the heat
generation of the cell increases as well. Therefore, the existing TMSs are
probably not able to control the severe scenarios in high current ap-
plications. Moreover, most TMSs suffer from temperature in-
homogeneity in the battery pack. Therefore they need to use a bulky

cooling system or many heat pipes to control the temperature of the
module/pack [44-48]. Hence, engineering of an efficient TMS with the
least number of heat pipes and a higher safety margin to control the
temperature in battery modules/packs is necessary for the EV industry.

In order to design an efficient TMS, a comprehensive thermal ana-
lysis and applied design strategies are required. To the authors'
knowledge, the thermal analysis of Li-ion cells in high current dis-
charging to identify the critical zone in terms of heat generation has
been rarely addressed in the literature. Due to the lack of thermal
analysis, a huge cooling system embedded with many heat pipes is used
to control the temperature of the module/pack. The current study fo-
cuses on the thermal performance improvement of heat pipe based
TMS. Firstly, a multizone analysis of the battery cell and identifying the
zone with the highest heat generation, given the non-uniform cell
temperature/heat generation distribution. This multizone analysis,
using thermal imaging, contributed to a smarter design to achieve ac-
ceptable cooling performance with the least number of heat pipes in the
high current application. The charging /discharging current rate of the
LTO cell is recommended by the factory by a minimum of 4.6 A to a
maximum of 92 A. However, in the current case, the temperature dis-
tribution of the cell is studied at the 8 C discharging rate (184 A).
According to the temperature recording and thermal camera pictures,
the non-uniform heat generation and temperature inhomogeneity are

Table 1

The main properties of the heat pipe.
Parameter Value
Heat pipe length (mm) 250

11.2 x 3.5
Distilled water

Dimension L X W (mm)
Working fluid

Wick structure Sintered
Thermal conductivity (W/m.K) 8212
Cooling Power (W) 100
Operation temperature (°C) 30-120
Cross-section area (mm?) 38.32
Legf(mm) 125
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Table 2

The main properties of the cell.
Parameter Value
Chemistry LTO
Shape Prismatic
Nominal Voltage (V) 2.3
Maximum voltage (V) 2.7
Minimum voltage (V) 1.5
Capacity (Ah) 23
Specific Energy ( J/kg) 96
Energy Density (J/m) 202
Weight (kg) 0.550
Volume (L) 0.260
Dimensions L X WX H (mm) 115x22x103
Heat specific capacity (J/kg.K) 1150
Thermal conductivity x,y,z (W/m.K) 31, 0.8, 31

103 mm s 11.2mm

= .

Fig. 1. The LTO prismatic cell and heat pipe with their dimensions.

identified inside the cell [49]. The most critical region is revealed in the
center and top of the cell with the highest heat generation rate. Based
on this thermal analysis, it is shown that a single heat pipe placed in the
most critical zone is sufficient for the cooling and cell operation under
the desired condition. Furthermore, for more investigation, a module
consisting of 15 cells numerically simulated and optimized by a liquid
cooling system and LCHP during the 8 C discharging rate. The results
demonstrated acceptable performance of the engineered cooling system
while minimizing the weight and volume of the module in real appli-
cations.

2. Experimental setup
2.1. Description of the battery and flat heat pipe

The experimental setup was built to investigate the performance of

Table 3
The uncertainties of the experimental parameters.
Parameter Uncertainty
Current (A) +0.1%
Voltage (V) +0.1%
Thermocouple (°C) +0.2
Data logger (°C) +0.025
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Fig. 3. The heat generation of cell in 8C discharging rate.

the heat pipe for the cooling of the LTO battery cell. The selection of a
proper heat pipe is an essential item in designing a cooling system.
Cylindrical heat pipes are broadly used in the past decades in many
research and industrial applications for their efficient cooling [50-52].
However, the ability to connect on the surface of the heat source is a
crucial item. Therefore, a flat heat pipe from DigiKey was made of
copper has been selected [53]. For the working fluid in the same con-
figuration, a water heat pipe probably have a lower thermal resistance
compared with a methanol heat pipe [44]. Moreover, it has a suitable
range of operation temperature for the thermal management of the
battery. Thus distilled water working fluid has been selected. The sin-
tered copper is chosen as a wick structure because it is less affected by
the gravity and heat source orientation compared with the other kind of

Fig. 2. The picture of the experimental system. (1) prismatic cell; (2) isolated prismatic cell and heat pipe; (3) PEC® battery tester (4) personal computer and data

logger; (5) thermal Camera.
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Fig. 4. The picture of the experimental test (a) and location of thermocouples in the presence of natural air cooling and (b) its infrared picture at the end of the 8 C

discharging rate test (446s).

