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Abstract

The characterisation of the self-supporting slender structure with the
furthest length is of interest both from a mechanical and biological point
of view. Indeed, from a mechanical perspective, this classical problem was
developed and studied with different methods, for example using similarity
solutions and stable manifolds. However, none of them led to a complete
analytical solution. On the other hand, plant structures such as tree
branches or searcher shoots in climbing plants can be considered elastic
cantilevered beams. In this paper, we formulate the problem as a non-
convex optimisation problem with mixed state constraints. The problem
is solved by analyzing the corresponding relaxation. With this method, it
is possible to obtain an analytical characterization of the cross-section

1 Introduction

In the last decades, there has been an increasing interest in plant modelling.
Indeed, recent studies on how plants perceive and react to the external envi-
ronment (see [1, 2, 3, 4] for instance) led to a deeper insight into the plant
growth mechanism. Current models consider proprioception [2], internal fluxes
of hormones [5] or memory in the elaboration of the external cues [4]. Plant
self-supporting structures are modelled like morphoelastic rods, whose curva-
tures change in time accordingly to the plant sensing activity. Furthermore,
plants exhibit a great variability of the biomechanical properties intra and inter
species [6]. In particular, climbing plants are a clear example of this structural
variety. Consider the species Condylocarpon guianense, a common liana widely
found in the flora of French Guyana. C. guianense is a twining climbing plant,
which means that it reaches the canopy of the forest by twining around the
branches and the trunks of its hosts. Several studies on its structure (see [7,
6, 8] for instance) have revealed that in different growth stages, it changes the
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thickness and the nature of the layers that form its stem and consequently, it
changes its stiffness. More specifically, the plant is stiffer when and where is
developing a self-supporting state, while it displays a less dense material and a
thicker compliant cortex when attached to a support.

Thanks to their wide adaptability, plants became a source of inspiration for
new technologies and robots [9, 10]. For instance, the movement of the roots into
the ground has inspired the development of new ways for soil exploration [11].
And again, the efficient strategies to attach their bodies to external supports
have led to the development of a robot that imitates in essence the wrapping
movement and the stem stiffening of tendrils [12]. In this framework, mathe-
matical models based on an optimal control approach are a valuable resource to
understand better the mechanisms used by plants to interact with the external
environment.

In this paper, we are interested in modelling the self-supporting structures
developed by climbing plants. These structures are called searcher shoots and
are generated by the plant in order to explore and find support. The mechanics
of the searcher shoots is an interesting and challenging study [13] because they
exhibit both active and passive movements and must find a compromise between
rigidity and flexibility to explore the surrounding environment and navigate
obstacles and supports. In particular, we want to use the tools of optimal
control theory to better understand how the mass is distributed along a searcher
shoot. More precisely, for a given amount of mass, we want to find the best
way to distribute it so as to maximize the length of the shoot and not exceed
a given amount of mechanical stress. To achieve this goal, we formulate an
optimal control problem for a time (length) maximization subject to mixed-
state constraints. This optimization problem belongs to a classical category of
problems on beam buckling. In particular, in 1960 J. B. Keller [14] investigated
the shape of the column that has the largest buckling load. From that work,
further studies and methods were developed to solve the problem of the tallest
column. Of particular note in this line of research are the works of Y. Farjoun
and J. Neu [15], and Z. Wei et al. [16]. In the former work, a symmetry of the
dynamical system is employed to solve the boundary value problem related to
maximizing height. In the latter work, the same technique is used to solve the
problem of the tree branch with the furthest reach. In that work, the problem’s
solution is studied analytically towards the tip, while the whole behaviour is
displayed only via numerical simulations. Here, the problem is slightly different,
since we look for a length maximization. Moreover, we employ a deeper study of
the necessary conditions for the solution optimality to characterize analytically
the optimal radius of the cross-section.

This work is structured in the following way. In section 2, we use the the-
ory of elastic rods to derive the differential equation of the mechanics for the
searching shoot. Then, we couple this equation with the boundary and stress
constraints, and a cost function. In this way, we state the optimal control
problem on length maximization. In section 3, we extend the dynamic by con-
vexification of the velocities set. This relaxation of the problem allows us to
prove an optimal solution’s existence. In section 4, we reformulate the opti-
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mal control problem and we find a set of necessary conditions for the optimal
trajectory. Then, in section 5 we study the corresponding adjoint system and
obtain a feedback formula for the optimal control u∗. Finally, in section 6, we
make some numerical simulations for the optimal trajectory and the adjoint arcs
based on experimental data. In the last sections, we discuss the results of these
simulations and the analytical optimal solution.

2 Derivation of the Model
{sec:DerOfMod}

We model the searcher shoot as an inextensible and unshearable elastic rod
whose centerline is confined in a plane. Let be {e1, e2, e3} an othonormal base for
R3. Then we represent the centerline of the rod with a curve r ∈ C2([0, L] → R3)
of length L. We parametrize the curve with its arc-length parameter s ∈ [0, L]
and we assume that r ∈ span{e1, e3}. For the rod cross-section, we consider as
generalized frame [17] the Frenet mobile system {ν, β, τ}, formed respectively
by the normal, binormal and tangent vectors. Naming θ(s) the angle between
τ(s) and e2 (that is, the vertical line), the curvature κ(s) is simply

θ′(s) = κ(s),

where “ ′ ” denotes the derivative with respect to s. Since r is confined in the
plane, it is entirely described by its initial point r(0), initial inclination θ(0) and
its curvature κ.

We want to account for the gravity force acting on the rod r, {ν, β, τ}.
To achieve this aim, we consider another configuration r̂, {ν̂, β̂, τ̂} confined in
{e1, e3}. We refer to this latter configuration as intrinsic configuration, and it
represents the shape that the rod would have in the absence of gravity. Instead,
we refer to the former configuration as the current configuration. In response to
the gravity force, the rod generates an internal force n and an internal moment
(of force) m. Assuming that the gravity force is oriented along −e3 and that it
is balanced by the rod’s response, we get the following set of equations:{

n′ − e3gρ = 0

m′ + r′ × n = 0,
(1) {eq:Balance}{eq:Balance}

where g is the gravity acceleration constant and ρ is the density per unit of
length of the rod. We refer to ρ as linear density. To close the set of differential
equations, we need a constitutive relationship between the internal moment
and the difference between the intrinsic and the current curvature. The Euler-
Bernoulli law provides a classical relationship of this kind, which in the planar
case reads the following form

m = EI(κ− κ̂). (2) {eq:ConstRel}{eq:ConstRel}

In this equation, the quantity E is the Young’s modulus and it measures the
stiffness of the rod. Furthermore, the quantity I is the second moment of area of
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the cross-section along the direction given by the normal vector n. Considering
together system (1) and equation (2), we obtain

(E(s)I(s)(κ̂− θ′(s)))′ = sin θ(s) g

∫ L

s

ρ(σ)dσ, (3) {eq:el_rod0}{eq:el_rod0}

where we are also assuming that there is not any external load at the rod’s tip.
This means that n(L) = 0.

2.1 Stress Threshold

As expressed by equations (1), when an elastic rod is subject to external forces,
the material generates the internal moment m in response [18]. This moment
causes the deflection of the rod. The internal pressure that generates m is called
(bending) stress and we name it σ. Let S(s) be the cross-section of the rod r
at r(s). We define

S(s, z) = {w ∈ R : r(s) + zν(s) + wβ(s) ∈ S(s)}.

Then the maximal stress σm(s) acting on S(s) is [18]

σm(s) = max{z :∈ S(s) ̸= ∅} · E|κ(s)− θ′(s)|.

We assume that the maximal stress σm exerted on the bar cannot cross a certain
fixed threshold σ̄.

2.2 Formulation of the problem

We analyse the case of an elastic rod with a circular cross-section of radius R.
In this situation, we have

I =
π

4
R4.

So, the norm of the maximal stress is

σm = |θ′ − κ̂|RE.

The mass of the shoot is represented by the linear density ρ of the main stem,
which is related to the density per unit of volume ρ3 and the radius R by the
equation

ρ = ρ3πR
2.

To formulate our problem, we consider the volume density ρ3 and the Young’s
modulus E constant along the shoot. Furthermore, we assume that the main
stem does not have any secondary branches or leaves. Then, we represent the
optimal control problem of the shoot length maximization with the following
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system: 

max(R,L)∈U L

subject to

(−R4(θ′(s)− κ̂(s)))′ = c̃1 sin θ(s)
[∫ L
s
ρ3πR

2(σ)dσ
]

θ(0) = θ0

θ′(L) = û1(L)∫ L
0
πρ3R

2(σ)dσ =M

|θ′ − κ̂| ≤ c2
R .

(4) {eq:auxiliary_0}{eq:auxiliary_0}

Here

c̃1 =
4g

πE
, c2 =

σ̄

E
.

The boundary conditions mean that we are fixing an initial inclination of the
rod equal to θ0 and that we are considering just the weight of the rod, without
any extra element at the tip, so the intrinsic and the current curvatures coincide.

The constraint
∫ L
s
πρ3R

2(σ)dσ = M is due to the fact that we are fixing the
total mass of the main stem. The set of the controls U will be specified later on
in the presentation. We consider the case κ̂ ≡ 0.

