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Preface

The forest sector and wood-based industries are challenged by changes in resource availability, 
energy supply and climate change. It is part of the continuing discussion between economics, 
ecology, and social welfare that can be summed up as sustainability. Wood is a natural, renewable, 
reusable and recyclable raw material that can play a major role in minimising the negative effects on 
the climate and environment, when it is sourced from sustainably managed forests. There is intense 
competition from the non-sustainably derived materials entering markets that have traditionally 
been dominated by timber products. Environmental concerns are leading to the phasing out of some 
traditional wood preservatives, which rely upon toxicity as their primary mode of action. Also, there 
are increasing quantities of plantation grown broad-leaved and conifer species being processed and 
such woods generally have inferior properties compared with timber sourced from natural forests. 
In order to maintain the competitiveness of wood, new approaches are needed. Research into wood 
modification is one way of meeting these challenges.

In his book Wood Modification, published in 2006, Professor Callum Hill gave a precise but 
also very general definition of the concept of wood modification: 

Wood modification involves the action of a chemical, biological or physical agent upon the material, 
resulting in a desired property enhancement during the service life of the modified wood. The 
modified wood should itself be nontoxic under service conditions and, furthermore, there should 
be no release of any toxic substances during service life, or at the end of life following disposal or 
recycling of the modified wood. If the modification is intended for improved resistance to biological 
attack, then the mode of action should be non‑biocidal (Hill, 2006, p. 20).

This work, together with the work performed in the European Thematic Network for Wood 
Modification1 culminating with its first conference in Ghent 2003 (Van Acker and Hill, 2003), 
brought together different research and industrial activities in Europe in the area of wood 
modification. For almost two decades, wood modification research activities have been increasing 
around Europe and beyond. Besides intensified research, there were also increased volumes and 
new products of modified wood on the market. Among these were thermally modified, furfurylated 
and acetylated timber. Several networking activities related to wood modification have also been 
executed. Specifically, two activities within the frame of COST—European Cooperation in Science 
and Technology—have been central: COST Action FP0904 “Thermo-hydro-mechanical wood 
behaviour and processing” that ran from 2010 to 2014, chaired by Professor Parviz Navi from 
Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) and vice chaired by Associate 
Professor Dennis Jones, and COST Action FP1407 “Understanding wood modification through an 
integrated scientific and environmental impact approach—ModWoodLife” running from 2015 to 
2019, chaired by Professor Andreja Kutnar (University of Primorska, Slovenia) and vice chaired by 
Associate Professor Dennis Jones. Although a considerable amount of research and development 
activities have taken place in the past two decades, we are still just at the beginning of a new era 
regarding the use of modified wood. The volumes of modified wood in Europe, but also in the rest 

1 A project entitled “Wood modification, the novel base, providing materials with superior qualities without toxic residue” 
funded by the European Commission, through its Fifth Framework programme.
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of the world, is small compared to the volumes of wood products produced. A recent task within 
the framework of the COST Action FP1407 was to outline the current status of wood modification 
across Europe in terms of national inventories (Jones et al., 2019). Based on the reported production 
volumes and on subsequent investigations, it was estimated that in 2020 the annual production 
volume for modified wood in Europe will be slightly more than 700,000 m3, which is, to say the 
least, a very modest volume.

However, modified wood, as defined by Hill, is not a new invention. Different modification 
methods can be traced back to ancient times (Navi and Sandberg, 2012; Ch. 2, Sandberg et al., 2017) 
and the industrial revolution, which resulted in highly industrialised production processes involving 
wood modification techniques for mass production of furniture, for example. 

Wood modification is an all-encompassing term describing the application of chemical, 
mechanical, physical, or biological methods to alter the properties of the material. Such a definition 
of wood modification includes more or less everything that happens to the wood material after it 
has left the forest, and is more or less useless when one would like to simplify and give an overview 
of an area of interest. For this reason, the purpose of what would be achieved and the area in which 
the modifications are intended to be applied must be defined. This book focuses on industrial wood 
modification processes, i.e., processes that are applied on an industrial scale and deliver products 
to the market. Wood, is this case, is defined as solid wood and veneer, but of course, many of the 
processes described may also be applied to wood particles and fibres.

With this limitation in terms of wood modification, chemical treatments of wood that reach 
the core of cellulosic microfibrils, destroying the crystalline structure and eliminating most of the 
composite structure of wood, are in most cases, excluded from this book. Such subversive treatments 
radically modify the chemical components of the wood, and so the material produced lacks 
practically all the intrinsic characteristics of untreated natural wood. An example of a subversive 
treatment is the liquefaction of lignocelluloses (Jindal and Jha, 2016), typically to produce oil from 
biomass under very severe conditions.

There are already several good, fairly well-updated books in the field of wood modification, 
such as the already mentioned books by Hill, and by Navi and Sandberg, but also more chemistry-
oriented presentations, such as Chemical Modification of Wood by a Professor at the University 
of Wisconsin (Madison, USA), Roger Rowell (Rowell, 2013). There are, however, only few, if 
any, overviews of the wood modification in the combined fields of sustainability, innovation, and 
industrialisation. This book aims to fill that gap.

The book is divided into six chapters. Chapter 1 gives an overview of wood modification 
with the aim of helping the reader to structure the field. A presentation of wood as a substrate for 
modification, and its response on a chemical and biological level, as well mechanical response 
upon loads before and after modification, is also presented within this chapter. For the reader that 
would need a deeper understanding in these fields, the chapter provides an extensive reference 
list of books covering the basic properties of wood as a material in detail. Wood modification 
has been divided into three main groups, each represented in their respective chapters (Chapters 
2–4): (Chapter 2) chemical treatments, (Chapter 3) thermally-based treatments, and (Chapter 4) 
treatments with the use of electromagnetic irradiation, laser or plasma, for example. In Chapter 
5, short presentations of different processes that are described in the literature or other places 
and that may be suitable to apply as wood modification processes are given. In general, these 
processes are not yet industrialised or may be well established in fields other than wood processing 
and modification. The intention with this chapter is to help the reader to sort out the potential 
of these processes, and find ways for further reading. The last chapter, Modified wood beyond 
sustainability, presents modified wood from a sustainability and circular economy perspective. 
Wood modification, its environmental impact and the use of modified wood in a healthy living 
environment are discussed. The potential role of wood and wood modification in achieving the 
ambitious targets of the European Green Deal are presented through discussion on recycling,  
up-cycling, the cradle to cradle paradigm, and end-of-life disposal options. The chapter concludes 



with the technical challenges identified in advancing Industry 4.0 in general and in wood modification 
processing. 

The target audience for the book are students at high-school and university level, as well as 
researchers and people practiced in the industry. For the benefit of wood engineers and other people 
with an interest in this fascinating industry, we hope that the availability of this material as a printed 
book will provide an understanding of all the fundamentals involved in the processing of modified 
wood.

The authors hereby acknowledge COST—European Cooperation in Science and Technology—
which enabled the authors of this book to meet many researchers from around Europe and develop 
great collaborations in the past several years. CT WOOD CoE at Luleå University of Technology 
and InnoReNew CoE are acknowledged for their financial support to the writing of this book. 
Furthermore, they give thanks to their supporters in the process of preparing this book, especially 
to Tatiana Abaurre Alencar Gavric, Gertrud Fábián and Chia-Feng Lin for helping them with the 
designs of the figures. A good graphic tells more than a hundred words. 

Finally, they authors are dedicating this book to all young researchers from around the globe 
who are to take wood modification research to a new level, resulting in increased modified wood 
production and its use in the healthy built environments. 

October 2020 Dick Sandberg
Andreja Kutnar

Olov Karlsson
Dennis Jones

Skellefteå, Koper, Neath
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Chapter 1
Wood and Wood Modification

1.1	 Wood	modification
As a natural renewable resource, wood is generally a non-toxic, easily accessible and inexpensive 
biomass-derived material. Since ancient times, wood has been used by mankind due to its inherent 
properties, where a specific part of a tree of a particular species that could be found locally was 
utilised to achieve the best performance when used in construction, for different types of tools or 
for purposes not included in the practical tasks of life. Apart from drying, modification of timber 
has been rare in historical terms. Nevertheless, since wood is a natural product that originates from 
different individual trees, limits are imposed on its use, and the material may need to be transformed 
to acquire the desired functionality. This has become increasingly evident in the modern and highly 
industrial era. Modification is thus applied to overcome weaknesses in points of the wood material 
that are mainly related to moisture sensitivity, low dimensional stability, low hardness and wear 
resistance, low resistance to bio-deterioration against fungi, termites, marine borers, and low 
resistance to UV radiation.

Nowadays, wood modification is defined as a process adopted to improve the physical, 
mechanical, or aesthetic properties of sawn timber, veneer or wood particles used in the production 
of wood composites. This process produces a material that can be disposed of at the end of a product’s 
life cycle without presenting any environmental hazards greater than those that are associated with 
the disposal of unmodified wood.

The wood modification industry is currently undergoing major developments, driven in part 
by environmental concerns regarding the use of wood treated with certain classes of preservatives. 
Several fairly new technologies, such as thermal modification, acetylation, furfurylation, and 
various impregnation processes, have been successfully introduced into the market and demonstrate 
the potential of these modern technologies.

The main reasons for the increased interest in wood modification during the last decades with 
regard to research, the industry, and society in general can be summarised as:

 1) a change in wood properties as a result of changes in silvicultural practices and the ways of 
using wood,

 2) awareness of the limited availability of rare species with outstanding properties for modern use, 
such as durability and appearance,

 3) awareness and restrictions by law of the use of environmental non-friendly chemicals for 
increasing the durability and reducing the maintenance of wood products,

 4) increased interest from the industry to add value to sustainably sourced local sawn timber and 
by-products from the sawmill and refining processes further along the value chain,
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 5) EU policies supporting the development of a sustainable society, and
 6) the international concern for climate change and related activities mainly organised within 

the frame of the United Nations (UN), such as the Paris Agreement under the United Nations 
Framework Convention on Climate Change (UNFCCC).

What is wood modification?
Wood modification is an all-encompassing term describing the application of chemical, mechanical, 
physical, or biological methods to alter the properties of the material. This definition of wood 
modification includes almost everything that happens to the wood material after it has left the forest 
and is more or less useless for simplifying and giving an overview of an area of interest. For this 
reason, it is necessary to define the purpose and the area in which the modification is intended to be 
applied. Such a purpose may, of course, change over time.

In the field of wood technology, wood modification includes any method or process that tends 
towards a better performance of the wood, where the term wood refers to roundwood (e.g., round 
timber, logs or other log-like products such as pit props, pylons, etc.), hewn timber, sawn timber, 
veneer, strands, chips and other types of wood particles used in wood composite products. In 
modern wood technology, it has become desirable for the modified wood to be non-toxic in service 
and that disposal at the end of life does not result in the generation of any toxic residues. This means 
that chemical treatments of wood that reach the core of the cellulosic microfibrils, destroying the 
amorphous and crystalline structures and eliminating most of the composite structure of wood, are 
in most cases excluded. Such subversive treatments radically modify the chemical components of 
the wood, and the material produced consequently lacks practically all the intrinsic characteristics of 
untreated natural wood. An example of a subversive treatment is liquefaction of lignocelluloses (Yao 
et al., 1994), which is mainly adopted to produce oil from biomass under very severe conditions. 

Hill (2006) has provided a well-accepted definition of wood modification: “Wood modification 
involves the action of a chemical, biological or physical agent upon the material, resulting in a 
desired property enhancement during the service life of the modified wood. The modified wood 
should itself be non‑toxic under service conditions, and furthermore, there should be no release of 
any toxic substances during service, or at end of life, following disposal or recycling of the modified 
wood. If the modification is intended for improved resistance to biological attack, then the mode of 
action should be non‑biocidal”.

It should be noted that the above does not necessarily exclude the use of a hazardous chemical 
in the preparation of modified wood, provided that no hazardous residues remain in the wood when 
the modification process is complete.

In this book, the focus is on methods that have introduced a modified solid wood or veneer 
product or are introduced in large-scale wood preservation projects. This means that processes 
that are producing or are very near to being involved in the production of modified products are 
dealt with. The book does not focus on the following areas, however some are briefly described in  
Chapter 5, and readers are referred to other sources for an introduction to the field: 

 • treatments aiming to improve wood properties such as fire/flame stability (cf. Lowden and Hull, 
2013; Visakh and Arao, 2015),

 • preservation of ancient small artefacts (cf. Unger et al., 2001),
 • wood particles or disintegrated wood mixed with other polymeric material, such as wood-

plastic composites (cf. Jawid et al., 2017), or
 • modification and derivatisation of extensively mechanically and chemically degraded wood 

constituents (cf. Huang et al., 2019).

The modification of wood can involve active modification, which changes the chemical nature 
of the material, or passive modification, in which the properties are changes without any alteration in 
the chemistry of the material. Most active modification methods investigated to date have involved a 
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chemical reaction with the cell-wall polymer hydroxyl groups. These hydroxyl groups play a key role 
in the wood-water interaction while simultaneously being the most reactive sites. In moist wood, the 
water molecules settle between the wood polymers, forming hydrogen bonds between the hydroxyl 
groups and individual water molecules. A change in the number of these water molecules results 
in shrinkage or swelling of the wood. All possible types of wood treatment affect the wood-water 
interaction mechanism. The main wood-treatment interaction mechanisms that may be responsible 
for new wood properties are summarised in Figure 1.1.

Several wood-treatment interaction mechanisms tend to occur at the same time. For example, 
in thermal modification, parts of the cell-wall polymers are altered, which may lead to cross-linking, 
reduction of hydroxyl groups, and undesired cleavage of the polymer chains.

1 In this book, the different processes are denoted by their scientific denominations. When a trademark of a process is used 
in the text, it is marked with the TM sign in general, regardless if the trademark is registered or not.

Figure 1.1 Schematic diagram illustrating the effect of active and passive modifications.

Most of the wood-modification processes that are being developed or under experimentation 
have full or partial origins in the pioneering research and seminal work of Alfred J. Stamm and his 
colleagues at the Forest Products Laboratory in Madison, Wisconsin, during the 1940s and 1950s 
(cf. Stamm, 1964). An early attempt to use chemical modification in industrial production was made 
by the Nobel family in their factory in St. Petersburg during the 1840s. To increase the durability 
and reduce the hygroscopicity of wood for wheel hubs, they impregnated the wood with a mixture 
of ferric sulphate and an acid, and dried it slowly in special boxes. Finally, they coated the hub with 
linseed oil and a varnish to further reduce moisture absorption. The trials were successful and they 
called the process “hardening wood”. It was patented by Alfred Nobel’s father Immanuel and his 
business partner Colonel Nikolai Aleksandrovich Ogarev, on 6 April 1844. The production was 
mechanised by a steam engine and 36 wheels a day were produced for the Russian army (Tolf, 1976; 
Meluna, 2009; Carlberg, 2019).

Wood modification processes1

To modify wood, four main types of process can be implemented: (1) chemical treatment,  
(2) thermally-based treatment, including thermo-hydro (TH) and thermo-hydro-mechanical 
(THM) treatment, (3) treatment with the use of electromagnetic irradiation, plasma or laser, and  
(4) other types of treatment, e.g., treatments based on biological processes (Figure 1.2).
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In the chemical modification of wood, a reagent reacts with a wood polymeric constituent 
(lignin, hemicelluloses, cellulose) to form a stable covalent bond between the reagent and the cell-
wall polymer (Rowell, 1983). The reagent does not need to be environmental friendly itself, but the 
total process and the final product must be (i.e., the non-environmental reagent may just be used 
“indoors the process”).

Chemical modification of wood can, therefore, in this sense be regarded as an active modification 
because it results in a chemical change in the cell-wall macromolecules. In this book, processes that 
only fill the lumen and/or cell wall are also included (Figure 1.1), as they follow the definition 
stated by Hill (2006). Currently, little is known about the general mode of action of chemically 
modified wood, but some hypotheses have been proposed by Hill (2006), specifically for biological 
degradation: (1) the equilibrium moisture content is lowered in modified wood, hence, it is more 
difficult for fungi to get the moisture required for growth and subsequent wood decay; (2) there is 
a physical blocking of the entrance of decay fungi to micro-pores in the cell walls; and/or (3) the 
action of specific enzymes is inhibited.

One group of emerging wood treatments involves the combined use of temperature and 
moisture through which force can be applied, i.e., thermo-hydro (TH) and thermo-hydro-mechanical 
(THM) processes (Navi and Sandberg 2012). In an orthodox definition, no additives are used in the 
processes except for water in combination with wood, heat, and, in THM, external forces to change 
wood properties or to shape the wood. Procedures including impregnation or gluing to lock a shape 
are usually also included in these modification processes.

In processes based on electromagnetic radiation, the aim will be to focus on processes that 
utilise the fact that wood at a high moisture content is capable of absorbing a large amount of 
electromagnetic energy. The amount of energy required to raise the temperature is determined by 
the specific heat capacity of the material. The specific heat capacity of wood is influenced by its 
moisture content, its dry density and the temperature. This type of modification process also includes 
changing the wood surfaces by laser or plasma treatment.

Figure 1.2 Classification of wood modification processes.
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There is, of course, a wide range of processes which is not possible to describe in detail in this 
book, but which have been or may be of interest for the modification of wood. Some such processes 
are briefly described in Chapter 5, as a separate group of other processes. This chapter gives a short 
state-of-the-art description of processes that have been of interest in the wood industry but for some 
reason have not been further developed, or modification methods used (industrially or at least on a 
larger scale) in other industrial sectors than the wood sector (e.g., in the food or agricultural sectors, 
etc.) that may be of interest for the modification of wood.

The efficient modification of wood requires reactions at the molecular level and this requires an 
understanding of the fundamentals of organic chemistry which, together with other related areas of 
wood science, such as wood structure, wood-water relationship, wood biodegradation, weathering 
of wood, and stress-strain response of wood, are presented in this chapter.

1.2	 Wood	as	a	substrate	for	modification
A comprehensive knowledge of the characteristics of any material is essential for its optimal 
utilisation. This is especially true for wood because of its cellular nature, its complex cell-wall 
structure, and its variability. For the development and understanding of wood-modification processes, 
it is necessary to understand not only the principles of tree growth but also the macroscopic and 
microscopic features that determine wood quality in a broad sense. A wood modification process 
must, in general, be adapted to the species for which it is to be applied, and to the features and 
properties of the wood species in question.

Trees are major components of the biosphere and their wood is one of the most important 
renewable resources. Wood is the result of an evolutionary process over millions of years to perfectly 
meet three main functions: water transport, mechanical support, and storage of reserve nutrients for 
the living tree.

Wood is a material with a biological structure consisting of cellulose and lignin-based cells and 
the anatomy of a tree or a piece of wood requires a journey through several orders of magnitude. The 
structure of wood is multi-levelled and hierarchical, and it is possible to define more than ten different 
structural levels between the macroscopic (the trunk) and the molecular level, including cells and the 
grouping of cells into functional units and tissues of a characteristic size and shape. It is important to 
distinguish between the macro-structure, micro-structure and ultra-structure. The structure visible to 
the naked eye, or with a magnifying glass up to 10 times magnification is called the macro-structure, 
and macro-features such as grain and knots are readily apparent. A microscopic examination of the 
wood gives the overall information of the structure and the general character of the wood, showing 
the morphological characteristics of the woody plant. This is the most reliable method of wood 
identification, and microscopic examination is most important with conifers, where visual features of 
the wood are characterised more by similarities than differences. At the ultra-structure level, the cell-
wall composition is in focus. Below this resolution lies the realm of individual chemicals. All these 
features must be considered when designing a wood modification process.

The tree
Everybody knows that a tree is a “large” plant with a stick (the trunk) in the middle to hold the crown 
with its foliage aloft. Trees generally produce wood during their growth, but do all trees produce 
wood? The answer is of a semantic nature and depends on how we define the concept of “a tree”, 
i.e., must the central stick be of wood? Trees are among the largest organisms that have ever lived. A 
redwood (giant sequoia) tree growing in North America can, for example, have a weight 10 times that 
of a full-grown blue whale, but there are also very small trees like the Artic willow that reach a height 
of only a few centimetres. Many trees grow big when conditions are favourable and stay small when 
they are not. Foresters and other people have insisted that plants with several supporting stems should 
be called shrubs, but in nature such a definition is not easily pinned down. For example, in Brazil one 
particular species grows single-trunked trees where there is good availability of water, e.g., along the 
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riverbanks, but multi-stemmed short shrubs where it is drier (Tudge, 2005). Trees may grow from 
ground level with several solid trunks of equal magnitude and the size of, e.g., a Scots pine tree. To 
divide species into trees and shrubs may be practical, but it is not really a distinction based on genetic 
differences. Nature is not designed to be easy for biologists and foresters!

In fact, there are many lineages of trees, separate evolutionary lines that have nothing to do 
with each another except that they are all plants (Tudge, 2005). A tree is not a distinct category—it 
is just a way of being a plant. Trees have dominated dry land for over 300 million years, which is 
far longer than both mammals and dinosaurs, and today forests cover about a third of the world’s 
dry land. Trees are extremely diverse, with more than 80,000 species all over the globe—some of 
them evergreen, while others are deciduous. The accepted definition of a tree is that it is a plant 
with a more or less permanent shoot system supported by a single woody trunk, i.e., a plant where 
the cambium cells have the ability to undergo secondary thickening, i.e., the ability to produce both 
xylem tissue (wood) and phloem (bark). By such a definition, true wood comes only from conifer 
and broad-leaved trees.

Thus, evolution has resulted in two categories of tree, conifers (softwood) and broad-leaved 
(hardwood) trees, both originating from the so-called seed plants (Figure 1.3). Many lineages of seed 
plants have appeared during the long time of evolution, and most have long been extinct. Timber 
merchants label all conifers softwoods and all broad-leaved trees hardwoods, even though some 
conifers are a lot harder than many hardwoods, and the softest woods of all are in fact hardwood. 

More than 360 million years ago, the first plants that reproduced not by spores but by seeds 
appeared. Seed plants, to which all trees belong, are divided into two categories: gymnosperms, i.e., 
plants with naked seeds, and angiosperms, i.e., plants with covered seeds. The gymnosperms consist 
of conifers, cycads (fern plants) and their relatives, ginkgos, and gnetales. Today, only one species 
of ginkgo remains: the maidenhair tree in western China. The gnetales group consists of about 70 
distinct species, but the phylogenetic2 position of the group is uncertain. It was sometimes placed 
close to the angiosperms, but is today associated with conifers. 

The angiosperms include all other flowering plants. In contrast to the gymnosperms, the 
majority of angiosperm species are not trees but herbs. They are further divided into two categories: 
dicotyledons (dicots) and monocotyledons (monocots). The broad-leaved trees belong within 
the dicotyledon category. The most important structural difference between dicotyledons and 
monocotyledons is that the monocots have no ability to undergo secondary thickening, which means 
that monocot plants that look like trees, such as bamboo, palm trees and banana plants, are by 
definition not regarded as true trees.

The most important structural difference between gymnosperms and angiosperm trees is in 
their xylem fibre structure. Gymnosperm wood has only one type of cell, called tracheids, which 

2 Phylogenetics—the evolutionary history and relationships among individuals or groups of organisms, e.g., species, or 
populations.

Figure 1.3 Conifer trees and broad-leaved trees are included in the botanical division of spermatophytes, i.e., seed plants.
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transport water up to the leaves and strengthen the trunk. The angiosperm wood has two main types 
of xylem cell for these functions: vessels which pipe water through the trunk, and fibres (libriform 
fibres and fibre tracheids) for the strength of the trunk.

Conifer trees are characterised by their needle-like leaves, and such trees are commonly 
considered to be evergreens because most of them remain green all the year around and annually lose 
only a portion of their needles. Most conifers also bear scaly cones, inside which seeds are produced. 
In contrast to conifers, broad-leaved trees bear “broad leaves” which generally change colour and 
drop in the autumn in temperate zones, and produce seeds within acorns, pods, or other fruit bodies.

Only a small fraction of a tree’s biomass is capable of producing the sugars it needs to grow, i.e., 
most of the energy created by photosynthesis in the leaves is used for building up xylem in the stem, 
branches and root system as the tree grows. This strategy has been shown to be very successful in 
competition with other plants for the light, water and nutrients needed for survival.

Trees compete for the “light”3 by holding their canopy of leaves high above the ground, and 
the permanent structure (the trunk) above the ground makes trees successful in that sense compared 
to, for example, non-woody herbaceous plants which die back every year. The single stem of a tree 
makes it competitive also to plants which typically branch near the ground and so have several 
narrow stems rather than a single trunk, i.e., shrubs. As a group of trees grow in height, they cast 
such a dense shade by their collective canopy that most of other plants die out and the area will 
become a forest. The disadvantage of the single-trunk tree strategy is the high energetic cost for 
the construction of the tall trunk-branch system, resulting in a slow growth compared with that of 
herbaceous plants.

The structure of trees
The structure of wood is a result of the requirements of the living tree. Xylem is the part of the 
tree that in everyday speech is called wood and consists of hollow tubes (cells) with a length of a 
few millimetres connected to each other (Figure 1.4). The majority of these cells within the living 
tree are dead, i.e., the protoplasm is absent, leaving hollow cells with rigid walls. Protoplasm is the 
living content of a cell that is surrounded by a plasma membrane, i.e., a biological membrane that 
protects the cell from its environment. The only living cells in a tree are located in the cambium, in 
the sapwood rays, and in the inner bark (phloem). Their functions are related to the growth of the 
tree (cambium cells) and to the storage of the nutrients produced by photosynthesis.

3 Light is defined by CIE in relation to the sensitivity of the human eye to wavelengths between 400 and 700 nm.

Figure 1.4 Major tissue types in the tree cross section (left), and enlargement of a growth ring of a typical conifer tree, 
showing the relative difference in size between earlywood and latewood cells (right).



8 Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation

The vascular cambium is the main growth tissue in the stem and roots of a tree, sheathing the 
xylem tissue from roots to leaves. It is a single cell layer that generates tissue on both the inside and 
outside—the process of secondary thickening—so that the tree grows thicker year by year, always 
with fresh xylem and phloem tissue coming on line and guaranteeing the function of the tree. The 
cambium lays down xylem on the inside to strengthen the stem and increase its water transport 
capability. On the outside, the cambium produces a thinner layer of phloem, a tissue that transports 
sugars created by photosynthesis in the leaves down to the roots for use in producing new cells and 
for storage in the trunk and bark nutrient-storing cells.

After cambial division, each successive xylem cell undergoes enlargement, wall thickening, 
and lignification. The cells lose their living cytoplasm and are left as dead cells of cellulose stiffened 
with lignin. The rate of cell division and the final size are thought to be largely influenced by growth-
regulating hormones (auxins). As time passes, the xylem cells lose their function as the conducting 
tissue and the inner structural part loses its ability to transport water (heartwood formation). Xylem 
tissue is formed in an aqueous environment and exists in a living tree in the maximum swollen 
state—the green state.

The bark usually refers to tree tissue outside the cambium, but it can be simply divided into the 
inner bark (phloem) and the outer bark (cork). A disadvantage for the tree is having vital phloem 
tissue in the outer parts of the trunk where there is a greater risk of damage. The outer bark protects 
the tree from drying out and from extreme temperature fluctuations, mechanical injury, fire, etc. The 
outer bark is compounded from formerly functional phloem and custom-built cork, highly evolved 
and adapted. The oldest vessels of the phloem are crushed as new phloem tissue is laid down inside 
them, so that their functions become redundant. The crushed phloem is incorporated into the bark, 
providing essential protection. Many trees have a layer of secondary cambium (cork cambium) 
outside the principal cambium layer, with the specific task of producing cork. Cork cells (like xylem 
cells) are born to die, they finish up small, with thick, impermeable cell walls. 

Within the cross section of a stem, there is often a visible difference in colour between two broad 
divisions known as sapwood and heartwood. The sapwood portion of the tree is physiologically 
active, i.e., the sapwood is involved to the normal functions of the living tree, and the ray cells 
of the sapwood are in continuous communication with the cambium and the inner living bark  
(Figure 1.4). The sapwood acts as a nutrient- and water-storage reservoir and provides the function 
of sap conduction. Heartwood is usually found in the centre lower portion of mature stems and all its 
cells are dead. At one time, heartwood was sapwood, but it no longer has a physiological function.

The water‑transport system in a tree
The conduction role of the tree starts with taking up water and minerals from the ground by the root 
system and continues up the xylem tissue, i.e., through the roots, stem and branches, to the leaves, 
where photosynthesis takes place. Sugars produced by photosynthesis are in return transported 
down the tree along the phloem tissue. Some trees may also take up water from the air; the redwoods 
of California get about a third of their water from the morning fogs that sweep in from the Pacific.

Over 90% of the wood cells are arranged along the axis of the trunk or branches. In conifers, 
the vast majority of these cells are the long (up to 10 mm) and narrow (about 30 µm) tracheid 
cells, which have the dual functions of water conduction and supporting the stem (see Table 1.1 
for proportions and functions of different cell types). This dual function makes the tracheid cell 
non-optimal in its function; the water-transport is improved by having large-diameter cells, i.e., 
wide cells, whereas strength is improved by having long and narrow cells. The shape of the cells is 
a compromise between these two. Broad-leaved trees have long, narrow fibres (libriform fibres and 
fibre tracheids) which support the trunk, but also very wide and thin-walled vessel cells, which only 
have the function of water transport (Figure 1.5). The larger diameter of the vessels dramatically 
decreases the resistance to water flow through them. Broad-leaved trees therefore have a much 
better water transport than conifers, even though the vessels constitute only a small proportion of 
the total number of cells.
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If a large air bubble gets into a wood vessel, the water column is broken by the tension in the water 
above and below it. The whole vessel then fills with air, forming what is called an embolism (Ennos, 
2016). Once an embolism has formed, it is prevented from spreading through the whole length of 
the tree by sieve-like plates along the wood vessels which trap the air bubble. However, unless water 
is actively forced into the vessel again, the vessel remains empty and loses its conducting activity. 
Very dry conditions, but especially cold conditions increase the risk for embolism. Embolism is not 
common in conifers as the tracheid cells are much narrower than the vessels. 

Regardless of the type of water-conducting cells in the tree, it is spectacular that water can rise 
from the root system to a height of 100 metres, to reach the leaves in their canopy. Several theories 
have been put forward over the years, such as the positive root‑pressure theory, the capillary force 
theory, the suction theory and the cohesion theory. The positive root-pressure theory suggests that 
water is pumped up the trunk by the roots based on the osmosis effect, but it has only been possible 
to demonstrate this effect in birches and maple, and only in early spring (Ennos, 2016). 

The capillary forces alone would be able to draw water to a height of only about 0.5 m in wood 
based on the dimensions of the different wood tissues, while the maximum height caused by the 
atmospheric pressure allows this capillary transfer to be only 10 metres or so. Cohesion theory, as 
defined by Boehm (1893) and Dixon and Joly (1894), is today the most accepted explanation for the 
water transport in trees. It is based on the fact that water is pulled up under tension when water is lost 
from the leaves by transpiration. If water is held in a narrow tube it can withstand large stretching 
forces without breaking. The cohesion-tension principles have been reviewed, particularly in terms 
of non-destructive testing (Bentrup, 2016). The strength of the water is due to cohesion between 
its molecules, and these forces can theoretically hold up a column of water nearly three kilometres 
high. These tensile forces acting upon the tree stem due to the water cohesion are sufficient to cause 
a measurable deformation in the shape of the stem.