60

Temperature (°C)

0 100 200 300 400 500
Time (s)

Fig. 5. The temperature variation of the LTO cell in natural air cooling at an
initial temperature of 22 °C (Exp: Experimental).

wicks [54,55]. Table 1 presents the main parameters of the flat heat
pipe. The LTO 23 Ah cell has been chosen for the tests. The main fea-
tures of the prismatic LTO cell are presented in Table 2, whereas Fig. 1
shows the picture of the cell and heat pipe with their dimensions.

2.2. Description of the test setup

In the current study, the performance of natural air cooling and
forced air cooling embedded with flat heat pipe has been investigated
on the LTO prismatic Li-ion cell. The picture of the test setup is shown
in Fig. 2. The experimental setup included a PEC battery tester, a
cooling fan, a flat heat pipe, a prismatic cell, a Pico USB TC-08 data
logger, twelve K-type thermocouples, a thermal camera, and a personal
computer. The thermocouples with the accuracy of + 0.2 °C are con-
nected to the cell and heat pipe.

In order to start the cycling, the battery tester connected to the cell,
and a personal computer connected to the data logger to record the
temperatures. The voltage and current of the cell are being monitored
during cycling. The discharging of the cell is done using the testers in
which the cell is discharged by the current rate of 8 C (184 A) at 446 s.
After connecting the cell to the data logger, and connecting the voltage
and current cables, the cell will be charged/discharged. By charging/
discharging the cell, voltage, and current, as well as the resistance of
the battery, are characterized. The heat generation of the cell can be
calculated as follows:

g, = Ry 12 =Vl 6D

where V and I represent the voltage and the current respectively [56].
To calculate the uncertainty, the Schultz and Cole [57,58] method
have been used.

LTI i
Up = Bl
) [Zl (3‘4 W) ] @

where Uy and Uy are the error of each factor and total errors respec-
tively. Table 3 shows the measurement correctness of each factor. The
maximum uncertainty is less than 2.01%.

2.3. Experimental results and discussion

2.3.1. Natural air cooling

Considering the effect of natural air cooling on the cell is the initial
phase to investigate thermal performance. Fig. 3 shows the generated
heat inside the battery cell in the 8 C discharge rate. The average of the
heat generation is 37.65 W which is calculated based on Eq. (1). Fig. 4
is taken by a thermal camera and shows the temperature distribution of
the cell in a natural air cooling strategy while the ambient temperature
is 22 °C at the end of the discharging process (446 s).

As it is evident in the temperature distribution of the cell, there is a
hot zone in the middle and top of the cell.

The natural air cooling test was done comprising of discharging the
cell with a high constant current of 184 A from 100% to 0% of the state
of charge (SOC) and at an initial temperature of 22 °C. The thermo-
couples of T,-T4 are shown in Fig. 4a that measures the temperature of
the cell. The temperature difference of the tests is calculated by sub-
tracting the current battery temperature with the initial battery tem-
perature. Fig. 5 shows the temperature variation of the LTO cell in
natural air cooling. The temperatures of thermocouples T; and T,,
which are in the center and the top of the battery, are higher compared
with the thermocouples of T3 and T,.

2.3.2. Forced air cooling

The experimental test by forced air cooling is designed to in-
vestigate the cooling effect and thermal performance of the heat pipe on
the LTO cell. Fig. 6 shows the cell embedded with a flat heat pipe to test
the effectiveness of the forced air cooling system. Twelve thermo-
couples were used to monitor the temperature at different locations of
the heat pipe and cell. Fig. 6a shows the schematic front side of the LTO
battery cell with the heat pipe and the location of thermocouples.
Fig. 6b illustrates the location of thermocouples in the front and
backside of the cell that is embedded with a heat pipe. The evaporator
section of the heat pipe is connected to the hottest zone of the cell and
the condenser section is the rest of the heat pipe which is cooled by
forced air cooling with an inlet velocity of 3 m/s. Gap filler with
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Fig. 6. (a,b) The schematic of battery cell with heat pipe and location of thermocouples of the front (T;-T4), backside (Ts-Tg) of the cell and heat pipe (To-T;5), (¢)
picture of insulated battery cell with heat pipe and (d) domains and boundary condition of the heat pipe and cell.