We introduce the variables:

µ(s) =

∫ L

s

R2(σ)dσ,

ψ = −R4(θ′ − û1),

u = R2,

c1 =
4gρ3
E

.

To avoid pathological and rather unrealistic situations, we assume to have an
upper bound and a lower bound on the variable u, that is uM ≥ u ≥ um.
Using these new variables and conditions, we obtain from (4) the optimization
problem: 

max(u,L)∈U L

subject to

x′(s) = fP (x(s), u(s)) a.e. in [0, L]

(x(0), x(L)) ∈ CP,0 × CP,1

hP,1(x(s), u(s)) ≤ 0 a.e. in [0, L]

hP,2(x(s), u(s)) ≤ 0 a.e. in [0, L]

(P ) {eq:problem0}{eq:problem0}

where

• θ0 ∈ [0, 2π] and c1, c2, u0,M ∈ (0,+∞);

• x = (ψ, θ, µ) ∈W 1,1([0, L];R3);
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• U = {(u, L) : L > 0 and u : [0, L] → R Lebesgue measurable};

• fP (x, u) = (c1µ sin θ,−ψ/u2,−u);

• CP,0 = R× {θ0} × {M};

• CP,1 = {0} × R× {0};

• hP,1(x, u) = max{um − u, u− uM};

• hP,2(x, u) = |ψ| − c2u
3/2.

We will see that the upper bound uM for u is a fundamental assumption to
prove the existence of an optimal solution in the convexified case. In general, the
imposition of an upper bound on the set of controls may influence the solution
to the optimization problem itself. As we will see, if uM is large enough, this is
not the case.

2.3 Notation for multifunctions

In the following, we denote with

F : X ⊂ Rn ⇒ Rm

a multifunction from X ⊂ Rn to Rm, that is a function whose domain is X
and such that F (x) ⊂ Rm for every x ∈ X. The multifunction F is said Borel
measurable if for any open set A ⊂ Rm, the set

F−1(A) = {x ∈ X : F (x) ∩A ̸= ∅}

is a Borel subset of X ⊂ Rn. Moreover, we say that the multifunction F is
closed, convex or nonempty if for any x ∈ X the set F (x) ⊂ Rm is respectively
closed, convex or nonempty. We say that F is uniformly bounded if there exist
a constant α > 0 such that

F (x) ⊂ αBm

for any x ∈ X. With Bm we denote the closed unitary ball centred at the origin
of Rm. The graph of F is the set

{(x, y) : x ∈ X , y ∈ F (x)} ⊂ Rn × Rm

3 Existence of optimal solutions
{sec:Rel}

In this section, we construct a “minimal” modification of problem (P ) in order
to obtain an optimal control problem for which the existence of an optimal
solution is guaranteed. To this aim, we first construct such an enlarged optimal
control problem in section 3.1 and then we show that the latter has a feasible
solution in section 3.2.
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3.1 Relaxation
{sec:Rel1}

To start with, we observe that the dynamics of the optimal control problem (P )
can be reformulated in terms of a differential inclusion by defining

ẋ(s) ∈ F (x(s))

with
F (x) =

{
(c1µ sin(θ),−ψ/u2,−u) : u ∈ U(x)

}
where

U(x) =

{
u ∈ [um, uM ], u ≥

(
|ψ|
c2

)2/3
}
.

It is well known that a key assumption for the existence of a solution for an
optimal control problem is the convexity on the set of admissible velocities F
(see e.g. [19]). However, it is easy to see in our case that such a standard
existence hypothesis is not verified. A standard procedure to overcome such an
issue, known as relaxation, is to enlarge the set of admissible trajectories in a
way that the existence of a maximum is guaranteed. To this aim, we consider
the convexified version of problem (P ):

maxL∈[0,+∞) L

Subject to

x′(s) ∈ Fd(x(s)) a.e. s in [0, L]

(x(0), x(L)) ∈ Cd,0 × Cd,1

. (Pd) {eq:problemDI}{eq:problemDI}

Here we are using the notation:

• x = (ψ, θ, µ) ∈W 1,1([0, L];R3);

• Fd(x) = co {F (x)};

• Cd,0 = R× {θ0} × {M}

• Cd,1 = {0} × R× {0}

We say that (x, L) ∈ W 1,1([0, L];R3) × [0,+∞) is a trajectory for (Pd) if it
satisfies the differential inclusion, that is x′(s) ∈ Fd(x(s)) for a.e. s ∈ [0, L]. A
trajectory for (Pd) is admissible if it satisfies also the constraint (x(0), x(L)) ∈
Cd,0 × Cd,1. Analogously, we say that (x, u, L) ∈ W 1,1([0, L];R3) × U is a
trajectory for (P ) if x′ = fP (x, u) a.e. in [0, L] and it is admissible if all the
constraints are satisfied. By construction, we observe that if (x, u, L) is an
admissible trajectory for (P ) then (x, L) is an admissible trajectory for (Pd).
Analogue terms are used for problem (Pc) in section 4.1.

{rem:charact}
Proposition 1. The multifunction Fd has the following characterisation:

Fd(x) = {c1µ sin(θ)}

×
{(

−ψ
(
λ1
u21

+
λ2
u22

)
,−(λ1u1 + λ2u2)

)
: (u1, u2, λ1, λ2) ∈ V (x)

}
,
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where

V (x) = {(u1, u2, λ1, λ2) : u1, u2 ∈ U(x) and λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1} .

Proof. To prove Proposition 1, first we make the following consideration. Fix a
point x = (ψ, θ, µ) ∈ R3 and define

u0 = max

(
um,

(
|ψ|
um

)2/3
)
.

Then

Fd(x) = {c1µ sin(θ)} × co

{(
ψ

u2
, u

)
: u ∈ [u0, uM ]

}
.

Hence, we can focus on the set

A := co

{(
ψ

u2
, u

)
: u ∈ [u0, uM ]

}
.

We want to prove that

A = B :=

{(
λ1u1 + λ2u2, ψ

(
λ1
u21

+
λ2
u22

))
: (u1, u2, λ1, λ2) ∈ V (x)

}
.

Let us use g(u) to denote the function

g : [u0, uM ] → R

g(u) =
ψ

u2

and with ℓ : [u0, uM ] → R the straight line that joins the point (u0, g(u0)) to
the point (uM , g(uM )), that is

ℓ(u) = g(u0) +

(
g(uM )− g(u0)

uM − u0

)
(u− u0).

Define
C := epi(g) ∩ hyp(ℓ),

where
epi(g) = {(u, α) : u ∈ [u0, uM ], g(u) ≤ α}

and
hyp(l) = {(u, β) : u ∈ [u0, uM ], ℓ(u) ≥ β}.

Since g is a convex and continuous function and hyp(ℓ) is a convex set, C is a

convex closed set containing
{(

ψ
u2 , u

)
: u ∈ [u0, uM ]

}
. In particular, one has

that A ⊆ C.
Step 1: C ⊆ B.
Consider (ū, v̄) ∈ C. Then one has that

g(ū) ≤ v̄ ≤ ℓ(ū).
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Take now the straight line ℓ0 : [u0, uM ] → R whith the same slope of ℓ and such
that ℓ0(ū) = v̄, that is

ℓ0(u) = v̄ +

(
g(uM )− g(u0)

uM − u0

)
(u− ū).

By construction, one has that

ℓ0(u0) ≤ ℓ(u0) = g(u0),

ℓ0(uM ) ≤ ℓ(uM ) = g(uM ).

Hence, by using the continuity ℓ0, there exist u1 and u2 satisfying u1 ≤ ū ≤ u2
and such that

g(u1) = ℓ0(u1)

g(u2) = ℓ0(u2)

which means that the point (ū, v̄) is a convex combination of the points

(u1, g(u1)), (u2, g(u2)).

This shows that C ⊆ B.
Step 2: A = B.
Since it follows from Step 1 that C ⊆ B, one also has A ⊆ B. On the other
hand, it follows from the definition of B that also the inclusion B ⊆ A holds.
Hence one has that A = B. This completes the proof.

3.2 Existence of relaxed optimal solutions
{sec:Ref2}

In this section, we will show the existence of an optimal solution for (Pd). To
achieve this result, we begin by proving the existence of at least one admissible
trajectory.

{prop:admissible}
Proposition 2. Fix the constants

c1, c2, um,M ∈ (0,+∞) and θ0 ∈ [0, 2π]

and choose

uM ≥ max

{
um, c1M

2,M1/3,

(
c1
c2
M2

)2/5
}
. (HPmax) {eq:umax}{eq:umax}

Then there exists an admissible trajectory (x, u, L) for (P ).
Consequently, also problem (Pd) has at least one admissible trajectory.

