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Abstract 

Based on the analysis of the performance, scalability, work-load increase and distribution of the MD simulation packages GROMACS and 
NAMD for very large systems and core numbers, we evaluate the possibilities for overcoming the deterioration of the scalability and 
performance of the existing MD packages by implementation of symplectic integration algorithms with multiple step sizes.  
 

1. Integration algorithms in the MD simulations 

Molecular dynamics is a widely used method for investigation of the time evolution of atomic and molecular systems, with 
applications in various scientific fields such as the design of new materials, nanotechnologies, drug design, computational 
chemistry etc. The basic concept of this method implies the parameterization of the interaction potential energy function and 
calculation of the time evolution of the system (the atomic trajectories) by numerically solving the Newtonian equations of 
motion 

                                                    dtvmdF

dtxdv

dt

xd
mamF

/

/
2

2









                                 

 xVF 


 

where x, v and m are particles coordinates, velocities and mass, V(x) is the potential and F – the acting force. MD simulations 
allow the microscopic behavior of the investigated system to be followed. It is an extensive calculation which demands high 
performance computing facilities, as well as proper software packages taking full advantage of the given computational 
resources. Systems of interest are constantly growing on size and complexity, which necessitates reconsideration of present 
algorithms not only because of the “exploding” calculation volumes, but also due to unsatisfactory scalability with increasing 
processor numbers. Optimization of calculations is essential for reducing the continuance of the simulation.  

The Newtonian equations of motions are solved numerically using explicit schemes such as Verlet [1], where the following 
recursive relations take place 
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where (qn ,pn) are the coordinates and the momenta at the n-th step, F – the corresponding force, and t – the integration 
timestep. Such schemes are simple to implement and also fast, but are known to introduce resonances. 

Implicit numerical integrators with high stability have been introduced to molecular dynamics simulations since these 
integrators usually permit a larger step size than Verlet. However, implicit integrators are computationally more demanding since 
one has to solve a complicated system of equations which are usually nonlinear in every step. Moreover, most implicit 
integrators such as the midpoint scheme can only delay energy resonance. When the step size increases and hits specific values, 
resonance occurs and leads to incorrect phase diagrams. 

 
In all MD simulations the investigated dynamics has a Hamiltonian nature. Hamiltonian systems are described by the 

Hamilton equations of motion  

                                                         ppqHqqpqHp  /,/,                                (1) 

where H(q, p) is the Hamiltonian of the system. A theorem due to Poincaré [2] states that the Hamiltonian flow φ of such systems 
is a symplectomorphism 
  
 

 

Simplecticity implies preservation of the phase-space volume and reversibility with respect to time. It is favorable if these 
features are adequately incorporated in the algorithms in use as this usually leads to long-time stability of the method [3, 4]. 
Symplectic integrators like the algorithms of Miller [5], Nose [6] and others fulfill these demands, though most of the usual 
integrators, e.g. primitive Euler or classical Runge–Kutta methods, are not symplectic ones. Note, that symplectic integrators are 
known to conserve energy and stability holds at large step sizes for problems in the linear regime [7] and this is not the case for 
nonlinear systems. Instability, or large energy fluctuation, occurs at timesteps that still satisfy the linear stability condition and 
these instabilities usually can only be avoided by reducing the timestep [8], so that this sort of nonlinear instability sets a further 
timestep limitation. Recall in addition, that structure preserving integrators alone cannot guarantee accurate trajectories which 
can only be obtained with high-order methods and small timesteps [9] but on the other hand, high-order methods may not 
preserve structural properties such as energy and momentum. Thus, these two actually different concepts have to be carefully 
weighted when choosing the integrator for every single problem. Particularly, for those systems with complicated, unstable, or 
chaotic trajectories, such as biomolecules, one should probably concentrate on statistical properties and approach the true 
solution by preserving as much of the structure as feasible [10]. 

The default MD integrator in GROMACS [22] is the leap-frog algorithm [11]. This algorithm uses positions r at time t and 
velocities v at time t1/2t; positions and velocities being updated using the forces F(t) determined by the positions at time t. It 
produces trajectories that are identical to the Verlet [1] algorithm. The algorithm is of third order in r and is time-reversible2. 
When extremely accurate integration is temperature and/or pressure coupling velocity Verlet integrator [13] may be preferable: it 
is also implemented in GROMACS, though not yet fully integrated with all sets of options. In velocity Verlet positions r and 
velocities v at time t is used to integrate the equations of motion; velocities at the previous half step are not required. 