thermal conductivity of 3.5 w/m.k is used between the heat pipe and
cell to decrease the contact thermal resistance. All surfaces of the cell
covered by insulation precisely with the purpose of heat loss reduction.
This test aims to find the cooling capacity and consequently the amount
of thermal conductivity of the heat pipe using the following equation
[591.

th Lest

Kegr =
of = TALAT 3)

where Qup, Ap, and AT are the heat transferred by the heat pipe, the
cross-section area of the heat pipe, and temperature difference of eva-
porator and condenser of the heat pipe, respectively. It is necessary to
mention that four thermocouples were attached on the surface of the
heat pipe to have an average temperature for the evaporator and con-
denser sections. Moreover, the L. is the effective transport length of
the heat pipe that averages as [30]:

Le + Lc
=2 =C 4
2 ? ©)]

where L., L, and L. are evaporator, adiabatic and condenser length of
the heat pipe, respectively.

The temperature of the insulated cell is measured in 8 points under
the 8 C discharging rate. Moreover, the temperature of the insulated
cell embedded with a heat pipe is measured while the condenser section
of the heat pipe is cooled by a fan with an inlet velocity of 3 m/s.

Fig. 7a shows the temperature difference at the evaporator and
condenser of the heat pipe. The average temperature at the evaporator
and condenser reached 47.85 °C and 43.49 °C, respectively. Fig. 7b
shows the temperature of the front and backside of the insulated cell in
the presence of the heat pipe. Explicitly, the average temperature of the
front side is lower than the backside due to the effect of the heat pipe.
The average temperature of the cell using the heat pipe is 49.39 °C.
Fig. 7c also illustrates the temperature of the front and backside of the
insulated cell without the heat pipe. It is evident that the average

Leff

temperature of the cell increased due to the lack of heat pipe. The
average temperature of the cell without the heat pipe is 56.91 °C. As the
cell is insulated carefully, heat loss is neglected. According to the initial
and final temperature of the cell, mass, and the specific heat capacity of
the cell, in both tests, the amount of 10.97 W heat was transferred by
the heat pipe in the discharging process. As the average of the heat
generation by the cell in the 8 C discharging rate is 37.65 W, the
amount of 29.1% heat is transferred by a heat pipe. Therefore, based on
the parameters and values from Egs. (2) and (3), the amount of effective
thermal conductivity of the heat pipe is calculated as 8212 W/m.K.

3. Simulation
3.1. Battery thermal modeling

The 3D-thermal model has been developed by COMSOL
Multiphysics® to reach the thermal behavior of the cell. To define the
transient thermal distribution inside the cell, an energy balance equa-
tion is used. According to this equation, the amount of thermal energy
that is generated by the cell to its surrounding is formulated as follows
[60]:

9T  8*T  &°T

oT e, o1, PT
t ox?  9y*  4z?

ch_ + Qeomy = k[

3 *

(5)
where m, ¢, T, K, and g, represent the mass, heat capacity, temperature,
thermal conductivity, and heat generation, respectively. In the present
work, the heat generation of the cell is calculated from the ohmic re-
sistance of the cell and polarization process. Moreover, Eq. (7) uses the
tab domain [61].

q, = Ry.I?’+R. >+ R. L2 6)

4= R I* %)
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Fig. 7. The temperature of (a) evaporator and condenser of the heat pipe, (b) surface of the insulated cell with heat pipe, and (c) surface of the insulated cell without

heat pipe in the 8 C discharging rate.

Ry = P’

0|~

®

wherein, I and Ry, represent the current and ohmic resistance of the cell.
Besides, for the tab domains R, p’, [, S and are the electrical resistance,
resistivity, length, and cross-section of the corresponding tab, respec-
tively. Heat transfer from the cell to the surrounding is also calculated
as [62]:

= hS(Tomy — T) (€)

eony

wherein, h and S represent the heat transfer of the coefficient and cross-
section area of the cell. Moreover, T and T,,,;, demonstrate the battery
and ambient temperature. As it is obvious from Fig. 8 by a thermal
camera, there is a non-uniform temperature distribution through the
cell domain. Therefore, the localized heat source model has been ap-
plied in the cell domain. Thermal infrared (IR) imaging is a useful
technique to show, detect average, and measure the temperature of the
cell domain especially non-uniform temperature distribution. Based on
Fig. 8a, there are two hot zones in the middle of the cell that are spe-
cified by red and yellow colors. Therefore, in order to have a precise
thermal model, the cell domain is divided into nine domains. The
amount of specified heat to each domain is defined based on the
average temperature of each zone. The total heat generation in the cell
for each zone is formulated as follows:

Qeett = Q1 + Q2 + ..4+Q9 = aQeen + ﬁQl)BH + ...+6Qcn (10)

a+ B+ ..+6 =100% 1D

“Qccll 'Qz - 6chll Qg - chcll

Q=" v Vo

(12)
where the a, V; , 8, Vo, ..., 6, Vgare the percentage of total heat
generation and volume of each zone respectively. Fig. 8b shows the
simulation of the cell utilizing the nine localized heat sources and their
percentages. Moreover, Fig. 8c illustrates the simulation of the in-
sulated cell with a heat pipe in forced air cooling.

3.2. Validation of the thermal model for natural and forced-air cooling in
cell level

The transient simulation was performed using the measured tran-
sient wall temperature of the heat pipe along the evaporator and con-
denser section and cell surface. In order to do the validation and show
the accuracy of the numerical method, the temperature of thermo-
couples of T, and T4 for natural air cooling (Fig. 9a,b), T; and T¢ for
forced air cooling (Fig. 9e), and Ty-T; for the flat heat pipe (Fig. 9b,c)
during discharging mode are compared with the simulation results. The
average relative errors for T,, T4, T1, and T are 1.2%, 4.4%, 3.2%, and
1% respectively within an acceptable error range [63]. Moreover, the
average errors for thermocouples of Tq to Ty, are 2.6%, 4.2%, 1%, and
1% respectively. The locations of thermocouples on the cell and heat
pipe are shown in Figs. 6 and 4 respectively. As can be seen in Fig. 9,
there is an acceptable agreement by the comparison of simulation and
experimental data during the discharge process. Such a good agreement
proves the accuracy of the numerical simulations and lays the basis for
the following prediction of the thermal behavior of the cells and heat
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insulated cell with the heat pipe in 8 C discharging rate.

pipes in the actual module. In this model, the heat pipe is replaced by a
solid region, and the effective thermal conductivity of components is
used in the simulation [28,40,59,64].

3.3. Conceptual design of LCHP

After single-cell analysis, we developed the concept for cooling at
the module level. The LTO module is comprised of 15 cells with
345 kWh capacity, further specifications are summarized in Table 4.

Explicitly choosing a suitable cooling system for the module is a big
challenge. The air cooling system is considered the most common
cooling system by designers and manufacturers for thermal manage-
ment of Li-ion batteries due to its simplicity. Nevertheless, air cooling is
not an appropriate solution for stressful and abuse conditions [65,66],
particularly during high rates of charging/discharging due to the low
specific heat capacity of air. Therefore, in the current study, the module
is equipped with liquid cooling and LCHP. LCHP is a combination of the
liquid cooling system and the heat pipe. Generally, the liquid cooling
system is the most appropriate, favorable, and applied cooling system
with compact design and superior cooling performance in cooling ap-
plications. Moreover, the heat pipe, as a superconductor has been used
widely for battery TMS. Therefore, a combination of them in LCHP
presents an ideal and efficient cooling system for high current appli-
cations. The experimental tests to find the thermal performance of the
heat pipe was done and shown in Fig. 6.

3.3.1. Geometry model of the module equipped with LCHP

At this stage, the magnitude of temperature rise in the actual battery
module is solved numerically to calculate the transient temperature rise
of cells. Fig. 10 shows the LCHP for an LTO prismatic battery module. In
this design, the module sandwiched by cooling plates whiles the heat
pipes connected to the cells and welded to the cooling plates. It is im-
portant to note that for every cell only a flat heat pipe is used. Con-
sistent with Fig. 8, the heat pipes are placed in the most effective

position (hottest zone) to maximize the performance of the cooling
system. The cooling system is designed for the thermal management of
the battery module during the 8 C discharging rate. Every cooling plate
has three direct inlets of water with an inlet velocity of 1 m/s which is
connected to the heat pipes. During the charging/discharging, the heat
generated within the cells is conducted to the cooling plates. Moreover,
some parts of heat generation through evaporator sections of the heat
pipes are transferred to condenser sections (plates) and from there to
the circulating coolant.

