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Abstract

Plants’ structure is the result of constant evolution towards the adap-
tation to the surrounding environment. From this perspective, our goal is
to investigate the mass and radius distribution of a peculiar plant organ,
namely the searcher shoot, by providing a Reinforcement Learning (RL)
environment, that we call Searcher-Shoot, which considers the mechan-
ics due to the mass of the shoot and leaves. We uphold the theory that
plants can maximize their length, avoiding a maximal stress threshold.
To do this, we explore whether the mass distribution along the stem is ef-
ficient, formulating this hypothesis as a Markov Decision Process (MDP).
By exploiting this strategy, we are able to mimic and thus understand the
plant’s behavior, finding that shoots decrease their diameters smoothly
in order to efficiently distribute the mass. The strong agreement between
our results and the experimental data allows us to remark on the strength
of our approach in the analysis of biological systems traits.

1 Introduction

Plants are living organisms coordinating a complex network of internal, e.g.,
nutrient concentration, and external signals, e.g., light and soil resources. As
a result, plant growth is a delicate balance among different factors involving
environmental and physiological conditions [1].

Despite their sessile life, plants can move and react to external stimuli to
look for nutrients, avoiding obstacles and dangerous conditions [2]. Differently
from the animal kingdom, plants do not perform these movements only through
“active” reversible actions, but mainly by expanding their organs [3]. This is a
fundamental issue about plants: they move by growth, so how do they grow?
What characterises their shape? To investigate in this direction, we need to
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place plants in their context. Plants actually leave in a complex environment
with a limited amount of resources. These resources are shared between plants
of the same species as well as plants of different species. In this context, the
efficient use of such resources can be crucial for plant subsistence. The con-
cept of efficiency may be the key for understanding how plants interact with
the environment and develop their organs. This gives a different perspective
to plant modelling. Indeed, this point of view enriches a model by adding to
the mathematical description of the biological system a possible interpretation.
Concerning the shape of the plants and the subject matter of this work, we
consider the mechanical aspect of a plant organ. The possibility of mathemat-
ically studying the mechanics of a structure and understanding the extent of
its physical limits has fascinated scientists since the time of Galileo (see in par-
ticular the work “two new sciences”). Specifically on plants, there are studies
on critical lengths (see for instance [4, 5, 6]), on the distribution of roots and
branches [7] or on how a root penetrates the soil [8]. The optimisation paradigm
can be applied effectively in biological contexts [9, 10] and is what also guides
this work.

In this work, we focus on a particular climbing plant species, the Condy-
locarpon Guianense Desf.. This plant species is a liana widely found in the
flora of French Guyana, which twines around the branches and the trunks of
its hosts in order to reach the canopy. Several studies on its structure, see [11,
12, 13] for instance, have revealed that in different growth stages, it changes
the thickness and the nature of the layers that form its stem and consequently
it changes its stiffness. More specifically, the plant is stiffer when and where is
developing a self-supporting state, while it displays a less dense material and
a thicker compliant cortex when attached to a support. Such a wide adapt-
ability of the C. guianense to the surrounding environment suggests that it is
following a paradigm of efficiency, making it a suited subject for our study.
In particular, we want to support the thesis that the self-supporting organs of
the C. guianense, called searcher shoots, are trying to maximize their length,
avoiding a maximal stress threshold. This idea is motivated by the fact that
the searcher shoots are organs whose purpose is to search for external support
and attach to it. Hence, they need to be as long as possible, in order to explore
the surrounding environment, but at the same time, they have to sustain their
own weight. To investigate this specific behavior and prove our conjecture, we
combine mechanical modelization and Reinforcement Learning. Specifically, to
prove the thesis that climbing plants optimize the mass distribution in their
self-supporting organs, we developed a Reinforcement Learning environment,
which we called Searcher-Shoot, to study the radius along the climbing plant
shoot. At the base of this environment, we considered two planar mechanical
models: (ML) and (MM), which give us information about the development
of the curvature and the mass along the shoot, considering the leaves or not,
respectively.

We compare the simulated radius with the experimental data and observe
that the optimal policy is able to reproduce the decreasing behavior that char-
acterizes the radius of the sample in exam. This result suggests that, at least for
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the C. guianense, the mass distribution along the searcher shoot is optimized
in function of the length.