A constant timestepping algorithm can only be energy-momentum preserving or symplecticity-momentum preserving, but not 
both [14]. Another disadvantage of the constant timestepping follows from an important feature of the complex molecular 
systems – the presence therein of both fast and slow changing degrees of freedom that additionally complicates numerical 
calculation of their trajectories. On the one hand this determines the typical timescale of the processes in them, but on the other 
hand imposes severe restrictions on the integration timestep size t: it must not exceed the scale of the most rapid vibration 
mode. This generally limits t to be in the femtosecond (10−15 s) range – the typical step size recommended in practically all 
popular MD simulation packages. Since key conformational changes in biomolecules occur on time scales of 10−12 − 102 s, 
considerable efforts are focused on techniques that allow for an effective increase and also modulation of the integration 
timestep. These are based on the development of splitting methods (where the individual components may be numerical flows or 
certain combinations of exact and numerical flows, as e.g. in [15]), composition methods (which not only increase the algorithm 
order in r but also provide a tool for step modulation), integrators based on generating functional, or variational integrators in 
which the action integral is being discretised (see, e.g. [10]). 

Development of integration algorithms with variable or adaptable timestep [16] is one promising way to attack this problem. 
They not only permit effective enlargement of the timestep, but also avoid the occurrence of fake resonances and provide better 
sampling of phase space, which is another important advantage, at higher computational cost though [17]. This task is by far not 
trivial as the sympleticity of a given fixed step size method is not automatically preserved when a variable step size is applied, 
                                                           

2 See [12] for the merits of this algorithm and comparison with other time integration algorithms. 
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also its accuracy might suffer. On the other hand, the ideas behind the composition methods and the variational integrators seem 
to allow the specifics of the systems subject to MD simulations being taken into account that offers a constructive way for 
overcoming these difficulties.   

 

Scientific and technical goals 

 For large atomic systems (106 atoms) the most time-consuming part of the simulation is the calculation of the electrostatic 
interactions. These are long-range interactions, so non-local, which necessitates the application of special algorithms for their 
calculation. In the most popular packages for MD simulations, different realizations of the Ewald summation method [18] are 
used, as it ensures proper description of the long-range electrostatic interactions for spatially bounded systems with periodic 
boundary conditions. The bottleneck part of these calculations is the FFT part. One possibility to improve the performance of the 
MD simulations is to employ integration algorithms with variable step size [16] for calculation of full electrostatics.  In this 
approach the total force acting on each atom is broken into two parts, a quickly varying short range component and a slow 
changing long distance component. Since the long range forces are slowly varying they are not calculated at every timestep, but 
at some bigger step.  

This is better illustrated in the formulation of the Hamilton equations (1) in terms of Liouville operators 

                                                    
  Fv iLiL

mF

v

mxF

v

v

x
iL 



































/

0

0/
                                                                        (2)                   

where  

                                                    0,},,{  Fvv LLHiL  

Thus, 

                                                             
    






 






  tiLtiLtiLtiL FvF 2

1
expexp

2

1
expexp

                                                        (3) 

                      





 






  tUtUtU FvF 2

1

2

1  

The single-step propagators obtained that way are used to calculate recursively the coordinates x and the velocities v of the atoms 
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For example, if one splits the simulation volume in subspaces according to some set of rules, e.g. 
 

 
 

where the i-th component of the force field is to be applied with a timestep i , from Eq. (3) follows 
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Thus, if an atom is in the periphery of the system, the expansion will terminate already at the second term [19] 
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In the general case, with a global timestep 0 the iteration will stop at the i-th step if holds  

0...21   ii KK . 

If the potential is in addition decomposed according to the functional role of the molecules that generate it, there is a hope to 
achieve optimization of the accuracy of the computations and the performance of the method. To this end, a detailed analysis of 
the work load and communications increase and their distribution among the individual computing cores is indispensable.  

 

Conducted investigations 

We have studied the scalability and the work-load increase and distribution among the computing cores in the packages 
GROMACS (version 4.5.3) and NAMD [24] (CVS from 19.02.2011), on the example of three test systems with increasing size 
(5x105, ~106 and ~2.2х106 atoms respectively), with the profiling tool SCALASCA [20] and also by means of the GROMACS 
in-built tool g_tune_pme. Due to a peculiarity in the way that data is loaded into the RAM memory of the computing cores of 
IBM BlueGene/P, the GROMACS package is able to handle systems of at most 700000 atoms. Therefore the scaling of 
GROMACS was investigated only with the smallest test system, while NAMD was studied with all three of them.  

With the increase of the system size and of the number of computing cores, one expects an increase of communication 
between computing cores and some loss of scalability of the investigated packages. The amount of communication is determined 
by the particular mechanism for task distribution among computing cores and by the scheme used for calculating long range 
electrostatics. To determine the type of communication that leads to greatest loss of performance, studies of the scalability, effect 
of workload distribution schemes and intensity of the communications of the GROMACS package were performed with the 
SCALASCA package. 