The principal direction in trees and of wood
When discussing the structural features of wood, it is important to indicate which surface or direction 
is being referred to. Three distinctive planes exposing different views of the wood structure can be 
noted. A cut perpendicular to the longitudinal direction of stem is called a transverse or cross section, 
a cut in the radial plan is called a radial section and a longitudinal cut tangent to the growth rings is 
termed a tangential section. It is also necessary to distinguish between the three principal directions in 
wood; longitudinal or axial (L), radial (R) and tangential (T), which are the local directions responsible 
for wood anisotropy,4 for its mechanical, physical and technological properties. Figure 1.6 illustrates 
schematically the principal axes and the corresponding radial, tangential and cross sections.

Figure 1.5 Cross-section view of tracheid cells in a conifer species, Swiss pine (left), and in a broad-leaved species, 
magnolia, containing both fibres and large-diameter vessels (right).

4 Anisotropy is the property of being directionally dependent, which implies different properties in different directions, as 
opposed to isotropy. It can be defined as a difference along different axes in a material’s physical or mechanical properties.
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The macrostructure of wood
The main macroscopic parts of wood are, as shown in Figure 1.7: 
 • growth rings, earlywood and latewood,
 • bark,
 • pith,
 • rays,
 • resin canals of conifer wood,
 • vessels of broad-leaved wood,
 • sapwood and heartwood,
 • knots,
 • reaction wood,
 • juvenile wood, and
 • texture, colour and scent of wood.

Figure 1.7 The macrostructure of wood visible in the cross section (un-dried disc) of Scots pine.

Figure 1.6 Schematic representation of the three principal axes and sections in wood. The stem section to the left show the 
principal axes, viz. longitudinal (L), radial (R) and tangential (T), and the rectangular piece of wood to the right shows the 

definition of the principal sections in sawn timber.
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It is difficult to distinguish juvenile wood from normal wood by the naked eye, although it is 
here considered as a macroscopic feature due to its great importance for wood in use. For the same 
reason, features like texture, colour and scent of wood are briefly described in this section.

Growth rings, earlywood and latewood 
In trees that grows seasonally, the addition of xylem and phloem is intermittent. In a typical tree 
growing in the temperate zone, the new xylem laid down in spring is wide but thin walled, while the 
later xylem is narrower but thick-walled. The difference can be seen in the cross section of a trunk 
as the presence of concentric layers. The layered arrangement of the xylem tissue in these growth 
rings is probably the most characteristic feature of wood. False growth rings may occur, and in some 
cases certain rings may be locally discontinuous. The growth rate and periodicity of trees growing 
in tropical forests—the forests located around the equator—are not the same as those of trees in 
temperate forests. Tropical trees in places where there are distinct wet and dry seasons also show 
growth rings, but trees growing where the climate is constant do not show growth rings. For these 
reasons, the term growth ring is preferred over annual ring. 

In temperate regions, growth starts at the beginning of spring, continues in the summer and 
stops in the autumn. The part produced in the spring is called earlywood and that in the summer is 
called latewood. At the beginning of this vegetative growth, trees form a new layer of wood between 
the existing wood and the bark, the branches and the roots. The growth rings can often be easily 
distinguished because of differences in structure and colour between the earlywood and latewood. It 
is customary to divide the growth rings into three classes, conifers, ring-porous and diffuse-porous 
broad-leaved trees (Figure 1.8).

Figure 1.8 Cross-section view of a conifers species, Scots pine (left), a ring-porous broad-leaved species, oak (middle), and 
a diffuse-porous broad-leaved species, goat willow (right).

In temperate conifer woods, there is often a marked difference between latewood and earlywood 
(i.e., the growth-ring border), the latewood being denser than the earlywood, cf. Figure 1.9. The 
earlywood cells have thin walls (approximately 2 μm) and are mainly lumen, whereas the latewood 
cells have thicker walls (approximately 5 μm) with narrower lumen. The strength of the wood 
is in the walls, not the cavities. Hence, the greater the proportion of latewood, the greater is the 
density and strength. The width of a growth ring is less important for the density of a conifers as the 
proportion and nature of the latewood in the growth ring.

In contrast to the growth-ring border, the border between earlywood and latewood is diffuse, 
and the change in density and cell-wall thickness, for example, is gradual through this transition 
zone. There are numerous definitions to distinguish between earlywood and latewood, the most 
universally accepted definition being the one proposed by Mork (1928), who suggested that cells are 
classified as latewood when double the wall thickness is greater than the lumen diameter. Since then, 
more accurate definitions have been proposed, e.g., by Phillips et al. (1962) based on a β-particle 
method, and by Jagels and Dyer (1983) based on a digital image analysis of the shape of the cell 
cross section.

In ring-porous woods, each season’s growth is always well defined, because the large vessels 
formed early in the season are on the denser tissue of the previous year, cf. Figure 1.8 middle.
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In the case of the ring-porous broad-leaved woods, there seems to be a definite relationship 
between the rate of growth of timber and its properties. This may be briefly summed up in the 
general statement that the more rapid the growth or the wider the rings of growth, the heavier, 
harder, stronger, and stiffer is the wood. This, however, only applies to ring-porous woods, such 
as oak, ash, hickory, and others of the same group, and it is, of course, subject to exceptions and 
limitations.

In ring-porous woods of good growth, the thick-walled, strength-giving fibres are usually most 
abundant in the latewood. As the width of the ring diminishes, this latewood is reduced so that very 
slow growth produces relatively light, porous wood composed of thin-walled vessels and wood 
parenchyma. In good oak, these large vessels of the earlywood occupy 6 to 10% of the volume of 
the tree, whereas in inferior material they may make up 25% or more. The latewood of good oak is 
dark coloured, firm and consists mostly of thick-walled fibres which form one half or more of the 
wood. In inferior oak, this latewood is greatly reduced in both quantity and quality. Such a variation 
is largely due to the rate of growth.

In the diffuse-porous woods, the demarcation between growth rings is not always so clear and, 
in some cases, it is almost (if not completely) invisible to the naked eye. Conversely, when there 
is a clear demarcation there may be no noticeable difference in structure within the growth ring,  
cf. Figure 1.8 right.

In diffuse-porous woods, the vessels are uniform in size, so that the water-conducting capability 
is scattered throughout the ring instead of being concentrated in the earlywood. The effect of the rate 
of growth is not, therefore, the same as in the ring-porous woods, nearly approaching the conditions 
in the conifers. In general, it may be stated that woods give a stronger material when they grow at a 
medium rate than when they grow very rapidly or very slowly. In many uses of wood, total strength 
is not the main consideration. If ease of working is a requirement, wood should be chosen with 
regard to its uniformity of texture and straightness of grain, and this will, in most cases, occur when 
there is little contrast between the latewood of one season’s growth and the earlywood of the next.

Radial growth begins first near the top of the tree and proceeds gradually downward in the 
stem, resulting in more earlywood and wider growth rings near the pith in the upper crown region. 
Transition to latewood occurs first near the base. Farthest from the source of the growth regulating 
hormones (auxins) and proceeds upwards. The density of an individual wood fibre is, therefore, 
determined by its position relative to the live crown and by the time of its formation.

Bark
The trunk has an outer covering, called bark, which protects the wood from extremes of temperature, 
drought, and mechanical injury. Bark constitutes, on average, about 10% of the volume of a tree, 
but this figure varies depending on tree species and age. The bark usually refers to tree tissues 
outside the cambium. It includes a number of different tissues, but bark can simply be divided into 

Figure 1.9 Density variation between earlywood and latewood in longleaf pine (left) after Phillips et al. (1962), and a 3D 
scanning electronic micrograph of Norway spruce (right).
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the inner bark (phloem and cork cambium) and the outer bark (cork layer). The relatively light-
coloured inner bark is living tissue that conducts sugars downwards from the leaves. The dark-
coloured and dry outer bark includes only dead tissue and is more or less impermeable to water and 
gases with an insulating function. The cell walls in the cork layer contain suberin, a waxy substance 
which protects the stem against water loss and the invasion of insects into the stem, and prevents 
infection by bacteria and fungal spores. The cork produced by the cork cambium is normally only 
one cell layer thick and it divides periclinally (parallel to the tissue surface) to the outside, producing 
cork. Like wood, bark is anisotropic with regard to dimensional stability and strength. Its thermal 
properties and heating value are similar to those of wood.

Pith
In the centre of the wood is the pith, which is formed during the first year of growth and becomes 
a storage area for impurities that are deposited from the active xylem during the growth of the tree. 
Pith consists of soft, spongy parenchyma cells, and is located in the centres of the stem, branches 
and roots. In some plants, the pith is solid, but in most cases it is soft. The shape of the pith varies 
between species and it varies in diameter from about 0.5 mm to 8 mm. Freshly grown pith in young 
shoots is typically white or pale brown, but it usually darkens with age. It may be inconspicuous, 
but it is always present at the centre of a trunk or branch. The roots have little or no pith and the 
anatomical structure is more variable. 

Rays
Wood rays extend in the transverse direction from the bark toward the centre of the tree at a right 
angle to the growth rings. The first formed rays extend from the bark to the pith and are called 
primary rays, others extend from the bark to some later-formed growth ring outside the pith and are 
called secondary rays. 

All the transverse cells found in any given wood are included in the wood rays, ribbon-like 
aggregates of horizontally oriented cells. The rays are formed by the cambium and extend in the 
radial direction in the xylem, cf. Figure 1.4. Rays consist of nutrient-storing cells and provide a route 
by which sap can be transported horizontally either to or from the inner bark (phloem).

Rays may contain ray parenchyma, ray tracheids and ray epithelial cells, but rays are usually 
composed predominantly of ray parenchyma cells, with ray tracheids forming one or more marginal 
rows of cells and an occasional row of cells in the body of a ray. When transverse resin canals are 
present, rows of epithelial cells and the resin canal cavity are also included in the ray. 

The size of the rays is very different in different species. They can vary from being slightly 
visible to completely invisible to the naked eye. The variation between different species is great, and 
this means that they are useful for identification. In conifers, rays are usually one-cell or a maximum 
of two-cells wide in the tangential direction and 1 to 20 and sometimes up to 60 cells high. The rays 
in broad-leaved woods vary between one and several cells, depending on the species. These rays can 
always be observed in the tangential, radial and transverse sections. 

Rays have a major influence on wood properties, not least the strength. The rays are the weakest 
zones in the wood, and they easily cause the wood to split. Rays are also one of the main causes 
of transverse hygroexpansion anisotropy, i.e., the rays restrain dimensional changes in the radial 
direction, and their presence is partially responsible for the fact that when wood is dried it shrinks 
less radially than tangentially. The mechanism of differential transverse hygroexpansion has been 
the subject of considerable controversy in the literature on wood science for many years, see for 
instance Skaar (1988).

Resin canals in conifer wood 
A characteristic feature of some conifer woods is their resin content, which is often sufficient to give 
them a clear fragrance and make newly sawn timber sticky. Resin canals or resin ducts are tube-
like intercellular spaces, which transport resin in both the longitudinal and horizontal directions  
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(Figure 1.10). The vertical and horizontal resin canals are interconnected and form a uniform 
network in the tree (Ilvessalo-Pfäffli, 1995). Transverse resin canals, that are located inside the rays, 
are seen in the tangential section. Resin is formed in epithelial parenchyma cells and can in some 
species be stored in special resin canal cavities, called resin pockets. These cells supply resin to the 
channels and pockets.

Figure 1.10 Cross-section view of two resin canals in Norway spruce.

Vessel elements in wood from broad‑leaved trees
The fundamental anatomical difference between wood from conifer and wood from broad-leaved 
trees is that broad-leaved woods contain specialised conducting cells called vessel elements. These 
vessel elements are generally much larger in diameter than other types of longitudinal cells and the 
vessels are in general shorter than both broad-leaved and conifer fibres, cf. Table 1.1. A number of 
vessel elements are linked end-to-end along the stem to form long tube-like structures. Both the size 
and arrangement of the vessels in the cross-section of a wood sample are used to classify wood from 
different broad-leaved trees, cf. Figure 1.8.

Sapwood and heartwood
In most species, the difference in properties between sapwood and heartwood are substantial, 
especially regarding water and moisture transport, and they must be taken into consideration for most 
types of wood modification process. Some species, e.g., aspen, birch, beech, hornbeam and maple, 
do not normally develop heartwood, but these tree species may have discolouration around the pith 
due to microorganisms or frost, so-called red core or false heartwood. There are also differences in 
heartwood formation between species, especially between conifer and broad-leaved trees.

The sapwood is the outer, water-conducting part of the trunk that, in the living tree, contains 
living cells for the storage of reserve material (see rays). Young trees have only sapwood, but as 
they mature and no longer need the whole cross section of the xylem part of the trunk for fluid 
transport, they develop heartwood, i.e., the water-conducting function ceases, the remaining living 
wood cells die, and the cell walls are preserved and help to support the tree for many years to come. 
Heartwood is the inner and central part of the trunk, which, in the living tree, contains only dead 
and non-water-transporting cells and in which the reserve materials have been removed or converted 
into extractives. Heartwood can also be found in the roots of many species, especially in the region 
near the stem (Hillis, 1987). The new wood cells thus created are added to the sapwood, while the 
older cells adjacent to the heartwood gradually change to form new heartwood. The proportions of 
sapwood and heartwood vary according to species, the age of the tree, the position in the tree, the 
rate of growth, and the environment.

In some species, a zone usually comprising 1−3 growth rings can occur between the sapwood 
and the heartwood for a short period of time. This transition zone is described by Hillis (1987) as a 
narrow, pale-coloured zone surrounding some heartwood or injured regions, often containing living 
cells, usually devoid of starch, often impermeable to liquids, with a moisture content lower than that 
of the sapwood and sometimes also lower than that of the heartwood.

The volume percentage of living cells (parenchyma cells) in the sapwood varies between  
5 and 40% of the total tissue volume (Hillis, 1987). The death of these cells and the transition of the 
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sapwood to heartwood are accompanied by the secretion of oxidised phenols, which are often the 
origin of the pigmentation of heartwood. In trees in which heartwood and sapwood have the same 
colour, the death of these cells does not lead to pigmentation. The substances secreted by the trees 
are called extractives. They are typically toxic to wood-decaying organisms and help the wood to 
resist fungi and insects. 

Figure 1.11 shows the difference in colour between sapwood and heartwood. Sapwood often 
has a clearer colour than the heartwood, but in many species this distinction between the sapwood 
and heartwood does not exist in colour but only in function and moisture content.

In contrast to heartwood, sapwood in the living tree has a very high moisture content. In Scots 
pine, there is also a large variation in moisture content in the sapwood between the earlywood 
and latewood, where the moisture is found mainly in the earlywood. In the heartwood, there is no 
difference in moisture content between earlywood and latewood (Figure 1.12).

During heartwood formation in a number of broad-leaved species, the vessels are filled with 
outgrowths of parenchyma cells called tyloses into the hollows of vessels, cf. Figure 1.13.

Tyloses are growths that partially or completely block the vessels in which they occur, a 
situation that can be either detrimental or beneficial depending upon the use to which the wood is put 
(Bosshard, 1974). The existence of tyloses in the heartwood vessels of white oak, and the relative 

Figure 1.11 Cross section of a Scots pine log (upper) and a magnification of a portion of the same cross section, showing 
the inner bark, outer bark, cambium, and the sapwood/heartwood border (lower). The small dark dots in the lower image are 

resin, which has flowed out when resin canals were cut.

Figure 1.12 Moisture content of earlywood and latewood in sapwood and heartwood of Scots pine (Vintila 1939).
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lack of them in red oak, is the reason why white oak is preferred in the manufacture of barrels, casks 
and tanks for the storage of liquids. In contrast to this beneficial feature of tyloses, wood in which 
they are well developed may be difficult to dry or impregnate with chemicals (Bowyer et al., 2007).

Knots
As the trunk grows, old and new branches form junctions called knots. Where the cambium is 
alive at these points, there is a continuity of growth combined with a change in orientation and the 
knot is termed green or alive. On lower branches, the cambium is frequently dead, and the trunk 
grows around the branch enclosing its bark. These “black” or “dead” knots, are liable to fall out 
of sawn timber during sawing or during further processing. An important feature of knots is their 
deviant fibre orientation around and in the knot itself, which clearly affects both the appearance and 
properties of sawn timber.

Reaction wood
When a tree is growing on a sloping land surface or is exposed to a dominant wind direction, the 
load on the stem is unbalanced. The tree then starts to produce abnormal wood known as reaction 
wood to compensate for the unbalanced load. The formation of reaction wood is related to the 
process of straightening of leaning stems and the same happens in the branches and in the area 
where the branches join the stem.

Conifers and broad-leaved trees have adopted different strategies for the formation of 
reaction wood. The reaction wood of conifers is called compression wood, because it forms on the 
compression-stress side of leaning stems. In broad-leaved trees the reaction wood is called tension 
wood because the increased growth takes place on the upper or tension-stress side of the leaning 
tree, as shown in Figure 1.14. 

In both conifer and broad-leaved trees, the wood formed on the side of the stem or branch 
opposite to the reaction wood is known as opposite wood, while that lying between the reaction 
wood and the opposite wood, is referred to as lateral wood. In comparison with wood production 
in a vertically growing stem with almost perfectly circular growth rings, compression wood and 
tension wood are usually produced in larger quantities, giving the stem a cam-shaped cross section 
with pronounced eccentricity with respect to the pith (Barnett and Jeronimidis, 2003).

Reaction wood has physical and mechanical properties different from those of normal wood 
and some of these properties are worth mentioning. The compressive strength of compression wood 
is greater than that of normal wood, however, compression wood is consequently very brittle. This 
brittleness can be a problem if the wood is subjected to bending. The tensile strength and Young’s 
modulus of tension wood are greater than those of normal wood, and it also has a higher fracture 
toughness and impact resistance. Reaction woods have different shrinkage characteristics from 
those of the adjacent normal wood, due to a deviation in the micro-fibril orientation in the S2 cell-
wall layer, and this can result in warping and cracking of the wood during drying.

Figure 1.13 Tyloses in a broad-leaved tree vessel in transverse (left) and longitudinal (right) sections. The tyloses effectively 
prevent water transportation in the vessel.
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Although it has not been generally recognised, reaction wood has many characteristics similar 
to those of juvenile wood (Zobel and Sprauge, 1998). In conifer wood, both juvenile wood and 
compression wood have short cells with flat micro-fibrillar angles and often a high lignin content; 
in broad-leaved woods, juvenile fibres of both the diffuse- and ring-porous wood types are short 
and broad-leaved woods have tension wood with a high cellulose content. When a tree is producing 
juvenile wood, it is especially susceptible to environmental forces that lead to the formation of 
reaction wood (Zobel and Sprauge, 1998).

Juvenile wood
Although it is not visible in the trunk cross-section, there is an important pith-to-bark gradient in 
density that is unique for each species. The fact that a relatively pronounced change in density often 
occurs in conifers during the first 15 to 30 years of growth gave rise to the term juvenile wood (Zobel 
and Sprauge, 1998). This term can lead to confusion, because this wood is found not just in young 
(juvenile) trees, but near the pith in every tree, regardless of age. However, the juvenile wood first 
laid down by the cambium near the centre of the tree has characteristics that differ from the wood 
formed at a large number of growth rings from the pith. This juvenile wood is sometimes referred to 
as core‑wood or crown‑formed wood and the mature wood as outer‑wood. Although juvenile wood 
occurs in both conifer and broad-leaved trees, it is usually much less evident in broad-leaved woods. 
The source of juvenile wood is primarily in young plantations, thinnings, top wood, plywood cores 
and the harvesting of young stands.

Unlike heartwood that evolves in the lower parts of the trunk upwards, juvenile wood is 
formed nearest to the pith at all heights in young tress, and only in the top regions of mature trees  
(Figure 1.15). The most common characteristics used to identify the juvenile zone are density and cell 
length, although several other characteristics are also used. Each has a different curve of development 
from the pith outward so that the definition of the juvenile zone depends on the characteristic used. 
Bendtsen (1978) showed for hard pines (subgenus Pinus; soft pines has subgenus Strobus) that 
density, strength, cell length, cell-wall thickness, transverse shrinkage and latewood percentage 
increase from pith to bark, whereas the fibril angle, longitudinal shrinkage and moisture content  

Figure 1.14 Formation of reaction wood in wood in conifer and broad-leaved trees as a result of a predominant wind 
direction over a long time.
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of the same species decrease from pith to bark. Zobel and Talbert (1984) also conclude that the 
chemical composition of juvenile wood differs from that of mature wood. In most conifer woods, 
the lignin content is higher and the cellulose content lower in the juvenile wood. In wood from 
broad-leaved trees, Zobel and Talbert (1984) say that the proportion of and the chemical make-up 
of cellulose and lignin differ and that the holocellulose content is higher in juvenile wood than in 
mature wood.

The texture, colour and scent of wood
The texture of wood is material-dependent, i.e., the texture depends on the type of wood and on how 
the wood is built up. A piece of wood can show a great variation in hue depending, for example, 
on the type of wood, the content of extractive substances, heartwood or sapwood, and age. For 
most types of wood, the growth-ring orientation in the cross-section of the wood is important for 
the texture. A tangential surface with horizontal growth rings becomes mottled, whereas the radial 
surface with vertical growth rings has an even and harmonious pattern, as shown in Figure 1.16. 
Special patterns may result from uneven heartwood pigmentation, irregular growth-ring formation, 
deviations in cell and grain direction, or any combination of these.

Figure 1.15 Juvenile wood occurs around the pith and roughly forms a cylinder up the tree. In contrast to heartwood, the 
proportion of juvenile wood increases towards the top of the tree.

Figure 1.16 Influence of growth-ring orientation on the texture of the flat-side surface of Scots pine tangential section with 
horizontal growth rings (left), and radial section with vertical growth rings (right).
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Colour is one of the most conspicuous characteristics of wood and, although quite variable, it 
is one of the important features used in identification as well as adding aesthetic value. Basic wood 
substances, i.e., cellulose and lignin, have little colour of their own, so any distinctive colour is 
associated with heartwood (Hoadley, 1990). A dark colour always indicates heartwood, whereas a 
light colour can be either heartwood or sapwood. Some wood also undergoes considerable colour 
change with age or on exposure to UV-radiation. 

Certain woods have distinctive odours. Many conifer woods, as well as numerous tropical 
woods, are known for their aromatic character. The odour is due to volatile extractives or resins in 
the wood.

The microstructure of wood
The cellular structure of wood is generally classified as a microstructure because the structural units 
are on a millimetre to micrometre scale (Table 1.1), and some type of magnifying tool, such as a 
microscope, is needed for the study. 

Table	1.1 Density, dimensions and volume percentages of various cells in different tree species from the temperate zones 
(Fengel and Wegener, 1984).

 Conifer	wood Broad-leaved	wood

Fir Nor.	spruce Scots	pine Eur.	beech Eur.	oak Poplar

Density	[kg/m3]

Minimum 320 300 300 490 390

Average 410 430 490 680 650 400

Maximum 710 640 860 880 930

Fibre1)	length	(mm)

Minimum 3.4 1.7 1.4 0.6 0.6 0.7

Average 4.3 2.9 3.1

Maximum 4.6 3.7 4.4 1.3 1.6 1.6

Fibre1)	diameter	(µm)

Minimum 25 20 10 15 10 20

Average 50 30 30

Maximum 65 40 50 20 30 40

Vessels	length	(mm) 0.3−0.7 0.1−0.4 0.5

Vessels	diameter	(µm) 5−100 10−400 20−150

Cell	percentage	(average	values	on	volume)

Tracheids 90 95 93 38 44/58 62

Vessels 31 40 27

Parenchyma scarce 1.4−5.8 1.4−5.8 4.6 4.9 scarce

Ray cells 9.6 4.7 5.5 27 16.2/29.3 11.3

1) Fibre – tracheids or libriform fibres. The following terminology misuse was pointed out by Zobel and Buijtenen (1989). 
The term “fibre” is commonly used for both the true fibres of broad-leaved woods and the tracheids of conifer woods. 
Although this is botanically incorrect, the general use of the term fibre must be recognised, since numerous publications 
refer to the fibre characteristics of conifer woods as well as to the real fibres of broad-leaved woods.

Microstructure of conifer wood
The wood of conifer trees consists of two types of cell: longitudinal tracheids and ray parenchyma, 
oriented both axially and horizontally. Most of the tracheids are longitudinal, while the parenchyma 
cells have a radial orientation. In addition to these two types of cell, other elements, such as epithelial 
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cells, constitute longitudinal and horizontal resin canals. The transverse tracheids are not present in 
all species. The various types of conifer wood cells are presented in Table 1.2 and Figure 1.17.

The longitudinal or vertical tracheids constitute about 90−95% of the volume of conifer 
woods (Ilvessalo-Pfäffli, 1995). These are long, narrow cells with closed ends and bordered 
pits (Figure 1.18). The length of a tracheid varies from 2 to 6 mm and the width from 0.014 to  
0.060 mm. The tracheids of latewood have a thick wall and a small lumen and are more suited to 
provide mechanical support than the tracheids of earlywood, whose function is mainly to conduct sap. 

The length of a longitudinal tracheid, which is a closed unit, is very small compared to the 
height of the tree. To ensure the conduction of sap within the tree, it is thus necessary for each 

Table	1.2 Different cell types and their functions in conifer wood.

Cell	type Function

Longitudinal tracheids Support, conduction

Parenchyma

 Ray parenchyma Storage

 Longitudinal parenchyma Storage

 Epithelial parenchyma Secretion of resin

Short tracheids

 Ray tracheids Conduction

 Strand tracheids Conduction

Figure 1.17 Diagram showing the anatomical elements in wood from conifer trees.

Figure 1.18 Diagrammatic representation of an earlywood and a latewood tracheid (left), and micrographs of the radial 
walls of Scots pine tracheids presenting bordered pits (middle), and (to the right) simple pits between tracheids and ray 

parenchyma cells (in the centre), and small bordered pits between tracheids and ray tracheids (above and below).
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tracheid to be functionally connected to other tracheids. The conduction between tracheids, in both 
the lateral and vertical directions, takes place through pits, most of which are located in the radial 
walls. Pits also exist in the tangential walls of the tracheids, but they are much less numerous.

The pits of earlywood tracheids are large and circular, averaging about 200 pits per tracheid, 
whereas latewood tracheids have rather small, slit-like pits, and only 10 to 50 per tracheid 
(Trendelenburg and Mayer-Wegelin, 1955). 

Pits have two essential parts, the pit cavity and the pit membrane, the cavity being open 
internally towards the lumen of the cell and closed by the pit membrane. Pits are of many shapes 
and sizes, but they are generally reduced to two basic types based on the shape of the cavity, viz. the 
simple pit and the bordered pit (Ilvessalo-Pfäffli, 1995).

In the simple pit, the cavity is almost straight-walled and only gradually widens or narrows 
toward the cell lumen. The lumen end of the cavity is known as the pit aperture. In the bordered pit, 
the cavity is constricted towards the lumen, forming a dome-shaped chamber, which is overarched by 
the pit border. The pits of adjacent cells are usually paired, forming three types of pairs (Figure 1.19).

A simple pit pair consist of two simple pits between parenchyma cells and in broad-leaved 
woods also between vessel elements and parenchyma cells. A bordered pit pair consists of two 
bordered pits between tracheids in conifers and between vessel elements in broad-leaved woods. 
A half‑bordered pit pair consists of a bordered pit and a simple pit in the contact zone between the 
longitudinal tracheids and the rays and is, therefore, also called a cross‑field pit. Their size, shape, 
and arrangement vary according to species and cross-field pitting is the most important feature in the 
identification of conifer species on a micro-structural level. Half-bordered pit pairs are also found 
between a vessel element and a parenchyma cell in broad-leaved woods.

In the bordered pit pairs of most conifer woods, the membrane has a thickening in the central 
zone called the torus, which is somewhat larger in diameter than the aperture and is impermeable to 
water. The membrane around the torus, the margo, is porous (Figure 1.20). When the torus is pressed 
against one of the apertures, the passage of water is prevented. The result of this phenomenon is 
called an aspirated pit, and it occurs when sapwood is transformed into heartwood or when the 
wood is dried. In heartwood, the pits are definitively blocked in this position (Figure 1.21).

The rays consist of radially oriented, brick-like and thin-walled parenchyma cells. The rays of 
conifers are composed either of parenchyma cells alone or of parenchyma cells and ray tracheids. In 
conifer trees, less than 25 parenchyma cells usually pile up to form a ray. 

The ray tracheids are about the same size as the ray parenchyma cells. They are dead cells with 
small bordered pits leading to other ray cells and to longitudinal tracheids. The ray tracheids seem 
to be functionally limited to the occurrence of resin canals. Their functions are conduction, and the 
accumulation and storage of water and other substances in the radial direction. 

Figure 1.19 Three types of pit pair; simple pit pair (left), bordered pit pair (middle), and semi-bordered pit pair (right).
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Microstructure of wood from broad‑leaved trees 
The structure of broad-leaved wood is more complex than that of conifer wood and, during their 
evolution, broad-leaved wood have developed special types of cell from the tracheid: vessel elements 
for conduction and fibres for support. Wood from broad-leaved trees is made up of various types 
of cells which are very variable in dimension and form. The different types of cells constituting 
broad-leaved timber are presented in Table 1.3 and in Figure 1.22. Practically all broad-leaved 

Figure 1.20 Cross-section view through a cell wall of European silver fir containing a pit (left), and membrane of a bordered 
pit showing the torus (T) and the margo (M) through which water passes from one cell to the next (right).

Figure 1.21 Aspiration of pits is involved in heartwood formation in conifers and may also occur when drying the sapwood.

Table	1.3 Different cell types and their functions in wood from broad-leaved trees.

Cell	type Function

Vessel elements Conduction

Fibres:

 Libriform fibres Support

 Fibre tracheids Support

Parenchyma:

 Ray parenchyma Storage

 Longitudinal parenchyma Storage

Tracheids:

 Vascular tracheids Conduction

 Vasicentric tracheids Conduction
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Figure 1.22 Diagram showing the anatomical elements in wood from broad-leaved trees.

wood contains longitudinal vessels, longitudinal fibres, and longitudinal parenchyma cell, as well 
as ray parenchyma cells. The broad-leaved wood rays, unlike those in conifers, consist exclusively 
of parenchyma cells.

Longitudinal cells
The longitudinal cells in broad-leaved trees consist of vessels, the tracheids, axial fibres, and axial 
parenchyma (Figure 1.22).

A vessel is a tube made of successive cell elements connected to form long continuous tubes in 
the tree. The volume of vessels in broad-leaved timber varies between 6 and 55%. Their diameter 
varies between 20 and 300 μm, and the passage of sap in the longitudinal direction is made possible 
by wide openings (perforations) at each end of the vessel elements. In addition, water and sap can 
transfer to adjacent vessels laterally through small pits in the vessel walls. The pits connecting two 
laterally adjacent vessels are different from the bordered pits, since they are primarily simple pits 
without a “torus” (Figure 1.19 left).