The application of Artificial Intelligence (AI) to many biological problems
is increasing rapidly in the analysis of plant morphology, growth, and develop-
ment, or the understanding of their changing environment in conjunction with
agriculture [14]. In particular, Machine Learning (ML) is playing a conspicuous
role in developing predictive models in complex plant biological systems [15]
whenever possible the integration and the analysis of multidimensional omics
data [16]. Moreover, as described in [17], with inadequate data, AI/ML appli-
cations perform poorly. When Supervised and Unsupervised methods are not
able to generate a direct linear or non-linear mapping among the raw data, Re-
inforcement Learning stands up for being a valid alternative method [18, 19]
and, as underlined in [20], it is emerging as a robust and reliable tool to face
out real-world problems concerning biological systems. Example of this applica-
tion are available in synthetic biology [21], metabolic engineering [22], chemical
reaction network [23], and plant biology [24].

2 Results
{sec:results}

We develop the Searcher-Shoot environment in Python. Precisely, we employ
the OpenAIsGym [25] and Stable-Baselines3 (SB3) [26] libraries, two open-
source frameworks implementing several commonly used model-free deep RL
algorithms. In particular, from SB3, we import the PPO algorithm [27]. For
the mathematical modelling, we develop two models for the searcher shoot: (i)
a model with the mechanics, but without the leaves (MM) and (ii) a model with
both the mechanics and the leaves (MM). We perform all the simulations with
the discount factor γ = 0.99 (see Section 5.1.1 in the Supplementary Material)
and we train the models setting the number of episodes to 1 million.

In Figure 1, we plot the results of our simulations and we show the radius
(Figure 1a) and the mass distributions (Figure 1b). We find that the radius
decreases at each step, i.e. the agent chooses the actions leading to a smaller
radius.

We compare our simulated scenario with five samples [28, 29]. As we can no-
tice in Figure 1a, comparing the obtained radius distribution (in blue) with the
experimental radius of sample S2 (in red), the relative error is 8.55% in the seg-
ment [0, 0.868], which represents the length of the experimental sample. In the
Supplementary Material, we include the simulation results and the comparison
with all the other samples.

As the last case study, we consider the ML model, where, in addition to the
mechanics features, we model also the mass of the leaves along the shoot. In
Figure 2, we present the results of our simulations. Both the radius (Figure 2a)
and the mass distributions (Figure 2b) are consistent with the results of the
preceding model. Again, we compare the experimental radius (in red) of sample
S2 with the one we acquire by RL, and, by computing the relative error, we find
that the discrepancy between the two radii is 10.28% in the segment [0, 0.868].
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Figure 1: Radius and mass distribution in the MM model. We show the
radius and, consequently, the mass distribution obtained in the MM model after the
training. Specifically, in Figure 1a, we compare the experimental radius (red) to the
one obtained by our simulation (blue). Computing the relative error, we find that the
discrepancy between the two radii is at most 8.55% in the segment [0, 0.868]. The
value 0.868 represents the total length in meters of the shoot sample. In Figure 1b,
we show the simulated mass. The mass decreases smoothly and is approximately zero
at the tip.
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Figure 2: Radius and mass distribution in the ML model. We show the
radius and, consequently, the mass distribution obtained in the ML model after the
training. Specifically, in Figure 2a, we compare the experimental radius (red) to the
one obtained by our simulation (blue). Computing the relative error, we find that the
discrepancy between the two radii is at most 10.28% in the segment [0, 0.868]. The
value 0.868 represents the total length in meters of the shoot sample. In Figure 2b,
we show the simulated mass. The mass decreases smoothly and is approximately zero
at the tip.
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3 Discussion
{sec:discussion}