Proof. To prove the statement, we make use of a fixed point argument. Let us fix
the constant control u = M/L; for L ≤ M/um we have u ≥ um, which implies
that the lower bound given by hP,1 is satisfied. Now, let us consider µ(t) =
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(L− t)M/L. It is easy to observe that the trajectory ((ψ, θ+ θ0, µ),M/L,L) is
admissible for problem (P ) if and only if (ψ, θ, µ) solves the system

ψ′ = c1
M(L−t)

L sin(θ + θ0)

θ′ = −ψ L2

M2

ψ(L) = 0

θ(0) = 0

|ψ| ≤ c2u
3/2

(5) {eq:auxiliary_1}{eq:auxiliary_1}

for all t ∈ [0, L]. We define X = {ψ, θ ∈ C([0, L]) : ψ(L) = θ(0) = 0}. Then
(X, || · ||∞) 1 is a Banach space. Consider the function F : X → X

F (ψ, θ)(s) =

(
−
∫ L

s

c1
M(L− t)

L
sin(θ(t) + θ0)dt,−

∫ s

0

ψ(t)
L2

M2
dt

)
= (F1(ψ, θ), F2(ψ, θ))

To prove the existence of a solution to system (5) we just need to prove that for
L small enough, F is a contraction and the inequality for |ψ| is satisfied.
Let be (ψ, θ), (ψ̄, θ̄) ∈ X.

||F1(ψ, θ)− F1(ψ̄, θ̄)||∞ ≤ c1LM ||θ − θ̄||∞

||F2(ψ, θ)− F2(ψ̄, θ̄)||∞ ≤ L3

M2
||ψ − ψ̄||∞

This means that for L < min
{

1
c1M

,M2/3
}
, F is a contraction. Moreover,

we notice that ||ψ′||∞ ≤ c1M . The bound on the derivative and the terminal
condition let us notice that ||ψ||∞ ≤ c1LM . Then, the inequality on ψ is always
satisfied if

c1LM ≤ c2 (M/L)
3/2

which gives the upper bound L ≤
(
c2
c1

√
M
)2/5

.

Collecting all the upper bounds for L, we can define

L̄ = min

(
M

um
,

1

c1M
,M2/3,

(
c2
c1

√
M

)2/5
)

and we can take u =M/L̄. So, if condition (HPmax) is satisfied, then u ≤ uM .
That is, the trajectory ((ψ, θ+θ0, µ), u, L̄) is admissible for (P ) and consequently
((ψ, θ + θ0, µ), L̄) is an admissible solution for (Pd).

To prove the existence of a minimising trajectory we need a bound on the
initial condition of the optimal trajectory. This property descends from the
limited mass M at our disposal and the boundedness of the dynamic.

1Here, we use || · ||∞ to denote the standard supremum norm in C([0, L]).
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{prop:boundedness}
Proposition 3. The set of admissible trajectories for (Pd) does not change if
we replace Cd,0 defined in (Pd) with

C̃d,0 =

[
−c1M

2

um
,
c1M

2

um

]
× {θ0} × {M}

Moreover, for any admissible trajectory (x, L) ∈ W 1,1([0, L];R3) × [0,+∞) we
have

L ∈
(
0, Mum

]
, |ψ(s)| ≤ c1M

2

um
,

|θ(s)− θ0| ≤ c1

(
M
um

)3
, 0 ≤ µ(s) ≤M,

for every s ∈ [0, L].

Proof. Let x = (ψ, θ, µ) be an admissible trajectory for (Pd). Since µ(0) =M >
0 = µ(L), we must have L > 0. Moreover, one has that

M = −
∫ L

0

µ′(σ)dσ ≥ umL,

which implies the bound

L ≤ M

um
.

The bound on µ follows immediately from the dynamics. Indeed, by definition
of Fd, one has µ′ ≤ 0. Hence

0 ≤ −
∫ L

s

µ′(σ)dσ = µ(s) =M +

∫ s

0

µ′(σ)dσ ≤M

For what concerns the variable ψ, we have

|ψ(s)| =

∣∣∣∣∣
∫ L

s

c1µ(σ) sin(θ(σ))dσ

∣∣∣∣∣ ≤ c1ML ≤ c1
M2

um
,

which gives the bound for ψ in [0, L].
Finally, by taking into account the equation for θ′, we observe that

|θ(s)− θ0| ≤
∫ s

0

θ′(σ)dσ ≤ c1M
2

um

1

u2m

M

um
= c1

M3

u4m
.

Hence, all the bounds of the thesis are verified.

To prove the existence of a maximizer we employ a compactness theorem
stated in Proposition 2.5.3 in [19], and the bound on the admissible lengths L
stated in Proposition 3.

{thm:existence}
Theorem 1. Assume (HPmax) holds. Then, problem (Pd) admits a maximizer.
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Proof. Define the closed and bounded set X ⊂ R3,

X =

[
−c1M

2

um
,
c1M

2

um

]
×
[
−|θ0| −

c1M
3

u3m
, |θ0|+

c1M
3

u3m

]
× [0,M ]

In view of proposition 3, for any admissible trajectory (x, L) ∈W 1,1([0, L];R3)×
[0,+∞), one has that (ψ, θ, µ)(t) ∈ X for all t ∈ [0, L].

Step 1: Fd : R3 ⇒ R3 is a closed, convex, nonempty, Borel measurable mul-
tifunction.
Fd is closed, convex and nonempty by definition. Concerning the Borel measur-
ability, define

fu1,u2,λ(x) :=

(
c1µ sin(θ),−ψ

(
λ

u21
+

1− λ

u22

)
,−(λu1 + (1− λ)u2)

)
.

Take any open set A ⊂ R3. By taking into account Proposition 1 and the
continuity of fu1,u2,λ(x) with respect u1, u2, λ and x, we have

F−1
d (A) = {x ∈ R3 : Fd(x) ∩A ̸= ∅}

=
⋃

u1≤u2∈Q∩[um,uM ]

⋃
λ∈Q∩[0,1]

[
f−1
u1,u2,λ

(A) ∩
(
(−∞, c2u

3/2
1 ]× R2

)]
Hence, F−1(A) is a countable union of Borel sets, that is a Borel set itself.

Step 2: Fd has a closed graph.
Let (xn)n and (vn)v two sequences in R3 such that for each n,

vn ∈ Fd(xn)

and xn → x, vn → v for some x, v ∈ R3. We want to prove that v ∈ Fd(x).
It follows from Proposition 1 that, for each n, there exist u1,n, u2,n, λn such that

fu1,n,u2,n,λn
(xn) = vn.

Since u1,n, u2,n ∈ [um, uM ] and λn ∈ [0, 1] for each n, then there exist u1, u2 ∈
[um, uM ] and λ ∈ [0, 1] such that u1,n → u1, u2,n → u2 and λn → λ at least
along a subsequence. Thus, by continuity, we have

fu1,u2,λ(x) = v,

u1, u2 ≥
(
|ψ|
c2

)2/3

,

that is exactly v ∈ Fd(x).
Step 3: Fd(x) ⊂ αB3 for any x ∈ X.

It follows from the definition of X and the boundedness of the control set that,
for any x ∈ X, we have

Fd(x) ⊂ max

{
c1
M2

um
, c1

M3

u3m
,
MuM
um

}
B3

12



where we recall that B3 ⊂ R3 is the closed unitary ball centred at the origin.
Step 4: Passing to the limit from a maximising sequence.
Consider a maximising sequence of admissible trajectories (xn, Ln)n for

problem (Pd). In view of Proposition 2, such a sequence exists. It follows
from Proposition 3 that the end-time sequence (Ln)n is bounded. So, along a
subsequence (we do not relabel), there exists L > 0 such that Ln → L. Further-
more, it is not restrictive to assume that Ln ≤ L for all n sufficiently large along
a subsequence (the case Ln ≥ L can be treated by using similar arguments).
Hence, we can extend xn to the whole [0, L] by defining

yn(s) =

{
xn(s) s ∈ [0, Ln]

xn(Ln) s ∈ [Ln, L]
,

so that yn ∈ W 1,1([0, L];R3) with y′n = x′n in [0, Ln] and y
′
n ≡ 0 in [Ln, L]. It

follows from Proposition 3 that yn ∈ X for every n. Since Fd restricted to X
is bounded, y′n ∈ F (yn) a.e. in [0, Ln] and y′n ≡ 0 in [Ln, L] for every n, the
sequence (y′n)n is uniformly essentially bounded. Moreover, by invoking again
Proposition 3, one has that (yn(0))n is a bounded sequence.

Let us define An = [0, Ln] and observe that L(An) = Ln → L as n →
+∞. It follows from Proposition 2.5.3 of [19] that there exists a function x ∈
W 1,1([0, L];R3) such that x′ ∈ F (x) a.e. in [0, L] and (x(0), x(L)) ∈ C0,d×C1,d,
that is (x, L) is an admissible trajectory for (Pd). Since L is the maximal
value for problem (Pd), then (x, L) is a maximizer for (Pd). This concludes the
proof.

4 Necessary Conditions
{sec:NecCond}

4.1 Reformulation
{sec:reformulation}

Proposition 1 characterizes the velocity set Fd. Using such a characterization,
we recast Problem (Pd) into the following system:

max(u,L)∈V L

Subject to

x′(s) = fc(x(s), u(s)) a.e. s ∈ [0, L]

(x(0), x(L)) ∈ Cd,0 × Cd,1

hc(x(s), u(s)) ≤ 0 a.e. s ∈ [0, L]

, (Pc) {eq:problemCO}{eq:problemCO}

with

• x = (ψ, θ, µ) ∈W 1,1([0, L];R3);

• u = (u1, u2, λ);

• V = {(u, L) : u : [0, L] → R× R× [0, 1] Lebesgue measurable,
L ∈ [0,+∞)};

13



• fc(x) =
(
c1µ sin(θ),−ψ

(
λ1

u2
1
+ λ2

u2
2

)
,−(λ1u1 + λ2u2)

)
with λ1 = λ and λ2 = 1− λ1;

• hc(x, u) = max
{
|ψ| − c2u

3/2
i , um − ui, ui − uM ,−λ, λ− 1

}
,

where the use of the subscript i means that the maximum is taken over
both i = 1, 2.