The fibres
The role of longitudinal cells is to provide mechanical support for the wood. They are long cells with 
thick and rigid walls varying between 0.8 and 2.3 mm. In wood from broad-leaved trees, the volume 
percentage of the fibres varies between 25 and 75%. Figure 1.23 shows a micrograph of wood from 
a broad-leaved tree with fibres, vessels and rays.

Wood from broad-leaved trees usually contains a greater volume percentage of longitudinal 
parenchyma than conifer wood. These cells fulfil a storage function for nutrients. The rays in broad-
leaved woods consist of two or up to 40 radial cells in height, one to more than 20 in width, and 
sometimes in so great a number that the rays are visible to the naked eye.
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In summary, wood from broad-leaved trees is characterised by the presence of vessels, tracheids, 
fibres, longitudinal parenchyma and ray parenchyma. The vessels fulfil the role of conduction and 
the fibres with their thick walls ensure the flexible rigidity and mechanical support of the tree and 
often constitute most of wood volume, up to 60%. The radial and longitudinal parenchyma cells 
ensure that there is a reserve of nutrient substances in the tree.

Wood cell-wall structure and ultrastructure
With the help of a polarised, optical or electronic microscope, the various layers which form the cell 
wall can be observed. This wall consists of the primary wall (P) and the secondary wall (S). The 
middle lamella (M) is not an integral part of the cell wall but it interconnects the cells. The middle 
lamella and primary wall are however frequently treated as a single entity called the compound 
middle lamella. Figure 1.24 shows a representation of a segment of a longitudinal cell (tracheid) 
surrounded by other cells. The secondary wall is made up of three distinct layers: S1, S2 and S3.

The middle lamella appears after the division of cambial cells and varies between 0.5 μm and 
1.5 μm in thickness. The optical microscope shows the existence of an important quantity of lignin 
in this layer. This layer joins the cells together. To separate the cells (e.g., for anatomical study or for 
the manufacture of paper pulp), techniques involving maceration or chemical attack are used. These 
destroy the middle lamella and allow cells to be separated.

The primary wall is very thin and measures approximately 0.1 μm in thickness. Like the 
middle lamella, it contains a large quantity of lignin, but very little cellulose. It is often difficult to 
distinguish the primary wall from the middle lamella.

Figure 1.24 Diagrammatic representation of a longitudinal cell (tracheid) surrounded by six other cells (left), and 
representation of the various layers of the cell wall (right). M: middle lamella, P: primary wall, S: secondary wall with its S1, 

S2 and S3 layers, W: warts layer.

Figure 1.23 3D SEM micrograph of a broad-leaved wood structure showing vessels (V), fibres (F) and rays (R).
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Figure 1.25 Schematic diagram of the microfibril-angle arrangements within the S1, S2 and S3 layers. The angles are given 
with the longitudinal axis of the fibre as a reference.

A polarising microscope reveals that the secondary wall is made up of three layers (S1, S2 and 
S3 2
in thickness between the S1 and S3 layers. These layers consist of cellulose fibrils and microfibrils 
of different angles to the fibre axis.

The microfibril angle of the S2 layer ranges between 5–10° (latewood) and 20–30° (earlywood), 
that of the S1 between 50 and 70° and that of the S3 layer between 50 and 90° (Figure 1.25). These 
layers, on the other hand, consist of concentric parallel laminae. The S2 layer consists of 30 to  
40 laminae in the cells of earlywood and more than 150 laminae in those of latewood. The S2 layer is 

). In the latewood, the S  layer is the thickest part of the tracheid wall and there is little difference 

significantly thicker than its neighbours and, hence, contributes in a dominant way to the mechanical 
and physical properties of the cell wall.

1.3	 The	chemical	composition	of	wood
Having established the basic structures within wood, it is necessary to consider their chemical 
composition. Wood consists mostly of carbon (50−53% in conifer wood and 47−50% in wood from 
broad-leaved trees) and oxygen (40−44%) together with 6% hydrogen, small amounts of nitrogen 
and other elements bonded together forming compounds with different elemental compositions, 
structures and weights (Tillman et al., 1981).

The main chemical components of wood are cellulose, hemicelluloses and lignin. In addition, 
there are other components called extractives, which, e.g., are deposited in the cell wall during the 
formation of heartwood. Table 1.4 gives the volumetric percentage of each chemical component, and 
its polymeric nature, degree of polymerisation and function, and Figure 1.26 shows their variation 
within different layers of the cell wall.

Brief introduction to covalent bonds
In any chemical compound, atoms strive towards distribution of valence (outermost) electrons 
corresponding to a stable noble gas state. Noble gases in group 8A in the periodic table of chemical 
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elements have this stable distribution of valence electrons and do not normally form chemical 
compounds (Figure 1.27). Most other atoms are satisfied with eight valence electrons and only the 
small hydrogen atom is satisfied with two valence electrons. Atoms in the upper left of the periodic 
table (Figure 1.27) are the most electropositive and wish to get rid of (donate) electrons, whereas 
those in the upper right corner are the most electronegative and wish take up (accept) electrons 
(except noble gases). 

The position in the vertical group tells us how many electrons an atom can take up to achieve 
noble gas character; elements in groups 1A, 2A, 3A may lose one, two and three electrons, 
respectively, whereas elements in group 5A, 6A and 7A may take up three, two and one electrons, 
respectively. Adding electrons to such electronegative atom or withdrawal of electrons from 
electropositive atom leads to the formation of negative anions and positive cations, respectively. 
Ions with different charges are strongly attached to each other by electrostatic forces forming ionic 
bonds without sharing electrons, like the sodium cation (Na+) and chloride anion (Cl–) in table salt 

Table	1.4 Chemical components of wood, their polymeric natures and functions.

Component Composition	
(%	volume)

Polymeric	nature Degree	of	
polymerisation

Basic	monomer Function

Cellulose 45–50 Linear molecule  
semi-crystalline

5,000–10,000 Glucose Fibre

Hemicelluloses 20–25 Ramified amorphous 
molecule

150–200 Essential sugars, 
excluding glucose

Matrix

Lignin 20–30 Three-dimensional 
amorphous-bonded

- Phenylpropane Matrix

Extractives 0–10 Polymerised molecule - Polyphenol A protection 
element

Ash 0–5 Minerals - - -

Figure 1.26 Distribution of cellulose, lignin and hemicelluloses within the cell-wall layers (after Panshin et al., 1964). For 
details of the different cell-wall layers, see Figure 1.24.

Figure 1.27 Selected parts of the periodic table.
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(NaCl). Since a carbon atom has four valence electrons (group 4A in the periodic table) and is 
neither electropositive nor electronegative, it can achieve noble gas character instead by sharing 
electron pairs with at most four atoms, whereas the small hydrogen atom (group 1A in the periodic 
table) can bind only one atom. Methane (CH4) is the simplest stable organic molecule (neither 
electronegative nor electropositive) in which carbon is covalently bonded to four hydrogen atoms. 
Oxygen has six valence electrons (group 6A in the periodic table) and can share electron pairs with 
at most two atoms, which complete the octet of electrons in an oxygen atom. Multiple covalent 
bonds are not planar but tetrahedral to achieve a molecule with the lowest energy, so that molecules 
with such bonds have a three-dimensional structure. Single bonds are written as straight lines but 
to be able to draw such structures on paper, it is customary to print bonds pointing out of the paper 
plane as bold and those pointing back into the paper as dashed. Those in the plane of paper are 
printed as solid lines (Figure 1.28). 

Single bonds such as the carbon-oxygen bond in the alcohol in Figure 1.28 can rotate. The 
hydrogen bonded to the oxygen atom can, therefore, point in the direction judged by the extent of 
rotation of the C-O bond. Rotation can, however, be restricted in more complicated structures due 
to interactions with other atoms within or between other molecules and rotation does not normally 
occur in double-bonded structures, as will be discussed later.

In dimethyl ether (CH3-O-CH3), the two carbon substituents called methyl groups (CH3) are 
bonded covalently to the electronegative oxygen. The difference in electronegativity between those 
constituents is not so high that the bonding electron is not completely withdrawn towards the oxygen 
atom forming ions, but only polarises the bond so that the oxygen is partly negatively charged 
and the two carbon atoms partly positively charged (Figure 1.29). This leads to the formation of a 
dipole so that the angle between the two C-O bonds is tetrahedral, meaning that the dimethyl ether 
molecule has a net polar character. Note that compounds like tetrachloromethane are non-polar as 
the centre of gravity of charges coalesce at the same spot.

Figure 1.29 Polar dimethyl ether and non-polar tetrachloromethane.

Figure 1.28 Drawing of molecules illustrating the three-dimensional structure exemplified with methanol.
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In wood, carbon and oxygen atoms can share not only one but two electron pairs (denoted 
as one or two solid lines in Figure 1.30), while nitrogen can share up to three electron pairs with 
carbon, resulting in a number of ways of forming different functional groups. Note that to simplify 
the drawings carbons are usually omitted in the phenolic rings and single bonds are not drawn 
between oxygen and hydrogen in hydroxyl groups. R denotes a compound group of C and H atoms.

The distance between the two hydrogen atoms in a hydrogen molecule (H2) is 0.084 nm but 
the distance is greater between heavier atoms; 0.11 nm for a carbon-hydrogen bond and 0.15 nm 
for a carbon-carbon bond. Double bonds are shorter than single bonds; 0.13 nm for a carbon-
carbon double bond in an alkene (Figure 1.30). A carbon-carbon double bond is stronger than a 
carbon-carbon single bond. The binding electrons are distributed equally between the two bonding 
atoms in the product and to homolytically cleave the bond requires 2.85 MJ/mol for CH2=CH2 
and 1.59 MJ/mol for CH3-CH3 (Hart et al., 2003). A chemical structure with no carbon-carbon 
double bonds is saturated, but a structure with a carbon-carbon double bond is unsaturated. An 

Figure 1.30 Functional groups in organic wood constituents. R represents a hydrocarbon substituent.
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alkene in an unsaturated fat becomes saturated by reaction with hydrogen gas (-CH=CH- + H2 → 
-CH2-CH2-). In the case of alternating single and double carbon-carbon bonds (so-called conjugated 
double bonds), the bond distance between carbons is between those of single and double bonds. 
In the symmetric arene in Figure 1.30, for example, the bond distance between the carbon atoms 
is the same, giving a stable aromatic character. Conjugated double bonds are thermodynamically 
more stable than isolated double bonds, since the electron cloud is distributed over a wider space, 
increasing the number of degrees of freedom and lowering the entropy of the system. The double-
bonded structures are planar, i.e., not tetrahedral, and substituents are separated by 120 degrees, 
forming a flat structure.

The presence of functional groups influences the structure and the chemical, physical and 
biological properties of the compound. Important features of molecules are how they interact with 
other molecules by electrostatic forces or bonds. Such bonds are much weaker than covalent bonds 
and are usually written as dotted lines. These secondary forces are non-polar, polar and hydrogen 
bonds. Non-polar bonds act between non-polar compounds and are weaker (2−8 KJ/mol) than polar 
bonds (6−12 KJ/mol) which exist between polar compounds. Hydrogen bonds are the strongest 
secondary bonds (12−28 KJ/mol) existing between a hydrogen atom bonded to an electronegative 
atom (in wood oxygen or nitrogen) and another electronegative atom. Although these secondary 
forces are much weaker than covalent bonds, they are still of significant importance for the physical 
properties of the molecules. Non-polar bonds exist mainly between hydrocarbon structures such as 
non-polar alkanes, alkenes and arenes, whereas polar bonds exist between structures where carbons 
are bonded to oxygen, nitrogen or other strongly electronegative atoms, as in groups such as ethers, 
aldehydes, ketones, acetals, esters, amines and amides. Hydrogen bonds are found in alcohols, 
phenols, carboxylic acids, amines and amides. The hydrocarbon ethane (C2H6) which is a non-polar 
compound exists in a gaseous state at room temperature, whereas methanol (CH3-OH), which has 
a molecular weight similar to that of ethane, is a liquid due to the formation of hydrogen bonds 
between the hydroxyl groups in the alcohol. Methanol can also form hydrogen bonds with water 
(H-OH) and is, therefore, miscible with water. The solubility of n-pentanol (CH3(CH2)3CH2-OH), 
however, is low. Alcohols with long hydrocarbon chains are insoluble in water because the weaker 
non-polar forces formed between long hydrocarbon chains in the alcohols counteract the forces 
between the hydroxyl groups of water and the alcohol, so that the alcohols mix with themselves 
instead, leading to separation of the mixture into two phases. The rule of thumb that “similar 
dissolves/interacts with similar” can often be used to roughly evaluate whether substances interact 
or are miscible with each other.

Chemical reactions of organic compounds
The polarisation of bonds and accessibility to bonds with high energy may indicate chemical 
reactions involving the breaking and formation of bonds. Those are mostly of a heterogeneous 
character, where electron pairs are involved, but reactions with single electrons are possible, such as 
when wood is subjected to UV-radiation and heating at high temperatures. In this section, we focus 
on reactions involving the heterogeneous breaking and formation of covalent bonds. Alkanes are 
non-polar and fairly unreactive, whereas one bond in the double bond in alkenes has higher energy 
and is more reactive than the other bond; ethene (H2C=CH2) can add water (H2O) to form ethanol 
(CH3-CH2OH). The reaction rate increases in the presence of an acid catalyst, such as hydrochloric 
acid, which is totally dissociated into protonated water (H3O+) and a chloride anion. The proton 
will bind with the double bond in a first step, resulting in a high energy and reactive carbocation 
intermediate. A lone pair of electrons from the electronegative oxygen in water adds to the positively 
charged carbon, followed by a rapid deprotonation to give the alcohol, and the proton can be re-used 
as a catalyst in the first step of the reaction (Figure 1.31).

However, the reaction is reversible, which means that under certain conditions alkene can be 
formed as a result of the dehydration of the alcohol. Removal of the alcohol during hydration of the 
alkene favours the formation of new alcohol molecules in order to maintain the equilibrium, whereas 
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removal of water favours the formation of alkene from alcohol. The stability and concentration of 
the reactants and products, their physical state (solid, liquid or gas) and the reaction temperature are 
also important for the outcome of the reactions and, in some cases, the reaction may take place in 
one direction. The reaction rates are generally lower for large and solid compounds than for small 
compounds in a liquid phase. The formation of ethers by condensation of two alcohol molecules is 
usually less favourable, but will result if the product is stabilised, as is the case when furfurals are 
formed by the heating of monosaccharides. Ethers (R-O-R) are fairly stable and need strong acids to 
be cleaved, but this may occur under milder acid conditions when the ether is activated, such as with 
the β-ether bond in the phenolic arylglycerol-β-aryl ether in some lignins (Figure 1.38).

Another reaction of importance in wood chemistry is the formation of acetals by the reaction of 
an aldehyde and two alcohol molecules catalysed by an acid (Hart et al., 2003). The lone electron 
pair from the oxygen atom in the alcohol (R2OH) will bond to the electropositive carbon in the 
aldehyde (R1HC=O) giving a hemiacetal which is normally not very stable and could reverse to the 
initial compound even under non-catalysed conditions. In the presence of an acid catalyst a new 
alcohol could react with the formed hydroxy group in the hemiacetal to give an acetal and water 
(Figure 1.32). As these reactions are reversible under those conditions, the removal of water moves 
the reaction towards the acetal, whereas the addition of water moves the reaction back towards 
the starting materials. Acetals are stable in strong alkaline conditions, as in the presence of NaOH 
(aqueous), whereas hemiacetals are not.

Ketals and hemiketals are formed in an analogous way by reaction with ketones (R2C=O) and 
alcohols.

Aldehydes can also react with phenolic compounds, but the reaction with the phenolic hydroxyl 
group (PhOH, where Ph refers to the phenyl ring) results in fairly unstable products. The electron pair 
in the aromatic ring can instead bond with the electropositive carbon in the aldehyde by substituting 

Figure 1.31 Hydration of alkene into alcohol catalysed by an acid (proton): Step 1: Protonation of the double bond to form 
a carbocation, Step 2: Nucleophilic attack by water, and Step 3: Deprotonation to form an alcohol.
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with a hydrogen bonded to the ring (electrophilic aromatic substitution) (Hart et al., 2003). The 
reaction can be catalysed by both acid and alkali and a phenolic methylol (HOPhCH2OH) group is 
formed by the reaction with formaldehyde (Figure 1.33).

As the aromatic structure is re-formed in the methylolated phenol (Hart et al., 2003), further 
reactions of formaldehyde with the methylolated phenol, unless blocked by other groups, may 
continue up to a maximum of three methylol groups. The phenolic methylol group (HOPhCH2OH) 
can also react with the double bond in a vacant position in another phenolic unit, forming a more 
stable methylene bridge (HOPhCH2PhOH). Examples of various coupling patterns are shown in 
Figure 1.33 (bottom). The reactions are condensation reactions, which means that a higher molecular 
weight compound and water is formed. In Figure 1.33, three possible dimers are shown and they 

Figure 1.32 Reversibility of acid catalysed acetal formation (R1 = H or hydrocarbon substituent, R2 = hydrocarbon substituent).

Figure 1.33 Examples of acid- and base-catalysed reactions of phenol and formaldehyde.
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can continue to form higher molecular weight polymeric resol-type phenolic compounds when 
base catalysed via reactions with more phenolic methylol groups. During acid catalysis, novolac 
structures are formed with no methylol groups and formaldehyde needs to be added for achieving 
further condensation reactions. As a result of reactions with more extensively methylolated phenols, 
a less flexible cross-linked network structure can be obtained. 

Structure and reactions of wood constituents
Almost all compounds in wood are organic molecules made up of carbon-based skeletons with 
straight, branched and ring structures in which atoms are held together by sharing electron pairs to form 
covalent bonds. Wood consists mainly of carbohydrates which basically consist of monosaccharides.  
In monosaccharides, hydrates (or hydroxyl groups) are covalently bonded to each carbon in a five- or 
six-carbon membered chain in which at least one of the hydroxyls is in the oxidised form, often as a 
terminal group (-CHO). Monosaccharides exist in the form of ring structures, such as β-D-glucose in the 
upper right part in Figure 1.34, essentially a ring-formed hemiacetal (Figure 1.32) in equilibrium with  
the open aldehyde form but also with the α-form of glucose in which the hydroxyl group at C1 points in 
the axial direction (upper left part in Figure 1.34). Glucose can be found mostly in the cambium where  
the biosynthesis of wood occurs. Nearly all carbohydrates in wood (except some mono- and 
oligosaccharides) are polymers consisting of covalently bonded monomers (monosaccharides 
or monosaccharide acids) forming linear and branched chains. Cellulose is the most abundant  
carbohydrate in wood, constituting 40−45% of the total wood mass in which the monomers (β-D-
glucoside) are bonded in the same way; carbon 1 in one unit to carbon 4 in another unit via a glucosidic 
bond (1→4) into an extremely long straight back-bone chain, 10,000–15,000 monosaccharide units in 
the cell wall as shown in the lower part of Figure 1.34 (Goring and Timell, 1962). A glucoside is about 
0.5 nm in size, so the maximal length of a cellulose chain is 5−7 μm, which is about the same as the 
cell wall thickness (Fengel and Wegner, 1989).

Water is formed in connection with formation of glucosidic bonds together with the growing 
chain during cellulose biosynthesis. However, the glucosidic bonds formed can be cleaved by 
reaction with water in the presence of a cellulose-degrading enzyme (cellulase), even under ambient 

Figure 1.34 Equilibrium between β-D-glucose, open form and α-D-glucose (upper), and parts of two cellulose chains 
displaying hydrogen bonds within and between the chains (lower).
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conditions. Acid catalysed hydrolysis (also consuming water) of the glucosidic bond in cellulose 
requires strong acid conditions and heat in contrast to the hydrolysis of many other polysaccharides 
(Figure 1.35). Homolytic cleavage of the glucosidic bond may take place, especially when wood is 
heated at high temperatures under neutral and dry conditions. 

Why are such strong conditions needed when the formation of cellulose in the cell wall takes 
place under much milder conditions? This is because the cellulose chains in wood exist mostly 
in stable crystalline structures with a crystallinity of about 60% (Newman and Hemmingson, 
1990). These crystalline structures are stabilised by forming hydrogen bonds (dotted lines in  
Figure 1.34) between hydroxyl groups and between hydroxyl groups and oxygen in neighbouring 
rings. Hydrogen bonds also exist between cellulose chains which are efficiently packed into three-
dimensional crystalline fibrils joined into microfibrils 2–4 nm in width, as shown in Figure 1.36 
(Donaldson, 2007). At the microcrystal surface, less ordered paracrystalline cellulose chains exist. 
Other molecules, such as hemicelluloses, water or similar polar compounds (preferentially those 
that can form hydrogen bonds) can also interact at the cellulose surfaces. Microfibrils are linked 
by more sensitive amorphous regions and aligned into thicker macrofibrils that can be up to 40 
μm long, achieved by overlapping cellulose chains (Ek et al., 2009). Fibrils are oriented in various 
directions depending on their position in the cell wall. In the S2 layers, the fibrils are almost aligned 
in the fibre direction, but they have other directions in other cell-wall layers (Figure 1.25 and 1.36).

Hemicelluloses are heterogeneous polysaccharides constituting 15−30% of the mass in 
wood and consist mainly of monosaccharides linked to each other by glucosidic bonds (Ek et al., 
2009). The backbone chain in hemicelluloses consists of monosaccharides (β-D-glucose and β-D-

Figure 1.35 Acid catalysed hydrolysis of glucosidic bond in cellulose.

Figure 1.36 Elementary fibril, micro- and macrofibril of cellulose and their orientation in the cell-wall layers  
(Zimmermann et al., 2004).
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mannose in glucomannans and β-D-xylose in xylans) with side groups (β-D-galactose in conifer 
glucomannans, α-L-arabinose in conifer xylans and acetyl groups in broad-leaved xylans as well as 
in conifer glucomannan) and ionising groups (4-O-methylglucuronic acid in xylans). The backbone 
is much shorter than the cellulose chains and consists of 100–200 monomer units (Figure 1.37). 

This heterogeneous structure makes hemicelluloses amorphous with hydroxyl groups freer 
and more accessible to form hydrogen bonds with other compounds such as water. When wood is 
exposed to humid conditions, water molecules substitute with the hydrogen bonds mostly between 

Figure 1.37 Hemicellulose structures: monosaccharides and uronic acid in hemicelluloses (upper two rows), galactoglucomannan 
in conifers (middle), and conifer xylan (lower).
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carbohydrate chains and, therefore, require more space, resulting in a swelling of the cell wall up to 
a moisture content of 25−30% when the cell wall becomes saturated (at the so-called fibre-saturation 
point, FSP). The cell wall swells mostly outwards and the result is a macroscopic swelling of the 
wood, particularly in the transverse direction. Swelling also makes the wood more reactive and 
susceptible to microbial or other attacks. The wood constituents are also softened by the increase 
in moisture content and this occurs to a greater extent in the hemicelluloses than in the cellulose 
and lignin, especially at lower temperatures (Back and Salmén, 1982). To be able to selectively 
separate wood fibres during mechanical pulping, for example, softening at a high moisture content 
and sufficient high temperature of the lignin-rich middle lamella is necessary.

Polysaccharides are polymeric carbohydrates that are non-structural, but they still have 
important functions in wood, such as starch working as a nutrient, pectins which are constituents of 
the primary wall and pit membrane and galactan in tension wood. Further information on structures 
of polysaccharides has been published elsewhere (cf. Ek et al., 2009). Due to their carbohydrate 
origin, they are sensitive to acidic, alkaline and microbiological attacks and the pit membranes can 
be degraded by bacteria when wood is stored in water.

Lignin is also a polymeric compound, constituting 20–30% of the mass in wood. It has a higher 
C:O ratio and a higher calorific value than the carbohydrates and interacts with water to a lesser 
extent than hemicelluloses. The relative content of lignin is high in cell corners and the middle 
lamella but it is also present in the cell wall and assists in binding the wood cell together and in 
making the cell wall less sensitive to moisture. Lignins have a phenolic origin and, in wood, they 
are made up essentially of three phenylpropane units: H-type (p-hydroxyphenylpropane), G-type 
(guaiacylpropane) with one methoxyl (-OCH3) group bonded to the aromatic unit dominant in 
conifers and S-type (syringylpropane) with two methoxyl groups. These last two types form the 
predominant GS-type of lignin in broad-leaved woods (Figure 1.38). 

The presence of these units differs, depending on their position in the tree; compression wood 
has a higher lignin content and a higher content of H-units than the lignin in clear wood (Westermark, 
1985). The middle lamella binds the wood cells together and has relatively more H-units than the 
secondary wall. The phenyl propane units in lignin polymers are linked to each other by ether and 
carbon-carbon covalent bonds in at least 10 different ways, the beta-ether bond (β-O-4) being the 
most common (Figure 1.38). The branching and phenolic content in cell-wall lignin are fairly low, 
but a lower content of uncondensed β-ether structures in the middle lamella has been suggested 
(Westermark, 1985) and this indicates more branching. In broad-leaved species, GS-lignin has more 
β-ether bonds than G-type lignin in conifers. The β-ether bonds are sensitive both to heating and to 
acidic and alkaline conditions (Westermark et al., 1995) and this is important for the delignification 
processes (Gierer, 1980). Such reaction will lower molecular weight and increase the phenolic 
content of lignin. Methoxyl groups bonded to aromatic rings are more stable than β-ether bonds 
under hydrolytic conditions. However, methoxyl groups in lignin could be degraded oxidatively by 
outdoor exposures (see Section 1.6). Thermal modification could lead to cleavage of β-ether bonds 
(Tjeerdsma et al., 1998; Windeisen et al., 2007). Most inter-unit carbon-carbon bonds are stable 
under hydrolytic conditions, but formaldehyde can be formed by splitting off the terminal methylol 
group in the propane chain during such heating. These reactions take place under acid-catalysed 
conditions at lower temperatures than thermal modification (i.e., below the threshold temperature 
of 150°C), especially in the presence of sulphuric acid (Lundquist, 1992). Under certain conditions, 
more stable condensed carbon-carbon structures may be formed (Figure 1.41). Lignin is, to some 
extent, mainly covalently bonded to hemicelluloses such as α-ether bonds (Karlsson et al., 2004; 
Balakshin et al., 2011). Galactoglucomannan in the lignin-hemicellulose matrix is considered to 
interact with cellulose fibril surfaces by hydrogen bonds (Ek et al., 2009). Thus, the ultrastructure 
of a conifer cell wall may be regarded as a series of interconnected layers consisting of cellulose, 
galactoglucomannan, lignin-xylan, galactoglucomannan and cellulose. Lignin-carbohydrate bonds 
can contribute to the (wet) stability of the matrix and explain the oxidative bleaching conditions 
needed to selectively remove residual lignin from pulps.
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Figure 1.38 Building units in lignin and formation of arylglycerol-β-aryl ether (β-ether).
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Figure 1.39 Reactions of unsaturated triglycerides during the curing of drying oils.

The non-structural compounds usually constitute a minor amount of the mass of wood and 
typically consist of low molecular hydrophobic extractives of various types and various solubilities, 
mono-, oligo- and polysaccharides, inorganic salts and small amounts of proteins and peptides. 
Basically, extractives obtained by extraction with organic solvents, such as acetone, are fats, waxes, 
fatty acids, terpenoids (resin acids, monoterpenes and sesquiterpenes, steroids) and stearyl esters, 
and phenols (lignans, tannins). They are considered to be used by the wood for protection (phenols, 
resin acids and terpenes, fatty acids), as nutrients (fats and sugars) and during biosynthesis (steroids, 
proteins, inorganics). These non-structural constituents have relatively little effect on the strength 
properties and the equilibrium moisture content (EMC) of wood, but they may consume some of 
the modifying reagents by reactions with reactive groups, such as hydroxyl groups in carbohydrates 
and phenolic compounds in tannins and lignans, etc. They may also hinder the efficient uptake and 
contact with the wood polymers by oxidative drying of migrated unsaturated oily resins in aspirated 
pits, resulting in ether cross-linking of the side-chains (Figure 1.39). Under alkaline conditions, 
ester bonds in fats, stearyl esters and waxes can be saponified, forming corresponding alcohols and 
ionisable fatty carboxylic groups which can have surfactant properties. Cleavage of ester bonds may 
also take place during acid conditions as well as by heating.

The chemistry of wood modification
When wood is modified, the aim is primarily to reduce the moisture uptake and thereby hinder 
biological degradation by changing the chemical structure instead of adding toxic substances 
(biocides) or using durable trees from, e.g., endangered tropical resources. The modification should 
be undertaken in a way to ensure there is no release of hazardous chemicals as a result of the 
treatment or during the service life of the product. Often, the modification results in a reduction 
in the interaction of the treated wood with moisture and water, so reducing its ability to swell 
and shrink, making the wood more dimensionally stable. Wood modification can be divided into 
two principles: passive and active modification (Hill, 2006). In Figure 1.40, various modification 
methods and their mechanisms of wood protection are presented. 

The degradation of wood-polymer constituents involves a lot of possible reaction and reaction 
routes, some of which have already been presented. Degradation by the splitting of sensitive covalent 
bonds (glucosidic) in carbohydrate polymers increases with increasing temperature and, if water is 
present, it can be consumed during the splitting of these bonds (hydrolysis) catalysed by acid (cf. 
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Figure 1.35). Glucoside bonds in hemicelluloses are degraded more easily than cellulose during 
heating and by hydrolysis in the presence of acid. Bonds to hemicellulose side groups, like arabinose, 
are more sensitive to acid hydrolysis than the backbone chain as suggested by Mäki-Arvela et al., 
2011 (Figure 1.37). Greater losses of carbohydrates were observed with birch than with pine even at 
a slightly lower temperature during thermal modification in open systems (Zaman et al., 2000). The 
formation of soluble xylose-rich carbohydrates during thermal modification was greater in closed 
systems saturated with steam than in an open system (Karlsson et al., 2012). The degradation of 
wood polymers leads to shrinkage of the wood cell wall and, thus, to the dimensions of the wood and 
a small reduction in wood density occurs when degraded materials are removed during the heating. 
Under high pressure conditions, the steam pressure had a greater influence than the peak treatment 
temperature on the degradation of European beech wood (Willems et al., 2015). During thermal 
modification, which is considered to start at ca. 150°C, the degradation reactions are dehydration of 
hydroxyl groups, increasing C:O ratio and the hydrophobicity of the material, although some volatile 
dehydration products, such as furfurals, may be removed during the thermal treatment (Figure 1.41). 
Acetic acid, formed by the hydrolysis of acetyl groups of acetylgalactoglucomannans in conifers, 
for example, together with other acids lower the pH and may further catalyse degradation reactions. 

Figure 1.40 Chemical- and thermal-modification methods, commercial and principle. X − available product, (X) − 
introduced or used in large-scale experiments.
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Thermal modification under closed water-saturated conditions leads to an even lower pH, as has 
been found with birch sp., which has an acetyl content of about 3% (Torniainen et al., 2011; Rowell, 
2012). As a consequence of the formation of more acidic modified-wood products, acid-resistant 
fasteners have to be used in constructions. It appears that there is a difference in the moisture 
uptake capacity of thermally modified wood during remoistening cycles, depending on whether the 
modification has been carried out in the presence of absence of water (Obataya and Tomita, 2002) 
and it has been suggested that this is due to the formation of reversible hydrogen bonds between 

Figure 1.41 Examples of possible condensation products from lignin (upper), and degradation products of hemicelluloses 
during heating (lower).
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hemicelluloses in the dry systems (Willems et al., 2020). The degradation can lead not only to a 
decrease in strength properties in wood but also to a less elastic material when the amorphous and 
flexible carbohydrate polymers are degraded. 