The relative error between the experimental radius and the simulated samples
is less than 15% for all the samples and in both cases with or without leaves (see
Tables 1-2). Such a small relative error suggests that the optimal policy success-
fully reproduces the radial profile of the samples. Going into more detail, in the
(MM) case with generic c2 and ψ0, the error is between the 12.9% and the 16.8%
(see Table 1), with the exception of sample S1. This error decreases between
the 7.8% and the 9.8% when the constants are sample-specific. In particular, we
observe that the coefficient of variation of c2 is about 35% (see Table 3), while
the coefficient of variation of ψ0 is much greater since it is about 74%. This
might imply that the environmental conditions have a relevant impact on the
initial curvature of the shoot, while the stress threshold might be characteristic
of the plant species. The difference between the length of the simulation and the
experimental one, displayed in figure 1a can be explained by the approximation
in the mass and density measures. Regarding the simulations with the leaves,
i.e. the (ML) model, the relative error gets worse if compared to the (MM)
model (see Table 2). This drop in the accuracy of the model can be due to the
fact that the agent has no control over the distribution of the leaves. Moreover,
the constants ψ0 and c2 are estimated on a model based on the optimisation of
the mass of the main stem. Hence, effective implementation of the leaves would
require a more accurate model; nevertheless, even in our approximation, we get
an error between the 7.4% and the 14.1%. This result suggests that the aim of
the plant during the self-supporting stage is the optimization of the main stem’s
mass. This is in line with the application of the behavioural ecology theoretical
framework to plants (see [30] for a survey on the behavioural ecology of climbing
plants). In other words, according to this theory, plants have the capability to
place their organs in accordance with optimal economic models. For instance,
depending on the external supports in the surrounding environment, the pre-
dation risk and the energetic stress, a shoot may delay leaf expansion or have
short internodes. In our case, the plant has a limited amount of mass and can
develop limited internal stress. A longer stem means, on one hand, a greater
exploration capability, on the other hand, a greater risk, since the structure is
more fragile. Our RL environment gives a quantitative answer to the trade-off
that the plant has to face, in the specific case of the C. guianense in its nat-
ural habitat. However, the generality of the equations at the base makes this
environment suitable for application to other plant species.

Building an RL environment, i.e., Searcher-Shoot, is a compelling strategy
to understand complex systems biology behaviors, especially in the lack of data
which are crucial in the application of Machine Learning. The RL approach
we exploit in this work has led to enthusiastic results that make us even more
hopeful for future developments. In particular, we plan to explore other specific
biological behaviors, such as root competition. Indeed, different plant species
may compete (or collaborate) to uptake soil’s nutrients. In this framework,
biomass production and soil occupation are suitable variables for an RL-based
study. Moreover, in line with this work, we plan to build a more sophisticated

5



model, which can consider the curvature time development in addition to the
optimal mass distribution. Indeed, plant movement is - partially - determined
by the response to external signals. This response can be optimized to maximize
(or minimize) a reward based on the signals themselves.
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Sample Relative Error % Relative Error % with EP
S1 8.6% 13.6%
S2 - 8.5%
S3 16.8% 8.2%
S4 16.2% 7.8%
S5 12.9% 9.8% {tab: comparison with samples without leaves}

Table 1: The table reports the Relative Error (RE) with and without
estimated parameters (EP). To show the strength of our results, we compute the
Relative Errors (RE) by comparing our results with the experimental radii of the
samples [28, 29]. To understand the influence of two crucial parameters, c2 and ψ0,
which are the curvature threshold and the initial curvature, respectively, we simulate
our MM model by using their estimated values and an average value.

Sample Relative Error % with EP
S1 7.4%
S2 10.2%
S3 11.4%
S4 14.1%
S5 11.8% {tab: comparison with samples with leaves}

Table 2: The table reports the Relative Error (RE) with estimated param-
eters (EP), by considering mass leaves. To show the strength of our results,
we compute the Relative Errors (RE) by comparing our results (ML model) with the
experimental radii of the samples [28, 29]. To understand the influence of two crucial
parameters, c2 and ψ0, which are the curvature threshold and the initial curvature,
respectively, we simulate our ML model by using their estimated values and an average
value.