When running a parallel calculation of a molecular system, an algorithm is needed to divide the system in parts and distribute 
them among the computing cores. In GROMACS there are two algorithms for system division – particle decomposition 
(decomposition to individual particles) and domain decomposition (decomposition into appropriately defined spatial 
areas/domains) [21, 22]. 

Particle decomposition is the simplest way to divide the system. At the beginning of the simulation, certain particles of the 
system are assigned to each processor. Next, the calculation of the forces that act on the particles is also assigned, so that the 
workload on the processors is uniformly distributed. This algorithm requires for each processor to have access to the coordinates 
of at least half the atoms of the system. This means that N computing cores must communicate N x N/2 coordinates. Due to this 
quadratic dependence on the particle number the particle decomposition shows poor scalability for very large systems and comes 
therefore in use only in specific cases, when long-range covalent interactions are present in the system.  

Domain decomposition takes advantage of the fact that most of the interactions in the system are local. In the general case of 
triclinic simulation box, space is divided into 1-, 2- or 3-dimensional grid of subareas, called domains. The algorithm assigns to 
each processor a certain spatial domain of the system. The processor solves the equations of motion for those particles that are 
present in its domain at that moment. The neighbours search in GROMACS is based on the idea of charge groups and so is the 
domain decomposition. Charge groups are assigned to the domain in which their geometrical centre lies. 

Electrostatic interactions are long-range interactions, so non-local. This necessitates the application of special algorithms for 
their calculation. Usually in GROMACS the PME algorithm [23] is used that incorporates interaction of every particle with all 
others and therefore needs global communication. To reduce the effect of this problem, a part of the computing cores are used 
only for calculating the electrostatic interaction in the PME algorithm (called pme computing cores) and the rest of them (called 
pp computing cores) to calculate all other interactions [21]. 

We have also analysed the stability and scalability of the existing integration algorithms with variable time-step implemented 
in widely used MD simulations codes like NAMD and GROMACS in order to define the sources of the instabilities (different 
kinds of resonances).  

The test systems were chosen to be substantially different in size and structure – epidermic growth factor, satellite of the 
tobacco mosaic virus and E.Coli ribosome dissolved in water (Fig. 1). The two packages – GROMACS and NAMD, were those 
selected for studying and optimization for petaflops architectures within the PRACE initiative. The scalability of the packages 
was investigated up to 8192 computing cores. Details about the three test systems are given in the Appendix.  
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The study was performed with GROMACS version 4.5.4 and NAMD CVS from 19.02.2011. Both were compiled with the XL 
compilers of IBM for the architecture of the computing nodes of BlueGene/P. NAMD CVS compilation included the possibility 
of using compressed input data. This gives the opportunity the memory of the prime MPI process to be used only as an input – 
output operation buffer. 

These investigations were performed at the IBM BlueGene/P supercomputer of Bulgarian National Center for 
Supercomputing Applications [25] (8192 computing cores). 

      
       

Results 
  

Our main results can be summarized as follows: 

 The scaling of NAMD improves with the increase of the system size, though with a slower growth beyond 4096 computing 
cores. For GROMACS, this number of cores appears to be critical, as it scales well only up to that point, even if with a lower 
overall performance than NAMD. The performance and speedup data for all three test systems on different number of 
computing cores are given in Table 1. The performance is taken directly from the output information of running the program 
packages for a certain number of integration steps and represents the simulation time to be obtained for 24 hours work of this 
package with an integration step of 2 fs. As a reference value in determining the speedup of the simulations was taken the 
performance at 512 computing cores (Fig. 2). GROMACS performs all calculations in double precision, when NAMD works 
in single precision. In the same mode GROMACS performance increases by 30%. This partially explains the better results 
obtained with NAMD; 