The colour intensity increases with the intensity of treatment, this may be due to degraded 
lignin and also to lignin-like material formed from carbohydrate degradation products. Particularly 
in closed processes, moisture and acids can catalyse the modification reactions and a lower treatment 
temperature can be chosen than in an open process, such as the ThermoWood™ process, to get similar 
browning, although there being some differences in the reactions which occur. High strength and 
durability cannot be achieved by these processes. The material is quite durable but the treated wood 
is more sensitive to in-ground contact than wood from the acetylation and furfurylation processes.

In the presence of oxygen, the rate of degradation of wood is increased and alkali-labile oxidation 
structures may form. Sensitive bonds in lignin, such as β-ether bonds, may be cleaved, increasing 
the amount of phenols (Windeisen et al., 2007), while α-ether bonds (which are more sensitive 
than β-ether bonds) may result in free carbohydrates as a result of cleavage of lignin-carbohydrate 
structures. During heating, the formation of combustible gases may be sufficient to start a chain 
reaction and initiate combustion of the material. However, oxidative conditions are believed to have 
minor importance during the thermal modification of wood due to the inert atmosphere existing 
during the treatments.

Cross-links may occur between wood polymers when wood is heated (Tjeerdsma et al., 1998; 
Boonstra and Tjeerdsma, 2006). Condensation of lignin with itself (upper reaction in Figure 1.41) 
and together with some dehydrated carbohydrate compounds like furfural seems possible (lower 
reaction in Figure 1.41) especially under acidic conditions. Other aldehydes, such as formaldehyde, 
may lead to condensation products with lignin.

Since reactions with wood constituents on the cell-wall surface of the lumen or with pit 
membranes do not, in the long run, protect moisture from entering into and swelling the cell wall, 
the modifying chemicals need pores in the wood in order to be able to reach inner parts of the 
cell wall (Hill, 2006). Nano-pores exist in the cell wall when the wood is in a swollen state, but it 
is uncertain whether they are present in dry cell walls. They are either absent or very small. The 
modifying chemical and any solvent used must be able to find or create voids large enough to permit 
entry into the cell wall, and the covalently bonded penetrated material with low attained solubility 
still requires a greater volume when the solvents and reaction by-products have been removed at 
the end of process. This increases the cell-wall dimensions in the dry state and also the volume of 
the wood. Since wood swelling then becomes more restricted, the cell wall retains less water than 
untreated wood and this lowers the equilibrium moisture content in modified wood and reduces 
the dimensional changes upon drying and wetting. Under certain conditions, however, the swelling 
during treatment is so great that the wood starts to undergo irreversible cracking.

The acetylation of wood (Figure 1.42) is a chemical modification process in which the 
electrophilic reagent (acetic anhydride) is forced by the application of an external pressure to migrate 
through the wood pits, to react with accessible nucleophilic hydroxyl groups in the wood and to 
diffuse and react deeper into the cell wall (Rowell, 1983). Thus, bulking of the cell wall and loss of 
hydrophilic hydroxyl groups reduces the moisture uptake, and increases the resistance to swelling 
and the decay of wood (Hill and Jones, 1996; Hill, 2006). So far, radiata pine has mostly been used 
commercially due to its low density and open pore structure, but fibres in acetylated fibreboards can 
be more easily reacted than the solid wood products, and this can favour the use of other species.

As the anhydride is reactive with water, any moisture present will consume the reagent. 
The reactivity of the resulting acetic acid is not high and it will not further react with hydroxyl 
groups to any significant extent although it may work as a solvent (Rowell, 2012) and also assist 
in the degradation of wood constituents, especially if the temperature becomes too high due to the 
exorthermic nature of the acetylation reaction. Removal of the residual reaction solution at the end 
of the process leaves a bulked cell wall with increased wood dimensions, but also an essentially 
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empty lumen with only small amounts of residual acetic acid. This and the extent of acetylation 
depend on several factors and is discussed together with other aspects of acetylation in Section 2.2.

The cross-linking of wood constituents by forming a bridge structure with the added chemical 
may also restrict the uptake of water by the cell wall, so that the total volume of the swollen wood 
cell wall at a given relative humidity is lowered (Figure 1.43 and Figure 1.44). Such reactions 
may be difficult to verify, especially if they are less prevalent, for example, during furfurylation  
(Figure 2.21). The formation of cross-linked structures can be supported if the modifying chemical 
contains more than one functionality or reactive group, if there is sufficient reactivity to form stable 
bonds with wood, if the size of the molecule is suitable for cross-linking and if the polarity of the 
molecule is appropriate for it to be mixed with the wood polymers. 

Formaldehyde (HCHO) is known to react with phenols (Figure 1.33) and also with urea and 
melamine, forming synthetic adhesives. It seems also to react with wood polymers, especially in the 
presence of strong acid catalysts (Tarkow and Stamm, 1953) as the treatment gives a material with 
high resistance to swelling at low percentage weight gain. Formaldehyde itself has a low molecular 
weight, however, and a fairer comparison of the degree of reaction might be to consider the number 
of moles reacted. Nevertheless, formaldehyde may work as a cross-linker between lignin units but to 
a lower extent than when it reacts with phenols to form phenol-formaldehyde (PF) resin. The small 
formaldehyde molecule is not as flexible as larger aldehydes, such as glutaraldehyde, and this results 
in a brittle material. Formaldehyde itself is a gas and is seldom used due to its hazardous effects on 
human health. When used in the formation of PF and other formaldehyde-containing resin systems, 
it is applied as formalin (typically a 40% solution of formaldehyde in water).

Phenolic or resorcinol (PF or RF respectively) resins, formed from phenols or resorcinol 
(1,3-benzenediol) and formaldehyde, can be used as adhesives for wood products and also to 
modify and stabilise wood if an appropriately low molecular weight resin is used (Stamm and  
Seborg, 1939).

As they fill up lumen, the resin reacts/condenses with itself into larger more stable thermoset 
fragments when heated under alkaline conditions (Figure 1.43). 

When an aqueous resin with relatively low viscosity and low molecular weight is used, a 
bulking effect is usually noted, and impregnation of the cell wall leads to a softening of the wood 
(Shams and Yano, 2011). Chemical bridges (like stable methylene) can form between reactive sites 
(activated aromatic carbons) in lignin and methylol groups (-CH2OH) in PF-resin when wood is 
treated and cured with such a resin (Yelle and Ralph, 2016). The treatment leads to an increase of 
density which can be further increased by the application of pressure and heat during the curing of 
the softened wood in the Compreg™ process. Phenolic reagents may need careful handling and 
are based on fossil fuels, but they are included in this presentation as phenols may be replaced by 
bioderived alternatives. 

An attractive wood modifier is 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) 
originally developed as a stable anti-wrinkling agent for fabrics, it has more recently been proposed 
and tested as an agent for wood modification. A stable bulking effect is seen when permeable wood 

Figure 1.42 Acetylation of wood by acetic anhydride.
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species are treated with aqueous DMDHEU (Militz, 1993; Emmerich et al., 2019). It may react with 
itself forming larger condensation products and at high treatment levels it can start to fill the lumen. 

DMDHEU can also react with hydroxyl groups in wood constituents in the cell wall, forming new 
chemical bonds to these constituents (Figure 1.44). DMDHEU has two or more reactive functional 
groups and it has been suggested that cross-linked structures are formed in wood (Emmerich, 2019). 
Wood constituents may degrade due to high contents of added Lewis acid catalysts, and unreacted 
DMDHEU may lose formaldehyde during the process. 

Treatment containing silicate/silane agents involves several types of more or less reactive 
compounds which may penetrate and swell the cell wall by reacting with hydroxyl groups in the 

Figure 1.43 Curing of phenolic resin.
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wood constituents or by filling up the lumen in a more passive way, involving polymerisation 
reactions with the reagent itself. Treatment with water glass (sodium silicate) involves penetration 
into the wood but not into the wood cell wall, as bulking does not normally occur. Such alkaline 
silicates may need to be fixed to the wood to avoid leaching when the wood is exposed to water. 
There are numerous silanes and many of them are silyl ethers which will be hydrolysed in the 
presence of moisture to a silanol releasing the corresponding alcohol before reacting with itself 
(Figure 1.45) or with hydroxyl groups in the wood constituents (Mai et al., 2003). 

The stability of the formed products may be influenced by the reacted silica-based compound 
itself, as well as by conditions such as the presence of acid together with moisture and heat. 

Furfuryl alcohol or a similar agent reacts via condensation reactions, forming methylene and 
ether bridges, usually in the presence of an organic acid catalyst (Figure 1.45). Formaldehyde may be 
released during the treatments but could condense leading to a branched and cross-linked structure 
(Figures 1.46c and 1.46e, respectively).

Based on studies using model compounds of lignin, it has been suggested that bonds are formed 
between the furfuryl alcohol and the lignin but this is probably only to a minor extent (see the 
furfurylation section in Chapter 2). The cell wall is bulked by treatment and the percentage weight 
gain after hardening of the alcohol can be quite high. The lumen will, therefore, also start to be filled 
and that leads to the second type of treatment – passive modification.

Passive modification involves lumen filling and/or cell wall filling without a reaction with the 
wood constituents. Oils, waxes and paraffins can penetrate, if the viscosity is suitable through wood 
pits and more or less fill the larger pores (lumen) in the wood. Oils and waxes are mostly non-polar 
fatty esters and paraffins (Figure 1.47) and the latter may be heated to achieve a suitable viscosity. It 
may be more difficult for products like solid carnuba oil to penetrate into wood, but if they can be 
made less viscous (by heating or as an emulsion) they can be favourable because of less exudation 
during use.

The hydrophobic nature and fairly large molecular size of compounds, such as waxes and 
triglycerides, are often cited as the reasons for their not entering the hydrophilic cell wall when 

Figure 1.44 Reaction of dimethylol dihydroxy ethylene urea (DMDHEU) during wood modification.

Figure 1.45 Reactions of silyl ether, tetraethyl-orthosilicate (TEOS) in presence of water (Mai et al., 2003).
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Figure 1.46 Reactions of furfuryl alcohol (FA): (a) condensation reaction forming a dimer of FA, capable of further reaction 
to trimer, etc., (b) condensation reaction with termination of polymerisation, (c) loss of formaldehyde during polymerisation 
of termination products, (d) cross-linking of methylene-bridged furfuryl alcohols with furfuryl alcohol, and (e) reaction of 

two methylene-bridged furfuryl groups with formaldehyde.
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wood is exposed to such agents. Monomers, such as styrene and methyl methacrylate (often used 
in the plastic industries), may not efficiently penetrate into the cell wall either, despite their small 
molecular size, probably due to their more hydrophobic nature (Ermeyadan et al., 2014). Exudation 
from wood impregnated with oily substances may be a problem, especially when they are exposed 
to varying temperature conditions. This is because the drying/curing of oils (the formation of a 
cross-linked covalently bonded network between unsaturated hydrocarbon chains as shown in 
Figure 1.39) is slow due to limited access to oxygen inside the wood, as well as the presence of 
lignin (Salehi, 2012). Ester bonds are sensitive to both alkaline and acid conditions and to enzymes. 
Fats are known to be consumed under mild thermal wood modification conditions (Nuopponen  
et al., 2004). Creosote oils are coal distillates containing polyaromatic hydrocarbons and phenols, 
and they have been used to impregnate wooden poles and railway sleepers, but they will be phased 
out in many countries in the coming years due to their toxicity and are not considered in this book. 

Polyethylene glycol (PEG) (-CH2CH2O-)n is basically a back-bone chain condensation product 
of ethylene glycol (OHCH2CH2OH) with various aliphatic chain lengths, producing a range of 
hydrophilic characters and solubilities. If a suitable molecular size of PEG is chosen, the cell wall 
can be impregnated. However, as it is applied in a water-soluble form, it will be leached out when 
exposed to weathering or other water-treatment conditions (Wahlström and Lindberg, 1999).

Chitosan is a polymeric product formed by de-acetylation and partially hydrolysis of the 
glucosidic bond of chitin, which is found in the shells of crabs, crayfish, shrimps and prawns. Chitosan 
consists of glucose amine and varying amounts of N-acetyl glucose amine units glucosidically 
bonded to each other β(1→4) (Figure 1.48). 

The maximum size of a particle able to pass through a pit membrane is about 200 nm and into 
a cell wall 100 times smaller when the cell wall is in the swollen state. Commercial preparations of 
chitosan have a size in the range of 10–60 nm and it is therefore assumed that chitosan is deposited 
mostly in the lumen. The material has only a minor influence on wood swelling but it has fungicidal 
properties. It is possible that, when dissolved under acidic water conditions, the resulting protonated 
amino groups (-NH3

+) in the chitosan will more easily interact with the cell walls of fungi, but also 
attach with ionising groups (carboxylic) in the wood constituents.

Figure 1.47 Chemical structure of: (a) triglycerides, (b) waxes, and (c) paraffins.
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Water-borne amino-plastic resins, such as melamine-urea-formaldehyde (MUF), can be used as 
adhesives but also as modifying agents in wood products (Hansmann et al., 2006), especially with 
low molecular MF-resin, such as metholylated melamines (Figure 1.49).

During impregnation, the resin fills the lumen and other larger pores and, if it is not too strongly 
cured, it can penetrate into the bulk of the cell wall where it can condense with itself forming a three-
dimensional hardened structure (Norimoto and Gril, 1993; Lukowsky, 1999). In contrast to phenolic 
resins, melamine-urea formaldehyde (MUF) resin is not considered to react with wood components 
but it gives a rather brittle modified product. Careful control of the curing conditions is necessary to 
avoid the emission of formaldehyde.

Another commercial process, the Indurite™ process, involved the treatment of wood (radiata 
pine) with a mixture of starch and an amino-plastic resin. It can be considered to have been a passive 
process, although it was suggested that small amounts of cross-linker, such as formaldehyde or the 
dialdehyde glutaraldehyde (OHC-(CH2)3-CHO), needed to be added in order to improve the wood 
properties.

1.4	 The	wood-water	relationship
As a biological material, a tree has an inherent need for water to facilitate its growth and sustenance. 
The same is true of wood-destroying mechanisms, which also depend on the presence of sufficient 
quantities of water to allow their bio-degradative mechanisms (Engelund Thybring et al., 2018). It is 
when felled timber is processed for use in construction that its usual natural parameters are changed. 

Figure 1.48 Deacetylation of chitin to chitosan.
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This section considers the relationship between wood and water in its natural and processed states, 
and how the performance of wood can be compromised through poor design. Methods for assessing 
the amounts of water present are also considered, together with the effects of wood modification on 
moisture levels.

Water in wood
The interaction of wood and water was clearly described by Skaar (1988):

Wood is a hygroscopic material, and its mass, dimensions and density, as well as its mechanical, 
elastic, electrical, thermal, and transport properties are affected by its moisture content. Wood 
is formed in a water‑saturated environment in the living tree, but most of the water is removed 
prior to use. In use its moisture content and dependent properties change with changes in ambient 
conditions, particularly relative humidity. Wood is anisotropic with respect to most of its physical 

Figure 1.49 Melamine resin formation.
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properties. The thermodynamics of moisture sorption, including enthalpy, free energy and entropy 
changes, are moisture dependent. Water sorption by wood is treated in terms of both surface and 
solution theories. Moisture transport in wood is also treated, particularly in relation to drying.

Within wood science, the moisture content is most commonly determined by the ratio:

 
w

dry

m
m

ω =  (1.1)

where ω (kg∙kg–1 or often in %) is the moisture content, mw is the mass of water, and mdry is the 
dry mass. Since water in wood can be present both in cell walls and in the macro-void structure  
(i.e., mainly lumen), the maximum moisture content is the sum of the amounts of water present in 
cell walls and macro-voids.

Freshly cut and never-dried wood is usually known as ‘‘green’’ wood. In this state, the cell walls 
are water saturated and, in addition, water is found as a liquid, liquid–vapour mixture or vapour 
in cell lumens (Figure 1.50). The moisture state of green wood is not a unique quantity; it varies 
between tree species, within the tree, for example in the sapwood or heartwood, between seasons (if 
in a temporal zone) and possibly also with the time of day. This is clearly shown in Table 1.5, which 
gives an overview of a range of broad-leaved and conifer tree species (Glass and Zelinka, 2010).

The moisture content of the heartwood in conifers is typically much lower than that in 
sapwood. This is not always the case in broad-leaved trees, where the relation between moisture 
content in heartwood and sapwood depends not only on the species but on the season (Pallardy and  
Kozlowski, 2008). 

As shown in Figure 1.50, when wood is dried, there is a reduction in the moisture content, and 
the cell walls eventually reach an unsaturated state. The moisture content at the transition point 
from saturated to unsaturated state, when all of the free water has evaporated is defined as the fibre 
saturation point (FSP). As the drying proceeds, the wood shrinks, and the reverse occurs if the 
wood is rewetted. The degrees of shrinkage depend upon the direction in relation to the direction 
of the grain, the shrinkage (swelling) being greatest in the tangential direction of the growth rings, 
and about half as much in the radial direction across the rings. The swelling is very low in the 
longitudinal direction. Tables of dimensional stability are available in the scientific literature  
(e.g., Glass and Zelinka, 2010), whilst reviews of moisture in wood (e.g., Engelund Thybring et al., 
2013) provide details of studies and current understanding. 

It is well known that the components of wood are capable of interacting with water through 
hydrogen bonding, the levels of which have been studied by several groups and compiled in  
Table 1.6 (Engelund Thybring et al., 2013; Engelund Thybring et al., 2020). The potential availability 
of OH groups is shown schematically in Figure 1.51, although maximum availability can never be 
achieved, especially when in situ within the wood cellular structure.

Figure 1.50 Diagram showing the drying process of green wood (green wood to the left, dry wood to the right).
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Table	1.5 Average moisture contents of green wood mainly from North American species (based on data from: Glass and 
Zelinka, 2010). MC − moisture content, HW − heartwood, SW − sapwood.

Species Broad-leaved	trees MC	(%)	in: Species Conifer	trees MC	(%)	in:

HW SW HW SW

Alder Red alder - 97 Cedar Eastern red cedar 33 -

Apple Apple 81 74 Incense cedar 40 213

Ash Black ash 95 - Port Orford-cedar 50 98

Green ash - 58 Western red cedar 58 249

White ash 46 44 Yellow cedar 32 166

Aspen Aspen (Europe) - 110 Cypress Bald cypress 121 171

Aspen (USA) 95 113 Douglas fir Douglas fir (coast) 37 115

Basswood American basswood 81 133 Fir Balsam fir 88 173

Beech American beech 55 72 Grand fir 91 136

Birch Paper birch 89 72 Noble fir 34 115

Silver birch - 70 Pacific silver fir 55 164

Sweet birch 75 70 White fir 98 160

Yellow birch 74 72 Hemlock Eastern hemlock 97 119

Cherry Black cherry 58 - Western hemlock 85 170

Chestnut American chestnut 120 - Larch Tamarack 49 -

Cottonwood Cottonwood 162 146 Western larch 54 119

Elm American elm 95 92 Pine Loblolly pine 33 110

Cedar elm 66 61 Lodgepole pine 41 120

Rock elm 44 57 Longleaf pine 31 106

Hackberry Hackberry 61 65 Ponderosa pine 40 148

Hickory Bitternut hickory 80 54 Red pine 32 134

Mockernut hickory 70 52 Scots pine 35 134

Pignut hickory 71 49 Shortleaf pine 32 122

Red hickory 69 52 Sugar pine 98 219

Sand hickory 68 50 Western white pine 62 148

Water hickory 97 60 Redwood Redwood 86 210

Magnolia Magnolia 80 104 Spruce Black spruce 52 113

Maple Silver maple 58 97 Engelmann spruce 51 173

Sugar maple 65 72 Norway spruce 37 133

Oak California black oak 76 75 Sitka spruce 41 142

Northern red oak 80 69

Southern red oak 83 75

Water oak 81 81

White oak 64 78

Willow oak 82 74

Sweetgum Sweetgum 79 137

Sycamore American sycamore 114 130

Tulip tree Yellow poplar 83 106

Tupelo Black tupelo 87 115

Swamp tupelo 101 108

Water tupelo 150 116

Walnut Black walnut 90 73
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Moisture of wood in service
Moisture is more or less omnipresent in wood since water molecules can be absorbed from the 
surrounding air, but the relative humidity of the air may be affected inter alia by the season, daily 
temperature variations, heating regimes within buildings, etc. Wood in use can also become wet in 
direct contact with liquid water, as typified by precipitation in various forms, such as rain, hail or 
snow. Wood used outdoors without shelter is, therefore, frequently exposed to precipitation, which 
can be further intensified in the form of wind-driven rain (Nore et al., 2007; Abuku et al., 2009; 
Barreira and de Freitas, 2013) and splash water (Glass and TenWolde, 2007; Bornemann et al., 2014).

There is almost permanent wetting if the material is in direct contact with freshwater, sea water 
or moist soil. The European Use Class (UC) system according to EN 335 (CEN 2013) does not 
distinguish between exposure to fresh water and soil contact, although the Use Classes are defined 
by moisture conditions and potential degrading organisms in a specific use condition. According to 
EN 335, the Use Classes are defined as shown in Table 1.7.

Based on the definitions in Table 1.7 and experience in monitoring timber in use, Niklewski  
et al. (2017) suggested the following moisture content limitations for various Use Classes:

 • UC2: the moisture content is occasionally > 20%, with a median of < 17.5% 
 • UC3.1: the moisture content is frequently > 20%, with a median of 20 ± 2.5%
 • UC3.2: the moisture content is frequently > 20%, with a median of 25 ± 2.5% 
 • UC4: the moisture content is rarely or never < 20%, with a median > 27.5% 

Decay risk
It is well known that the continued exposure of wood to high levels of moisture can increase the risk 
of biological decay, particularly due to fungal attack. Niklewski et al. (2017), showed that the decay 
risk for wood in different Use Classes can alter the overall performance of the wood component and 
risk its premature failure. The Use Classes, as defined by EN 335, refer to the decay risks associated 
with different wood-destroying organisms, and should be used in conjunction with Service Class 
definitions in EN 1995-1-1, i.e., Eurocode 5 (CEN, 2010), which define strength values and can 
be used to calculate deformations of structural timber members under defined environmental 
conditions, as shown in Table 1.8.

The decay risk is significantly affected by the macro- and micro-climate. The local influences 
can be seen in the Use Classes determined for various parts of a road bridge in Spain, showing how 
localised cover can have a significant effect on the observed Use Class (Figure 1.52). This study by 
Lorenzo (2016) indicated the variation in performance on either side of the bridge, emphasising the 
north-south variation in material service life. 

Early work into better understanding these effects focused on conditions in the USA (Scheffer, 
1971), where four different sites were initially evaluated in terms of the effects of temperature and 

Table	1.6 OH groups present in different wood polymeric components (Engelund Thybring et al., 2013).

Wood	polymer Formula	unit Molecular	mass	(g/mol) OH-groups	present OH	concentration	(mmol/g)

Cellulose C12H20O10 324 6f 18.5f

Xylana C33H52O24 833 12 14.4

Glucomannanb C30H44O24R6
g 795−1,049 9−15 8.6−18.8

Ligninc C160H178O58 3,029 24 7.9

Lignind C278H300O96 5,177 29 7.5

Lignine C301H335O110 5,713 45 7.9

Formulae derived from (a) and (b) Sjöström, 1993, (c) Adler, 1977, (d) Sakakibara, 1980, and (e) Reid, 1995
f only 33% of cellulose OH groups are accessible to water. This gives a water-accessible OH concentration in situ of 

cellulose of 6.1 mmol/g
g R = CH3CO or H
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Figure 1.51 Overview of potentially available OH groups (Engelund Thybring, 2014).

local rainfall on the hazard potential of timber and classified according to the Scheffer’s Climate 
Index: 
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where T is the mean day temperature of the month (in Fahrenheit) and D is the number of days 
with more than 2.5 mm (0.1 inch) of rain per month. The original data showed that the decay 
hazard ranged from 0.0 for Yuma, Arizona to 137.5 for West Palm Beach, Florida, and that within 
continental USA three distinct climate zones were noted, indicating three levels of above-ground 
decay potential. The concept of the Scheffer’s Climate Index has been further applied to a range of 
regions, including Europe, as shown in Figure 1.53.

As these studies have developed and expanded, the effect of wind-driven rain has become 
more apparent and this has led to its inclusion in hazard assessment. As a result, the relationships 
between total rain fall, rain fall intensity, wind speed, and wind direction have been assessed to 

Table	1.8 Service Classes according to EN 1995-1-1 (CEN, 2010).

Service	Class Description

1 Characterised by a moisture content in the materials corresponding to a temperature of 20°C and the 
relative humidity of the surrounding air exceeding 65% for only a few weeks per year 

2 Characterised by a moisture content in the materials corresponding to a temperature of 20°C and the 
relative humidity of the surrounding air exceeding 85% for only a few weeks per year

3 Characterised by climatic conditions leading to higher moisture contents than in Service Class 2

Table	1.7 Overview of Use Class classifications according to EN 335 (CEN, 2013).

Use	Class Definition	according	to	EN	335

1 Situations in which the wood or wood-based product is inside a construction, not exposed to the weather 
and wetting. 
The attack by disfiguring fungi or wood-destroying fungi is insignificant and always accidental. 
Attack by wood-boring insects, including termites, is possible although the frequency and importance of the 
insect occurrence depends on the geographical region.

2 Situations in which the wood or wood-based product is under cover and not exposed to the weather 
(particularly rain and driven rain) but where occasional, but not persistent, wetting can occur. 
In this Use Class, condensation of water on the surface of wood and wood-based products may occur. 
Attack by disfiguring fungi and wood-destroying fungi is possible. 
Attack by wood-boring insects, including termites, is possible although the frequency and importance of the 
insect risk depends on the geographical region.

3 Situations in which the wood or wood-based product is above ground and exposed to the weather 
(particularly rain). 
Attack by disfiguring fungi and wood-destroying fungi is possible. 
Attack by wood-boring insects, including termites, is possible although the frequency and importance of the 
insect risk depends on the geographical region1). 
A large variety of in-use situations exist and, when relevant, Use Class 3 may be divided into two sub-
classes Use Class 3.1 and Use Class 3.2. 

3.1 In this situation, the wood and wood-based products will not remain wet for long periods. Water will not 
accumulate.

3.2 In this situation, the wood and wood-based products will remain wet for long periods. Water may 
accumulate.

4 A situation in which the wood or wood-based product is in direct contact with ground and/or fresh water. 
Attack by disfiguring fungi and wood-destroying fungi is possible.
Attack by wood-boring insects, including termites, is possible although the frequency and importance of the 
insect occurrence depends on the geographical region.

5 A situation in which the wood or wood-based product is permanently or regularly submerged in salt water 
(i.e., sea water and brackish water). 
Attack by invertebrate marine organisms is the principal problem, particularly the warmer waters where 
organisms such as Limnoria spp., Teredo spp. and Pholads can cause significant damage. Attack by wood-
destroying fungi and growth of surface moulds and staining fungi is also possible. 
The portion of certain components above water, for example harbour piles, can be exposed to wood-boring 
insects.
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Figure 1.53 Relative decay potential for Europe defined in terms of Scheffer’s Climate Index for various European sites 
(Brischke et al., 2011a).

Figure 1.52 Examples of Use Classes from a road bridge in Spain (courtesy of David Lorenzo).
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create wind-driven rain maps. These studies are helping in developing better methods for assessing 
risks to timber components in use (e.g., cladding). A decay-risk model based on laboratory data 
was used to estimate wood decay across Europe (Viitanen et al., 2010). As a result, it was possible 
to determine the mass of Scots pine sapwood damaged as a result of brown rot decay related 
to the level of exposure to rain (Figure 1.54) and for similar wood samples protected from rain  
(Figure 1.55). Since the data in Figure 1.54 was based only on relative humidity and temperature data, 
no capillary uptake of moisture could be attributed via this model. The model appeared to deliver 
conservative results for sheltered wood. When wood was protected from rain—and provided there 
was no external moisture source—a lower loss of mass was expected from a biological viewpoint 
since the presence of liquid water inside wood was an essential requirement for degradation by fungi.

Figure 1.54 Modelled percentage mass loss of small pieces of Scots pine sapwood exposed to rain over a period of 10 years 
(1961–1979) in Europe (Viitanen et al., 2010).

Figure 1.55 Modelled percentage mass loss of small pieces of Scots pine sapwood protected from rain over a period of  
10 years in Europe (Viitanen et al., 2010).
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Frühwald Hansson et al. (2012) developed a dose-based decay hazard map, further describing 
the relationship between wood moisture content and temperature and weather conditions, relative 
humidity, temperature and precipitation. The mapping was based on data collected from 206 sites 
across 38 European countries, standardised with respect to a fixed location, selected to be Uppsala 
in Sweden. Values below 1.0 were deemed to have a lower decay potential than Uppsala, and higher 
values a greater decay potential. 

Comparison of data from different sites and different countries allowed for isoplethic mapping, 
as shown in Figure 1.56, where the dark red colour (e.g., western Ireland, north-west Spain) depicts 

Figure 1.56 Relative decay potential in Europe relative to that in Uppsala, Sweden (Frühwald Hansson et al., 2012).
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the areas of greatest decay risk and dark blue (e.g., most of Sweden and Finland) those of lowest 
decay risk.

Determining moisture in wood
It has already been pointed out that wood is a hygroscopic construction material. This means that 
the material constantly strives to remain in equilibrium with the local climate, i.e., the relative 
humidity (RH) and the temperature. The equilibrium moisture content (EMC) is defined as the 
moisture content of the wood when it is in equilibrium with the local climate conditions.

If the moisture content of the wood is higher than the equilibrium moisture content, the wood 
will dry out and if it is lower the wood will take up moisture. When the moisture content changes, 
below the fibre saturation point, the wood changes its volume, depending on whether moisture is 
being released or absorbed, the wood shrinks or swells. The dimension, strength and resistance to 
decay are key properties of wood that are affected by moisture.

The atmospheric content of water vapour, its vapour concentration, is usually stated in grams of 
water per cubic metre air and it varies throughout the year, depending on the climatic conditions in 
the particular region. For example in Sweden, the vapour concentration outdoors is at its highest in 
the summer (9–11 grams per cubic metre) and lowest in the winter (3–5 grams per cubic metre)—
while the relative humidity and, thus, the wood’s equilibrium moisture content in outdoor conditions 
is lowest in the summer (65–75% and 11–15% respectively) and highest in the winter (90–95% and 
19–23% respectively). 

Physically, the relative humidity is the ratio between the actual water vapour’s partial pressure 
of the air and its saturation pressure at the temperature in question. The relative humidity of the air 
indoors in a heated room is highest in summer (45–60%) and lowest in winter (10–25%). The colder 
it is outdoors, the drier the air indoors. The moisture content in wood, both indoors and outdoors, 
adapts to the relative humidity and temperature of its surroundings. In heated Swedish homes in mid 
Sweden, the moisture content in wood averages out across the year at 7.5%, with the highest figures 
in summer (7–12%) and the lowest in winter (2–6%). On average, the indoor climate is drier in the 
north of Sweden than in the south during winter.