Sample ψ0 c2
S1 −5.9e− 12 8.7e− 4
S2 −3.7e− 12 3.6e− 4
S3 −7.8e− 12 4.8e− 4
S4 −2.3e− 11 6.1e− 4
S5 −1.1e− 11 4.9e− 4

Average −1e− 11 5.6e− 4
Coeff. of Variation 73.61% 34.4% {tab: fundamental par and rel diff}

Table 3: The table reports the values of ψ0, c2, with average and coefficient
of variation. The values of ψ0 and c2 are estimated utilizing the methods described
in [31].
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4 Methods
{sec:methods}

4.1 Notations for the mechanics of a planar elastic rod

Let e1, e2, e3 a basis of orthonormal vectors for R3. We assume that the searcher
shoot behaves like an inextensible and unshearable elastic rod [32] confined in
the plane spanned by the vectors e1 and e2. The centerline of this rod lies on
the curve Γ ⊂ span{e1, e2}. We parametrize the curve Γ with its arc length
s, so that if the length of the curve is L, we have s ∈ [0, L]. We denote with
Γ(s) the position in the plane of the point on Γ whose arc length is s. With
this parametrisation, ∂sΓ(s) represents the normal tangent vector to Γ at the
point Γ(s). We denote with θ(s) the angle between ∂sΓ(s) and the vector e2 .
Consequently, θ′(s) is the curvature of Γ at the point Γ(s).

We refer to Γ as the current configuration, which corresponds to the actual
shape of the rod when subject to external physical forces. To study the effects
of gravity acting on that rod, we need to consider the intrinsic configuration,
denoted as Γ̂, which corresponds to the geometric curve assumed by the rod
when there are no external forces acting on it. Since the rod is inextensible, the
arc length parameter of Γ̂ and Γ is the same s ∈ [0, L].

The difference between the curvature ∂sθ̂(s) of the intrinsic configuration
and the curvature ∂sθ(s) of the current configuration is proportional to the
resultant moment (of force) m(s) acting at the point Γ(s) (and directed along
e3) through the Euler-Bernoulli formula:

m(s) = −E(s)I(s)(∂sθ(s)− ∂sθ̂(s)). (1) {eq:euler-bernoulli}{eq:euler-bernoulli}

This relation holds because we are considering unshearable rods. With E we
are denoting the Young’s modulus, which expresses the stiffness of the material,
and with I the second moment of area of the cross-section (with respect to e3).
We assume that the rod is in elastic equilibrium, that is, all the internal forces
and moments are in balance with the external forces and moments. In this
framework, considering equation (1) and the gravity force as the only external
force acting on the rod, we can write the following differential equation (see for
instance [33])

∂s(EI(∂sθ̂ − ∂sθ))(s) = sin(θ(s))g

∫ L

s

ρ3(s
′)A(s′)ds′. (2) {eq:mech0}{eq:mech0}

In this equation, g represents the gravity acceleration constant, ρ3(s) the volume
density of the shoot/rod at the point Γ(s) and A(s) the cross-section area at
that point.

We are now interested in computing the internal bending stresses. We know
that the internal moment m is generated by the deflection from the intrinsic
configuration Γ̂. Indeed, this deflection generates an internal pressure called
stress, that we denote with σ, and a deformation ε of each element of the rod,
called strain Stresses and strains vary according to the position Γ(s) on the
rod, and depend also on the position on the cross-section. Since the rod is
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ushearable, the cross-section is always orthogonal to the tangent vector ∂sΓ. To
describe the position of a generic point on the cross-section at Γ(s), we name

β(s) =
∂2sΓ(s)

|∂2sΓ(s)|
∈ span{e1, e2}

the normal vector, which is orthogonal to ∂sΓ(s), and we consider the binormal
vector

τ =
Γ′ × β
|Γ′ × β| ,

Then, the cross-section at the point Γ(s) is a subset C(s) of the plane span{β(s), τ}
with the origin on the centerline. We define

C(s, z) = {w ∈ R : Γ(s) + zβ(s) + wτ ∈ C(s)}.