In view of Proposition 9 (see Appendix), problem (Pc) is equivalent to problem
(Pd).

{prop:signs}
Proposition 4. Let (x, u, L) and admissible trajectory for problem (Pc) such
that θ(0) = π/2. Then if one of the following two conditions holds true

c1 <
π

2

(um
M

)3
or c2 <

π
√
um

2L
, (HP2c) {eq:c2max}{eq:c2max}

we have:

• θ is increasing and θ(s) ∈ [π/2, π) for all s ∈ [0, L];

• ψ is increasing and ψ(s) < 0 for all s in [0, L).

Proof. Assume u1 ≤ u2. From the velocity constraint fp we observe that

θ′ = −ψ
(
λ1
u21

+
λ2
u22

)
. (6) {prop_7_eq1}{prop_7_eq1}

Furthermore, from the state constraint, we have that

|ψ| ≤ c2u
3/2
1 . (7) {prop_7_eq2}{prop_7_eq2}

Consequently it follows from (6), (7) and from Proposition 3 that

|θ′| ≤ c2u
3/2
1

(
λ1
u21

+
λ2
u22

)
≤ c2√

u1
.

So, if c2 <
π
√
um

2L , for every s ∈ [0, 1]∣∣∣θ(s)− π

2

∣∣∣ ≤ c2L√
u1

≤ c2
L

√
um

≤ π

2

and we get that θ ∈ (0, π). On the other hand, if c1 <
π
2

(
um

M

)3
, by proposition

3 we obtain the same conclusion.
The bound θ ∈ (0, π) determines the signs of ψ′ and ψ:

ψ′(s) = c1µ(s) sin(θ(s)) ≥ 0,

ψ(s) = −
∫ L

s

c1µ(σ) sin(θ(σ))dσ ≤ 0.

14



Using the above relations, we refine the bound on θ and get the monotonicity
property:

θ′(s) = −ψ(s)
(
λ1(s)

u21(s)
+
λ2(s)

u22(s)

)
≥ 0,

θ(s)− π

2
=

∫ s

0

(−ψ)(σ)
(
λ1(σ)

u21(σ)
+
λ2(σ)

u22(σ)

)
dσ ≥ 0.

which means that θ is increasing and θ ∈ (π/2, π), concluding the proof.

Remark 1. In proposition 4 the condition for the constant c2 depends on the
length L of the admissible trajectory. However, using the upper bound on L
given in proposition 3, it is possible to obtain

c2 <
πu

3/2
m

2M

so that if c2 satisfies this condition, then (HP2c) holds for any admissible tra-
jectory.

4.2 Notations for basic non-smooth analysis

The mixed constraint hc leads to a formulation of the Pontryagin’s maximum
principle that involves just absolutely continuous adjoint trajectories. This ver-
sion of the Pontryagin’s maximum principle can be found in theorem 2.1 in [20].
Before discussing the necessary conditions for the optimization problem (Pc),
we fix some essential notations of non-smooth analysis.

Given a non-empty closet set S ⊂ Rn, we define the proximal normal cone
to S at a point x ∈ S as

NP
S (x) = {ξ ∈ Rn : ∃M > 0 such that ∀x′ ∈ S , ⟨ξ, x′ − x⟩ ≤M |x′ − x|2}.

Any element of the proximal normal cone is called proximal normal vector. We
define the limiting normal cone (also known as Mordukhovich’s normal cone)
as

NL
S (x) = {ξ : ξ = lim

i
ξi for any ξi ∈ NP

S (xi) such that xi ∈ S , xi → x}

and we also define the generalised normal cone (also known as Clarke’s normal
cone) as

NC
S (x) = coNL

S (x).

It is clear from the definitions that

NP
S (s) ⊂ NL

S (x) ⊂ NC
S (x).

15



In an analogous way, we define proximal, limiting and generalised subgratients
for a lower semicontinuous function f : Rn → R:

∂P f(x) = {ξ : (ξ,−1) ∈ NP
epi(f)(x)},

∂Lf(x) = {ξ : ξ = lim
i
ξi for any ξi ∈ ∂P f(xi) s.t. xi → x , f(xi) → f(x)},

∂Cf(x) = co{∂Lf(x)}

and
∂P f(x) ⊂ ∂Lf(x) ⊂ ∂Cf(x).

There is a well-known relation between the level sets of a function and its sub-
gradient, which is stated in the following theorem (see Theorem 11.38 in [21]).

{thm:setgradient}
Theorem 2. Let f be a locally Lipschitz function and define

S = {x : f(x) ≤ 0}.

Fix x ∈ S such that f(x) = 0. If 0 /∈ ∂Lf , then

NL
S (x) ⊂ {λξ : λ ≥ 0 , ξ ∈ ∂Lf}.

The proof of this statement can be found in theorem 11.38 in [21]. Another
useful theorem is the so-called max rule (see for instance theorem 5.5.2 in [19])

{thm:maxrule}
Theorem 3. Let fi : Rn → R, i = 1, ...,m a collection of m locally Lipschitz
continuous functions. Define f : Rn → R as

f(x) = max
i
fi(x)

and

Λ = {(λ1, ..., λm) ∈ Rm : λi ≥ 0 for every i = 1, ...,m and λ1 + ...+ λm = 1}.

Then

∂Lf(x) ⊂

{
∂L

[
m∑
i=1

λifi

]
(x) : (λ1, ..., λm) ∈ Λ, and fi(x) < f(x) =⇒ λi = 0

}
.

4.3 A Pontryagin’s maximum principle

4.3.1 The bounded slope condition

To derive the necessary conditions for (Pd), it is important to verify the Lipschitz
continuity and the boundedness of Fd (see for instance section 2.3 in [22]). These
properties are implied by the bounded slope condition, which requires a relation
between the partial derivatives of Fd. A single-valued function is easier to
manage than a multifunction, so we look at this condition for problem (Pc).
A single-valued formulation of the bounded slope condition can be found in
condition BSε,R

∗ of [20], which we summarise here.
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Figure 1: Constraint set given by the conditions u ∈ [um, uM ] and |ψ| ≤ c2|u|3/2.
The black arrows represent the normal vectors to the edges of the sets; in the corners
A,B,C,D, since we have a discontinuity, those normal vectors become normal cones.
The value umax is the one given by condition (HP 1

max), while ψmax is the corresponding
maximum value of ψ, that is ψmax = (c1M

2)/um. The bounded slope condition in
this situation can be translated in this geometrical concept: there must not be arrows
vertically oriented near the optimal trajectory. As shown by the orange arrows in
the figure, corners B and C are clearly a threat to this condition. However, since for
any admissible trajectory we have |ψ| ≤ ψmax, the optimal trajectory (and more in
general, any admissible trajectory) will never reach the green area of the figure. {fig:bounded_slope}
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Assume we are considering an optimisation problem whose admissible tra-
jectories (x, u) (where u is the control) satisfy the constraint (t, x(t), u(t)) ∈ S,
where S is a closed set. Let (x∗, u∗, L∗) be an optimal process and R(t) > 0
an arbitrary positive measurable function. Define a tube around the optimal
process (x∗, u∗, L∗) in S

Sε,R∗ (t) = {(t, x, u) ∈ S : |x− x∗(t)| ≤ ε , |u− u∗(t)| ≤ R(t)}

for a.e. t ∈ [0, L∗]. The bounded slope condition requires the existence of a
measurable real-valued function kS such that

(x, u) ∈ Sε,R∗ (t), (α, β) ∈ NP
S(t)(x, u) =⇒ |α| ≤ kS(t)|β|

In our case, S = [0, L∗]×{(x, u) : hc(x, u) ≤ 0} and in the following proposition,
we verify the bounded slope condition for a fixed R. An intuitive idea of why
in our case this condition holds is given in figure 1.

{prop:bounded_slope}
Proposition 5. Let

E = {(x, u) : hc(x, u) ≤ 0}

If

uM >

(
c1M

2

c2um

)2/3

(HP 1
max) {eq:umax1}{eq:umax1}

then there exist εc,Kc ∈ [0,+∞) such that for any admissible trajectory (x, u, L)
for problem (Pc) and for any s ∈ [0, L]

|x− x(s)| ≤ εc, |u− u(s)| ≤ εc, (α, β) ∈ NP
E (x, u) =⇒ |α| ≤ Kc|β|

Notice that we prove a stronger condition than the bounded slope condition,
since we show such a property in the neighbourhood of any admissible process
(x, u, L) and not just for the optimal process (x∗, u∗, L∗).