The most accurate yet simple method for measuring the moisture content in wood is through 
a gravimetric determination before and after drying. In the gravimetric method, which gives the 
mean value for the moisture content of the tested sample, the weight is first determined, after which 
the sample is then fully dried in an oven at 103°C, in accordance with EN 13183 (CEN, 2002a). 
Other more practical, but not as accurate methods exist. For exterior plywood, Van den Bulcke  
et al. (2009) mounted samples on a load cell and exposed them to climatic conditions, with variations 
due to rain and wind being taking in account through an inert material mounted onto an adjacent 
load cell.

Another indirect method of determining the moisture content is by measuring electrical resistance. 
Typically, wood is an electrical insulator, but the presence of moisture allows electrical current to be 
conducted. Readings are normally taken using stainless steel nails or screws attached to or inserted 
into the specimens to serve as electrodes. In some cases (Brischke et al., 2008), electrodes require 
a non-conductive covering whereby the tops need to be free to guarantee a top to top measurement, 
as shown in Figure 1.57. Resistive methods allow the moisture content to be determined at a 
certain position within a test specimen. The most common method used follows that outlined in 
EN 13183-2 (CEN, 2002b), where electrodes are hammered into the wood surface at a distance  
300 mm from the end of a sample, to a depth of 0.3 times that of its thickness. The desire to 
undertake continual monitoring has, however, led to an increase in the use of the method reported by 
Brischke et al. (2008), and it has become a common method of analysis in many European research 
institutes and universities.

Instead of measuring the electrical resistance, it is also possible to determine the moisture 
content using a capacitance method, as outlined in EN 13813-3 (CEN, 2005). A capacitive electric 
field forms between the probes and the test material, and a higher moisture content leads to a high 
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dielectric constant, thus increasing the capacity. The capacitive method is a relative measurement, 
which means that the test result is given as the difference between the values for the dry and wet 
materials. Capacitive measurements suffer, however, from a strong relationship between permittivity 
and wood density, which is often unknown and may vary within a test object.

These methods are summarised in the work of Dietsch et al. (2015), together with other methods, 
some of which are gaining in popularity and are described below.

Sorption studies with dynamic vapour sorption (DVS) equipment
The rate at which wood adsorbs and desorbs water varies for each species. Never-dried wood, 
also known as green wood, has a desorption isotherm higher than the adsorption and desorption 
isotherms of oven-dried wood. The oven-dried desorption isotherm is always higher than the 
adsorption isotherm (Figure 1.58). The difference between desorption and adsorption curves is 
known as sorption hysteresis and this exists in many hygroscopic materials (Skaar, 1988). It is 
expressed as the ratio of the adsorption (A) to the desorption (D) moisture content at a given relative 
humidity. The A:D ratio ranges from 0.785 to 0.844 (mean value 0.812 ± 0.023) for conifer wood 
and 0.790 to 0.849 (mean 0.828 ± 0.018) for broad-leaved wood. Sorption hysteresis decreases with 
increasing temperature and disappears at a temperature of about 75°C (Skaar, 1988).

The theory behind the sorption process has been well documented (e.g., Engelund Thybring, 
2013), and the thermodynamics of the process can be explained by the fact that any moisture change 

Figure 1.58 Typical adsorption and desorption isotherms for wood.

Figure 1.57 Method for connecting electrodes for continuous moisture monitoring of wood (Brischke et al., 2008).
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in wood is usually accompanied by an exchange of heat, heat being generated during adsorption 
via an exothermic process or consumed during desorption via an endothermic process (Zhao  
et al., 2013). The overall thermodynamic processes involved were described by Yang and Ma (2016) 
during their evaluations of the moisture sorption by a hybrid poplar.

Traditionally, one of the problems involved when undertaking sorption isotherm studies was 
the need to equilibrate samples to fixed relative humidities, using various salt solutions. This 
time-intensive method was made considerably easier in the 1990s through the development and 
commercialisation of dynamic vapour sorption (DVS) equipment. Since then, DVS has become 
an integral component of the equipment in most research facilities, whereby samples can easily be 
tested from one relative humidity to another as well as over a range of temperatures. Many studies 
of various timber species have been reported, e.g., Sitka spruce (Hill et al., 2010), radiata pine, black 
wattle and sesendok (Zaihan et al., 2009). Recent work by Uimonen et al. (2019) has demonstrated 
that it is possible to use DVS to ascertain the accessibility of hydroxyl groups using deuterium oxide 
as well as using alcohols as inclusion compounds. 

X‑ray computed tomography (CT)
X-ray computed tomography (CT) is a powerful method for the non-destructive evaluation of 
three-dimensional wood density and moisture content in wood and other bio-based materials. The 
density can be determined with an accuracy of about ±3 kg/m3 for large specimens (sawn-timber 
dimension), and the accuracy in average moisture content below and above the fibre saturation point 
can be determined with an accuracy of about ±1 percent point. It is also possible to measure the 
density and moisture content in a randomly chosen volume element of say 1 × 1 × 1 mm within the 
wood. CT scanning can also be used for evaluating:

 • the development of fungal attack in wood,
 • the development of attack by marine borers in wood,
 • the distribution and rate of penetration of preservatives or wood modification chemicals into 

wood, and
 • to evaluate wood drying after impregnation.

X-ray CT was introduced in the medical field in the early 1970s to obtain a density profile 
through a body following the same principle as in other radiographic technologies. The technique 
was developed by Hounsfield (1973) and Cormack (1963) and they were awarded the Nobel Prize 
in physiology and medicine in 1979 for their work. This technique is nowadays a standard medical 
examination method for investigating the possible presence and size of tumours in the brain, for 
example. This X-ray computed tomography scanning technology has recently been developed 
as an industrial tool for outer geometry assessment and internal feature detection in logs for the 
optimisation of the sawing/cutting processes in the sawmill and veneer industries. In wood science, 
CT is used mostly for steady-state studies of internal anatomical features of the wood material, 
but it is also possible to study processes such as drying, thermal modification, water absorption, 
internal and external cracking, and material deformation in a temperature- and humidity-controlled 
environment. 

CT is an imaging technique that measures the amount of X-radiation sufficient to pass through a 
body of a given material, a property that is defined by the attenuation coefficient of the material. The 
working principle of an X-ray CT scanner is that X-rays are sent through a material and the intensity 
of X-ray photons that reach the detector at the other side per unit time is quantified. The X-rays are 
generated in the X-ray tube, which is in a fixed position in relation to the detectors at the opposite 
side. In general, the X-ray tube and the detector rotate around the scanned object, but in other CT 
scanners, the scanned object rotates while the tube and detectors remain stationary, which simplifies 
the mechanics of the device. After the rotation is completed, a computer can calculate the X-ray 
attenuation in small volume elements (voxels) within the entire scanned volume (Figure 1.59).
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The theoretical background of CT lies within Lambert-Beer’s law, which describe an exponential 
relationship between the intensity of the radiation and the attenuation coefficient:

 I = I0e–μd (1.3)

where I is the intensity of the transmitted X-ray beam, I0 is the intensity of the incident X-ray beam, 
µ is the linear attenuation coefficient of the material along the transmission path, d is the thickness 
of the body and e is Euler’s constant.

CT images are presented in a grey scale and, for most biological materials, the grey scale values 
are almost linearly related to density, being darker for lower density and brighter for higher density.

The linear attenuation coefficient is normalised with respect to the linear attenuation coefficient 
of water, leading to the CT number or Hounsfield number, according to:

1000 ⋅ −(µ µ )
 CT number = x water  (1.4)µ µwater − air

where µx is the linear attenuation coefficient of the scanned material, µwater is the linear attenuation 
coefficient of water, and µair is the linear attenuation coefficient of air. The formula applies for CT 
scanners with an average photon energy of 73 keV. In Equation 1.4, a CT number of –1,000 is the 
attenuation value for air, and a CT number of 0 is the value for water.

The image reconstruction results in a map of the inhomogeneity of the cross section in a position 
perpendicular to the rotation axis. This map can be represented as a two-dimensional raster (also 
known as bitmap) image of the scanned cross section, formed by pixels with values of the X-ray 
linear attenuation coefficient. In a CT, one pixel represents a three-dimensional entity (voxel) of 
the material scanned with the dimensions of the pixel and the thickness of the scanning beam (the 
beam depth). After the processing, a CT scanner provides a raster image in which the value of each 
pixel is the average CT number of the voxel which it represents according to Equation 1.4. There 
is great variability in voxel dimensions and pixel size due to the type of CT, the specific device and 
the chosen settings.

Although the attenuation coefficient of a material is dependent on the effective atomic number, 
there is an approximately linear relation between the CT number and the density of wood (Lindgren, 
1992), so that the greyscale of a CT image of wood can be interpreted as a density scale. CT images 
can be calibrated so that white represents water (1,000 kg/m3) and black represents air (≈ 0 kg/m3). A 
water phantom is scanned with the specimen so that the density is defined by the greyscale, a model 
that is well suited for studying wood and wood-water relations. Figure 1.60 shows how sapwood 
in the green state is almost white because it is saturated with water, whereas dry wood has a darker 
grey hue.

Figure 1.59 The working principle of a CT scanner (left), and voxels within a cross-section (right).
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CT images are used to calculate moisture content by analogy with the gravimetric method. The 
estimation of the of the moisture content in wood using CT requires two images: one at the moisture 
content to be determined and another at a known reference moisture content, which here is, for 
practical reasons, always 0%. For pixel-wise distribution of the moisture content, image-processing 
algorithms are needed to compensate for the anisotropic distortion that wood undergoes as it dries. 
It is possible to determine the density of the material represented in any given pixel using the CT 
numbers of air and water as reference. The CT scanner settings establish the pixel size and scanning 
depth, and thus the voxel volume. It is then possible to calculate the mass of the material in the pixel 
and, if the mass is known, it is possible to calculate the moisture content.

Due to shrinkage anisotropy in the wood cross section, the region in a given pixel in the image 
at a certain moisture content is deformed when the wood is dried, and is then covered by more than 
one pixel because of the displacement (Figure 1.61). Since the voxels in the two images do not 
correspond to the same region in the specimen, the MC is determined as the average for the entire 
specimen. To quantitatively determine the moisture content in the local region, image processing 
must be performed to match the images (Couceiro, 2019). In the first applications of CT to wood 
drying, Lindgren (1992) attempted to take into account the swelling and shrinkage of cross-section 
images of timber by applying a linear transform combined with a bilinear and a non-linear transform 
to CT images of wood specimens at different moisture-content levels.

A considerable more accurate technique than X-ray to determine moisture in wood is to use 
neutrons for the detection. The neutron-based techniques are only used in research purposes, and 
are complicated to perform and require extremely expensive facilities, so they are not further  
discussed here.

Spectroscopy
Spectroscopy has become a valuable tool in the analytical arsenal of scientists, providing a means 
of identifying chemical bonds present as a result of their excitation at known frequencies. This 
technique has been further expanded through computer-aided deconvolution and processing, 
making identification much easier. Near-infrared (NIR) spectroscopy has applications in all facets 
of biological material assessments, given its non-destructive nature. NIR spectroscopic information 
on biological materials is particularly relevant given its ability to show water, which has specific 
absorption bands at 5,200 cm–1 (as a result of the combination of stretching and deformation 
vibrations for OH) and 6,900 cm–1 (due to the first overtone of the OH stretching vibration), and 

Figure 1.61 Deformation and displacement (exaggerated) relative to the pixel location of the voxel represented by one pixel 
when the wood piece is oven dried and re-scanned. FSP − fibre saturation point, MC − moisture content.

Figure 1.60 CT image of a cross section of Scots pine timber with heartwood (dark) and water filled sapwood.
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studies of these peaks can provide information on the amount of water present, as was demonstrated 
in work by Tsuchikawa and Tsutsumi (1998) for adsorptive and capillary-condensed water in wood, 
and further studies by Buijs and Choppin (1963) suggested that water molecules were classified into 
three components, free water molecules (S0), molecules with one OH group engaged in hydrogen 
bonding (S1), and molecules with two OH groups engaged in hydrogen bonding (S2), as shown in 
Figure 1.62 for hinoki, whereby S0, S1 and S2 components were separated (Inagaki et al., 2008). The 
effects of hydrogen bonding were found in subsequent work (Maeda et al., 1995) to be associated 
with two additional peaks (S3 and S4 respectively).

More detailed studies in the presence of moisture (Popescu et al., 2016) showed a range of 
spectral peaks (Figure 1.63) for untreated warty birch, which could be assigned the following 
chemical characterisations:

 I) between 1,100–1,330 nm is mostly assigned to 1st and 2nd overtones of C-H stretching vibrations 
in methyl and methylene groups from carbohydrates and lignin; 

 II) between 1,330–1,640 nm is assigned to 1st overtone of the C-H combination bands, and 1st 
overtone of different O-H stretching vibrations; 

 III) between 1,640–1,850 nm is dominated by the 1st overtone of the aliphatic and aromatic C-H 
stretching vibrations and O-H combination bands in all wood components; 

 IV) between 1,850–2,210 nm is assigned mostly to C=O groups, O-H stretching and deformation 
vibrations and also to Car-H and C-H stretching vibrations, and 

 V) between 2,210–2,510 nm is assigned mostly to C-H stretching and deformation vibrations.

Figure 1.62 Difference and decomposed spectra of water in a hinoki wood sample (Inagaki et al., 2008).

Figure 1.63 NIR spectrum of warty birch wood.
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Wood modification and moisture 
The ultimate aim of wood modification is to alter its performance and reduce the risks in service, 
particularly with regard to dimensional in stability and decay, both of which are strongly influenced 
by the presence of moisture. Wood in service in interior conditions is usually restricted to moisture 
contents below 10%, but design or exposure to high moisture conditions can significantly affect its 
performance. The same is true of wood in Use Classes 2 and 3, where the moisture content can often 
exceed 20% due to atmospheric conditions. The risk of decay is then increased, particularly if the 
exposure is over a prolonged period of time.

As was shown in Figure 1.51, the key components of wood contain large numbers of potentially 
accessible hydroxyl groups. These groups present a means by which modification can occur, either 
through direct chemical bonding or indirect bonding via hydrogen bonding of compounds that have 
been impregnated and subsequently polymerised, or as a result of a loss of functionality of the wood 
cell wall components. The mode of operation of the modifying agent can relate to one or more of 
these actions, as suggested in Figure 1.40. The key result of wood modification is, however, most 
often a decrease in the number of hydroxyl groups available for subsequent interaction with moisture 
in the environment. The higher the level of modification, the greater is the effect on the hydroxyl 
groups within the cell-wall components and hence on their potential interaction with moisture.

A comprehensive review by Engelund Thybring, 2013 has assessed the decay risk according 
to levels of moisture exclusion efficiency (MEE) and anti-swelling efficiency (ASE) and ASE* (an 
alternative measure of ASE, where the volume increase resulting from various wood modification 
methods has been deducted from the dry volume of the unreacted wood). Through the analysis of 
modification methods undertaken (Table 1.9), it was possible to estimate threshold levels for MEE, 
ASE and ASE* as well as the respective weight gain required for each treatment (a weight loss when 
considering thermal modification).

More detailed information on the effects on the moisture content of various modification 
methods is given in the sections on the respective modifications. 

1.5	 Wood	biodegradation	
Wood can be decomposed by a wide variety of biological systems, provided suitable environmental 
conditions are present. Wood is inherently biologically degradable and may be attacked by fungi, 
bacteria, and insects individually or in combination, based on a variety of metabolism mechanisms 
linked to the individual components present within the wood. Wood in its natural environment 
is known to undergo colonisation by these microorganisms and insects, particularly when the 
bark, the external protection of the tree has become damaged, allowing more accessible attack 
and accelerating decomposition. The same is true of felled round timber lying on the forest floor, 
further assisted by the timber being exposed to super-saturation conditions. The cleavage of the 
main macromolecules present within wood—cellulose, lignin and hemicelluloses—leads to smaller 
oligomer or single unit components, which are easier to degrade as a food source, with such digestion 
leading to the basic components of all flora—carbon dioxide and water—whilst providing energy 

Table	1.9 Estimated threshold conditions for decay in various wood modifications (Engelund Thybring, 2013). WPG − 
weight percentage gain, MEE − moisture exclusion efficiency, and ASE − anti-swelling efficiency.

Modification Threshold	(WPG) MEE ASE ASE*

Acetylation 20% 42% 63% 60%

Furfurylation 35% 40% 74% -

DMDHEU 25% 43% 45% 43%

Glutaraldehyde 10% 24% 50% 48%

Glyoxal > 50% - - -

Thermal modification –15% 42% 46% -
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to the organism that has digested the wood material residue. While this degradation process is an 
important feature of forest regeneration, it is a problem when wood is used in the built environment, 
since such degradation in buildings can lead to premature failure. This has led to the need to protect 
wood in construction and in other applications through the use of correct detailing, coatings, wood 
preservation and, more recently, wood modification.

Wood as a substrate for microorganisms
As expected, the structural features of wood depend on the species in question. However, all wood 
cells are composed of cellulose, hemicellulose, and lignin in various ratios. In general, broad-
leaved wood have a lower lignin content than conifers, and the type of lignin monomer in the 
woods is different. Both syringyl and guaiacyl units (Figure 1.38) are found in angiosperm lignin, 
whilst only guaiacyl-type lignin is present in gymnosperms. There are contrasting differences in 
the hemicelluloses of the respective tree groups, with galactoglucomannans (Figure 1.37, middle) 
dominating in gymnosperms and glucuronoxylans (Figure 1.64) in angiosperms.

Figure 1.64 Structure of 4-O-methyl-D-glucurono-D-xylan in European beech (Strnad et al., 2013).

The greatest risk of germination and growth in fungal decay occurs when there is a suitable 
balance of five key factors: source of infection, suitable substrate (food), moisture, oxygen and 
temperature. The presence of the three main components of wood provide the necessary food for the 
attacking organism so that, if there is sufficient moisture and a suitable temperature, decay may be 
possible if colonisation occurs at sites of weakened resistance, such as damage to the bark of the tree. 
Many timber species produce a range of extractives as a natural protection against biological attack, 
but these are usually located within the heartwood of the tree, which can leave the outer sapwood 
more prone to decay. Preventing this has usually been undertaken with wood preservation, where a 
compound toxic to attacking organisms is introduced. However, wood modification is directed more 
to a reduction in the available moisture, so limiting one of the five key factors for decay.

Biological degradation of wood by fungi
The decomposition of wood by fungi is of two main types, often referred to as brown rot and white 
rot, together with the less common soft rot (Eriksson et al., 1990; Zabel and Morrell, 1992; Schmidt 
et al., 1996; Mohebby, 2003; Srivastava et al., 2013). There are also non-destructive fungi that result 
only in a discolouration of the timber, with no loss of mechanical strength. It has bed been suggested 
that these staining fungi help to provide channels of attack for wood-destroying fungal. In brown 
rot, the cellulose and its related pentosans are attacked while the lignin is more or less unchanged. 
This causes the attacked wood to darken in colour, undergoing shrinkage and cross-cracking into 
cubical or oblong pieces that can be readily broken and crumbled between the fingers into a brown 
powder. In white rot, all the components of the wood, including the lignin, may be decomposed and 
used by the growing fungus. White rot does not produce cross-cracking, but the wood becomes paler 
in colour, sometimes in pockets or streaks of various sizes and may eventually become a fibrous 
whitish mass. With some white rots, however, the cellulose may remain intact, while the lignin in the 
secondary wall and middle lamella is almost entirely removed. A graphical view of different rot-type 
fungi as well as moulds is shown in Figure 1.65 (Teacă et al., 2019).
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Since fungi do not contain chlorophyll, they are totally dependent upon extracting the necessary 
nourishment for growth and reproduction from their surroundings, i.e., from the timber under decay. 
When decay occurs in the core of a tree, it is in a zone where there is limited access to nitrogen and 
sulphur, essential components for growth (e.g., through enzymatic needs). This limitation to essential 
elements, in addition to the common increase in biologically restrictive chemicals as part of a species’ 
natural durability, often limits the amount of decay which may occur the heartwood of a species. 

As expected, decayed wood is less dense than sound wood and it usually exhibits a loss of 
strength, along with changes in firmness and the release of odours. Typically, the loss of weight 
resulting from brown rot is about 70%, since the lignin still remains, though its total destruction 
is possible in white rot. Even slight decay can reduce the toughness or shock resistance of wood 
and allow it to break easily under impact, although it may still appear hard and firm to the touch. 
Fungi that cause brown rot usually leads to a more rapid drop in most strength properties than those 
that cause white rot, although both types reduce the toughness of any wood that they attack. The 
fresh and resinous smell of sound wood is usually replaced by a distinctive mushroom odour as 
wood decays, and some wood-rotting fungi produce characteristic aromatic or sweet smells. Some 
examples of fungal species are given in Table 1.10.

Typically, the changes noted in wood as a result of fungal degradation can be summarised as in 
Table 1.11 (Blanchette, 1998).

Figure 1.65 Overview of wood-destroying fungi and moulds (Teacă et al., 2019).
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Table	1.10 Examples of some discolouring and destroying fungi capable of attacking wood.

Destroying	fungi

Brown	rot	fungi White	rot	fungi Soft	rot	fungi

Basidiomycetes Basidiomycetes	(ascomycetes) Ascomycetes,	deuteromycetes

Coniophora puteana,a,b

Serpula lachrymans,
Postia placenta,a,b

Gloeophyllum trabeum,b

Gloeophyllum sepiarium,
Gloeophyllum abietinum, Antrodia 
Vaillantii

Trametes versicolor,a,b

Donkioporia expansa,
Schizophyllum commune,
Phanerochaete chrysosporum, Pleurotus 
ostreatus

Chaetomium globosum,c

Phialophora spp.,
Monodictys spp.,
Humicola grisea,c

Petriella setifera,c

Lechythophora mutabilis,c

Trichurus spiralisc

Staining	fungi Surface	moulds

Blue	stain	fungi Other	stain	fungi

Ascomycetes,	deuteromycetes Ascomycetes,	deuteromycetes Ascomycetes,	deuteromycetes

Aureobasidium pullulans,
Ceratocystis spp.,
Ophiostoma spp., 
Ceratocystiopsis spp.

Discula spp., 
Arthrographis cuboidea, Chlorociboria 
aeruginosa

Paecilomyces variotii,
Aspergillus niger,
Trichoderma spp., 
Bisporia spp., 
Penicillium spp.

a Test fungus according to CEN/TS 15083-1 (CEN 2015)
b Test fungus according to EN 113 (CEN 1996)
c Test fungus according to ENV 807 (ENV 2001)

Table	1.11 Changes in wood due to degradation by fungi.

Decay Wood	characteristics Strength	loss Cell-wall	components Morphology

Brown rot 
(dry rot)

Brown. Cracks and 
checks when dry, 
producing cubical 
fragments.

Large losses of 
strength in early 
stages of decay.

Cellulose depolymerisation 
and loss.

Porous and shrunken cell 
walls, skeleton of altered 
lignified wall material.

Soft rot Brown. Often localised 
to wood surfaces. Cracks 
and checks when dry.

Loss in strength in 
late stages of decay.

Cellulose degraded. Cavities present in 
secondary walls, or 
secondary walls eroded, 
leaving the middle 
lamellae.

White rot Bleached appearance. 
Retains shape and 
composition until decay is 
advanced.

Major strength losses 
in intermediate to 
late stages of decay.

Lignin, cellulose and 
hemicelluloses degraded.

All secondary cell-wall 
layers and middle 
lamellae are eroded.

Fungal 
stain

Various discolouration in 
sapwood

No strength loss. Free sugars, nutrients and 
wood extractives utilised, 
increase in melamin-like 
compounds and pigmented 
substances.

Preferential colonisation 
of ray parenchyma 
cells. No cell-wall 
degradation.

Surface 
moulds

Discolouration of wood 
surfaces only.

No strength losses. Readily assimilated 
substances are removed.

Preferential colonisation 
of parenchyma cells. No 
cell-wall degradation.

Chemical and biochemical reasons for degradation
The general concepts of the chemical and biochemical reasons for degradation were covered in 
a comprehensive paper (Jeffries, 1987) considering wood as a whole as well as the constituent 
components.

White rot fungi use all the chemical components of wood cell walls. Bari et al. (2015) 
considered two of the more common fungi having differing modes of attack. Pleurotus ostreatus 
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gains its nourishment from the breakdown and absorption of nourishment from dead and fallen 
trees (saphrophytic means) as well as acting as a wounding parasite in living trees. On the other 
hand, Trametes versicolor causes extensive saprophytic degradation in dead and decaying wood. 
In a study by Riley et al. (2014), the range of secondary enzymes resulting from basidiomycetes 
attack were analysed, with particular emphasis on fatty acid synthases, non-ribosomal peptide 
synthases, polyketide synthases and terpene synthases. It was shown that the enzymes acting 
during white rot were more varied than those depicted for brown rot, though glucose–methanol–
choline (GMC) oxidoreductase, a group comprising enzymes such as aryl-alcohol oxidoreductases, 
alcohol oxidases, cellobiose dehydrogenases, glucose oxidases, glucose dehydrogenases, pyranose 
dehydrogenases and pyranose oxidases (Sützl et al., 2019) was responsible for the highest levels of 
lignin degradation for both white and brown rot fungi. It is the activity of enzymes such as class II 
peroxidase, copper radical oxidase and laccase that provide the increased levels of degradation in 
lignin compared to the brown rot fungi.

The fungal biodegradation of wood may be utilised for industrial purposes and it has a great 
potential in the cellulose-producing and wood-processing industries. Fermentation with a selective 
white rot fungi can provide a route for the production of biofuel or cellulose-enriched forage for 
ruminants, and can serve as a delignifying pre-treatment to expose the polysaccharides to a subsequent 
hydrolytic digestion and increase the efficiency of biogas or bioethanol fermentation with bacteria 
or yeasts (Itoh et al., 2003; Amirta et al., 2005). Besides the fermentation of woody substrates using 
fungi which degrade or modify the different wood components, isolated oxidative enzymes from 
the same origin may be valuable tools for more specific and targeted chemical reactions in fibre 
bleaching and fibre modification and they have been tested for possible applications in the pulp and 
paper industries (Grönqvist et al., 2003; Maijala et al., 2008). It has long been noted (Leatham et al., 
1990) that the use of enzymatic digestion can help for save energy in the pulping sector.

Brown rot fungi, on the other hand, have a unique ability to attack the cellulose fraction of wood 
while avoiding the surrounding lignin. It has been suggested that the fungi accomplish this by using 
a two-step process, first secreting chemicals and enzymes that open up the lignin framework and 
then releasing a second set of enzymes that break down the cellulose chains into sugars. The sugars 
are absorbed by the fungi to use as biofuel.

To accomplish this task, brown rot fungi generate highly reactive oxygen species that alter 
the chemical structure of the wood, working with enzymes that break down the cellulosic chains. 
However, reactive oxygen species might damage the fungal enzymes as easily as the wood 
structure, and it has long been hypothesised that the fungi spatially segregate the oxidant generation 
process from the secreted enzymes using chemical barriers. This is achieved through the enzymes 
incorporating the Fenton reaction, and generating highly reactive hydroxyl radicals: 

 H2O2 + Fe2+ → OH− + Fe3+ + •OH (1.5)

Since the specificity of cellulosic attack negates the decay of lignin, brown rot decay typically 
occurs more rapid than white rot decay.

Decay mechanisms
Depending on the type of fungal species and the group to which it belongs, different mechanisms 
for the decay of wood are involved, although most of them involve enzymatic attack. Mahajan et 
al. (2012) reported that certain white rot fungi, such as Trametes versicolor and Phanerochaete 
chrysosporium, are capable of simultaneously degrading lignin, cellulose, and hemicelluloses. On 
the other hand, other white rot fungi, such as Ceriporiopsis subvermispora, appear to selectively 
degrade lignin and then only slowly to hydrolyse cellulose. The ability of fungi to selectively 
degrade lignin has been used to pre-treat and defibrillate wood in the production of mechanical pulp 
up to commercial production levels (Scott et al., 2002; Fackler et al., 2006; Mendonça et al., 2008). 

The enzymes responsible for lignin decay have been reviewed by Abdel-Hamid et al. (2013), 
including the so-called class II secreted fungal peroxidases, all of which are extracellular heme 
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peroxidases: lignin peroxidase (LiP), manganese-dependent peroxidase (MnP) and versatile 
peroxidase (VP). The mechanism by which they are understood to work is shown in Figure 1.66.

In order to describe the modes of action of these class II secreted fungal peroxidases, Abdel-
Hamid et al. (2013) also described prokaryotic peroxidases (class I) and classical secreted plant 
peroxidases (class III), dye de-colourising peroxidase (DyP), copper-containing phenol oxidases 
(Laccase), and several oxidoreductases, which include glyoxal oxidase, aryl alcohol oxidase (veratryl 
alcohol oxidase), pyranose 2-oxidase (glucose 1-oxidase), cellobiose/quinone oxidoreductase and 
cellobiose dehydrogenase.

The catalytic cycle of MnP (shown diagrammatically in Figure 1.67) is similar to those of 
other heme-containing peroxidases. Activated through the initiation with hydrogen peroxide of a 
conventional ferric enzyme, it is unique in utilising Mn2+ as the electron donor to form Mn3+. Abdel-
Hamid et al. (2013) also suggest that MnP is capable of cleaving non-phenolic lignin substrates.

Figure 1.66 The reaction catalysed by lignin-degrading enzymes. LiP: lignin peroxidase, MnP: manganese peroxidase,  
VP: versatile peroxidase, AAO: aryl alcohol oxidase, GLOX: glyoxal oxidase (modified after Janusz et al., 2017).
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The white rot fungi also contain laccase, which is widely distributed in wood-degrading fungi, 
such as Trametes versicolor, Trametes hirsuta, Trametes ochracea, Trametes villosa, Trametes 
gallica, Cerrena maxima, Phlebia radiata, Ceriporiopsis subvermispora, and Pleurotus eryngii 
(Baldrian, 2006), although more than one iso-enzyme has been identified in many white rot fungal 
species. Typically, the laccases are monomeric proteins, although their structures often consist of 
two identical subunits. Baldrian (2006) presented a comprehensive list of substrates and inhibitors 
for fungal laccases.

It is known that brown rot fungi specifically attack the cellulose, leaving the lignin relatively 
intact, but it is not fully understood, since this would seem to restrict access to the polysaccharide 
food sources. This is thought to have developed during the evolution of brown rot fungi from 
an ancestral form of white rot fungi, a range of cellulose- and lignin-modifying enzymes being 
eliminated during its evolution. 

Brown rot attack is initiated when germinated spores result in hyphae growth through the 
cell lumens to colonise ray cells and axial parenchyma. These are readily accessible sources of 
carbohydrate, providing the necessary nourishment for the hyphae to continue growing through pit 
membranes and accessing tracheid lumens. Growth is further aided by a glucan coating secreted 
during the growth process, which allows the hyphae to bind to the wood cell wall, and specifically to 
the S3 layer (Illman and Highley, 1989). By linking onto the S3 layer, the fungus can directly attack 
and severely degrade the S2 layer, which has a lower lignin level than both the S1 and S3 layers 
respectively. This fairly rapid degradation of the cellulosic components can lead to a catastrophic 
strength loss, as much as 70% of the modulus of elasticity (MOE) and modulus of rupture (MOR) 
(Wilcox et al., 1974).