In this framework, the maximal bending stress at Γ(s) results to be [34]

σm(s) = max{|w| : C(s, w) ̸= ∅} · m(s)

I(s)

= max{|w| : C(s, w) ̸= ∅} · E(s)|∂sθ(s)− ∂sθ̂(s)|.
(3) {eq:max_stress1}{eq:max_stress1}

4.2 Formulation of the models

We assume that the searcher shoot has a circular cross-section with radius r
and that the Young’s modulus E is constant all along the shoot. So, we have

A(s) = πr2(s)

I(s) =
π

4
r4(s)

r(s) = max{|w| : C(s, w) ̸= ∅}

and we name

u(s) = r2(s), ψ(s) = u2(s)(∂sθ̂(s)− ∂sθ(s)), µ(s) =
∫ L

s

πρ3(s
′)u(s′)ds′

So, equation (2) can be rewritten as
∂sψ(s) = c1 sin(θ(s))µ(s)

∂sθ(s) = ∂sθ̂(s)− ψ(s)
u2(s)

∂sµ = −πρ3(s)u(s)
(4) {eq:mech1}{eq:mech1}

with

c1 =
4g

πE
.

These equations hold for a.e. s ∈ [0, L]. At the boundary of this domain, we
assume (i) to know the angle at the base of the shoot θ(0) = θ0; (ii) that at the
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tip of the shoot, there is not any external weight so that the intrinsic curvature
equals the current curvature. Using the functions defined above, this means
ψ(L) = 0 and µ(L) = 0; (iii) the mass M of the whole shoot is known, so that
µ(0) =M .

The effectiveness of the self-sustaining behavior of the shoot can be quan-
titatively evaluated considering a threshold for the maximal internal stresses.
In other words, we would like to find a distribution of the mass such that the
maximal stress at each point of the shoot σm(s) does not cross some fixed value
σ̄. Employing equation (3), this means that any solution of system (4) which
satisfies the boundary conditions above discussed, has also to satisfy the condi-
tion

|ψ(s)| ≤ c2u3/2(s) for every s ∈ [0, L] (5) {eq: curvature_condition}{eq: curvature_condition}

with

c2 =
σ̄

E
.

We group all these considerations into the following problems.
Problem of shoot growth with Mechanics (MM). We want to find the

maximal length L of the shoot for which there exists at each point a radius r(s)
such that the following system is satisfied

∂sψ(s) = c1 sin(θ(s))µ(s)

∂sθ(s) = ∂sθ̂(s)− ψ(s)
u2(s)

∂sµ = −πρ3(s)u(s)
ψ(L) = 0

θ(0) = θ0

µ(0) =M, µ(L) = 0

|ψ(s)| ≤ c2u3/2(s)

. (MM) {eq: mechMM}{eq: mechMM}

Problem of shoot growth with Mechanics and Leaves (ML). In
problem (MM) we consider just the weight of the main stem. However, in most
of climbing plant species, a relevant part of the total biomass is due to the leaves.
We assume that the leaves are not uniformly distributed along the shoot. On the
contrary, we assume that they are located at intervals equally spaced. Moreover,
we assume that the mass mlm of a single leaf at the point Γ(s) depends just on
the shoot radius r(s) at Γ(s). Let dlm the distance between two leaves locations
and nlm the (fixed) number of leaves at each location. Then, we name

si = i× dlm for i = 1, ...Nlm,

where Nlm is the total number of leaves locations. Now, we want to compute
how the weight of the leaves affects the shoot at the point Γ(s). To achieve this,
we subtract from the total leaves mass Mlm the mass of the leaves in the shoot
portion between the base and Γ(s). We define

qlm(s) =

⌊
s

dlm

⌋
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and

RESlm(s) =Mlm − nlm
qlm(s)∑
i=0

mlm(r(si)),

where the operation ⌊x⌋ is the greatest integer lower or equal than x. Then, to
take the leaves into account, we compute the gravity force acting at the point
Γ(s) :

−g
[∫ L

s

ρ3(s
′)A(s′)ds′ +RESlm(s)

]
e2.

This leads to another problem of length maximization. Like for the (MM) case,
we want to find the maximal length L of the shoot for which there exists at each
point a radius r(s) such that

∂sψ(s) = c1 sin(θ(s)) (µ(s) + RESlm(s))

∂sθ(s) = ∂sθ̂(s)− ψ(s)
u2(s)

∂sµ = −πρ3(s)u(s)
ψ(L) = 0

θ(0) = θ0

µ(0) =M, µ(L) = 0

|ψ(s)| ≤ c2u3/2(s)