3.3.2. Governing equations

The numerical heat transfer analysis using COMSOL Multiphysics of
the proposed system requires a mathematical model to explain the
physics of the problem. Below are the governing equations, including
continuity, momentum, and energy required for the analysis:

dui _

ox; 13)
6u,- c?u,- 6p 32ui
Lty =———+p—+p
ot ox; ox; ox; 14)

oT oT T | .
PG| tuy—— =45 +4¢
ot Tox) o (15)

In Eq. (16) the latter part of the equation g denotes the volumetric
heat generation rate in battery cells which is calculated as follow: [67]

. Ry I?
q= _V (16)
Where,

U = fluid velocity

p = density of fluid
p = pressure

u = fluid viscosity
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g = the considered body force (in natural air cooling)
C, = specific heat capacity

A = heat generation

R, = total internal resistance of the cell

I = electrical current

v = volume of the battery cells

3.3.3. Boundary condition, meshing, and grid independence analysis for
LCHP

The boundary conditions for the governing equations are related to
the operation of the LCHP. In practice, the heat pipe is attached to the
heat source to receive some part of the heat and reject it by fluid flow
through the cooling plates. In this study, for the proposed system, the
initial temperature of the battery, the cooling plate, and the coolant are
set to 22 °C. Besides, coolant inlet velocity and temperature are
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Table 4

The specifications of the LTO module.
Parameter Value
Number of cells in series 15
Nominal voltage of the module (V) 34.5
Weight (kg) 8.25
Volume (L) 3.9
Stored energy in the module (kWh) 345

turbulent, and uniform, in which the inlet velocity of the coolant is set
to 1 m/s, and the outlet is assumed as the ambient pressure. The tur-
bulence model selected is the low Re k-¢ because of high accuracy for
heat transfer [68]. The governing equation is based on the following k
and ¢ equations [69],

Dk _ 3 ) dk
—= —||lp+Z|—=|+ G- pe—D
Py axi[(” ) } k= pe

Ok ) dx; a7
P O f(, #)de |, @hGre  ca f€
Dt 5x,- 65 dxi k k (18)
Where,
2 aui auj > k?
Gpr=-p,S*=-0.54,| — + — | andy,-=-C, p f, —
9x; 0x; € 19)

In the current simulation, the thermal radiation transfer was as-
sumed to be negligible and was not taken into account. Besides, due to
the different geometrical scales in the current model, the simulation
process is very time-consuming. Therefore, the grid independency test
was done to refine the grid size while the results are not changed by
further refinement of the mesh. Fig. 11 shows the maximum tempera-
ture of the module to estimate the independence of the grid number. In
this case, when the grid number varies from 975,136 to 1,218,808, the
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Fig. 11. Grid number independency test.

result differs only 0.1 °C. Therefore because of computational time-
saving, the grid number of 975,136 is chosen for the module simulation.

3.3.4. Validation of the liquid cooling system in the cell level

After cell level study in natural and forced air cooling, to predict the
performance of the liquid cooling system in the module level, we have
built a model of the module in COMSOL Multiphysics. In order to va-
lidate the accuracy of the liquid cooling numerical results, the experi-
mental [70] maximum cell temperature distribution under 5 C dis-
charging rate is compared with the simulation results. As can be seen in
Fig. 12 there is an acceptable trend agreement between the
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¥ix

Fig. 10. (a,b) Schematic and dimension of the cooling plates and heat pipes for the battery module, and (c) mesh distribution in the battery module.
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Fig. 12. Thermal model validation of a liquid cooling system with experimental
results.
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Fig. 13. Temperature contour of the module in natural air cooling.
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Fig. 14. Temperature contour of the module in liquid side cooling.

experimental data and simulation results. It is necessary to mention that
the difference in temperature and time is due to the different initial
temperatures and rate of discharge. The validation is done at the cell
level, which can be extended to the module as the cell, cooling system

10
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degC
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Fig. 15. Temperature contour of the module in liquid side cooling and heat
pipe.

and boundary conditions are the same.

3.3.5. Simulation results and discussion

To estimate the amount of temperature rise in the actual battery
pack, a 3D thermal model of a module comprising of 15 cells was de-
veloped and solved numerically by COMSOL to predict the transient
temperature rise of cells. For the purpose of comparison, the maximum
temperature of the module in the same initial condition for natural and
forced air cooling has been considered. In this section, the thermal
behavior of the module is subjected to the four cooling strategies and
boundary conditions in the 8 C discharging rate. The strategies com-
prise as follows:

Study the temperature of the module in natural air cooling at an initial
temperature of 22 °C.