The mechanism for brown rot decay is understood to be based on the Fenton reaction, and 
the basic principles have been well reviewed by Arantes and Goodell (2014). Modified wood is 
still recognised as a possible nutrient source for fungal degradation, since fungi induce genes that 
are involved in cellulose degradation to even higher levels than in untreated wood (Alfredsen and 
Fossdal, 2010; Pilgård et al., 2012; Ringman et al., 2014). In some wood modifications, micro-pores 
are partly blocked, but it has been calculated that the low molecular weight molecules needed for 
oxidative degradation should be able to penetrate the modified wood (Hill et al., 2005). The next 
step is the diffusion of these low molecular weight molecules into the wood cell wall, though it has 

Figure 1.67 Diagram of lignin degradation by white rot fungi (after Zhou et al., 2013).
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yet to be determined whether this occurs in modified wood. It is possible that the moisture levels 
inside the wood cell wall are too low to allow diffusion.

Recent work (Ringman et al., 2019) has emphasised the importance of moisture in the brown 
rot attacks on modified wood, with an emphasis on the Fenton reaction allowing hydrogen peroxide 
produced by the fungus to initiate the formation of hydroxyl radicals capable of degrading the 
hemicelluloses, although the mechanism of attack has still to be identified. The modes of action 
suggested to date (Zelinka et al., 2016) include (i) inhibition of diffusion through an increase in 
the glass-transition temperature of hemicelluloses (assumed to be the medium of transport);  
(ii) inhibition of diffusion by nano-pore blocking; (iii) no inhibition of diffusion but instead a lower 
rate of diffusion and/or inhibition of chemical reactions leading up to the Fenton reaction through 
alteration of the pH level, for example. 

Moisture has been recognised as a key parameter in the infestation and decay of wood by wood 
destroying fungi. In addition to the supply of oxygen, a favourable temperature, and accessible 
nutrients, it is an essential factor in the fungal decay of wooden commodities and structures. For 
many decades, it was therefore essential to define the critical moisture content thresholds allowing 
the transport and activity of fungal enzymes in the wood cell walls leading to the degradation and 
severe rot of wooden elements. Nowadays, the wood moisture content is the most important input 
variable in many service life and performance prediction models, both in engineering and natural 
sciences (Brischke and Thelandersson, 2014).

Degradation models and service life
The group of wood-degrading organisms includes termites, wood-boring beetles, marine borers and 
various wood-destroying fungi and bacteria, all of which need to be considered when defining the 
natural durability of timber. In principal, this natural durability can be determined either in the field 
or in the laboratory by various standardised and non-standardised methods (Råberg et al., 2005; 
Brischke et al., 2011b; Curling, 2017). While laboratory tests require clearly defined conditions 
which give a high level of reproducibility, it is usually impossible to fully mimic real life conditions. 
On the one hand, there is a risk of creating a test scenario that is too severe in terms of moisture and 
temperature, which are ideal for the degrading organism and have been criticised as ‘torture testing’ 
(e.g., Brischke et al., 2011b). On the other hand, some parameters having an important impact on 
the degradation process cannot be considered adequately, for instance, the detoxification through 
so-called ‘non-target organisms’ or the limited number of test organisms considered in European test 
standards, which are not necessarily responsible for decay under real life situations.

It is generally accepted that field tests provide more realistic test conditions, but they often suffer 
from unacceptably long test durations. In-ground tests with buried stakes need at least five years to 
give an indication of the effectiveness of a wood preservative (Larsson-Brelid et al., 2011; Hansson 
et al., 2013), but the onset of decay in above-ground trials takes place significantly later, and service 
lives cannot be calculated before decades have passed (Wang et al., 2008; Brischke et al., 2012). For 
these reasons, the results of laboratory decay tests as well as field test data from in-ground graveyard 
tests are often presented, and natural durability studies with respect to above-ground exposure are 
rare, although they play a more important role in timber engineering. When considering moisture 
risk, the effects of mould and surface disfiguration must also be taken into account. 

Three recent European projects—PerformWOOD, Wood Build and Timber Bridges—have 
attempted to determine issues related to moisture risk and the service of timber products. These 
projects have looked at a wide variety of timbers (both untreated and treated), but only in recent 
years has modified wood undergone a critical evaluation.

PerformWOOD: The objective of the project was to kick-start the development of new standards 
to make possible the service life specification of wood and wood-based materials for construction. 
This is critical to ensure the future sustainable use of European forests, to ensure that customers of 
wood products receive satisfactory and reliable products and to provide supplementary evidence of 
life cycle evaluations of construction products (e.g., Environmental Product Declarations). 
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Wood Build: The overall objective of the project was to raise awareness and to disseminate 
knowledge and expertise on damp proofing and, from the viewpoint of resistance, durable wood 
materials for the construction industry, in order to strengthen the competitiveness of timber as a 
building material. This will be achieved through the production of new knowledge that enhances our 
understanding of the link between climate exposure and the resistance of wood to biological attack.

Timber Bridges: The project considered the increased use of wood for bridge construction, emphasised 
by the building of some 650 timber bridges in Sweden alone in the past 15 years. Naturally, a strong 
emphasis must be placed on the durability and performance of the materials used, adopting best 
practice for the prevention of moisture uptake and the risk of decay. The construction of the Sneek 
bridge in The Netherlands using AccoyaTM acetylated wood (Figure 1.68) has demonstrated how 
modified wood may help in overcoming some of the issues linked to premature failure.

Fungal testing of modified wood
The complexity of testing the durability of wood results from the different areas and exposure 
situations in which wood is used. Wood is used for constructions in the building sector ranging 
from simple constructions like range-land fences to more complex balconies and recently also roller 
coasters and multi-storey buildings. These different constructions and their specific components are 
accompanied by a wide range of different loads, where the decisive loads responsible for the risk of 
damage can be reduced to moisture, temperature and the presence of wood-destroying organisms. 
The first step in classifying a wooden component with respect to an expected load is to distinguish 
between in-ground and above-ground exposure. Numerous tests have been conducted all over 
the world and have been described in the literature referring to both of these exposure conditions  
(e.g., Fougerousse, 1976; De Groot, 1992; Fredriksson, 2010; Brischke et al., 2012). The ones 
referring to above-ground exposure have been less frequently used to determine durability and only 
a few have been standardised. The reason for this can be found in the long exposure periods for 
above-ground tests compared to in-ground tests. Testing wood durability exclusively in ground is 
however in contrast to the fact that most timber products in outdoor use are exposed above ground, 
e.g., façades, terrace decking, windows, balconies and carports (Blom and Bergström, 2005; Friese 
et al., 2009). A range of different standardised test methods have been drawn up and applied over 
the years (Table 1.12) but they have dealt exclusively with naturally occurring wood or material that 
has been subjected to a traditional wood preservation procedure.

To overcome this drawback a comparative study on the moisture performance and resulting 
decay response has been conducted (Meyer et al., 2013). Five different wood species were used 
in 27 different test set-ups representing a wide range of different exposure situations. The test 
set-up included established and standardised test methods (e.g., L-Joint test, decking test, ground 
proximity test) as well as some new test methods. Figure 1.69 shows schematic drawings of various 
tests conducted to date. A more comprehensive overview including the dimensions and details 
of the exposure conditions and specimen compositions of all the test methods is given by Meyer  
et al. (2013). This work expanded the methodologies and data available for exposed wood, which 

Figure 1.68 Sneek bridge in The Netherlands, constructed using AccoyaTM.
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are being further applied to modified wood are developing the understanding of decay in both 
laboratory and field trials, as previously reported by Alfredsen and Westin (2009). 

Minimum moisture thresholds and other physiological requirements of decay fungi were sought 
in field tests (Scheffer, 1971; Van den Bulcke et al., 2009; Meyer-Veltrup et al., 2017) as well as 
in experiments under laboratory conditions (Viitanen, 1997; Viitanen et al., 2010). The general 
consensus is that water availability in the cell walls is critical, but not necessarily in the cell lumens 
(Schmidt, 2006; Stienen et al., 2014).

Figure 1.69 Examples of outdoor exposure test rigs (Meyer et al., 2013).

Table	1.12 Standardised tests involving fungal decay of wood (modified from Brischke et al., 2013).

Standard Title	of	standard

CEN/TS 15083-1 Durability of wood and wood-based products. Determination of the natural durability of solid 
wood against wood-destroying fungi, test methods. Basidiomycetes

CENT/TS 15083-2 Durability of wood and wood-based products. Determination of the natural durability of solid 
wood against wood-destroying fungi, test methods. Soft rotting micro-fungi

EN 113 Wood preservatives - Method of test for determining the protective effectiveness against wood 
destroying basidiomycetes - Determination of the toxic values

ENV 807 Wood preservatives - Determination of the effectiveness against soft rotting micro-fungi and other 
soil-inhabiting micro-organisms

TS 12404 Durability of wood and wood-based products - Assessment of the effectiveness of a masonry 
fungicide to prevent growth into wood of dry rot Serpula lacrymans (Schumacher ex Fries) F.S. 
Gray

EN 15457 Paints and varnishes - Laboratory method for testing the efficacy of film preservatives in a coating 
against fungi

EN 152 Wood preservatives - Determination of the protective effectiveness of a preservative treatment 
against blue stain in wood in service

CEN/TS 839 Wood preservatives - Determination of the protective effectiveness against wood destroying 
basidiomycetes - Application by surface treatment

AWPA E 10 Standard method of testing wood preservatives by laboratory soil-block cultures

ENV 12038 Durability of wood and wood-based products - Wood-based panels - Method of test for 
determining the resistance against wood-destroying basidiomycetes

JIS K 1571 Wood preservatives - Performance requirements and test methods for determining their 
effectiveness
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Understanding the decay mechanisms due to fungal attack is essential in helping to predict 
building performance and the durability of wood components. The use of modified wood has the 
potential to provide additional durability. While the use of existing methods and standards provides 
a comparative performance factor against reference material, the modes of attack used in a particular 
standard may differ for modified wood compared to that suitable for untreated or preservative-treated 
materials. It has been suggested by several research groups at previous European Conferences on 
Wood Modification that modified wood should be considered as a new wood species. Since there may 
be issues to the means by which material-moisture interactions occur, and the fact that degradative 
pathways are blocked due to the inability of a decay organism to recognise the matrix means there 
is the need to undertake a systematic programme of research at laboratory and field study levels to 
determine how to correctly access the service life of modified wood products.

Biological degradation of wood by invertebrate organisms
Lignocellulosic materials, such as wood, are often used by insects for food, shelter and breeding, the 
most common lignocellulose-destroying insects belonging to Coleoptera (beetles) and Blattodea: 
Isoptera (termites) orders. They are referred to as wood-eating (xylophagous) insects, which means 
that they cannot live without wood or other lignocellulosic materials. Attack is not limited to above 
or in- or above-ground cases. Marine decay also occurs through the attack of worms or gribble.

Wood‑boring insects
All insects have a similar structure. They have three pair of legs (gr. Hexapoda) and segmented 
bodies supported by exoskeletons, the hard outer covering being mostly chitin. The segments of 
the body are organised into three distinctive but interconnected units or tagmata: a head (the caput), 
a chest (the thorax) and the posterior (the abdomen). The insects pass through a metamorphic 
transformation during their life span. Beetles undergo four developmental stages (holometabolism), 
egg, larvae, pupa and adult (imago). Eggs are laid within the wooden structure, and they hatch and 
the subsequent larval and pupal stages are spent within the wood structure, from which nourishment 
is obtained. Most beetles are defined by having part of the hardened exterior forming the front wings 
(elytra), defining them within the family Coleoptera 

The powderpost beetles are members of the Lyctinae subfamily within the Bostrichidae family, 
of which over 20 species have been identified, including Lyctus brunneus (brown powderpost 
beetle). Whilst it now has a global distribution, it was probably originally native to Central and 
South America. The common furniture beetle (woodworm, Anobium punctatum) spread from 
Europe to areas with similar climatic conditions, mainly as a result of colonisation over the past 
300 years. In the larval stage, it bores into seasoned sapwood between 12−16% moisture content 
and feeds upon it. The adults are between 3.0 and 4.5 mm in length and have brown ellipsoidal 
bodies with a prothorax resembling a monk’s cowl. Because of the risk to sapwood, some building 
regulations state that timber with more than 25% sapwood may not be used, in order to limit the 
risk of loss of structural integrity through wood-borer infection. The death watch beetle, Xestobium 
rufovillosum, is a species of wood-boring beetle that sometimes infests the structural timbers of old 
buildings, although its natural occurrence is in broad-leaved trees that have been dead for around 
60 years. It has been suggested that this is due to fungal decay with an associated softening of the 
wood constituents and increased digestibility. Infestation in European oak has been associated with 
its colonisation by the fungus Donkioporia expansa. The death watch beetle originated in regions in 
Europe, but is now also present in USA. The house longhorn beetle (Hylotrupes bajulus) originated 
in Europe, and has been spread in timber and wood products as colonisation and emigration have 
progressed, so that it now has a practically world-wide distribution, including southern Africa, 
Asia, the Americas, Australia, and much of Europe and the Mediterranean. Hylotrupes bajulus 
preferentially attacks freshly produced sapwood of timber, though there have been cases of attack 
of the sapwood of certain broad-leaved species such as oak. In conifers such as Norway spruce, it 
also attacks the heartwood. An excellent summary of the attack by various wood-boring insects 
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was provided by Blanchette (1998), and it is shown in Table 1.13, with some examples of beetles 
in Figure 1.70.

Termites
Termites (Blattodea; formerly Isoptera) are consumers of cellulose and lignocellulose found in dead 
wood, grass, microepiphytes, leaf litter, and sometimes cultivated fungi. Some 3,000 species of 
termites have been described, most having a tropical and temperate distribution across the USA, 
central America, most of South America, southern Europe, Africa, Middles East, Southern Asia, 
Japan and Oceania. Figure 1.71 shows the global distribution of the three species most responsible 
for structural damage, namely Coptotermes formosanus, Coptotermes gestroi and Cryptotermes 
brevis (Rust and Su, 2012). Of these 3,000 species, only 83 are considered to present a risk to 
wooden structures and furniture (Rust and Su, 2012). 

As can be seen in Figure 1.71, Europe lies on the border of traditional termite presence, but 
there are concerns as to how global warming may affect their distribution and spread then into more 
northern areas. A more detailed European distribution is shown in Figure 1.72 (Kutnik et al., 2020), 

Table	1.13 Some common wood-boring insects (modified from Blanchette, 1998).

Insect Wood Distinguishing	characteristics

Common furniture 
beetle, Anobium 

Sapwood of conifers and 
broad-leaved woods. May attack 
heartwood if fungal decay is 
present

Meandering tunnels 1−2 mm in diameter, often in 
direction of grain, filled with frass consisting of oval 
pellets and wood powder.

Lyctus, powderpost 
beetle 

Sapwood of broad-leaved woods 
with large vessels, such as oak 
and elm

Damage in sapwood with high starch content. Circular 
tunnels 1–2 mm in diameter, usually parallel to the grain, 
filled with fine powder.

Bostrychid powderpost 
beetle

Sapwood of tropical timbers Convoluted tunnels 3–6 mm in diameter, packed with 
fine powder.

Wood-boring weevil Decayed conifer and broad-
leaved woods

Tunnels 1 mm in diameter, orientated in the direction of 
the grain, with fine, granular powder.

Ptilinus beetle Sapwood of broad-leaved woods Meandering tunnels 1–2 mm in diameter, packed with 
fine bore dust.

Death watch beetle Sapwood and heartwood of 
decayed broad-leaved woods

Tunnels variable in diameter from 0.5–3 mm, randomly 
orientated but common in the direction of the grain. Bore 
dust consists of fine, disc-shaped pellets. 

House longhorn beetle, 
cerambycid beetle 

Sapwood of conifers Tunnels 6–10 mm in diameter with similar-sized oval 
emergence holes. Bore dust contains cylindrical pellets 
with fragments of wood. Most of the sapwood may be 
consumed, with just a veneer of surface wood left.

Figure 1.70 Common adult wood-boring beetles that can damage wood, from the left: True powder-post beetle (Lyctus 
brunneus), Woodworm or common furniture beetle (Anobium punctatum), Death watch beetle (Xestobium rufovillosum), and 

House longhorn beetle (Hylotrupes bajulus) (Wikipedia Commons, and BioLib.cz.).
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which shows the traditional range of a variety of Reticulitermes species. Additional sites outside 
these ranges have however occurred as a result of human activity and the importation of infected 
timber. This was the case with the infestation of Reticulitermes flavipes in Hamburg, Germany, a 
common termite in the eastern part of the USA, which established a colony in the city in the 1930s, 
taking advantage of the warm, moist conditions in the district heating system. Another species, 
Reticulitermes grassei, normally found in south-western France, Spain and Portugal, was identified 
in infested timber in Devon, England in the 1960s, but it has been suggested that this was a case of 
natural colonisation from France.

Figure 1.71 Distributions of the three most economically important and widely distributed termite pest species: Coptotermes 
formosanus, Coptotermes gestroi, and Cryptotermes brevis (Rust and Su, 2012) (Global map downloaded from www.

presentationgo.com).

Figure 1.72 European distribution of termite species (courtesy of Magdalena Kutnik).
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Traditionally, termites are classified into lower and higher termites, where the higher termites 
have undergone more evolutionary changes and live in more advanced social structures and colonies. 
Lower termites include eight families (Mastotermitidae, Archotermopsidae, Hodotermitidae, 
Stolotermitidae, Kalotermitidae, Stylotermitidae, Rhinotermitidae, and Serritermitidae), whereas 
higher termites belong to a single family, Termitidae (Engel, 2011). A detailed description of the types 
of termites and their economic and environmental impacts is available (e.g., Govorushko, 2019).

Termites are highly effective at processing biomass and are estimated to process up to 35% 
of dead wood in the tropics (Verma et al., 2009), and another study of tropical and subtropical 
areas has suggested that termites account for 10% of animal biomass and 95% of soil insect 
biomass (Donovan et al., 2007). Their activities create favourable conditions for primary producers, 
including maintaining soil pH, increasing water retention, mediating decomposition and nutrient 
cycling, and creating surface areas suitable for microbial colonisation. However, the desire to 
source suitable feedstocks has led to problems where timber has been used in construction and our 
built environment. Some species of termites feed on plant material and timber used by humans, 
necessitating expensive repairs, prevention and control efforts. Termites may also damage materials 
adjoining or close to timber that is being attacked for food, and this can create problems with items 
such as electrical and telephone wiring, cables, dams and farming equipment. One study (Jones  
et al., 2015) has suggested that a colony of 200,000 termites can consume up to 5.9 kg of cellulose 
per year. It is estimated that worldwide the costs for termite control and repair are round $30 billion 
(Rust and Su, 2012), most of these costs (80%) being associated with subterranean termites.

Marine wood borers
Marine wood borers have long been recognised for the damage the caus to wooden boats and 
infrastructures in maritime conditions. The marine wood borers are known to include Bivalvia 
(Teredinidae and Xylophagaidae), Isopoda (Limnoriidae and Sphaeromatidae), and Amphipoda 
(Cheluridae) Treu et al. (2019). Some examples of these are shown in Figure 1.73. In Europe most 
wood boring bivalves belong to the Teredinidae class, but species of the Xylophagaidae, such as 
Xylophaga dorsalis, have also been reported near the sea-bed in Europe (Santhakumaran and Sneli, 
1978). Attack by teredinids is difficult to detect with the naked eye, but a magnifying glass can 
easily reveal entrance holes of larvae. The degree of attack is usually analysed by X-ray computer 
tomography, when a non-destructive evaluation is required (Charles et al., 2018), but it can also 
be investigated by density measurements or strength determination as well as by wood sample 
preparation and borer species identification (Turner, 1966).

The European wood boring Crustacea belong to the Limnoriidae and Cheluridae families. 
Their attack pattern is shaped by their tunnelling activities on the wood surface and it is usually 
easier to detect with the naked eye than shipworm attack. In combination with wave action in the 
tidal zone, wooden piles develop an hour-glass shape. More recent reviews of the potential attack 
by wood borers in a marine environment have been given for Limnoriidae by Cookson (1990) and 
Cragg (2003) and for Teredinidae by Distel (2003) and Voight (2015), where the authors provide the 
current state of knowledge of the biogeography, competition and predation among wood borers and 
the role of bacterial endosymbionts.

Figure 1.73 Examples of marine wood borers, from the left: Limnoria quadripunctata (courtesy of Graham Malyon), 
Neoteredo reynei (courtesy of Reuben Shipway), and Sphaeroma terebans (All images printed with permission of University 

of Portsmouth, U.K.).
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Mechanism of decay due to insects
Many wood-destroying insects use wood not only as a food source but also as a home, in some cases 
for the adult insects but more commonly for juvenile (larval) growth. Very few of these insects can 
digest wood with their own enzymes and even then they are not very effective in their action. For 
this reason, it seems that most wood-boring insects have evolved a complex symbiosis with micro-
organisms specialised in the degradation of wood components (Battisti, 2001).

In the case of Hylotrupes bajulus, early studies suggested that the secretion of cellulase allowed 
the enzymatic digestion of about 20% of the cellulose and hemicelluloses of the wood that was 
attacked the remaining indigestible 80%, including all the lignin components, being expelled with 
the faeces (Falck, 1930). Further studies at that time suggested that there were no micro-organisms 
in the gut and, therefore, that the cellulose is endogenous (Mansour and Mansour-Bek, 1934; Müller, 
1934). With more sensitive analytical methods, however, the presence of glucosidase and carboxy 
methylcellulases (CMC-ase) activity throughout the whole Hylotrupes gut was demonstrated (but 
more pronounced in the foregut), with only a small number of bacteria being present in the midgut, 
suggesting the endogenous nature of the cellulolytic enzymes (Cazemier et al., 1997). The presence 
of beta-glucans in the faecal matter was interpreted as proof that starches did not form part of 
the nutritional needs of the insects (Höll et al., 2002). Since the lignin components remain intact 
during the colonisation and growth of Hylotrupes baljulus larvae, it has been suggested that the 
composition of the lignin and the presence of terpenoid extractives as a result of tree maturity 
increase the resistance to insect attack (Venäläinen et al., 2003). In order to gain access to the 
genetics and physiology of uncultured micro-organisms, the use of metagenomics, which enables 
the isolation of bacterial genomic DNA from an environment followed by its direct analysis, has 
emerged as a powerful identification technique (Handelsman, 2004).

In the case of Anobium punctatum, it was found (Baker, 1969) that 26−29% of the wood 
consumed by the larvae was digested. This is slightly higher than for Hylotrupes bajulus, but the 
more significant fact was that the levels of nitrogen was more than double the level available in the 
digested timber. The mechanism for this is still not fully understood, but it has been suggested that 
the mechanism involves atmospheric nitrogen, although more recently the presence of gut symbionts 
has been suggested. The level of decay of the timber also plays a significant role in this mechanism, 
particularly for Anobium punctatum, where the nitrogen within the fungal decay enzymes provides 
the required level. The role of microbial symbionts within insects has been evaluated in terms of 
biological nitrogen fixation within terrestrial ecosystems (Nardi et al., 2002). A review of a range of 
symbiotic mechanisms for different woodboring insects has been published (Chiappini and Aldini, 
2011), covering ectosymbiosis, extracellular endosymbiosis and endocytobiosis.

As has been suggested for Anobium punctatum, fungal decay can contribute significantly 
towards the ease of digestibility for insects. Historically, this could pose a problem for timber used in 
high moisture conditions, as demonstrated in Table 1.14, where temperature and moisture thresholds 
have been identified (Brischke and Unger, 2017). However, the increase in central heating and more 
controlled moisture levels in buildings have led to a reduction in the risk of insects such as Anobium 
punctatum. 

Many termites feed exclusively on wood, despite its low nutritional level and poor nitrogen 
content. This can be overcome through a symbiotic relationship with gut protists or flagellates, 
providing the bacterial capability to break down the wood components, and thus helping the overall 

Table	1.14 Typical survival conditions for some wood-boring insects (Brischke and Unger, 2017).

Species Moisture	content	(%) Temperature	(°C)

Min. Optimum Max. Min. Optimum Max. Lethal

Anobium punctatum 10−12 28−30 50−57 12 21−24 29 50−57

Hylotrupes bajulus 9−10 30−40 65−80 16−19 28−30 35 55−57

Lyctus brunneus 7−8 14−16 23 18 26−27 30 49−65
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digestion process, since termites often have their own endemic enzymes, such as endoglucanases 
and cellobiases. Lower termites harbour flagellated cellulolytic protists in the hindgut, whereas 
the higher termites have lost the protists but have a greater range of gut microbes. The digestive 
mechanisms of lignocellulose are, thus, differentiated between lower and higher termites in a way 
that higher termites can also feed on soil and a wider range of plant materials. The differences in 
indigestion processes between lower and higher termites are shown in Figure 1.74 (Tokuda, 2019).

These are not however sufficient alone and many termite species depend on the flagellate 
relationship to survive. If these are present within the gut systems, they must be transferred to 
the larvae, which is done through the larvae eating faecal matter containing these flagellates. The 
symbiotic relationship has been reviewed elsewhere, e.g., by Brugerolle and Radek (2006) who 
indicated that two lineages of protozoa exist in termites: the Oxymonadida and the Parabasalia, with 
more than 400 species identified in total. A more detailed breakdown of the major flagellate protist 
groups has been given by Duarte et al. (2017). 

The flagellates work by breaking down the cellulose and hemicellulose via enzymatic pathways 
in order to release glucose and other sugar oligomers. These can then undergo secondary conversions 
(e.g., to pyruvate) or be used directly as energy and food sources. Since each flagellate has a distinct 
biochemical process, a thorough understanding of these and how certain enzymatic digestion 
can be limited or even inhibited can in principle offer routes to new biochemical processing for 
biorefining or even for developing new termiticides. Tartar et al. (2009) have also suggested that 
for some termites (e.g., Reticulitermes flavipes) there is laccase activity present in the foregut and 
salivary glands and that this aids the digestion of lignocelluose, as has been demonstrated through 
phenoloxidase activity.

In the case of marine borers, the levels of attack depend on the species and location. In a study 
of European marine borer activity (Borges, 2014), it was noted that in northern Europe, Teredo 
navalis was the species that posed the highest borer hazard, whereas Lyrodus pedicellatus was 
the most destructive species in the Atlantic coast of southern Europe, with the exception of two 
sites in Portugal. In those sites, Limnoria tripunctata was more destructive than L. pedicellatus. In 
the Mediterranean, both T. navalis and L. pedicellatus posed very high borer hazards to wooden 
structures. It has been well documented that the Limnoria genus is one of the few animals that can 
feed on wood without having any gut enzymes present to allow its digestion. Instead it has been 
suggested that the digestion process is assisted by the presence of hemocyanin, a copper-containing 
protein thought to be derived from phenoloxidases, recreating the activity of phenoloxidases via a 
loosening of the tertiary structure, enabling access to the copper-complexed active site. In addition, 

Figure 1.74 Comparison of degradative pathways of lower termites (left) and higher termites (right). Modified after Tokuda 
(2019). Lower termites (flagellate-harbouring): (1) Endo-β-1,4-glucanases (EGs) that primarily hydrolyse amorphous 
cellulose. (2) β-glucosidases (BGs) that hydrolyse cellobiose into glucose. (3) Protistan cellulases, hemicellulasesand 
cellobiohydrolases that actively hydrolyse crystalline cellulose, xylanases, and mannanases that participate in hemicellulose 
degradation. (4) Cellulose and hemicellulose digestion (in the midgut lumen and protistan cells). Higher termites 
(flagellate-free): (5) Endo-β-1,4-glucanases (EGs) that primarily hydrolyse amorphous cellulose are secreted in the midgut.  
(6) β-glucosidases (BGs) that hydrolyse cellobiose into glucose are secreted both in the salivary glands and the midgut.  
(7) Hindgut bacteria producing cellulases and hemicellulases; xylanases and cellulases are predominantly expressed in the 

fibre-associated bacterial community. (8) Cellulose and hemicellulose digestion (in the midgut and hindgut lumen).
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it has been shown (Besser et al., 2018) that glycosyl hydrolases (GHs) are present, and in particular 
GH7 and GH9, which account for over 50% of the soluble GHs in the gut fluids.

Shipworms, such as Teredo navalis, have historically caused major problems for wood 
immersed in sea-water, as can be seen in Figure 1.75. As with Limnoriids, they have been found to 
be devoid of symbiotic microbres assisting in the enzymatic digestion of wood, but have a variety 
of carbohydrate active enzymes produced by endosymbiotic bacteria housed in specialised cells 
(bacteriocytes) in the animal’s gills. The range of these glycosyl hydrolases is much wider than 
those found in Limnoriids. Earlier work by Hashimoto and Onoma (1949) showed the presence of 
cellulase, alginase and xylanase activity in the “liver” of Teredo worms, and Mawatari (1950) also 
reported the presence of amylase, cellulase, cellobiase, saccharase and maltase in the midgut.

Test methods for the risk of insect attack and the use of modified wood
Until recently, the main method for preventing insect damage to timber in constructions and in the 
built environment has been through the use of wood preservatives. This is clearly demonstrated 
by the test methods currently employed, as shown in Table 1.15, a thorough description of these 
methods being given by Curling (2017).

Table	1.15 Typical test methods used in the analysis of insect attack on wood.

Standard Title	of	standard

EN 117 Wood preservatives: Determination of toxic values against Reticulitermes species (European termites)

EN 118 Wood preservatives: Determination of preventive action against Reticulitermes species (European 
termites)

ASTM D3345 Standard test method for laboratory evaluation of wood and other cellulosic materials for resistance to 
termites

AWPA E1 Standard field test for evaluating the termite resistance of wood-based materials: Choice and no-choice 
tests.

JIS K 1571 Test methods for determining the effectiveness of wood preservatives and their performance 
requirement

EN 46 Wood preservatives: Determination of the preventive action against recently hatched larvae of 
Hylotrupes bajulus (L.)

EN 47 Wood preservatives: Determination of the toxic values against larvae of Hylotrupes bajulus (L.)

EN 370 Wood preservatives: Determination of eradicant efficacy in preventing emergence of Anobium 
punctatum (De Geer)

EN 49 Wood preservatives: Determination of the protective effectiveness against Anobium punctatum  
(De Geer) by egg-laying and larval survival

EN 20 Wood preservatives: Determination of the effectiveness against Lyctus brunneus (Stephens)

EN 275 Wood preservatives: Determination of the protective effectiveness of preservatives against marine 
borers

Figure 1.75 Evidence of teredinid attack on wood: the white arrows (left) show the extent of Limnoriid attack, and the red 
arrows (right) show the presence of shipworms within the wood structure (Borges, 2014) (courtesy of Luisa Borges).
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Although there is a standard test for marine borers (EN 275), the testing of marine borers is 
generally based on design specifications put forward by whoever is conducting the test. EN 275 
is a field trial method limited by the need to have active marine borers present, and this limits the 
number of sites that can be used for this test. The limnoriids L. quadripunctata or L. tripunctata and 
the teredinid L. pedicellatus are suitable for laboratory tests focused on wood for use in temperate to 
warm-temperate marine climate. Meaningful results can be gained within a month of experimentation. 
Tests using individual Limnoriids allow sufficient biological replication for determining optima in 
treatment variables. It has, however, been found that tests using feeder blocks with a colony of 
Limnoriids do not have a well-defined or easily replicated level of borer activity, and, although it has 
been suggested that laboratory tests can detect differences between experimental treatments relative 
to the level of attack on control blocks, such tests cannot be used to predict service life. Hence, 
for marine borers, it is necessary to undertake marine trials, under the caveat that only treatments 
causing the greatest mortality or reduction in feeding are valid.