. (ML) {eq: mechML}{eq: mechML}

4.3 Models implementation and parameters
{SubSec: Model impl and Parameters}

Parameter Description Source Model
g Gravity acceleration constant [28, 29] MM, ML
E Young’s modulus [28, 29] MM, ML
M Main stem freshmass [28, 29] MM, ML
c2 Curvature threshold [31] MM, ML
ψ0 Initial curvature [31] MM, ML

(avd, bvd, cvd) Parameters for volume density fitting [28, 29] MM, ML
(alm, blm, clm) Parameters for leaves mass fitting [28, 29] ML {tab: parameters}

Table 4: The table reports the parameters of the model. In the case of
the parameters resulting from the fitting procedure, we report the source of the data
on which functions (6)-(7) are fitted. The column Model reports where we use the
parameter: MM (Mechanical Model), and ML (Mechanical model with Leaves).

To begin with, we implement the System of equations (MM), where we
consider stress and strain as factors responsible for its shaping, together with
gravity, which acts as an external force on the plant’s structure, affecting its
curvature. Moreover, the material density is a function of the radius r, defined
as follows:

ρ3 = cvd + bvd · r + avd · r2. (6) {eq: mat_density}{eq: mat_density}
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We use Algorithm 1 to clarify the approach we implemented. The values of
the constants c2 and ψ0 are estimated in two ways, leading to two groups of
simulations. In the first group, c2 and ψ0 are the same for all the samples, while
in the second group, they are estimated specifically for each sample by utilizing
the method described in [31].

Algorithm 1 Algorithm of Shoot growth with mechanics
{alg: 2}

Require: M > 0
r > 0
(ψ, θ, µ)← (ψ0, π/2,M)
while µ ≥ 0 and ψ ≤ c2 × r3 do

r ← r or rS or rL
ρ← cvd + bvd · r + avd · r2
(ψ, θ, µ)← Solve System (MM) with u = r2, ρ3 ≡ ρ,

ψ(0) = ψ, θ(0) = θ, µ(0) = µ
reward = 1

end while
reward = 0

Successively, we add the leaves’ mass contribution, which affects the plant’s
weight remarkably. We implement the System of equations (ML), where we can
notice that the effects of the leaves are visible on the curvature and, then, in
the formulation of the equation of ψ. As for the material density, the mass of a
single leaf depends on the radius r accordingly to the following relation:

mml = clm + blm · r + alm · r2. (7) {eq: leaf_mass}{eq: leaf_mass}

In Algorithm 2, we clarify how we implement our model in the RL context.

4.4 Reinforcement Learning Framework
{SubSec: RL_framework}

We define the Searcher-Shoot environment as an MDP problem (see Section 5.1
in the Supplementary Material). Here, the agent is the plant’s shoot, which
aims to grow as long as possible and to reach this goal, it has to select the op-
timal configuration of diameters. Specifically, the agent learns how to complete
the task (i.e., the mass distribution) in the highest number of steps, choosing
radius values does not generate internal stresses over a fixed threshold. The
fundamental elements of the framework are:

• State and Observations. At each step, the agent, in the current state,
can observe the mass, the radius, and the curvature before the next move.

• Actions. In this framework, the action space is discrete. In the MM and
MLmodels, at each time step, the agent can select one action among eleven
options: it can leave the radius value unchanged or it can increase (or de-
crease) the radius of a certain quantity (±1 · 10−5, ±2 · 10−5, ±3 · 10−5,
±4 · 10−5, ±5 · 10−5). Of course, this selection will influence the mass
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Algorithm 2 Algorithm of Shoot growth with mechanics and leaves
{alg: 3}

Require: M > 0, Mlm ≥ 0, dlm > 0, dlm > h > 0
r > 0
dbase ← 0
(ψ, θ, µ)← (ψ0, π/2,M)
RES ←Mlm

while µ ≥ 0 and ψ ≤ c2 × r3 do
r ← r or rS or rL
ρ← cvd + bvd · r + avd · r2
if dbase % dlm < h and RES > 0 then

RES ← RES −nlm · (clm + blm · r + alm · r2)
end if
(ψ, θ, µ)← Solve System (ML) with u = r2, ρ3 ≡ ρ, RESlm = RES

ψ(0) = ψ, θ(0) = θ, µ(0) = µ
dbase ← dbase + h
reward = 1

end while
reward = 0

distribution: intuitively, the larger the radius value, the larger the mass
allocated in the next step. In the SM model, where the mechanic descrip-
tion is neglected, the agent can select one action among three possibilities:
leave the radius unchanged, pick a random smaller radius, or pick a ran-
dom larger radius than the previous one.