Proof. Consider the functions

ai(x, u) = |ψ| − c2u
3/2
i i = 1, 2

bi(x, u) = um − ui i = 1, 2

ci(x, u) = ui − uM i = 1, 2

d(x, u) = −λ
e(x, u) = λ− 1

Each of the above functions is smooth in E and by definition

hc = max(a1, a2, b1, b2, c1, c2, d, e)

In the notations of theorem 3

G(x, u) = {(λa,1∇a1 + ...+ λe∇e)(x, u) : (λa,1, ..., λe) ∈ Λ,

and if ai or ... or e < 0 then λa,i, or ... or λe = 0 respectively}
(8) {eq:G_def}{eq:G_def}
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and by its application, we have

∂Lhc(x, u) ⊂ G(x, u)

We can compute explicitly the gradients of the functions:

∇a1 =
∇a2 =
∇b1 =
∇b2 =
∇c1 =
∇c2 =
∇d =
∇e =

[sgn(ψ) 0 0 −c2 3
2

√
u1 0 0]

[sgn(ψ) 0 0 0 −c2 3
2

√
u2 0]

[0 0 0 −1 0 0]
[0 0 0 0 −1 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 −1]
[0 0 0 0 0 1]

We want to see that for any g = (g1, ..., g6) ∈ G(x, u), we have (g4, g5, g6) ̸=
(0, 0, 0). The case (g4, g5, g6) = (0, 0, 0) can happen only in the following situa-
tions:

1. λ̃∇bi + λ̃∇ci = 0 for some λ̃ > 0;

2. λ̃∇d+ λ̃∇e = 0 for some λ̃ > 0;

3. λa,i∇ai + λc,i∇ci = 0 for some λa,i, λc1 > 0.

Cases 1 and 2 cannot happen. Indeed, assume for instance that case 1 holds
true. Since λ̃ > 0, this is possible only if bi(x, u) = ci(x, u) = 0, consequently
ui = um = uM and this is not possible. Similar reasoning can be applied to
case 2.

Now, we want to show that for (x, u) sufficiently close to (x(s), u(s)) for any
s ∈ [0, L], case 3 never occurs. Indeed, to have λa,i, λc,i > 0, we needui = uM(

|ψ|
c2

)2/3
= ui

(9) {eq:auxiliary_2}{eq:auxiliary_2}

By proposition 3, we know that

|ψ(s)| ≤ c1M
2

um

So, if uM satisfies hypothesis (HP 1
max), then (x(s), u(s)) cannot satisfy the

conditions in (9), because(
|ψ(s)|
c2

)2/3

≤
(
|c1M2|
c2um

)2/3

< uM .

So, if we take a constant εc > 0 such that(
|c1M2 + εc|

c2um

)2/3

< uM − εc

19



then, for any s ∈ [0, L] and for any (x, u) ∈ E such that

|x− x(s)| ≤ εc , |u− u(s)| ≤ εc (10) {eq:auxiliary_3}{eq:auxiliary_3}

we have (
|ψ|
c2

)2/3

≤
(
|c1M2 + εc|

c2um

)2/3

< uM − εc.

Consequently, system (9) cannot be satisfied.
Thus, for any (α, β) ∈ G(x, u) with (x, u) satisfying condition (10), where α

considers the partial derivatives with respect to the x and β the partial deriva-
tives with respect the control u, we have

|α| ≤ 1

|β| ≥ min

(
c2

3

2

√
ui, 1

)
≥ min

(
c2

3

2

√
um, 1

)
So, by choosing

Kc = max

(
2

3c2
√
um

, 1

)
we always have |α| ≤ Kc|β|. We also observe that in this situation, we always
have |(α, β)| ≠ 0. For this reason, we can apply theorem 2 and consequently

NP
E (x, u) ⊂ NL

E (x, u) ⊂ {λ̃(α, β) : λ̃ ≥ 0, (α, β) ∈ G(x, u)}

which concludes the proof.
{rem:normal_cone}

Remark 2. The set G(x, u) defined in (8) is convex and closed. This means
that also the set

{λ̃ξ : λ̃ ≥ 0, ξ ∈ G(x, u)}

is convex and closed. Consequently, we also have the inclusion

NC
E (x, u) ⊂ {λ̃ξ : λ̃ ≥ 0, ξ ∈ G(x, u)},

where E = {(x, u) : hc(x, u) ≤ 0}.
For any fixed ξ ∈ NC

E (x, u), we use ξψ to denote the component of ξ corre-
sponding to ψ. The notations ξui

and ξλ have a similar meaning. Furtheromre,
in view of the proof of Proposition 5, we can observe that

sgn(ξψ) = sgn(ψ).

4.3.2 The adjoint system

Given L̄ ≥ L > 0 and a measurable function x : [0, L] → Rn), we define

xL̄(s) =

{
x(s) s ∈ [0, L]

x(L) s ∈ [L, L̄]
.
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We say that an admissible trajectory (x∗, u∗, L∗) is an ε-local maximum for (Pc)
if for any other admissible trajectory (x, u, L) such that

|L∗ − L|, |xL̄(s)− x∗L̄(s)|, |uL̄(s)− u∗L̄(s)| ≤ ε

for a.e. s ∈ [0, L̄ = max{L∗, L}], the inequality L∗ > L holds.
{thm:pmp}

Theorem 4. Assume (HP 1
max) is satisfied and let εc be the constant of propo-

sition 5. Let (x∗, u∗, L∗) be an εc-local maximum for (Pc) and define the set of
the constraints

E = {(x, u) : hc(x, u) ≤ 0}.

Then, there exists an arc p = (pψ, pθ, pµ) ∈ W 1,1([0, L∗];R3) and a number
λ0 ∈ {0, 1} satisfying the non-triviality condition

(λ0, p(s)) ̸= 0, ∀s ∈ [0, L∗]

such that 

p′ψ = pθ

(
λ∗
1

(u∗
1)

2 +
λ∗
2

(u∗
2)

2

)
+ ξψ

p′θ = pψ(−c1µ∗ cos θ∗)

p′µ = −pψc1 sin θ∗

pψ(0) = 0

pθ(L
∗) = 0

(11) {eq:adj0}{eq:adj0}

and
pψc1µ

∗ sin θ∗ − pθψ
∗
(

λ∗
1

(u∗
1)

2 +
λ∗
2

(u∗
2)

2

)
− pµ(λ

∗
1u

∗
1 + λ∗2u

∗
2) = −λ0

2pθψ
∗ λ∗

i

(u∗
i )

3 − pµλ
∗
i − ξui = 0 i = 1, 2

−pθψ∗
(

1
(u∗

1)
2 − 1

(u∗
2)

2

)
− pµ(u

∗
1 − u∗2)− ξλ = 0

(12) {eq:adj1}{eq:adj1}
almost everywhere in [0, L∗], where ξ : [0, L∗] → R7 is a measurable function
such that ξ(s) ∈ NC

E (x∗(s), u∗(s)) for a.e. s ∈ [0, L∗]. Let

H(x, u, p) = pψc1µ sin θ − pθψ

(
λ1
u21

+
λ2
u22

)
− pµ(λ1u1 + λ2u2)

be the unmaximized Hamiltonian. Then, the Weierstrass condition holds. So,
for almost every s ∈ [0, L∗] and for every u ∈ R3 such that (x∗(s), u) ∈ E and
|u− u∗(s)| ≤ εc, we have

H(x∗(s), u, p(s)) ≤ H(x∗(s), u∗(s), p(s)) (13) {eq:adj2}{eq:adj2}

Notice that the non-triviality condition holds for every s ∈ [0, L∗].

Proof. We reformulate the free end-time problem (Pc) into a fixed end-time
maximization by a transformation of the independent variable. So, we consider
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the following system

min(u1,u2,λ,τ) −τa(L∗)

Subject to

ψ′ = c1µ sin(θ)τ a.e. in [0, L∗]

θ′ = −ψτ
(
λ1

u2
1
+ λ2

u2
2

)
a.e. in [0, L∗]

µ′ = −τ(λ1u1 + λ2u2) a.e. in [0, L∗]

τ ′a = τ a.e. in [0, L∗]

|ψ| − c2u
3/2
i ≤ 0 i = 1, 2 ; a.e. in [0, L∗]

ui ∈ [um, uM ] i = 1, 2 ; a.e. in [0, L∗]

λ1 = 1− λ2 ∈ [0, 1]

τ ∈
[
− εc
L∗ + 1, εcL∗ + 1

]
ψ(L∗) = 0

θ(0) = θ0

µ(0) =M , µ(L∗) = 0

τa(0) = 0

(14) {eq:auxiliary_7}{eq:auxiliary_7}

where τ is now a further control function. It is clear that if (x∗, u∗, L∗) is a
εc-local maximum for (Pc), then (x∗, (u∗, τ∗ ≡ 1)) is a εc-local minimum of
(14). The conclusion follows from an application of the Pontryagin’s maximum
principle (see Theorem 2.1 of [20]). Indeed, in view of Proposition 5, we know
that the bounded slope condition BSε,R

∗ holds true for (14). It remains to
verify the Lipschitz continuity of the function

fL(x, u, τ) =

(
c1µ sin(θ)τ,−ψτ

(
λ1
u21

+
λ2
u22

)
,−τ(λ1u1 + λ2u2), τ

)
for (x̃, ũ) in the set

Tc(s) = {(x, u) : |x− x∗(s)|, |u− u∗(s)| ≤ εc}.

for a.e. s ∈ [0, L∗]. Thanks to Proposition 3, we know that |ψ∗| and µ∗ are
bounded. This means that Tc(s) is a compact set. Moreover, (x, 0) /∈ Tc(s) for
any s. Consequently, fL is smooth in Tc(s) and the Lipschitz continuity follows
from the compactness of Tc(s).