The use of modified wood in limiting insect decay
As the production of modified wood has increased, its range of possible uses has also expanded, 
and it has become necessary to undertake a range of evaluations to see whether the material is fit 
for use and can provide the necessary service life. Given that wood modification has the ability to 
alter the chemical constituents of the wood as well as to reduce the equilibrium moisture content, 
it is logical to expect that wood modification techniques are capable of reducing insect decay by 
rendering the material inedible and/or by reducing the level of moisture needed for enzymatic 
processing. Evaluations are still ongoing, but known results relating to each modification method 
are given in their respective chapters. Attack by termites is still a matter of study, given that tests are 
often carried out on only small colonies and these may give incorrect results. It has been suggested 
(Kutnik et al., 2009) that such methodologies are not always relevant, especially when the tests 
are performed under laboratory conditions, since the reported mortality rates in isolated groups of 
termites do not reflect the behaviour of a termite colonies in natural field conditions. Mortality rates 
in field conditions are always worse than under laboratory conditions. Above ground resistance 
tests or laboratory tests performed on larger colonies could provide more reliable results. Another 
concern is that laboratory results based only on insects’ mortality cannot provide information about 
the service life expectations, such as the impact of aesthetic damage, maintenance and expected 
durability of wooden construction components.

Insect attack, whether on land (above or below soil level) or in water (marine conditions), poses 
major problems to the use of wood in construction. The test methods currently advocated by testing 
bodies show that the prevention of attack has to date mainly been limited to the use of preservatives, 
although naturally durable species have been used in the past. These naturally durable species often 
come from tropical regions, and this makes their continued use a contentious issue. In addition, 
the leachability of preservatives into the surroundings has raised concern over the use of many 
historically effective treatments. 

The use of modified wood continues to gain market acceptance in many cases, and there is a 
growing amount of data supporting its performance against insects. Further improvements in testing 
methodology may help increase these opportunities, or at least ensure that the correct treatment and 
usage has been ascribed to a particular wood product.

1.6	 Weathering	of	wood
As a bio-based material, wood will eventually break down into its constituent components. In its 
natural environment, wood is protected from exterior forces by bark, but when it is exposed outdoors 
in typical construction uses above ground, it undergoes a series of bio-degradative processes linked 
to its exposure to chemical, mechanical, and light energy factors, resulting in what is known as 
weathering. Weathering should not however be confused with decay, which results from decay 
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organisms, such as fungi which are able to attack and ultimately destroy wood in the presence of 
excess moisture and air over an extended period of time. A thorough overview of weathering of 
wood has already been published (Williams, 2005).

Factors contributing to weathering
Light − Photochemical degradation due to sunlight occurs fairly rapidly on exposed wood surfaces, 
with the effect increasing with the intensity and duration of exposure. It has been suggested by 
Tolvaj et al. (2001) that fluctuations in the ozone layer have increased the effects of UV-B irradiation, 
and this in turn has influenced the use of mercury lamps for artificial weathering tests. The initial 
effect of UV exposure is a colour change where wood become more yellow as a result of radical-
initiated photodegradation of lignin components (Evans et al., 1992; Müller et al., 2003; Turkoglu  
et al., 2015). These compounds can be further degraded, resulting in compounds with a carbonyl 
bond conjugated to double bonds, resulting in an FT-IR spectral peak at 1,615 cm–1 (Cogulet et al., 
2016). These compounds may be leached with rain/moisture to eventually leave the grey appearance 
due to the birefringence of cellulose, the optical characteristics of the cellulose having a refractive 
index which relies on the polarisation and propagation direction of light. Cogulet et al. (2016) used 
Raman spectroscopy to show that the α and β carbons in lignin are photosensitive, and tend to 
undergo radical degradation, although there is a noted photoresistance of 5–5′ linkages between 
diaryl moieties within lignin. These studies also showed that holocellulose undergoes various 
degrees of photodegradation, although the results were all based on artificial ageing.

The colour variations resulting from photodegradation are caused by surface effects and reactions, 
and are species dependent. Oberhofnerová et al. (2017) undertook the simultaneous testing of the 
photodegradaticy of multiple species in an outdoor weathering experiment in Prague, Czech Republic. 
The results (Table 1.16) show that the lowest degree of discolouration was observed for English oak 
and the highest for Norway spruce. The depth of the colour changes was relatively similar among 
the conifers, but greater variations were noted with the broad-leaved woods. The values given in  
Table 1.16 are calculated as:

 ∆E = ∆L a2 + ∆ 2 2+ ∆b  (1.6)

where ∆L, ∆a and ∆b are, respectively, the differences in the L*, a* and b* coordinates of the 
CIELAB colour system. 

When wood has a high content of extractives, the chemical processes leading to the colour 
changes tend to take place fairly quickly, wheres those with a low extractives content tend to be 
slower but more consistent in overall speed. It has been suggested that the initial increase in b* value 
indicates the degradation of lignin (Evans et al., 1992; Müller et al., 2003; Turkoglu et al., 2015). 

Table	 1.16 Colour variations from photodegradation. Mean values and standard deviation (in parentheses) for  
24 measurements.

Wood	species 1	month 3	months 6	months 12	months

∆E* gloss ∆E* gloss ∆E* gloss ∆E* gloss

Black alder 6.4 (2.5) 5.9 (1.2) 7.0 (2.5) 5.8 (1.9) 20.9 (2.5) 7.6 (2.2) 27.0 (2.8) 5.9 (2.1)

Black locus 8.8 (0.9) 6.9 (1.1) 12.5 (1.6) 7.0 (1.3) 16.0 (1.5) 9.0 (1.3) 29.6 (2.0) 6.3 (1.2)

Douglas fir 10.5 (0.8) 6.4 (0.8) 10.9 (1.4) 6.3 (1.0) 16.0 (1.3) 8.5 (1.3) 28.1 (1.6) 7.3 (1.2)

English oak 3.2 (0.7) 6.9 (0.7) 4.0 (1.5) 8.0 (1.4) 12.7 (1.5) 11.4 (2.0) 23.0 (1.2) 5.6 (0.8)

European larch 11.3 (2.9) 5.7 (1.2) 12.7 (3.8) 5.5 (1.5) 17.9 (2.7) 8.9 (2.4) 30.5 (2.6) 7.0 (1.6)

Norway spruce 11.4 (0.7) 12.9 (2.1) 13.9 (0.9) 12.7 (2.7) 18.3 (0.8) 16.3 (1.5) 34.1 (0.9) 9.3 (1.7)

Poplar 7.5 (1.3) 10.5 (0.8) 7.8 (2.8) 10.7 (1.1) 18.9 (5.9) 12.1 (2.1) 33.6 (2.5) 7.3 (1.5)

Scots pine 8.3 (2.1) 8.5 (0.9) 10.8 (1.8) 9.4 (1.7) 15.8 (2.4) 14.3 (2.3) 28.9 (2.3) 9.5 (1.9)

Sycamore maple 5.2 (0.7) 10.4 (2.1) 2.9 (0.6) 11.9 (1.2) 11.7 (2.1) 15.8 (2.1) 28.5 (1.6) 9.3 (1.5)
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The subsequent decrease in yellowness may be attributed to the leaching by water of decomposed 
lignin and extractives (Turkoglu et al., 2015). The changes in a* values are determined mainly by 
the changes in the chromophore groups in the extractives. The results confirmed that in the early 
stages of weathering, dark woods tend to become light and light woods to become dark or turn into 
the silver grey colour (Dawson et al., 2008; Saei et al., 2015).

These photodegradative changes were initially thought (Hon and Ifju, 1978) to be limited to 
the outer 75−200 μm of the wood, but subsequent work (Kataoka and Kiguchi, 2001) has shown 
evidence of photo-induced degradation with extended exposure time at depths of around 500 μm. 
Figure 1.76 shows one example of a lignin photo-degradation mechanism given by Anderson et al. 
(1991), which suggested that lignin fragments can be activated via quinone methide intermediates 
which then undergo attack by light-induced radicals. It has also been proposed that, as a result of 
further photochemical cleavage of the C-C bonds adjacent to carbonyl groups, small, water-soluble, 
and leachable chemical compounds can be generated and removed during wetting cycles.

Moisture – One of the principal causes of weathering is the frequent exposure of the wood surface 
to rapid changes in moisture content. Indoor climates tend to be fairly constant in terms of their 
moisture content, except for areas with high moisture or liquid water (e.g., bathrooms, saunas, 
kitchens) or as the result of water leakage. In exterior use, wood is more prone to exposure to great 
variations in moisture, particularly if exposed in Use Class 3 situations, when direct rain or dew 
falling upon an unprotected surface is quickly absorbed by capillary action into the surface layer of 
the wood, followed by adsorption within the wood cell walls. The penetrative effect of the rain and 
moisture depends on the severity and time during which the wood undergoes the wetting process, 
and the dimensions of the wood element also contribute to the overall effect of wetting through 
the cross section of the material. The adsorptive uptake and release of water by the wood results 
in swelling and shrinkage, accentuated by changes in the climatic conditions, particularly when a 
wetting episode is immediately followed by exposure to direct sunshine. This results in stresses 
between the surface and the (often) drier interior, which can result in distortion or checking. The 
grain can rise as a result of poor wood processing, and differential swelling and shrinkage of the 
earlywood and latewood subsequently occur when the wood is wetted. The wetting process can also 

Figure 1.76 Proposed lignin photo-degradation mechanism by Anderson et al. (1991).
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result in lifting of the grain, which also increases the level of leaching from the surface as a result 
of the UV-degradative process due to exposure to light. As the surface becomes more stressed, 
cracking leads to moisture ingress below the surface layers where photodegradation has occurred, 
opening up new sites for photodegradation as well as creating sites for possible colonisation by 
staining and decay fungi.

Building location – The position of a building and the exposure of its wooden elements can have a 
significant role on the weathering (micro-climate), degradation and performance of the material. The 
major factor is whether materials are in direct sunshine. This is further aggravated by the direction 
of the prevailing wind (and thus wind-driven rain). Further complications can be created by the 
channelling effects of surrounding mountains, ridges, tall buildings, etc. Typically, materials such 
as uncoated timber cladding will become grey over a relatively short period of time, with surfaces 
having unfavourable orientations undergoing a more rapid and variable weathering. Those having 
a less severe orientation (e.g., northern facing in the northern hemisphere), weather at a slower rate 
and more uniformly. 

The orientation of a building and its components with respect to prevailing weather conditions 
significantly influence the periods of wetting experienced by products such as cladding. The 
ISO 15927-3 (ISO, 2009) standard describes how to determine the hygrothermal performance of 
buildings and more specifically their vertical surfaces and takes into account factors such as terrain, 
topography, wind sheltering and the presence of obstructions within close proximity. Many of these 
factors were also considered within the European-funded WoodBuild project, which considered the 
performance of a wooden material in terms of decay risks (Isaksson et al., 2015) and factors relating 
to weathering can be similarly applied.

Building design – In addition the location of a building, its design can also affect the weathering 
of wood components. The traditional design in a specific region often considers performance and 
modern design methods may pose a great stress on the performance of the materials. The use of eaves 
can help protect timbers from weathering from sunshine and excessive wetting (and ultimately from 
decay) but at the risk of creating different degrees of photodegradation and staining on a surface. 
This can be seen as unsightly by some, although over time all materials tend to achieve a uniform 
greying. The design should not only take into account how the material can be protected from the 
effects of exposure, but also how the material recovers after a weathering episode. When exposed to 
wind-driven rain, this means how long it will take for the material to dry back to normal conditions 
(i.e., to below the moisture threshold associated with fungal degradation). With timber cladding, 
ventilation has been shown to provide a better reduction than non-ventilated boards of the risk 
associated with wetting as shown in Figure 1.77 (Isaksson et al., 2015).

In a similar way, exposure at ground level tends to pose additional problems, not only from 
increased exposure to sunshine but also increased wetting as a result of splashing. Therefore, it is 
important to design the construction so that wood products are maintained at a height above ground 
level. There may also be regions which, due to the design of the building, are subject to splashing—
and this can lead to the wood weathering faster. For wooden products, such as cladding, keeping the 
material at least 250 mm above the ground level is considered to be a practical means of limiting 
the risk of wetting. 

Temperature – Although it is not as critical as UV irradiation or water, the temperature increases as a 
result of solar exposure and this affects both photochemical and oxidative reactions. Exposing wood 
to a high temperature after a wetting episode can lead to the rapid drying of the surface creating 
stresses that increase the risk of splitting and checking, which in turn can accelerate weathering and 
decay. Similarly, the expansion and contraction of water as a result of freezing and thawing may lead 
to similar degrees of wood checking. 

Other climatic conditions – The effect of wind or wind-driven particles (such as sand) can accelerate 
the weathering process, and weakened surfaces may suffer fibre losses. This is often noticed as 
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raised grain on a wooden surface, as well as if the timber is coated with a deeply dark colour, which 
can cause extreme heating of the wood surface when exposed to intensive sunshine. 

Human wear and tear – As with climatic abrasion, human use, such as walking on decking, can 
loosen fibres on surfaces that have undergone a period of weathering.

Effects of weathering
If left untreated, wood will suffer irreversible surface damage due to weathering. This damage can 
be divided into structural effects and aesthetic effects, both of which often necessitate physical 
replacement with significant financial implications (Figure 1.78). 

Structural effects: the effects of weathering from the microscopic to the macroscopic level can 
be summarised thus:

Molecular level – UV-initiated degradation of selected bonds (e.g., –CH2, –CH or –OH) within 
the lignin and the generation of carbonyl-containing extractives (Hon and Chang, 1984). In 
addition, there is evidence (Pandey, 2005) that cellulose can undergo a reduction in the degree of 
polymerisation, even though the crystalline zones are the most stable. 

Cellular level – As the molecular degradation proceeds, there is an increasing effect on the surface 
of the wood, the degradation being followed by leaching and colonisation of staining fungi (Ghosh 
et al., 2009), with surface cracking increasing the available sites for such colonisation. 

Tissue level – The degree of weathering has been shown to be more rapid in the less dense earlywood 
than in the latewood, as this leads to an uneven and rougher surface (Williams et al., 2001). In 
addition, surface cracks can occur on the radial section at the growth-ring border as a result of 
density variations in the transition zone (Sandberg, 1999).

All these factors contribute towards the overall ageing of the wood leading to a grey appearance 
when the material exposed over a period of time. 

Although the aesthetic aspects of a material are subjected to individual opinions, it is generally 
accepted that wood has a “feel-good” factor and has links to health and well-being (Burnard and 
Kutnar, 2015). The most obvious way of evaluating the aesthetic appearance of wood is by visual 

Figure 1.77 The way in which ventilation can alter the performance of timber cladding (modified from Isaksson et al., 2015).
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Figure 1.79 A proposed grading system for the degree of weathering of a wood surface (Sandak and Sandak, 2017).

assessment, but this can have a high level of variability, and the conditions under which an evaluation 
is undertaken can have an impact on the assessment, e.g., the amount of sunshine and dryness of 
the surface. An attempt to define conditions and provide some degree of quantification has been 
devised (Osgood et al., 1957), which for a material such as wood depends on the observed colour 
(or its greyness), surface cracking, checking, erosion, etc. For consistency, it is prudent to undertake 
evaluations by persons with some degree of training, and preferably to repeat evaluations carried out 
by the same person. In a recent overview of aesthetics, a grading system for evaluating the degree 
of weathering on wood was recommended, as shown in Figure 1.79 (Sandak and Sandak, 2017).

One of the key methods for limiting the weathering of wood has been by the application of a 
coating, such as paint. Here, it suffices to recognise the importance of this topic, and the reader is 
directed to several key reviews on this subject (Evans et al., 2015; Petrič, 2017; Teaca et al., 2019).

Monitoring weathering
When studying weathering, it is important to consider whether studies have been made under 
artificial conditions (e.g., by using a climate chamber) or on natural weathering (outdoor exposure). 
With artificial weathering, specimens are exposed to fixed periods of exposure to UV and driven 
water to correspond to conditions associated with natural outdoor weathering. However, these 
methods do not account for wind effects, or for erosion by particulates. Different regions have 
different climatic conditions, as indicated by the Scheffer Climate Index (Scheffer, 1971). This has 
been demonstrated with the establishment of several accredited test sites worldwide for the outdoor 
weathering of various materials, including wood. Table 1.17 shows the different climatic conditions, 

Figure 1.78 Examples of structural and aesthetic damage due to weathering.

greying,
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but more importantly the annual mean radiation exposure for timber at these sites (McGreer, 2001). 
Naturally, these conditions can vary on a year-by-year basis, depending on local weather during the 
timeframe of the exposure trial.

In addition to the test sites listed in Table 1.17, there are a number of other test sites capable of 
undertaking evaluations according to national and international standards.

The variation in annual mean total radiation exposure shown in Table 1.17 also demonstrates 
the difficulty in establishing a direct correlation between artificial weathering data and outdoor 
weathering. According to the European standard EN 927 Part 6 (CEN, 2018), a standard artificial 
weathering cycle takes a total of 12 cycles each of 1 week. Given these variations, there is no direct 
correlation between artificial and natural weathering, and the standard EN 927 Part 3 (CEN, 2000) 
states that the results of this test do not necessarily correlate with those from natural weathering. 
Both these standards relate to coated wood, but similar concepts apply to uncoated wood. Attempts 
were made within the WoodExter project (Jermer, 2011) to determine the exposure risks leading 
to overall decay of wood, taking in account sunshine, temperature, rainfall and prevailing wind 
conditions, all based on climatic data that could be processed through the computer software 
Meteonorm. This showed (Figure 1.80) a range of exposure risks across Europe, ranging from 0.6 
in northern Scandinavia to 2.1 on the Atlantic coast in southern Europe. It is prudent to acknowledge 
that the effect of sunshine bleaching the wood surface will be much greater in areas such as southern 
Europe than in northern Europe, for example, but the overall weathering effect maybe reduced by 
the limited rainfall and subsequent less leaching of photodegraded components. 

Although the monitoring of prevailing conditions can provide an indication of the weathering 
of a material, accurate results can be obtained only through the actual observation of timber in 
service. A number of methods have been used to determine the effects of weathering, on a variety 
of sample sizes. Microtensile testing of microtomed samples has been investigated (Derbyshire 
et al., 1995; Turkulin et al., 2004) and this initially demonstrated that the method gave a reliable 
means for determining the photostability of wood, and later how moisture increased the strength 
loss of the thin strips, although this was sometimes after an initial increase in strength, which was 
attributed to changes in the cellulose. Further studies of the microtensile strength (Klüppel and Mai, 
2018) demonstrated a greater loss of finite-span tensile strength on exposure to sea water, but not of 
zero-span tensile strength. Furthermore, FTIR of these samples showed higher levels of lignin than 
in conventionally weathered samples, presumably as a result of the deposition and crystallisation 
of salt within the cell-wall nanopores, which in turn inhibited lignin photodegradation. Diffuse 

Table	 1.17 Overview of some accredited weathering test sites, showing the variation in exposure to radiation  
(McGreer, 2001).

Location Latitude Longitude 	E
le
va
tio
n	
(m

)

	A
ve
ra
ge
	a
m
bi
en
t	 

	te
m
pe
ra
tu
re
	(°

C
)

	A
ve
ra
ge
	a
m
bi
en
t	 

	R
H
	(%

)

	A
nn
ua
l	m

ea
n	

 
	r
ai
nf
al
l	(
m
m
)

	A
nn
ua
l	m

ea
n	

to
ta
l	r
ad
ia
tio
n	

ex
po
su
re
	(M

J/
m

2 )

Lochem (The Netherlands) 52o30’ N 6o30’ E 35 9 83 715 3,700

Hoek van Holland (The Netherlands) 51o57’ N 4o10’ E 6 10 87 800 3,800

Sanary (France) 43o08’ N 5o49’ E 110 13 64 1,200 5,500

Chenai Airport (Singapore) 1o22’ N 103o59’ E 15 27 84 2,300 6,030

Melbourne (Australia) 37o49’ S 144o58’ E 35 16 62 650 5,385

Townsville (Australia) 19o15’ S 149o46’ E 15 25 70 937 7,236

Ottawa (Canada) 45o20’ N 75o41’ W 103 6 73 1,910 4,050

Sochi (Russia) 43o27’ N 39o57’ E 30 14 77 1,390 4,980

Dharan (Saudi Arabia) 26o32’ N 50o13’ E 92 26 60 80 6,946
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Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy (Faix and Nemeth, 1988) used 
reflectance spectra instead of the conventional transmissive spectra in FTIR. Spectral equipment 
has now become portable, and handheld systems have made it possible to make field measurements 
to be taken.

More recently, the use of Near Infrared (NIR) Spectroscopy has gained in popularity and has 
been used (Sandak et al., 2016) to determine the kinetics involved in the weathering process based 
on lignin measurements, and thus to suggest weathering index rates for different wood samples. The 
use of NIR was part of the toolbox of evaluation methods, together with colour measurement, gloss 
measurement, and the spectral and statistical analysis of artificially weathered samples (Petrillo  
et al., 2019), showing the potential of a multi-sensor approach.

Although most spectroscopic methods have focussed on an analysis of the photodegradation of 
lignin, X-ray diffraction in association with FTIR has been applied to assess the cellulose crystallinity 
in weathered wood (Lionetto et al., 2012). Turkulin (2004) reported the use of scanning electron 
microscopy (SEM) for evaluating the natural and artificial weathering of wood. For unweathered 
wood, the mechanical properties of latewood dominated the tensile behaviour of the strips, with 
tension failure beginning in the latewood via a brittle-like mode (Figure 1.81, left), and spreading to 
the earlywood zones in an interlocked, ductile mode. Weathered wood were however more prone to 
brittle failure (Figure 1.81 right).

Figure 1.80 Exposure risk for wood product according to Meteonorm data (Jermer, 2011).

Figure 1.81 SEM analysis of conifer earlywood tracheids at their corner joint. Unweathered samples (left), and samples 
naturally weathered for 14 days (right).
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This work also reported that the breakdown of the middle lamella during weathering often 
causes the detachment of surface cells, while the thinning of the cell walls (Figure 1.81, right) 
was attributed to the breakdown of the lignin in the S2 layer of the cell wall. Higher resolution 
microscopic images (Figure 1.82) further emphasise the photodegradative delignification, with the 
exposed fibrils being loosely packed and lacking radial agglomeration (Figure 1.82, right).

Wood modification and weathering
The aim of wood modification is to provide a more stable substrate for use in products exposed to 
various Use Classes. Many of the modification processes occur with chemical bonding other than 
that directly affected by the UV-degradation process, so that the weathering may occur at a rate 
different from that of the unmodified material. Some overviews of early studies into the effects of 
chemically modified wood have been published (Plackett et al., 1992; Evans et al., 2000; Williams, 
2005), together with some studies into thermal modification (Nuopponen et al., 2005; Yildiz et al., 
2011; Srinivas and Pandey, 2012). Recent studies into the effects of the various wood-modification 
techniques are reported in the relevant sections of this book.

1.7	 Stress-strain	response	of	wood:	Considerations	in	wood	modification
A structure is often defined as “any assemblage of materials which is intended to sustain loads”, 
such as an airplane, a bridge, or a building. Only a minority of structures are made by human beings; 
the rest are products of biological design. The majority of living tissues have to carry mechanical 
loads of one kind or another. Plants, such as trees, are structures, designed to grow tall and stand up 
to strong winds. Biology places a great premium on strength and metabolic efficiency. In fact, trees 
are very efficient structures indeed. Nowadays, with modern knowledge, we tend to shy away from 
making too sharp a division between structure and material, at least in sophisticated structures. In 
biology, the distinction is often not possible.

The mechanical or strength properties of wood determine its fitness and ability to resist an 
applied or external forces, an external force being any force outside a given piece of material that 
tends to alter its size or shape or to deform it in any manner. Deformation may also be brought about 
by forces acting entirely within a piece, such as those which arise in wood due to changes in its 
moisture content, but these forces are concerned chiefly with the physical properties of wood other 
than those strictly pertaining to strength (Wangaard, 1950).

The English natural philosopher, architect and polymath Robert Hooke (1635−1703) studied 
the effects of forces on different materials and structures. He took a considerable variety of wires, 
springs, and wooden beams and loaded them progressively by adding weights to scale-pans, and 
measured the resulting deflections. When he plotted the variation in load against the deflection he 
found in each case that the graph was a straight line, and when the load was progressively removed 
the recovery was also linear, and the specimens returned to their original dimensions when they 

Figure 1.82 High resolution SEM microscopy of conifers. Unweathered wood showing S2 and S3 layers (left), and S2/S3 
layers of a weathered earlywood tracheid with micro-voids between the fibrils due to delignification (right).
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were unloaded. Thus, Hookean behaviour of a material or a structure was discovered, and Hooke 
concluded:

“It is very evident that the rule or law of Nature in every springing body is that the force or power 
thereof to restore itself to its natural position is always proportionate to the distance or space it 
is removed therefrom, whether it be rarefaction, or separation of the part from one another, or by 
condensation, or crowding of these parts together. Nor is it observable in those bodies only, but 
in all other springy bodies whatsoever, whether metal, wood, stone, baked earth, hair, silk, bones, 
sinews, glass and the like.”

Hooke was saying that a solid can resist an external force only by changing its shape: by 
stretching if it is subjected to a tensile force, or by contraction if it is compressed. There is, according 
to Hooke, normally no such thing as an absolutely rigid material or structure. His discovery was a 
logical consequence of Newton’s third law. A perfect elastic material follows Hooke’s law of 1678 
which requires small deformations and states that the stress (σ) is directly proportional to the strain 
(ε) and independent of the strain rate: 

 σ = Eε (1.7)

The modulus of elasticity (E) is a material dependent constant, corresponding to the inclination 
of the straight line in the stress-strain plot. Nowadays, it is known that materials in general do not 
show soley Hookean behaviour under load, and that some materials behave in a fully elastic manner 
but not linearly elastic as Hooke suggested for all materials. The basic nature of this complex 
behaviour of materials under load is exemplified in Figure 1.83:

Figure 1.83 Examples of general stress-strain responses of different types of materials and structures.

Left: The elastic or plastic behaviour shown by a ductile metal. Under small loads the extension or 
compression increases linearly with increasing load (Hookean), but when a certain load is reached, 
the metal yields, undergoing a large additional extension or compression, that is mostly irreversible 
when the load is removed. 

Middle: Fully elastic J-curve behaviour shown by many animal tissues. The greater the load, the 
smaller the additional extension or compression, and when the load is removed the material return 
to its original dimension.

Right: Fully elastic S-curve behaviour shown by many synthetic rubbery solids. Most extension or 
compression occurs over a relatively narrow medium load range. Such solids may be brittle under 
higher loads, i.e., when reaching the region of steep increase in load to the right of the curve.

Wood is a material with a complex behaviour under load, that depends not only on the external 
load such as force, moisture or temperature, but also on its ultra-, micro-, and macrostructure, as well 
its chemical constituents. Wood is an “elasto-viscoelastic” material because its response to loads 
may be Hookean (linear elastic) but also shows a time-dependent deformation behaviour depending 
on the loading history, the temperature, and the moisture content, as well as on moisture variations 
(Navi and Sandberg, 2012). These parameters may interact together producing coupling effects. 
It is essential to understand the elasto-visco-plastic behaviour of wood during wood-modification 
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processes such as steam-bending (the Thonét method, see Figure 1.92) and densification, where an 
understanding of the stress-strain response of the wood material is essential. 

Elastic behaviour of wood
Wood has an anisotropic mechanical behaviour, the strength and rigidity of wood in its longitudinal 
(L) direction being much greater than in the transverse, radial (R) and tangential (T), directions, 
and strength and rigidity in the radial direction being different from that in the tangential direction. 
In a tree trunk, which is more or less cylindrical, the circular shape of the growth rings and the 
organisation of the longitudinal cells give the wood axis-symmetric mechanical properties. Apart 
from defects and natural growth imperfections, the similarity of the two local symmetry planes, i.e., 
longitudinal-radial (L-R) and radial-tangential (R-T) passing through any given point means that 
wood may be considered to be a cylindrical orthotropic material. Figure 1.84 shows an idealised 
cylindrical trunk and a close-up element with the principal directions R, T, and L corresponding to 
a given arbitrary point in the trunk.

Under a longitudinal tensile force, wood is typically elastic with a quasi-linear elongation up 
to a breaking point, as shown in Figure 1.85 (left). Breaking occurs by a brittle fracture, under 
controlled force conditions when the ultimate strain is 1−3%. Nevertheless, when the displacement 
is controlled, the response of a wood specimen to a simple tensile force, as shown in Figure 1.85 
(right), is different. The force displacement curve shows a strain-softening behaviour after the peak, 
as a consequence of strain localisation (fracture with a damaged zone) in the wood. 

When wood is subjected to a tensile force in the transverse direction, the force-displacement 
curve have features similar to those in the longitudinal direction, but the breaking and peak stresses 
are much lower.

Under a compression force, the deformation of wood depends on the direction of loading. 
Typical stress-displacement curves of poplar under compression in the three principal directions 
radial, tangential and longitudinal under controlled deformation are shown in Figure 1.86. 

Under axial compression, the specimen shows an almost three segmented stress-strain curve: 
a quasi-linear segment followed by a non-linear second segment curve with a negative slope due to 
localised longitudinal buckling of the cell walls and/or local fracture. The third segment shows an 
increase in the modulus of the specimen with increasing compressive force. 

Transverse compressive stress-strain curves (corresponding to the radial or tangential direction) 
also consist of three segments. The first segment shows a quasi-linear behaviour and is followed by 
a non-linear curve showing a decreasing modulus corresponding to a transverse flexural buckling 
of the cell walls. The third segment is a quasi-linear curve indicating a progressive increase in the 
modulus, which can reach a value higher than that of the first segment. During segments 2 and 3, 

Figure 1.84 An idealised cylindrical trunk represented by a circular cylinder and circular growth rings (left), and a close-
up view of a small element cut from the trunk where L, R and T are the local principal axes in the longitudinal, radial and 

tangential directions, respectively (right).
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the strain can be greater than 50%, indicating a large transversal deformation, which leads to a 
densification of the wood cells.

Viscoelastic behaviour of wood
Wood behaves in a viscoelastic manner, where its anisotropic mechanical properties depend 
on time, temperature and moisture. In relative terms, at short times, low temperatures and low 
moisture content, wood exhibits glassy behaviour and can be characterised as stiff and brittle. At 
long times, high temperatures and high moisture contents, wood exhibits a rubbery behaviour and 
can be characterised as compliant. The temperature associated with the phase transition between 
these two distinct regions is called the glass-transition temperature Tg (Wolcott et al., 1994). The 
glass-transition temperature is also known as the softening temperature, since it characterises the 
softening behaviour of amorphous polymers. When wood is subjected to thermo-hydrous conditions, 
its amorphous components soften and become easy to deform and this opens the way to many 
industrial processes such as moulding, densification, large bending, shaping, surface densification, 
etc. Many properties of the amorphous constituents in wood change dramatically when the material 
passes the glass-transition temperature (Figure 1.87). 