 By default GROMACS divides the pp and pme computing cores in proportion 3:1 with ordering mode “interleave”. In this 
mode, 1 pme core is placed after every 3 pp cores. In the pp_pme mode the pp cores are placed in the beginning and the pme 
cores at the end. The Cartesian mode is a mixture of the previous two and is specially designed for architectures that support a 
real 3-dimensional thoroidal communication system like the IBM BlueGene/P. The performance of the GROMACS 4.5.3 
package with regard to the ordering of the pp/pme computing cores was studied with Scalasca 1.3.1. The test system contains 
103079 atoms, the simulated time evolution amounts to 20 ps (10000 MD steps, 2 fs time step). Periodic boundary conditions 
were applied and temperature was kept constant with the Berendsen thermostat. Holonomic constraints for freezing the 
vibrational degrees of freedom were not introduced (algorithms LINCS and P-LINCS were not used). For calculating the 
electrostatic interaction the PME algorithm was used with direct summation cutoff of 1.4 nm. The neighbor lists were updated 
every 10 time steps. Up to 2048 cores, the three domain decomposition modes of GROMACS – interleave, pp_pme and 
Cartesian – have similar performance, with slight prevalence of the default mode – interleave. However, on 4096 cores this 
mode has the lowest performance, the other two perform better, with a negligible difference between them (Table 2). We 
further investigated the dependence of GROMACS performance on the portion of pme cores. The optimal portion was 
determined by varying the pme cores percentage in the range between 3 and 25 %. The best speedup and performance for set 
of testing points are plotted on Fig. 3 (left and right respectively) for GROMACS versions 4.5.3 (blue line) and 4.5.5 (red line). 
As seen on Fig. 3 GROMACS 4.5.3 scales well up to 4096 cores and then its performance declines at 8192 cores. This 
problem does not occur in the newer version 4.5.5 which demonstrates a significant improvement in scalability with increasing 

Fig. 1 The test systems: (А) ~5 x 105 atoms; (В) ~106 atoms; (С) ~2.2 х 106 atoms. 
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performance even for 8192 cores also in absolute terms - 11 ns per day. It was found that for GROMACS version 4.5.5 the 
optimal performance is achieved if the pme cores are between 12 and 14 % of the available computing cores (Fig. 4). Unlike 
GROMACS 4.5.3, this tendency is stable and hold true even for 8192 cores. 

 

Fig. 2 Performance of GROMACS 4.5.4 and NAMD CVS 2011-02-19 as a function of the number of cores for the three test systems, with 465399, 
1007930 and 2233537 atoms resp. 

Fig. 3 Performance of GROMACS 4.5.3 and GROMACS 4.5.5 as a function of the number of cores for the system with 465399 atoms. 

Fig. 4 Number of pme cores / total number of cores ratio vs. total number of cores 
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Table 1. Test-run data for GROMACS and NAMD. 

System size 
(number of atoms) 

Number of cores 
NAMD CVS 2011-02-19 GROMACS 4.5.4 
Performance 
[ns/day] 

Speedup 
Performance 
 [ns/day] 

Speedup 

         465 399     

          8 192     4.84 3.19 3.06 2.56 

          4 096     4.38 2.88 6.49 5.43 

          2 048     3.45 2.27 3.90 3.26 

          1 024     2.50 1.64 2.34 1.96 

             512     1.52 1.00 1.19 1.00 

      1 007 930     

          8 192     8.30 8.60     

          4 096     5.88 6.10     

          2 048     3.15 3.26     

          1 024     1.81 1.88     

             512     0.97 1.00     

      2 233 537     

          8 192     4.78 10.58     

          4 096     3.02 6.68     

          2 048     1.62 3.60     

          1 024     0.87 1.92     

             512     0.45 1.00     

Table 2. GROMACS performance in the different dd-order modes. 

                                                     ddorder 
mode 
computing cores 

Interleave 
[ns/day] 

pp_pme 
[ns/day] 

Cartesian 
[ns/day] 

   512   6.672   6.592   6.600 

1024 12.122 11.905 11.973 

2048 20.856 20.627 20.426 

4096 27.994 31.306 31.544 

 

 The GROMACS 4.5.3 performance analysis with the profiling tool SCALASCA shows that the pme cores which were taken to 
be ¼ of all computing cores, account for almost 40% of the communications, such a behaviour being common for all three dd-
order modes (Fig. 5); 

Fig. 5 Distribution of the communications in GROMACS 4.5.3: (а) interleave;  
(b) pp_pme; (c) Cartesian (red – higher intensity, yellow – lower intensity). 
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 A study of the work-load and communication distribution over computing cores of the GROMACS executable with the 
profiling tool SCALASCA at a test system of about 460000 atoms on 512 and on 1024 computing cores (1/8 pme cores) shows 
that the average time spend by the pp cores is significantly shorter compared to the pme cores, that is consistent with the 
average amount of communications per core for the pme cores being essentially higher (by a factor of almost 2.5) (Fig. 6). The 
increase of the pme cores number would accelerate the calculation, but on the cost of having smaller amount of computing 
cores, involved in the calculation of procedures, that consume up to 65% of the total simulation time. Also, with the increase of 
pme cores number the total amount of communications increases, which may lead to a substantial slowdown of the calculation;  

 Analysis of short simulations (2 ps) with different fractions of pme cores (1/2, 3/8, 1/4, 1/8 and 1/16) of a test system of 
460000 atoms on 512 to 4096 computing cores on the Bulgarian supercomputer IBM BlueGene/P with GROMACS 4.5.4 
allows to conclude that the performance increases with the reduction of the number of pme cores up to 4096 cores where 
saturation is observed (Fig. 7). Nevertheless, with the reduction of the pme only cores scalability drops, because of the increase 
in communications (Fig. 8); 

 

 

 

Fig. 7 GROMACS performance as a function of the number of pme only cores (shown as
fraction from the total amount of cores). 