• Reward. Every time the agent moves to the next step, it will receive
positive feedback equal to +1. Whether the move ends with the total
mass equivalent to or less than 0, the reward is 0 in all the models (SM,
MM, ML). In addition, in the MM and ML models, the reward is 0 if the
condition on the curvature (5) is violated.

• Episode and Reset. The episode does not have a fixed term. Instead,
it ends whether the mass becomes zero or negative (in all the models) or
the picked radius causes the curvature to violate condition (5), as in Algo-
rithm 1 and 2. As underlined in Section 4.3, this last condition is present
only in the MM and ML models because we implement the mechanical
features. Then, we set the system parameters and the observation space
to their initial values.
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5 Supplementary Material

5.1 Reinforcement Learning
{SubSec: RL}

Supervised, Unsupervised, and Reinforcement learnings are three paradigms
of Machine Learning. While the first two approaches require examples and
data (labeled or not) to extract information, RL models learn from interactions
between an agent and an environment.

Specifically, the agent has an explicit goal, and to reach it, it can perform
actions that influence the state of the environment, which has a set of immutable
rules. The agent uses these interactions to adjust its behavior to complete its
task. Beyond these, four sub-elements characterize the RL system [35]: policy,
reward, value function and model. The meaning of these sub-elements is the
following:

• The policy represents how the agent chooses the action based on the cur-
rent state;

• The reward is the goal of the RL problem. It is a feedback signal defining
the good and bad events for the agent;

• The value function is the total amount of reward an agent can expect to
accumulate over the future, starting from a specific state. It helps the
agent to understand the long-term consequences of actions;

• The model of the environment is an optional representation of the envi-
ronment, which allows the planning of possible future situations before
their experience.

We can express an RL problem using the mathematical formalism of the
Markov Decision Process (MDP), used to study the control of sequential de-
cisions that can influence states and future rewards. An MPD is a tuple
M = ⟨S,A,R,P, γ⟩ where S and A are the state and the action space, re-
spectively; R is the reward function R : S × A 7→ R, representing the imme-
diate reward; and, P is the transition function P : S × S × A 7→ [0, 1], and
so the probability to move from a state to another having chosen an action.
Finally, γ represents the discount factor, namely the chance for the agent to
choose between an instant (short-sighted agent) and a future reward (farsighted
agent).

Briefly, at each time step t, in a state st ∈ S, an agent interacts with the
environment and chooses an action at ∈ A, which leads to a reward rt+1 =
R(st, at) and a transition to a new state st+1 ∈ S. The probability to reach
the state st+1 is given by P(st, st+1, at).The choice of the action at relies on the
policy adopted by the agent. Formally, a policy is a function π : S ×A 7→ [0, 1]
which gives the probability of choosing an action a ∈ A knowing that the agent
is in the state s ∈ S. The goal is to maximize the total reward, learning a policy.
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5.1.1 Proximal Policy Optimization
{SubSec: PPO Algorithm}

We can divide the RL algorithms into two main categories: Model-Based, in
which a system uses a predictive model of the world to choose the best action
(i.e., the algorithm exploits the knowledge of an MDP); Model-free, in which the
agent learns a value function or a policy by interacting with the environment [36].

Having a model means relying on a function that predicts the future states
and rewards, allowing the agent to plan by thinking ahead and explicitly decid-
ing between its options. Instead, the absence of it means that the agent uses
only the current state and its experience to learn.

In our work, we exploit the model-free approach in the form of the Proximal
Policy Optimization (PPO) algorithm, introduced by Schulman et al. [27] in
2017. PPO is a policy gradient, on-policy algorithm, meaning that the algorithm
is searching for an approximation of the best policy through a parameter θ, and
each step for the upgrade of the policy πθ relies on a sampling based on πθ itself.
There are two primary variants: PPO-Penalty and PPO-Clip, which we use.