5 Properties of the adjoint arc
{sec:prop_adj_arc}

In this section, we analyse the behaviour of the adjoint arc p in Theorem 4,
in order to gain more information on the optimal control. From now on, we
assume that the initial inclination of the elastic rod is

θ0 =
π

2
.
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{rem:norm_sign}
Remark 3. In the notations of Theorem 3 and Theorem 4, for any s ∈ [0, L∗]
such that hc(x

∗(s), u∗(s)) = 0, given ξ(s) ∈ NC
E (x∗(s), u∗(s)), we have

ξ = λ̃



−(λa,1 + λa2)
0
0
0

−λa,1c2 3
2

√
u1 − λb,1 + λc,1

−λa,2 3
2

√
u2 − λb,2 + λc,2
λd − λe


with λ̃ ≥ 0 and (λa,1, ..., λe) ∈ Λ. Recalling Remark 2, it follows from Proposi-
tion 4 that

ξψ ≤ 0.

Moreover, recalling the proof of Proposition 5, if (HP 1
max) holds and ui = uM ,

then ξui ≥ 0.
{prop:adj_sign}

Proposition 6. Let (x∗, u∗, L∗) be an optimal trajectory for problem (Pc). Let
p be an adjoint arc which satisfies system (11) and assume that hypothesis
(HP 1

max) and (HP2c) hold. Then there exists s̄ ∈ [0, L∗] such that if s̄ < L∗,
then {

pθ(s) > 0 s ∈ [0, s̄)

pψ(s) = pθ(s) = 0 s ∈ [s̄, L∗]
.

Otherwise, if s̄ = L∗, only the condition on pθ holds, that is, pθ(s) > 0 for
s ∈ [0, L∗).

Proof. Let us define the functions

a =

(
λ∗1

(u∗1)
2
+

λ∗2
(u∗2)

2

)
b = −c1µ∗ cos θ∗

.

Since (x∗, u∗) is fixed, a and b can be regarded as the time-dependent functions
appearing in (11). Furthermore, in view of hypothesis (HP2c), it follows from
Proposition 4 that a, b > 0 in [0, L∗). Then the adjoint system (11) can be
written as 

p′ψ = pθa+ ξψ

p′θ = pψb

pψ(0) = 0

pθ(L
∗) = 0

(15) {eq:auxiliary_14}{eq:auxiliary_14}

where ξ(s) ∈ NC
E (x∗(s), u∗(s)).

As a first step in the proof of Proposition 6, we will prove the following claim.
Claim: there does not exist s0 ∈ [0, L∗) such that

pψ(s0) ≤ 0 , pθ(s0) < 0. (16) {eq_claim}{eq_claim}
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Let us define
s1 = min{s ∈ [s0, L

∗] : pθ(s) ≥ 0}

It follows from the assumption (16) that s1 > s0. If s1 ≤ L∗, then pθ(s) < 0 for
s ∈ [s0, s1) and pθ(s1) = 0. Hence, it follows from Proposition 4, the condition
(16) and Remark 3 that

pψ(s1) = pψ(s0) +

∫ s1

s0

pθ(σ)a(σ)dσ +

∫ s1

s0

ξψ(σ)dσ < 0

and, by continuity of pψ(·), there exists δ > 0 such that

pψ(s) < 0 for all s ∈ (s1 − δ, s1 + δ). (17) {eq_claim_2}{eq_claim_2}

However, by appealing again to Proposition 4, condition (16) and (17), one has
that

pθ(s1) = pθ(s1 − δ) +

∫ s1

s1−δ
pψ(σ)b(σ)dσ < 0,

which contradicts the relation pθ(s1) = 0. Hence the condition s1 ≤ L∗ is
not satisfied, implying that s1 = +∞. But even this situation cannot occur
since in particular it implies pθ(L

∗) < 0, contradicting the boundary condition
pθ(L

∗) = 0. Hence, the condition (16) cannot occur and this proves the claim.

The main implication of the claim is to rule out the possibility to have the initial
condition pθ(0) < 0. Indeed, this follows immediately from an application of
the claim statement combined with the results of Proposition 4. The following
situations remain then to be studied:
Case 1: pθ(0) = 0.
In this case, we will show that one can only have pψ ≡ pθ ≡ 0. Indeed, by the
Duhamel’s formula, the solution to system (15) with the initial datum pθ(0) = 0
can be written as[

pψ
qθ

]
=

∫ t

0

exp

{
(t− s)

[
0 a(s)
b(s) 0

]}[
ξψ(s)
0

]
ds

By using the definition of matrix exponential, one has

exp

{
(t− s)

[
0 a(s)
b(s) 0

]}
=

∞∑
n=0

(t− s)n

n!

[
0 a(s)
b(s) 0

]n
=

[
v1(t, s) v2(t, s)
v3(t, s) v4(t, s)

]
.

Since a(s), b(s) ≥ 0 for a.e. s ∈ [0, L∗], the functions vi(t, s) ≥ 0, for all
t ∈ [0, L∗], a.e. s ∈ [0, t] and for all i = 1, . . . , 4. Consequently, it follows from
Remark 3 that

pψ =

∫ t

0

v1(t, s)ξψ(s)ds ≤ 0

pθ =

∫ t

0

v3(t, s)ξψ(s)ds ≤ 0
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By the dynamics (15) and the claim, the only possibility is to have pψ ≡ pθ ≡ 0.
Case 2: pθ(0) > 0.

Let us set
s̄ = min{s ∈ [0, L∗] : pθ(s) ≤ 0}.

Then one has that s̄ > 0 and pθ(s̄) = 0. If s̄ = L∗, then pθ(s) > 0 for all
s ∈ [0, L∗) and we have nothing to prove. If s̄ < L∗, by arguing again as in the
proof of the claim, one can show that it is not possible to have pψ(s̄) > 0, because
this would imply pθ(s̄) > 0, contradicting the definition of s̄. Furthermore, one
cannot obtain pψ(s̄) < 0. Indeed, if pψ(s̄) < 0, then by continuity of the adjoint
arc pψ(·), there exists δ > 0 such that pψ(s) < 0 for any s ∈ [s̄ − δ, s̄ + δ]. It
then follows that

pθ(s̄+ δ) =

∫ s̄+δ

s̄

pψ(σ)b(σ)dσ < 0

However, the latter inequality contradicts the statement of the claim, providing
a contradiction. Hence, the only possibility is that pψ(s̄) = 0 and by applying
the arguments of Case 1 in the interval [s̄, L∗], one has that pψ ≡ pθ ≡ 0 in
[s̄, L∗] and that pθ(s) > 0 for all s ∈ [0, s̄). This completes the proof.

{prop:pmu_sign}
Proposition 7. Let (x∗, u∗, L∗) be an optimal trajectory for problem (Pc). Let
p = (pψ, pθ, pµ) be an adjoint arc which satisfies system (11) and assume that
hypotheses (HP 1

max) and (HP2c) hold true. Then

pµ(s) ≥ 0 for all s ∈ [0, L∗].

Proof. We will structure the proof of the proposition in three main steps.
Step 1: One has that pµ(0) ≥ 0.
Assume by contradiction that pµ(0) < 0. By continuity of pµ(·), there exist
constants ε, δ > 0 such that

pψ(s)c1µ(s) sin (θ(s)) > −ε(
pµ(s)(λ1(s)u1(s) + λ2(s)u2(s)) ≤

)
pµ(s)um < −ε

for a.e. s ∈ [0, δ]. Hence, by using the first equation in (12), one has that

pψc1µ sin θ − pµ(λ1u1 + λ2u2) > 0, a.e. in [0, δ].

On the other hand, it follows from Proposition 6 that pθ ≥ 0 and from Propos-
tion 4 that ψ∗ ≤ 0 for all s ∈ [0, L∗). So, by using again the first equation of
system (12), one obtains the relation

pψc1µ sin θ − pµ(λ1u1 + λ2u2) ≤ 0 a.e. s ∈ [0, L∗]

and obtains a contradiction. Consequently, this shows that pµ(0) ≥ 0.
Step 2: Let us set

A = {s ∈ [0, L∗] : pµ(s) ≤ 0}.
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Then pψ ≤ 0 for a.e. s ∈ A.

Indeed, let us recall again that Proposition 6 asserts that pθ ≥ 0 for all
s ∈ [0, L∗), while Propostion 4 asserts that ψ∗ ≤ 0 for all s ∈ [0, L∗). It then
follows from the first equation of system (12) that

pψc1µ sin θ − pµ(λ1u1 + λ2u2) ≤ 0, a.e. s ∈ A

that is

pψ ≤ pµ
λiu1 + λ2u2
c1µ sin θ

≤ 0, a.e. s ∈ A.

This shows the assertion of Step 2.
Step 3: pµ(s) ≥ 0 for all s ∈ [0, L∗].