Fig. 6 Distribution over the cores in the interleave regime of the total simulation time and of the communications: 
(a) for 512 computing cores; (b) for 1024 computing cores.  
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 GROMACS appears to be less suitable for implementation of variable step-size algorithms than NAMD, where an essential 
improvement of the performance is already achieved that way. Simulations with a system containing approx. 35000 atoms 
demonstrate that it is possible to speed up the calculations with 47,8 % using the VerletI/r-RESPA multiple timestep algorithm 
when calculating the short range electrostatic interactions at every timestep and the long-range electrostatic interactions – 
every 6 timesteps (column 5 on Fig. 9), with perfect energy conservation as shown on Fig. 10. An even greater speedup might 
be achieved with the parameters from the sixth column on Fig. 8, but at the price of unstable simulation after 34 ns with 
conserved total energy though. 

 

Fig. 8 The scalability of the Gromacs integrator for different number of pme only cores (shown as a
fraction from the total amount of cores). 

Fig. 9 NAMD performance for different parameter sets (timestep [fs] : frequency/
short-range [number of timesteps] : frequency/ long-range [number of timesteps])

for different integration algorithms. 
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Conclusions and summary 
 

 The investigations allow identifying the increasing communications as a main reason for the performance deterioration of the 
MD simulation packages on large numbers of cores – typical for the petascale computations situation. The partial progress with 
NAMD justifies the idea for overcoming these difficulties by a dedicated integration algorithm with variable step size, specially 
adapted to the peculiarities of the large biological systems.   

 
 
Acknowledgements 
 

This work was supported by the PRACE Project funded in part by the EUs 7th Framework Programme (FP7/2007-2013) 
under grant agreements no. RI-211528 and RI-261557 and by Bulgarian Science Fund under grant no. DOFP7-02/13/2010. The 
work was performed on the PRACE Research Infrastructure resources – the IBM BlueGene/P of the National Centre for 
Supercomputing Applications in Sofia [21].  

 
 

Appendix 
 

Test system (A). The epidermic growth factor receptor (EGFR; ErbB-1; HER1 by humans) is a membrane receptor for the 
epidermic growth factor family members (EGF family) [26]. Mutations concerning EGFR expression could lead to various 
malignant diseases, including lung and colon cancer and multiform glioblastoma [27, 28]. The test system was provided by Dr. 
Iliyan Todorov of the Computational Science & Engineering Department, CCLRC Daresbury Laboratory (Daresbury, UK). It 
represents an EGFR dimer on a lipid bilayer, the simulation volume being filled with water molecules, and contains a total of 
465399 atoms (~ 5 x 105).  

Test system (B) contains a satellite of the tobacco mosaic virus. This is a small virus spread on the icosahedric plants that 
worsens the symptoms of the tobacco mosaic virus [29]. The structure was taken from PDB (PDB ID 1А34). For the preparation 
of this test system a special program was written that assembles crystallographic structures and checks for overlapping atoms. 
The system contains the virus, dissolved in water, accounting to 1007930 (so, roughly 106) atoms altogether.  

Test system (C). The ribosome is a complicated molecular machine that translates the genetic code from its temporary carrier — 
the informational RNA to proteins, which are the basic material for constructing live cells and catalyze metabolic pathways that 
provide energy for these cells. The ribosome is one of the most promising targets in the process of designing antibacterial drugs. 
It contains two subunits - a small and a big one. The crystallographic structure of both subunits of the E.Coli ribosome is 
available in the PDB (PDBID: 3FIK and 3FIH [30]). These structures do not include counter ions, so an specific algorithm for 

Fig. 10 VerletI/r-RESPA integration algorithm shows perfect energy conservation for
different parameter sets. Parameter set (2:2:6) leads to unstable simulation after 34 ns. 
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their addition was developed, differing from the one described in [31]. The neutralized system was placed in a simulation box 
with dimensions as follows: 309x298x257 Å3, that was filled with water molecules and sodium and chlorine ions with 
physiological concentration. The whole system accounts 2 233 537 atoms. 
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