The first phase to study the thermal performance of the module is
the consideration of natural air cooling. In this passive method, the
module is cooled without consuming any external energy. As indicated
in Fig. 13 for natural air cooling the produced heat from the module
increases the temperature to 56.7 °C at the end of the discharging rate
period. Moreover, the heat is more concentrated in the middle and tabs
of the module. Therefore, due to the excessive heat generation by the
module, it needs a cooling system.

Study the temperature of the module in sandwich side liquid cooling at
an initial temperature of 22 °C and inlet velocity of 1 m/s.

According to the physical properties of the LTO prismatic cell,
sandwich side liquid cooling is a suitable cooling method. As it is clear
from Fig. 14, the maximum temperature of the module decreased tre-
mendously compare with the natural air cooling and reached 39.7 °C.
Moreover, the temperature of the tabs controlled and reached almost
33 °C. The hottest area migrated and separated from the center to the
top of the cell by the effect of cooling plates. The cooling system affords
the safe operation range of Li-ion batteries (25-40 °C) [11] however,
the maximum temperature and uniformity can be improved.

Study the temperature of the module in LCHP at an initial temperature of
22 °C and inlet velocity of Im/s.

As revealed in Fig. 14, when a module is subjected to cooling on
both sides by cooling plates, the maximum temperature of the module is
controlled in a safe range at the end of the discharging process. This
shows that the current cooling plates meet the requirements of the
module thermal management. Nevertheless, in order to increase the
temperature uniformity and further performance improvement of the
current cooling plates, a number of heat pipes are employed. As can be
seen in Fig. 15 the maximum temperature of the module decrease 1.5 °C
and reached 38.2 °C. Moreover, temperature uniformity has been im-
proved relatively.

Study the temperature of the module in LCHP at an initial temperature of
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22 °C and different inlet velocity.

Fig. 16a shows a study on varying the coolant velocity, from the
maximum temperatures of the module. As it is obvious, the coolant
velocity has a direct influence on the temperature behavior of the
module. The temperature varying from 43.8 °C to 37.6 °C by different
velocity from 0.2 m/s to 1.5 m/s respectively. Explicitly by the velocity
of 1 m/s the temperature reached 38.2 °C that is in a safe range [11] for
balance between performance and life of Li-ion battery. Therefore,
higher velocities are a more cost-effective velocity for the present de-
sign.

Additionally, Fig. 16b illustrates the further study on temperature
contours of the module in the XY plane with the inlet velocities of
0.2 m/s to 1 m/s at the end of the discharging process. For the velocity
of 0.2 m/s, the temperature is non-uniform and increased from the inlet
to the outlet of liquid cooling plates. For the velocity of 0.5-1 m/s the
maximum temperature decreased and temperature uniformity in-
creased for the hole of the module. In fact, the temperature sharply
reduces and reaches a reasonably steady state after the velocity of the
0.5 m/s.

4. Summary and outlook
4.1. Conclusion

The efforts of this study were undertaken to consider the cooling
effect of the heat pipe on the LTO prismatic cell/module in high current

11

discharging. In order to achieve this aim, several studies were per-
formed on different boundary conditions and design as follows:

e The temperature of the cell in natural air cooling for the initial
temperatures of 22 °C in the 8 C discharging rate is considered.
The thermal distribution inside the cell is monitored using the
thermal camera. Through thermal analysis, only one heat pipe is
placed in the most effective position for maximizing the perfor-
mance of the cooling system and decreases the weight and volume of
the cooling system.

The cooling effect of the flat heat pipe is evaluated experimentally
with LTO prismatic cell in the 8C discharging rate. It was found that
the single heat pipe provided up to 29.1% of the required cooling
load. Also, the thermal conductivity of the heat pipe is calculated.
The numerical results are validated with the experimental results. In
order to have a precise thermal model, using the COMSOL
Multiphysics® the cell domain is divided into nine heat source do-
mains.

For optimization, a module consisting of 15 cells equipped with li-
quid cooling and LCHP is simulated. It was found that the liquid
cooling system and LCHP compared with natural air cooling reduced
the maximum module temperature by 29.9% and 32.6%, respec-
tively.
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4.2. Future work

The temperature gradient influences the performance of the heat
pipe cooling. The cooling system can maintain the cell/module at an
acceptable temperature; however, the different gradient may affect the
cooling performance of the TMS. Under real operating conditions, it is
not expected for the cooling system to run continuously at such a steep
gradient. Therefore, this limitation does not compromise the suitability
of this cooling system as a battery thermal management solution. The
only point that needs to be further discussed is the consideration of such
a condition on the temperature uniformity of the module.
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