Assume that there exists s0 ∈ [0, L∗] such that pµ(s0) < 0 and define

s1 = sup{s < s0 : pµ(s) ≥ 0}.

Since pµ(0) ≥ 0, s1 ∈ [0, s0) and pµ(s1) = 0. In view of Step 2, one has that
pψ(s) ≤ 0 for a.e. s ∈ [s1, s0]. Using the third equation in system (11), we
obtain the inequality

pµ(s0) = −
∫ s1

s0

pψc1 sin θ ≥ 0

and reach a contradiction. This completes the proof of Proposition 7.

The non-negativity of pθ and pµ are important in the determination of the
optimal control. In the following, we use L to denote the Lebesgue measure in
R. {thm:u_opt}
Theorem 5. Let (x∗, u∗, L∗) be an optimal trajectory for problem (Pc). Assume
that hypothesis (HP2c), (HP

1
max) hold true. Then, for a.e. s ∈ [0, L∗], one has

u∗1(s) = u∗2(s) = max

{
um,

(
|ψ∗(s)|
c2

)2/3
}
. (18) {eq:u_opt}{eq:u_opt}

Proof. It follows from the control constraints of the optimal control problem
that

um ≤ u∗i ≤ uM and u∗i ≥
(
|ψ∗|
c2

)2/3

for i = 1, 2.

As a first step, we prove that

λ∗i (s) > 0 =⇒ u∗i (s) ∈

{
max

{
um,

(
|ψ∗(s)|
c2

)2/3
}
, uM

}
, (19) {cond_1}{cond_1}

that is, u∗i cannot be an internal point of the admissible range of control values.
Assume that this is not true for i = 1. So, there exists a set D ⊂ [0, L∗] such
that L(D) > 0 and

λ∗1(s) > 0 , u∗1(s) /∈

{
max

{
um,

(
|ψ∗|
c2

)2/3
}
, uM

}
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for every s ∈ D. Let p be an adjoint arc given by theorem 4. From system (12)
we have

∂

∂u1
H(x∗, u∗, p) = −pµλ∗1 − 2pθ(−ψ∗)

λ∗1
(u∗1)

3
= 0 (20) {eq:auxiliary_4}{eq:auxiliary_4}

in a.e. D. So, u∗1(s) is a.e. a critical point for the Hamiltonian. Let s̄ ∈ [0, L∗]
be the time which appears in the statement of Proposition 6. It then follows
from Proposition 4 and Proposition 6 that

∂2

∂u21
H(x∗(s), u, p(s)) = 6pθ(s)(−ψ(s))

λ1(s)

(u1(s))4

{
> 0 a.e. in [0, s̄)

= 0 a.e. in [s̄, 1]
(21) {eq:auxiliary_5}{eq:auxiliary_5}

If L(D ∩ [0, s̄]) > 0, then conditions (20)-(21) imply that u∗1(s) is a minimum
for H in a set of positive measure, contradicting condition (13). Therefore, we
can assume D ⊂ (s̄, L∗]. In view of condition (20), we observe that pµ = 0 in
D. Hence this implies pψ ≡ pθ ≡ pµ ≡ 0 in D. By using the first equation of
system (12), one obtains the relation λ0 = 0. However, this implies that the
non-triviality condition is violated a.e. in D, reaching a contradiction. Hence it
follows that the relation (19) has to be satisfied.

We can now prove the thesis. Assume by contradiction that there exists a
set E such that L(E) > 0 and λ1(s) > 0, u1(s) = uM for a.e. s ∈ E. It follows
from the second equation of system (12) and from the inequality ξu1

(s) ≥ 0 a.e
s ∈ [0, L∗] (see Remark 3) that

2(−pθ)(−ψ∗)
λ∗1

(u∗1)
3
− pµλ

∗
1 ≥ 0

a.e. in E. On the other hand, it follows from Proposition 6 and Proposition 7
that the previous inequality holds true only if pµ ≡ pθ ≡ 0 a.e. in E. Then,
by using again Proposition 6, this implies that also pψ ≡ 0 in [ess inf(E), L∗].
Hence, by appealing again to the first equation of system (12), there exists a set
with positive Lebsgue measure such that one obtains the relation λ0 = 0. This
contradicts the non-triviality condition appearing in the necessary conditions.
The case regarding u2 is analogous. This completes the proof.

{rem:non-relaxed_control}
Remark 4. Problem (Pc) is a relaxation of the original Problem (P ). Never-
theless, Theorem 5 states that the optimal control is not relaxed, in the sense
that u∗1 = u∗2 a.e. in [0, L∗]. Consequently, Theorem 5 shows the equivalence
between problems (Pc) and (P ), since in both cases the optimal control (18)
leads to the same optimal length L∗.

{rem:nomrality}
Remark 5. All the logical passages used until now are valid independently of
the normality of the problem. By the first equation of system (12), if the adjoint
arc p is null, then also the multiplier λ0 is null. This excludes the possibility to
have a trivial p and a non-trivial λ0. However, the vice-versa, and consequently
the normality of the problem itself, is not immediate. A multiplier λ0 ̸= 0 can
keep track of any rescaling operation that involves the adjoint arc p. As we will
see in the next section, this leads to a procedure for the numerical computation
of the adjoint trajectories.
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(a) {fig:psi} (b) {fig:theta}

(c) {fig:mass} (d) {fig:rad}
Figure 2: Numerical integration of system (22) (Figures 2a-2b-2c) and optimal radius
(Figure 2d). As stated in proposition 4, both ψ and θ are increasing. The former
is always negative, while the latter is always in the interval [π/2, π). As displayed
in Figure 2d, the radius always decreases. Around 0.8 m from the base the radius
becomes constant. This is because, at that point, the optimal u∗ reaches the minimal
value um. Since |ψ| is decreasing, from that point on, u∗ is constantly um. {fig:system_simulation}

{rem:time_dependence}
Remark 6. In the proofs of Proposition 7 and Theorem 5, we have used the
condition that along the optimal trajectory, the Hamiltonian H is constantly
equal to −λ0. This equality holds true because the dynamic used for problem (P )
is autonomous, that is, f , hP,1, hP,2 and U does not depend explicitly from s ∈
[0, L]. This “time” independency follows from our modelling assumptions. For
instance, we considered the volume density ρ3 and Young’s modulus E constant
all along the shoot. The inclusion of a time-dependent dynamic would require
further analysis of the sign of H.

6 Simulations
{sec:Sim}

If conditions (HP 1
max) and (HP2c) hold true, then Theorem 5 determines the

optimal control in feedback form. As discussed in Remark 4, this result pre-
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Parameter Value Unit of Measure
g 9.81 m · s−2

L∗ 1 m
M (5 · 10−3)/(πρ3) m3

ρ3 103 Kg ·m−3

E 3 · 109 N ·m−2

um (0.5 · 10−3)2 m2

Table 1: Parameters used for the numerical integration of system (22). The values
are an approximation of the estimates done in [13]. In particular, the fresh mass of a
searcher shoot of length L∗ without leaves is approximately 10 g. Assuming that half
of this mass is due to the leaves, we estimate a stem fresh mass of 5 g. This explains
our choice for the value of M . The volume density ρ3 is set as the density of the water
and the minimum diameter is assumed to be 1 mm. {tab:parameters}

scribes u∗1 = u∗2 a.e., so we can consider λ∗1 ≡ 1 and problem (Pc) becomes
equivalent to (P ). Therefore, the optimal trajectory solves the boundary value
problem 

ψ′ = c1µ sin(θ)

θ′ = − ψ
(u∗)2

µ′ = −u∗

ψ(L∗) = 0

θ(0) = π
2

µ(0) =M , µ(L∗) = 0

u∗ = max

(
um,

(
|ψ|
c2

)2/3)
c1 = 4gρ3

E , c2 = σ̄
E

(22) {eq:problem_num}{eq:problem_num}

In our parameter pool (see table 1), we don’t have the value of the parameter
σ̄. On the other hand, we know the value of the maximal length L∗. So, to
integrate system (22), we have to determine those values of ψ(0) and c2 such
that ψ(L∗) = µ(L∗) = 0. To achieve these endpoint conditions, we wrote a
Matlab script which employs the function bvp5c to solve a boundary value
problem. The parameters displayed in Table 1 lead to a constant c1 which
satisfyes condition (HP2c). Indeed

c1 =
4gρ3
E

= 13.08 · 10−6 < 6 · 10−3 ∼ π

2

(um
M

)3
Since we don’t need to set any value of uM , conditions (HPmax) and (HP 1

max)
are immediately satisfied.

6.1 Simulation of the adjoint system

The normal cone in the dynamic of the adjoint arc makes the simulation of the
adjoint system a non-trivial procedure. However, the second equation of system

29



(a) {fig:ppsi} (b) {fig:ptheta}

(c) {fig:pmu} (d) {fig:ham}
Figure 3: The adjoint arc (Figures 3a-3b-3c) and the Hamiltonian (Figure 3d). Each
graph displays four iterations of the process expressed by equations (25). The iterations
show that each component of the adjoint arc and the Hamiltonian are converging at
least pointwise. We notice that pθ and pµ are always non-negative. So, the adjoint arc
is following the results of propositions 6 and 7, and the iterations of the Hamiltonian
are converging to a function constantly equal to −1. {fig:adjoint_hamiltonian}
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(12) and remark 3 suggest the following heuristic iterative process to generate
the component ξψ of the normal vector.

