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Abstract 

In this whitepaper, we review the state-of-the-art hybrid solver, which uses generalized form DS factorization, for solving system 
of equations of the form Ax = f, and this solver’s relations to graphs and hypergraphs. We investigate two different reordering 
strategies for the DS factorization preconditioning scheme: reordering via graph partitioning (GP) and reordering via hypergraph 
partitioning (HP).In the GP scheme, the partitioning objective of minimizing the edge cutsize corresponds to minimizing the total 
number of nonzeros in the off-diagonal blocks of the reordered matrix. In the HP scheme, the partitioning objective of 
minimizing the cutsize, according to the cut-net metric, corresponds to minimizing the total number of nonzero columns in the 
off-diagonal blocks of the reordered matrix. In both of the two schemes, partitioning constraint of maintaining balance on the part 
weights corresponds to maintaining balance on the nonzero counts of the diagonal blocks of the reordered matrix. The 
partitioning objective of GP relates to minimizing the number of nonzeros in the reduced system, whereas the partitioning 
objective of HP exactly models minimizing the size of the reduced system. We tested the performance of two partitioning 
schemes on a wide range of matrices for 4-, 8-, 16-, 32-, and 64-way permutations. Results showed that HP scheme performs 
better than GP scheme in terms of solution times. 

 

 

1. Introduction 

Given a system of equations of the form Ax = f, where A is large and sparse, it is known that hybrid solvers that 
contain both direct and iterative components are promising in terms of robustness and scalability on parallel 
computing platforms. A state-of-the-art hybrid solver, which uses the generalized form parallel DS factorization, is 
the focus of this work [1, 2]. In the DS factorization scheme, D is the block diagonal of A, and the factor S, given by 
D−1A (assuming D is nonsingular), consists of the block diagonal identity matrix modified by “spikes” to the right 
and left of each partition. The generalized DS factorization of the system involves reordering A to extract the block 
diagonal D, then, multiplying both sides of the system with D−1, from the left side. The resulting multiplied system 
contains a smaller reduced system of equations according to nonzero entries in off-diagonal blocks of the reordered 
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system. The solution of the original system, Ax = f, can be constructed from the solution of this reduced system, 
which can be solved independently. After DS factorization, the process of solving Ax = f reduces to a sequence of 
steps that are ideally suited for a parallel execution. In general, the scalability of this factorization scheme depends 
on decreasing the solution time of the reduced system. Among other factors, the solution time of the reduced system 
depends on the size and the number of nonzeros of the reduced system.  

In this work, two different reordering strategies are investigated for a successful DS factorization preconditioning 
scheme: reordering via graph partitioning (GP) and reordering via hypergraph partitioning (HP). In the GP scheme, 
the standard graph representation G(A) of matrix A is used. In the HP scheme, the column-net hypergraph model [3] 
Hcn(A) of matrix A is used. 

2. Work Done 

For a K processor system, in the GP and HP schemes, a K-way partitioning is performed on G(A) and H(A), 
respectively, and the resulting partition is decoded as inducing a K-way symmetric permutation on the rows and 
columns of A [3].  

In the GP scheme, the partitioning objective is to minimize the edge cutsize. This objective corresponds to 
minimizing the total number of nonzeros in the off-diagonal blocks of the reordered matrix. In the HP scheme, the 
partitioning objective is to minimize the cutsize according to the cut-net metric. This objective corresponds to 
minimizing the total number of nonzero columns in the off-diagonal blocks of the reordered matrix. In both 
schemes, the partitioning constraint is maintaining balance on the part weights. This strategy allows us to maintain 
balance on the nonzero counts of the diagonal blocks of the reordered matrix.  

The partitioning objective of the GP scheme relates to minimizing the number of nonzeros in the reduced system, 
whereas the partitioning objective of the HP scheme exactly models minimizing the size of the reduced system. 
Hence, the HP scheme can be expected to achieve better preconditioning compared to the GP scheme.  

3. Results Obtained 

Inthis project, the experimental performance comparison of the proposed GP and HP schemes for preconditioning 
with DS factorization are investigated by using the successful multi-level graph and hypergraph partitioning tools 
MeTiS and PaToH [3] on various matrices selected from the University of Florida sparse matrix collection [4]. We 
have tested these two partitioning schemes for 4-, 8-, 16-, 32-, and 64-way permutations. The biconjugate gradient 
stabilized (BiCGStab) solver is used as an iterative solver for both inner and outer systems, whereas PARDISO is 
used as a direct solver. The target parallel architecture is an Intel cluster of 46 nodes, where each node contains 2 
Intel Xeon E5430 Quad-Core CPUs.Table 1 displays the average performance improvement of the HP and GP 
schemes over the unordered scheme,in terms of solution times for different K values. 
 

K 
# of 

matrices GP HP HP/GP 
4 173 49.12% 52.46% 0.93 
8 132 53.68% 55.70% 0.96 

16 102 55.05% 61.72% 0.85 
32 86 56.90% 64.52% 0.82 
64 51 57.15% 68.20% 0.74 

Table 1: Performance improvement of HP over GP in terms of solution times for different K values. 

 
As seen in Table 1, HP and GP schemes achieve 50-70% improvement in the solution times for different problem 
categories on average. The last column of Table 1 displays the ratio of the solution times of HP and GP schemes 
averaged over problem categories. Values smaller than one indicate the categories where HP scheme performs better 
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than the GP scheme on average. As seen in the last column of Table 1, the HP scheme performs considerably better 
than the GP scheme for different K values.  
 

  

  
Figure 1: Speedup curves for the solution of four different linear systems on a 64-processor 

system. 
 
 
Figure 1 displays speedup curves for the solution of four different linear systems selected from the list of matrices 
used in the experiments. As seen in the figure, HP achieves considerably better speedup than GP and with increasing 
number of processors the performance gap slightly increases in favor of HP.  

4. Conclusion 

We reviewed the state-of-the-art hybrid solver for solving system of equations of the form Ax = f. We proposed two 
reordering strategies, GP and HP, as a preconditioning scheme for the hybrid solver. The objective of the 
preconditioning is to minimize the size of the reduced system in order to achieve the solution faster. While GP 
scheme gives an approximation to this objective as GP minimizes the number of nonzero in the reduced system, HP 
scheme exactly models the minimizing the size of the reduced system. We compared the results of GP and HP 
schemes in terms of system solution times. Our experiments conducted on a wide range of matrices showed that the 
HP scheme performs better than the GP scheme. 
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