Figure 1.86 Stress-strain curves of specimens of poplar (density 350 kg/m3) of dimensions 25 × 25 × 5 mm subjected 
to compression in radial (R), tangential (T) and longitudinal (L) directions under controlled displacement at a rate of  

1 mm/min (Roussel, 1997).

Figure 1.85 Typical force-displacement curve of a wood specimen subjected to a controlled longitudinal tensile force (left), 
and a controlled longitudinal tensile displacement (right) where the curve shows not only the linear region but also strain 

softening of the specimen after the peak force.
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The physical and mechanical properties of an amorphous polymer such as wood lignin, can be 
characterised as follows:

 • In the glassy state, the physical properties are very similar to those of a solid phase whose 
values are not strongly sensitive to the chemical nature of the material like the topology of the 
polymeric network. The molecular movements which occur in this state are of low amplitude 
(movements of side groups or co-operative movements of a few monomeric units). 

 • In the rubbery state, the modulus of elasticity is 3,000 to 4,000 times lower than that of the glassy 
state, and the elongation at rupture is about 100 times greater. This high extensibility is due to the 
fact that thermal action decreases both the inter- and intra-molecular cohesion (Van der Waals 
forces, hydrogen bonds). Molecular movements of large amplitude (macromolecular movements) 
and the complete extension of the segments of the macromolecular chain are then possible, thanks 
to rotation around the covalent carbon-carbon (-C-C-) and carbon-oxygen (-C-O-) bonds. 

Hillis and Rosza (1978) studied the influence of wood components on the softening of wood 
and suggested that moisture lowered the softening points of hemicelluloses and lignin, which are 
above 160°C when these two components are isolated. Hemicelluloses in the cell wall softened first 
(at 54–56°C), and this decreased the wood stiffness. This enabled wood fibres to adapt their cross-
sectional shape to the applied forces. The softening of lignin (at 72–128°C) in the cell wall and 
middle lamellae permitted further cross-sectional movement within and between the fibres. Hillis 
and Rozsa (1985) investigated the softening of wood in different growth rings taken from young 
radiata pine trees. They reported softening points of about 80°C due to hemicelluloses and 100°C 
due to lignin, and based on the results of Hillis (1984), they attributed differences in the softening 
curves to the differences in the chemistry of the hemicelluloses in sapwood and heartwood. Baldwin 
and Goring (1968) have shown that Tg of the isolated components of wood differ from those in 
native wood, but the dependence of the Tg of wood components on the relative humidity is now 
fairly well known. Navi and Sandberg (2012) have presented thorough review of the glass-transition 
temperature of amorphous and semi-crystalline polymers. 

The glass-transition temperature Tg of the amorphous components of wood decreases with 
increasing moisture content and vice versa (Figure 1.88). Östberg et al. (1990) showed that an 
increase in moisture content of Norway spruce and silver birch leads to a decrease in the softening 
temperature. Water molecules plasticise wood polymers, forming secondary bonds with the polar 
groups in the polymer molecules, and spreading them apart, thus reducing the secondary bonding 

Figure 1.87 General behaviour of the relaxation modulus with temperature of an amorphous polymer (Lenth, 1999).  
Tg – glass-transition temperature.
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between the polymer chains and providing more room for the polymer molecules to move around. 
Moisture thus increases the free volume of the system, the wood becomes more easily deformed and 
the glass-transition temperature is lowered.

Figure 1.89 shows the glass-transition temperature of the native matrix of hemicelluloses and 
lignin as a function of the relative humidity. It is, thus, essential to consider wood as a cellulose−
hemicelluloses−lignin material whose three principal components are chemically linked together. 
Figure 1.89 shows that, at relatively high moisture content, the lignin has the highest glass-transition 
temperature, apart from crystalline cellulose. Therefore, the glass-transition temperature of lignin 
determines the limiting lowest temperature of the thermo-hydro-mechanical (THM) process for 
wood. The forming temperature must be selected according to two criteria. Firstly, the minimum 
temperature under which the wood can be formed, which is usually considered to be at least 25°C 
higher than glass-transition temperature of the lignin, i.e., approximately 110°C under moisture-
saturated conditions and approximately 140°C at 80% relative humidity, and secondly, the maximum 
temperature, usually considered to be 200°C when air is saturated, to avoid thermal degradation of 
the wood components. The thermo-hydrous window for the forming of wood is thus limited to 
temperatures and relative humidity from respectively 110 to 140°C and 80 to 100%. Under these 
conditions, the lignin, hemicelluloses and the semi-crystalline cellulose are relatively mobile and 
can be deformed easily thanks to two molecular phenomena:

Figure 1.88 Glass-transition temperatures Tg of the isolated components in wood as a function of moisture content  
(Salmén, 1982).

Figure 1.89 Glass-transition temperature for a matrix of native hemicelluloses-lignin as a function of the ambient relative 
humidity (Salmén et al., 1986).
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 1) The inter- and intra-molecular interactions of the Van der Waals type in an amorphous or semi-
crystalline polymer decrease strongly when their temperature is higher than their Tg. 

 2) The inter- and intra-molecular interactions of the hydrogen bond in an amorphous polymer 
which has functional hydroxyl (-OH) groups decrease strongly when its moisture content 
increases. The adsorbed water molecules are placed between the molecules, so they are by the 
hydroxyl groups. Consequently the average inter-molecular distance and the mobility of the 
molecules increase, and this lowers the Tg.

The water molecules act as a plasticiser by decreasing the interactions between the hemicelluloses 
and lignin macromolecules and the amorphous regions of the cellulose.

The semi-crystalline cellulose and hemicelluloses have many hydroxyl groups and are highly 
hygroscopic so that, when they are saturated with water, their Tg drops to a temperature lower than 
room temperature (Figure 1.88).

On the other hand, lignin contains fewer hydroxyl groups and water does not, therefore, have 
a great impact on its Tg which is approximately 85°C from about 15% moisture content to the 
saturation condition. The large number of hydrogen bonds in crystalline cellulose means that it has 
a compact and stable structure and that water is unable to penetrate into the crystal lattice. Only the 
hydroxyl groups on the surface of crystallites can adsorb water. Apparently the percentage of semi-
crystalline cellulose is not really important. Consequently, the fibrils remain crystalline and very 
rigid at high temperatures and high moisture contents.

Various transitions in polymers are commonly studied by Dynamic Mechanical Analysis – 
DMA (Menard, 2007). DMA is a method based on sinusoidal tests that enable the characterisation of 
bulk properties directly affecting material performance. The DMA is a common method to decouple 
thermal activation from the time effect, characterising of materials that exhibit significant changes 
in their viscoelastic behaviour with changing conditions of temperature and the frequency of a 
dynamic force. It is often used to study the behaviour of polymers, e.g., to determine their glass-
transition temperature. 

DMA can be simply described as the application of an oscillating force to a material and the 
material’s response to that force. DMA enables various properties of the material to be determined 
like the tendency to flow (viscosity) from the phase lag and the stiffness (modulus) from the 
recovery of the material. These properties are often described as the ability to lose energy as heat 
(damping) and the ability to recover from deformation (elasticity). The DMA also data relating 
to the relaxation of the polymer chains and the changes in the free volume of the polymer that 
occur. The storage modulus E’, which is a measure of the material stiffness, the loss modulus E”, 
which reflects the amount of energy that has been dissipated by the sample, and the ratio E”/E’ = 
tan δ (δ is the phase angle), an index of material viscoelasticity, are calculated from the material 
response to the sine wave. These different moduli give a better characterisation of the material, 
since they show the ability of the material to return or store energy, its ability to lose energy, and 
the ratio of these effects, which is called damping. In a DMA test, where a specimen is heated 
stepwise and the three parameters are plotted as a function of temperature, a strong change in tan 
δ indicates a change in the material´s viscoelastic properties, e.g., the transition from a glassy to 
a rubbery state. Since cellulose, hemicellulose, and lignin are polymeric, DMA can be used for 
the characterisation of wood. Depending on the environment (humidity, air, inert-gas), thermal 
degradation and/or reconfiguration of the constitutive polymers of wood can occur during a DMA 
test revealing its viscoelastic properties (Assor et al., 2009). Internal friction (tan δ) is particularly 
sensitive to the structure of the wood cell-wall “matrix” (lignin and hemicelluloses). Therefore, 
DMA data as a function of temperature simultaneously provide mechanical data and indications of 
chemical modifications (Laborie, 2006). Due to the hygroscopicity of wood, DMA tests on wood 
as a function of temperature are usually conducted either in a completely dry or in a saturated state. 
However, the versatility of DMA has seldom been applied to monitor the in situ changes occurring 
during thermal treatment processes involving several steps under different conditions.
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Mechano-sorption
The variation in the viscoelastic behaviour of wood under varying climatic conditions is referred 
to as the mechano-sorptive effect, a phenomenon that is still not understood in detail. The term 
mechano‑sorption is often used to express the effect under carrying conditions of the coupling 
between mechanical stress and moisture content in wood. It has been shown that a variation in 
the moisture content of a wood specimen subjected to a mechanical load can lead to important 
deformations. Under high load and extreme variations in moisture content, high deformation can 
lead to structural damage of the wood. Figure 1.90 illustrates the effect of cyclic variation in the 
relative humidity combined with a different stress level on the delayed deformation in bending of 
small clear specimens.

Phenomena observed under varying moisture conditions have been described by Grossman 
(1976). These phenomena are presented in Figure 1.91 which shows a typical mechano-sorptive 
creep curve after deduction of the free swelling or addition of the free shrinkage observed under 
zero loading.
The main features are:

 • The deformation increases during drying, as has been shown by Armstrong and Kingston 
(1962), Hearmon and Paton (1964), Pittet (1996) and others. 

 • The first re-humidification lead to an increase in the deformation. Subsequent re-humidification 
leads to a minor reduction in deformation when the applied compressive load is low and an 
increase in deformation under high compressive loads (Armstrong and Kingston, 1962; 
Hearmon and Paton, 1964; Navi et al., 2002). 

 • The mechano-sorptive deformation is independent of time. It is determined by the degree of 
variation in the moisture content while it is below the fibre saturation point (Armstrong and 
Kingston, 1962; Leicester, 1971).

 • When the stress level is less than 15–20% of the short-term ultimate stress, the deformation due 
to mechano-sorption seems to be linear.

 • A constant flow of moisture through the wood without any local change in the moisture content 
does not lead to any mechano-sorptive effect (Armstrong, 1972). 

Figure 1.90 Creep in bending of small specimens of European beech with dimensions (2 × 2 × 60 mm) under cyclic 
variations in relative humidity (Hearmon and Paton, 1964).
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 • After unloading and recovery of the instantaneous elasticity, most of the total deformation is 
irrecoverable. New humidification-drying cycles lead to a decrease the residual deformation. 
The recovery is greater during drying than during humidification (Armstrong and Kingston, 
1962; Pittet, 1996).

It is important to note that the dimensions of the specimen have a considerable influence on 
the kinetics of the mechano-sorptive effect. This is partly related to the time to reach moisture 
equilibrium in the specimen. For example, in the case of two specimens, one 1 × 1 × 60 mm and 
the other 20 × 20 × 900 mm in size, the mechano-sorptive effect is similar, but the time necessary 
to reach moisture equilibrium in the thin specimen is only 2–3 hours, whereas about 50 hours are 
necessary for the thick specimen.

Stress-strain relationship under longitudinal deformation
The stress-strain relationship in the longitudinal direction of wood is of interest in bending after 
plasticisation. The reason for the difficulty in bending solid wood is the low extension of wood in 
tensile failure, see, e.g., Prodehl (1931a). Wood in its natural state exhibits elastic properties over 
only a limited stress range (Figure 1.92). When the stress is removed within this limited elastic 
range, the wood returns to its original shape. If the deformation in tension exceeds the limit stress 
in the longitudinal direction of wood, the wood remains bent. If the deformation strain exceeds the 
strength of the wood, it breaks.

However, when wood is plasticised it becomes plastic shapable. Its compressibility in 
longitudinal direction is then greatly increased, to as much as 30−40%, although its ability to 
elongate under tension is not appreciably affected (Figure 1.92). After plasticisation, a combination 
of bending and compression in the longitudinal direction of the wood can be used to limit the 
extension of the wood in tension and it is then possible to bend wood through a relatively sharp 
curvature. In practice, this means that the manufacturer has to control the length of the pieces during 
bending; to use some type of end stops (strap-and-stop) on the tensile side of the pieces being bent 
will prevent it from being streched by more than 1−2%.

Figure 1.91 Typical curve showing the mechano-sorptive creep of wood (Grossman, 1976).
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The theory of solid wood bending is relatively complicated, for the following reasons:

 1) Wood is an elasto-visco-plastic material with no distinct yield point.
 2) The yield points in tension and in compression are numerically very different, as shown in 

Figure 1.92, and the difference increases with increasing moisture content as well as with 
increasing temperature.

 3) The strain to failure is much greater in compression than in tension.

Many researchers have studied the mechanisms of deformation of conifer and broad-leaved 
wood under compression at the cellular level (e.g., Kučera and Bariska, 1982; Gibson and Ashby, 
1988; Hoffmeyer, 1990; Boström, 1992; François and Morlier, 1993; Gril and Norimoto, 1993; 
Roussel, 1997; Navi and Heger, 2005). In this section, only the large deformation of conifer wood 
is presented. In conifers at the cellular level, the microstructure is more simple and uniform than 
that of broad-leaved wood. In conifers, the longitudinal tracheids occupy approximately 90% of the 
volume and the remaining cells, the ray cells, are directed in the radial direction in the R−L plane 
(see Section 1.2 for details of the micro-structure of wood).

Physical mechanisms of deformations at the cell level under longitudinal tension 
A tensile force tends to pull apart the material. This external force is communicated to the interior, 
so that each portion of the material exerts a tensile force on the remainder, due to the property of 
cohesion in the material. The result is an elongation or stretching of the material in the direction 
of the applied force. Wood exhibits its greatest strength in tension parallel to the fibres, i.e., in 
the longitudinal direction. A typical stress-strain response for a conifer specimen is shown in  
Figure 1.93. When a direct tensile load is applied, the strain is proportional to the stress up to the 
point of failure and there is no well-defined proportional limit. Wood is capable of only yielding a 
slight amount prior to ultimate failure in tension.

The strength of wood parallel to the fibre direction depends on the strength of its fibres and this 
is affected not only by the nature and dimensions of the wood elements but also by their arrangement. 
It is greatest in straight-grained wood with thick-walled fibres (high density), its strength is greatly 
reduced if the force is applied in a direction deviating from parallel to the fibres.

Failure of wood in tension parallel to the fibres practically always occurs when dry wood is 
subjected to bending. In tensile failure, the fibre walls are torn across obliquely and usually in a 

Figure 1.92 Stress-strain (σ-ε) diagrams for air-dry un-steamed beech and for steamed European beech. Note that the stress 
and strain axes have different scales to the right and to the left of the origin (after Prodehl, 1931a,b). MC – moisture content.
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spiral direction following the sprial-grain of the tree. There is practically no pulling apart of the 
fibres from each other, i.e., no separation of the fibres along their walls, regardless of their thickness. 
The nature of tensile failure is apparently not affected by the moisture content of the wood, at least 
not as much as the other strength values.

Figure 1.94 shows commonly occurring types of failure of wood loaded in longitudinal tension, 
such as splintering tension, combined tension and shear, shear, and brittle tension failure.

Earlywood and latewood zones of a conifer specimen loaded to failure in tension parallel 
to the longitudinal direction exhibit completely differing patterns as shown in Figure 1.95. The 
earlywood zone typically shows a brittle failure, with separation occurring across the tracheid walls. 
In latewood, the failure is typically a combination of shear and tension failure.

Physical mechanisms of large deformation under longitudinal compression at the cell level
In compression, the force acts on a body in the direction opposite to that in tension. As shown in  
Figure 1.96, the strain response of a low-density wood specimen to a uniaxial longitudinal 
compressive force can be divided into three distinct segments. The specimen behaves almost 
linearly up to a certain limit (B). The slope of the first segment of the curves (A−B) gives the 

Figure 1.93 Stress-strain curves of wood subjected to tension and compression in the longitudinal direction under controlled 
displacement.

Figure 1.94 Failure types in clear wood stressed in tension parallel to the fibre direction in the wood. From the left: 
splintering tension, combined tension and shear, shear, and brittle tension failure.
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effective Young´s modulus of the specimens in compression in the longitudinal direction. Above the 
linear limit, the specimen shows a smoothing or strain softening behaviour (B−C), followed by a 
rigidification or densification (C−D).

The softening behaviour can be explained by various mechanisms of deformation at the cellular 
level. Many researchers have observed this behaviour in various kinds of wood. For wood of low 
density (< 300 kg/m3), Easterling et al. (1982) showed that the cause of the wood softening was 
the collapse of fibres by rupture at the ends of the cells. This mechanism is shown schematically 
in Figure 1.97 (middle). In wood of higher density, Kučera and Bariska (1982) have shown that 
the softening of the wood can be due to a local Euler-type buckling in the walls of the cells, 
illustrated in Figure 1.97 (right), which generally leads to the formation of a shear band as shown in  
Figure 1.98 on the wood macro-level.

Stress-strain relationship under transverse compression
The stress-strain behaviour of wood loaded in the transverse direction is of interest mainly under 
compression, where the cells are greatly deformed and the cell-lumen volume decreases, resulting 
in an overall decrease in the volume of the compressed specimen. Since the amount of material in 
the specimen is unchanged, the density increases with increasing compression, and the process is 
called wood densification.

Figure 1.96 Stress-strain curve of a specimen of low-density wood subjected to compression in the longitudinal direction 
under controlled displacement.

Figure 1.95 Most common failure of tracheids in tension parallel to the fibres: earlywood (left) and latewood (right).
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Wood densification can be achieved in one or more directions, but wood is mostly densified 
along one of its orthotropic axes, diffuse broad-leaved wood being preferred to conifer wood for its 
anatomical structure. Primarily, wood and in particular conifer wood, is densified along the radial 
axis, as its latewood is much more dense than its earlywood. If it is tangentially densified, the 
latewood spreads into the earlywood forming waves or zigzags (Küch, 1951).

Densification in the transverse direction of wood flattens the cells without any noticeable damage 
on a macroscopic level, so that the strength increases with increasing density (Sandberg, 1998; Haller 
and Wehsener, 2004). Because of its viscoelastic nature, wood also exhibits rheological properties 
such as creep and relaxation. The strain-time curve of wood under a compressive load can be divided 
into four parts: initial elastic deformation, viscoelastic deformation, final elastic spring-back and 
time-dependent spring-back or creep recovery (Tang and Simpson, 1990). Wood densification can 
have both permanent and recoverable components, which together have a significant influence on 
the physical and mechanical properties of the material (Lenth and Kamke, 2001). The viscoelastic 
behaviour results in densification due to a permanent transverse compression of the cells. 

During transverse compressive loading, a typical stress-strain curve of wood has three distinct 
regions (Bodig, 1963; Bodig, 1965; Kennedy, 1968; Wolcott et al., 1994; Uhmeier et al., 1998; Reiterer 
and Stanzl-Tschegg, 2001; Nairn, 2006), as shown in Figure 1.99. The initial part of the stress-strain 
curve for wood is a linear elastic region, in which the stress is directly proportional to strain. The 
second part is a “plastic” or collapse region, in which the stress is relatively constant even though the 
strain increases and the wood is deformed. After the plastic region, the stress increases strongly with 
little further strain. This region is termed the densification region (Tabarsa and Chui, 2000). 

A yield point is found at the beginning of cellular collapse. When most of the cells have collapsed, 
densification begins (Wolcott et al., 1994). During densification, the stress rapidly increases as a 
result of the elimination of air voids and compression of the solid wood structure—consolidation 

Figure 1.97 Diagrammatic representation of the mechanisms of local large deformations of wood cells under a longitudinal 
compression force. Wood before the application of the force (left), collapse of fibre by rupture (middle), and collapse by the 

buckling of cell walls (right). L is the longitudinal direction of wood.

Figure 1.98 Collapse of the specimen by the buckling of fibre walls, which creates a shear band: observed at the macro-level 
(left), and at the cell-wall level (right).
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of the collapsed cell walls. Cellular collapse occurs by elastic buckling, plastic yielding, or brittle 
crushing, depending on the test conditions and on the nature of the cell wall material (Wolcott  
et al., 1989).

The key details of the compression properties are dependent on various anatomical features 
of the wood specimen such as density, percentage of latewood, ray volume and loading direction 
(Nairn, 2006). Kunesh (1968) noticed that in the radial compression of solid wood, failure starts 
with the buckling of rays in an earlywood layer and results in progressive failure by buckling of 
the rays throughout the specimens. The first failure in earlywood was also found by Bodig (1965). 
Tabarsa and Chui (2000) found that earlywood primarily controlled the elastic and plastic parts of 
the stress-strain response for white spruce under radial compression. The first collapse of the cellular 
structure, which signified the onset of the plastic region, occurred in the cell layer with the lowest 
gross density in the earlywood. The initial part of the densification region was largely an elastic 
response of the latewood to the compressive stress, and collapse of latewood cells may not have 
occurred due to their large wall thickness. In broad-leaved woods, the first failure was initiated in the 
largest vessels surrounded by thin-walled paratracheal parenchyma cells (Tabarsa and Chui, 2001).

Several researchers have reported that wood responds differently to radial and tangential 
compression due to its anisotropic nature (Kennedy, 1968; Kunesh, 1968; Bodig and Jayne, 1982; 
Dinwoodie, 2000; Tabarsa and Chui, 2001; Wang and Cooper, 2005). In radial compression, the 
final consolidation stage is dominated by the elastic deformation of latewood, and in the tangential 
direction the final stage begins after readjustment of the latewood layer by buckling (Tabarsa and 
Chui, 2001). Reiterer and Stanzl-Tschegg (2001) studied the compressive behaviour of spruce 
wood under uniaxial loading at different orientations to the longitudinal and radial directions. Their 
results showed that the deformation pattern is highly dependent on the orientation. In the case of 
loading in the longitudinal direction, buckling deformation and cracks occurred, but no densification 
was observed, whereas loading in the radial direction resulted in plastic yielding and (gradual) 
collapse of the wood cells starting in the earlywood region of a whole growth ring and followed 
by densification at higher strains. Schrepfer and Schweingruber (1998) studied the anatomic 
structures of reshaped press-dried wood and found that earlywood cells were deformed more easily 
than latewood cells, which resulted in zones of compressed cells next to zones of uncompressed 
cells, in wave-like patterns. Kultikova (1999) also showed wave-like patterns of compressed and 
uncompressed cell zones in densified wood. The differences in compressibility of the wood tissue 
affects the distribution of void areas, and thus also the vertical density distributions and mechanical 
properties of compressed wood (Lenth and Kamke, 1996).

Figure 1.99 Schematic view of a transverse compressive stress-strain curve for wood (after Nairn, 2006).
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The type and amount of cell collapse have a great effect on the physical and mechanical 
properties of densified wood (Wolcott, 1989). The strength usually increases less than the density in 
relative terms, since uniaxial compression of solid wood results in a general collapse of the structure 
and possibly also in crushing and checking (Blomberg et al., 2005). This relation was found by 
Perkitny and Jablonski (1984) for bending strength and axial (parallel to grain) compressive 
strength. Blomberg et al. (2005) used a strength potential index to quantify how much the strength 
of densified wood increased relative to what could be expected for non-densified wood of similar 
density.

Hydrothermal treatment has a strong influence on the mechanical behaviour of wood during 
compression/densification. Softening and degradation occur depending on factors such as temperature, 
moisture, steam, and time (Morsing, 2000). The degree of improvement in the properties of densified 
wood due to hydrothermal treatment is affected not only by softening but also by the amount of 
thermal degradation induced by the compression process (Reynolds, 2004). Thermal degradation of 
amorphous wood components causes a weight loss of wood, and this can influence the mechanical 
strength properties (Jennings, 1993). For wet Norway spruce in radial compression, a thermal 
degradation process was observed between 150 and 200°C (Uhmeier et al., 1998). 

Physical mechanisms of large deformations at the cell level under transverse compression 
As shown in Figure 1.100, the stress-strain response of a specimen of poplar wood to uni-axial 
compressive force in the transverse direction has three distinct segments. The specimen behave 
almost linearly up to a certain limit which depends on the direction of the applied force. The slopes 
of the first segments of the curves (A−B) give the effective Young’s modulus of the specimens in 
the radial and tangential directions, respectively. In the radial and tangential directions, unlike in 
the longitudinal direction, wood exhibits a typical plastic behaviour with a positive work hardening 
(B−C) followed by a rigidification or densification (C–D).

In the radial and tangential directions, the first zone represents a linear elastic behaviour, while 
the second zone (B−C in Figure 1.100) represents a plastic behaviour of the cell walls. In the third 
zone (C−D), a densification of the cells occurs. 

Different researchers have explained these phenomena. Under the application of a compressive 
force in the radial direction, deformation occurs as a flexural buckling (or crushing) of the fibre 
walls starting in the weakest layer of the material. The cells of earlywood are the first to buckle 
because their walls are thinner (~ 2 µm) than the walls of latewood cells (~ 10 µm). This buckling 
leads to the densification of the fibres, the establishment of points of contact between the cell walls 
and increases the local rigidity so that this layer can support force sufficient to buckle the next layer 
which is the weakest one (Figure 1.101). 

Figure 1.100 Stress-strain curves of specimens of low-density wood subjected to compression in the radial and tangential 
directions under controlled displacement.
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These deformation mechanisms consisting of localisation, buckling and densification have 
been observed by, e.g., Gibson and Ashby (1988) and Navi and Heger (2005). A diagrammatic 
representation of this phenomenon is given in Figure 1.102. After the yielding of the first cellular 
row, the phenomenon is propagated progressively to the other rows of earlywood cells and later to 
the latewood cells.

In conifers compressed in the radial direction, the earlywood rows yield first, followed by the 
latewood rows, whereas in the tangential direction, thanks to the micro-structure of wood, buckling 
of the cell walls occurs at the same time in both latewood and earlywood cells.

The slope in the second segment of the curves increases with increasing compressive force, due 
to a closing of the lumens and multiplication of the points of contact between the walls of the cells 
of the initial wood. As the compression force increases, the thickness of these bands of buckled cells 
increases and others start to yield. When all the lumens are closed, the stress necessary to continue 
the deformation increases exponentially in the third segment. Wood densification starts in segment 
two and continues in segment three. As a result of this linear and non-linear behaviour, as shown in 
Figure 1.100, the wood can be deformed by more than 50%. 

To model the behaviour of wood under compression deformation, constitutive equations of 
wood undergoing linear and non-linear deformation therefore become important.

Kutnar and Kamke (2013) studied the transverse compressive behaviour of Douglas fir wood 
and hybrid poplar at high temperature (170°C) and saturated steam conditions. They applied 

Figure 1.102 Diagrammatic representation of the compressive deformation of wood of the cellular level in the radial direction: 
wood before compression (left), localisation of the deformation and crushing of fibres in the weakest layer, partial densification 

(middle) and, crushing of fibres in the weakest layer followed by densification (right). R is the radial direction of wood.

Figure 1.101 Micrograph of Norway spruce densified in the radial direction obtained with a confocal microscope. The 
contact points between cellular walls in the earlywood zone are shown by red dots.
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modified Hooke’s law and modelled the compressive stress as a function of elastic modulus of 
cell wall substance and a non-linear strain function. They found that Douglas fir and hybrid poplar 
behave differently when subjected to transverse compression due to the different cellular structures 
of conifer woods versus broad-leaved woods. However, when the comparison was made on the 
basis of the relative density change, the transverse compressive responses of Douglas fir and hybrid 
poplar were remarkably similar. The relative density of a cellular material, defined as the ratio of 
the apparent density of the material to the real density of the solid of which it is made (Ribeiro and 
Costa, 2007), is a characteristic feature that significantly affect compressive behaviour of cellular 
materials.

The effect of the steam environment on the stress-strain response, non-linear strain function 
ψ(ε), and relative density change can be studied by a modified Hooke’s law based on the load-
compression behaviour of flexible foams (Gibson and Ashby, 1988; Dai and Steiner, 1993; Wolcott 
et al., 1994; Lang and Wolcott, 1996; Dai, 2001; Zhou et al., 2009; Kamke and Kutnar, 2010) in the 
following form:

 σ = E∙ε∙ψ(ε) (1.8)

where σ is compressive stress, E is transverse compression Young’s modulus of the cellular material, 
ε is compressive strain, and ψ(ε) is a dimensionless non-linear strain function. The value of ψ(ε) can 
determined (Wolcott, 1989; Lang and Wolcott, 1996) as:

∈y /C2  1
3

− ρ1/ 3 
 ψ ( )ε = 

r

ε 1 ρ ∈( )1/ 3   (1.9)
 − r 

where εy is yield strain, C2 is a linear elastic constant, ε is the compressive strain, ρr is the relative 
density of the wood (a ratio of the bulk-wood density to the cell-wall density, assumed to be  
1,500 kg/m3), and ρr(ε) is the change in relative density under a compressive strain. A thorough 
development of (Equation 1.9) is provided by Gibson and Ashby (1988).

The change in relative density under a compressive strain ρr (ε) at a given strain ε can be 
determined (Wolcott, 1989; Lang and Wolcott, 1996):

1ρ ε( )
 r =

 2  (1.10)
ρr p1− +ε µε p − µ∈

2
  3 p

where εp is plastic strain (εp = ε–εy) and μ is the expansion ratio defined as the ratio of lateral strain 
to compressive strain in the nonlinear stress-strain region.

The Young’s modulus of the cell wall (Ecw) can be determined by an expression given by 
Wolcott (1989), where the Young’s modulus of any wood species can be calculated as a function of 
the cell-wall modulus and the relative density:

 E = C Ecw ρ 3
r  (1.11)

where C is a constant, Ecw is the cell-wall modulus, and ρr is the relative density, i.e., the density of 
the wood divided by the cell-wall density.

1.8	 Conclusions	on	wood	and	wood	modification
The aim of this chapter has been to lay the basis of how wood modification has been developed 
and where it has occurred, been commercially manufactured. To do this, it is necessary not only to 
understand the wood modification processes, but also the substrate being modified, i.e., wood. As 
can be seen from subchapters herein, it is necessary to understand the basics behind:

 • the different wood species and their structures, 
 • the chemical composition of wood and how these chemicals can react,
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 • the reaction between wood and its components and water,
 • the biological nature of wood and its susceptibility to degradation,
 • the effects of exposing wood to outdoor conditions, and
 • the effects of loads on the mechanical performance of wood.

The introduction to these areas will provide the reader with a sufficient entry knowledge 
to more detailed understandings of the wood modification methods described in the following 
chapters. Based on the information in these chapters, combined with the introductions provided in 
this chapter, it is hoped that the reader will increase their knowledge of wood modification processes 
to help in new research and applications of this expanding technology. 
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