Define s0 ∈ [0, L∗] the value in which

u∗(s0) =

(
|ψ|(s0)
c2

)2/3

= um.

Assume that equation (11) has been rescaled with a piecewise constant function
γ0 in [0, L∗], so that

ξψ,0(s) =
ξψ(s)

γ0(s)
=

{
−1 s ∈ [0, s0]

0 s ∈ [s0, L
∗]
.

The value of s0 can be estimated by integrating system (22), and for t > s0
the trajectory x is not activating the constraint on |ψ|, that is, |ψ| < u

3/2
m c2.

Consequently, ξψ,0 ≡ ξψ ≡ 0 in [s0, L
∗]. Denote with pψ,0, pθ,0 the solutions to

the boundary value problem
p′ψ = pθ

u∗ − ξψ,0

p′θ = pψ(−c1µ cos θ)
pψ(0) = 0

pθ(L
∗) = 0

. (23) {eq:auxiliary_9}{eq:auxiliary_9}

Here, pψ,0 and pθ,0 are the first two components of the adjoint arc p solution to
the adjoint system (11) rescaled by γ0. That is, if p is a solution of the adjoint
system (11), then (pψ/γ0, pθ/γ0) is a solution of (23) and vice-versa. pµ is not
considered by system (23) because it doesn’t affect the behaviour of the other
components of the adjoint arc and because we don’t have any information on its
boundary values. However, we can retrieve the values of pµ,0 = pµ/γ0 in [0, s0]
by considering the second equation of system (12). So, we have

pµ,0 = 2pθ,0ψ
1

(u∗)3
− ξu,0

with ξu,0 = ξu/γ0.
In the interval [0, s0] we know that without the rescaling by γ0 we have (see

remark 3)

ξψ = −λ̃

ξu = −λ̃c2
3

2

√
u∗

since ξψ/γ0 = ξψ,0, we deduce that in [0, s0]

ξu,0 = ξψ,0 · c2
3

2

√
u∗

This allow us to estimate pµ,0 in [0, s0].
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We now make a further assumption: the problem is normal, that is in the
first equation of system (12) we have λ0 = 1. Hence, we can estimate γ0 in
[0, s0], since we have

pψ,0c1µ sin θ − pθ,0
1

(u∗)2
− pµ,0u

∗ = − 1

γ0
(24) {eq:auxiliary_10}{eq:auxiliary_10}

Of course, this reasoning works only if we assume that the rescaling function
γ0 is at most a piecewise constant function. However, we can reiterate this
procedure considering

ξψ,i = −γi−1ξψ,i−1

ξu,i = ξψ,ic2
3

2

√
u∗

pµ,i = 2pθ,iψ
1

(u∗)3
− ξu,i

(25) {eq:iterations}{eq:iterations}

and taking pξ,i, pθ,i as the solutions to system (23) with ξψ,i instead of ξψ,0, for
i = 1, 2, ... .

7 Results

The numerical solution of system (22) is displayed in the graphs of Figure 2.
The optimal trajectory respects the conditions of Proposition 6 and 7, as we
expect since condition (HP2c) is satisfied. In particular, ψ is negative and
increasing, which means that |ψ| is decreasing. By Theorem 5, the optimal
control is directly proportional to |ψ|, consequently the optimal radius

√
u∗ is

decreasing until it reaches the value um.
Regarding the simulation of the adjoint system, as displayed in Figure 3,

the sequence of the adjoint arcs (pξ,i, pθ,i, pµ,i) is converging to some function
(pξ, pθ, pµ) and the Hamiltonian is converging to the constant value −1. Again,
the simulated trajectories respect the conditions of propositions 6 and 7. So, we
observe a positive pθ in [0, L∗) and a non negative pµ.

8 Discussion

The control u determines the rate of mass decrease µ′ and without the constraint

u ≥
(
|ψ|
c2

)2/3

, (26) {eq:auxiliary_12}{eq:auxiliary_12}

it can assume any value in the interval [um, uM ]. Since we require µ(0) = M
and µ(L) = 0, the lower is u, the slower µ decreases, the larger L is. In this
situation, the optimal strategy would be to take the lowest value u allowed, that
is um. This reasoning motivates the intuition of relation (18) for the optimal
control since in (P ) the constraint (26) gives a lower bound for u.
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From the relations

u = R2;

ψ = −R4θ′,

where we recall that R is the radius of the cross-section, we can formulate
equation (18) as follows:

R =
c2
|θ′|

. (27) {eq:auxiliary_13}{eq:auxiliary_13}

Equation (27) gives a relation between the curvature |θ′| and the radius of the
cross-section R. Rephrasing, if we assume that searcher shoots grow optimising
their length, then their cross-section is regulated with a feedback control sys-
tem. Indeed, at each point of the shoot, the cross-section, together with other
physical parameters, influences the curvature of the shoot. Then, as expressed
by equation (27), the resulting curvature provides feedback on the cross-section,
closing the loop.

The feedback control mechanism is common in biological systems and in
particular in plants [23]. Consider for instance the gravitropic mechanism. In
general, plants are able to perceive their local inclination and their local curva-
ture through some specialised cells [1, 24]. This information is compared with
a target inclination and a target curvature [25], inducing a flux of hormones to
regulate growth and posture [4, 5]. The plant then attains a new shape, which
has different local inclinations and curvatures, and the cycle is repeated.

Further improvements in the modelling can be achieved by considering for
instance (i) variable volume density and Young’s modulus (ii) the mass of the
leaves. In addition, c2 is a dimensionless constant. From equation (27), we
observe that it is equal to the product between the radius R of the cross-section
and the curvature |θ′|. A comparison with experimental data on radius and
curvature would improve the accuracy of the model.

9 Conclusion

Control theory has an extremely wide range of applications, from the design of
mechanical devices to physics, economics and biology. Starting from a physical
model of a searcher shoot based on the Euler-Bernoulli theory of elastic rods,
we used the optimal control theory to study the behaviour of the radius for the
maximisation of the length. The system (P ) resulted to be a boundary value
problem with non-linear dynamics and constraints on the state variable. Our
approach to this problem consisted of the use of relaxation to convexify the
dynamic and the application of the Pontryagin Maximum Principle for mixed
state-constrained systems. The resulting optimal control expressed in Theorem
5 proves the equivalence between the original problem (P ) and the relaxed one
(Pc). Moreover, it gives a relation between the radius and the inverse of the
curvature through the dimensionless constant c2.
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A Admissible trajectories
{apx:AdmTrj}

In this section, we prove that any admissible trajectory of problem (Pd) is an
admissible trajectory of problem (Pc). To achieve this aim, we need the following
statements whose proof can be found in [19].

{prop:2.3.2_vint}
Proposition 8. Take a Borel measurable multifunction V : Rm ⇒ Rn and a
Lebesgue measurable function x : [0, L] → Rm. Then the multifunction F ◦ x :
[0, L] ⇒ Rm is Lebesgue measurable.

{thm:2.3.7_vint}
Theorem 6. Consider a closed nonempty multifunction G : [0, L] ⇒ Rn. Then
G is Lebesgue measurable if and only if its graph Gr(G) is a measurable subset
of [0, L]× Rn.

We can now prove the following relation between (Pc) and (Pd).
{prop:equiv_DI_CO}

Proposition 9. (x, L) is an admissible trajectory for problem (Pd) if and only if
there exists a measurable (u, L) in V such that (x, u, L) is admissible for problem
(Pc). Moreover, (x∗, L∗) is an optimal trajectory for problem (Pd) if and only
if there exists a measurable u∗ such that (u∗, L∗) ∈ V and (x∗, u∗, L∗) is an
optimal trajectory for problem (Pc).

Proof. We just need to prove that for any x ∈W 1,1([0, L] : R3) such that (x, L)
is a trajectory of (Pd) there exist some measurable functions u1, u2, λ such that
(x, (u1, u2, λ), L) is an admissible trajectory for (Pc). Consider the multifunction
V : R3 ⇒ R3

V ((ψ, θ, µ)) = {(u1, u2, λ) : |ψ| ≤ c1 min(u1, u2)
3/2;

u1, u1 ∈ [um, uM ]; λ ∈ [0, 1]}

that essentially is the one defined in remark 1. Proceeding as in the proof of the-
orem 1, we observe that V is a Borel measurable multifunction. By proposition
8, the multifunction

G : [0, L] ⇒ R3

G(s) = V (x(s))

is a Lebesgue-measurable multifunction. By definition of V , G is always a closed
multifunciton. We can then apply theorem 6 to observe that the graph Gr(G) is
a measurable subset of [0, 1]×R3. We can than apply theorem the Generalized
Filippov Selection Theorem (see for instance theroem 2.3.13 of [19]) to obtain
that the multifunction U ′ : [0, 1] ⇒ R3 defined by

U ′(s) = {u ∈ G(s) : fc(x(s), u) = x′(s)}

has a measurable graph. Finally, by the Aumann’s measurable selection theo-
rem (see theorem 2.3.12 in [19]) we find a measurable selection of U ′ and this
concludes the proof.
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