In the PPO-Clip approach, the update of the parameter θk to θk+1 relies on
the maximisation of the following surrogate objective:

θk+1 = argmax
θ

E
(s,a)∼πθk

[L(s, a, θk, θ)]

with

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
,

and

g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0
(1− ϵ)A A < 0.

Aπθk is the advantage function related to the policy πθk ,

E
(s,a)∼πθk

stands for the average with respect to (s, t). With this notation, the actions a
are distributed according to the policy πθk and the states s follow the stationary
distribution of the Markov chain for the policy πθk . The proof of the convergence
of this method is in [37]. This approach tries to increase the probability of taking
the best action without moving too far from the current policy, avoiding the
system collapse (trust region approach [38]). Indeed, in L the hyperparameter
ϵ represents how far the new policy can be from the old one. If A is positive,
the picked action is better than the expectations, and it becomes more likely
to choose it again. Otherwise, if A is negative, the picked action will be less
called. The minimum and the function g limit the policy change by imposing
the probability ratio to stay within an interval of amplitude 2ϵ of around 1.

5.2 Derivation of the model

In this section, we describe in detail the derivation of the model. Some excellent
guidelines for elastic rods and material mechanics can be found in [32, 34].
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Consider a planar elastic rod Γ, {d1, d2, d3} subject to an external force F
and an external moment L. The balance between the internal force n and the
internal moment m with F and L is expressed by the following equations:{

∂sn+ f = 0

∂sm+ ∂sΓ× n+ l = 0
(8) {eq:balance}{eq:balance}

where f and l represents respectively the external force F and the external
moment L per unit of length. In other words, we write f = ∂sF and l = ∂sL.
Since we are just considering the gravity force, we employ the plane coordinates
{e1, e2} to recast the first equation of system (8):

∂s

[
n1
n2

]
+

[
0

−gρ3(s)A(s)

]
= 0.

Here g is the gravity acceleration constant, ρ3(s) is the volume density of the
elastic rod and A(s) is the area of the cross-section of the rod at the point Γ(s).
We assume that there are no internal forces acting at the tip of the rod. So, we
get

n1 ≡ 0 , n2(s) = −g
∫ L

s

ρ3(s
′)A(s′)ds′. (9) {eq:balance_force}{eq:balance_force}

The internal moment m per unit of length must be balanced with the moment
per unit of length generated by the internal force n (second equation of system
(8) with l = 0). This gives the relation:

∂sm(s) + sin(θ(s))n2(s)− cos(θ(s))n1(s) = 0. (10) {eq:balance_moment}{eq:balance_moment}

The combination of equations (1), (9) and (10) give relation (2).
Now, we want to prove the relation (3). We assume that stress σ and strain

ε are proportional:
σ(s, z) = E(s)ε(s, z).

We recall that z represents the distance from the centreline along β(s) on the
cross-section C(s). We also assume that the strain ε has the following form:

ε(s, z) = α(s)z,

where α(s) is a proportionality constant which may vary along the rod. Since
the stress σ(s, z) is applied to the infinitesimal strip L(C(s, z))dz, where L is
the length (to be more precise, the Lebesgue measure) of C(s, z), the internal
moment acting on the cross-section C(s) with respect to its centre is

m(s) =

∫
R
zσ(s, z)L(C(s, z))dz

= E(s)α(s)

∫
C(s)

z2dzdw

= E(s)α(s)I(s).
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Figure 3: Radius distribution comparison between MM model (with esti-
mated parameters) and experimental radii. The subplots a, b, c, d show the
samples S1, S3, S4, and S5, respectively.

This gives the relation (3), because we get

m(s)

I(s)
z = σ(s, z).

Consequently, the maximal stress is at the edge of the cross-section, with z =
max{|y| : C(s, y) ̸= ∅}.

5.3 Further Simulations and Tables

In Figure 3, we show the performance of our MM model w.r.t. the experimental
radii of the samples, which appear in [28, 29].

In Figure 4, we show the performance of our ML model w.r.t. the experi-
mental radii of the samples, which appear in [28, 29].
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Figure 4: Radius distribution comparison between ML model (with esti-
mated parameters) and experimental radii. The subplots a, b, c, d show the
samples S1, S3, S4, and S5, respectively.
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