
LETTER • OPEN ACCESS

Linking the Antarctic sea ice extent changes
during 1979–2020 to seasonal modes of Antarctic
sea ice variability
To cite this article: Lejiang Yu et al 2022 Environ. Res. Lett. 17 114026

 

View the article online for updates and enhancements.

You may also like
Spring–summer albedo variations of
Antarctic sea ice from 1982 to 2009
Zhu-De Shao and Chang-Qing Ke

-

Robust Arctic warming caused by
projected Antarctic sea ice loss
M R England, L M Polvani and L Sun

-

Atmospheric precursors to the Antarctic
sea ice record low in February 2022
Juhi Yadav, Avinash Kumar and Rahul
Mohan

-

This content was downloaded from IP address 158.37.2.131 on 16/06/2023 at 10:53

https://doi.org/10.1088/1748-9326/ac9c73
/article/10.1088/1748-9326/10/6/064001
/article/10.1088/1748-9326/10/6/064001
/article/10.1088/1748-9326/abaada
/article/10.1088/1748-9326/abaada
/article/10.1088/2515-7620/aca5f2
/article/10.1088/2515-7620/aca5f2


Environ. Res. Lett. 17 (2022) 114026 https://doi.org/10.1088/1748-9326/ac9c73

OPEN ACCESS

RECEIVED

15 August 2022

REVISED

13 October 2022

ACCEPTED FOR PUBLICATION

21 October 2022

PUBLISHED

1 November 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Linking the Antarctic sea ice extent changes during 1979–2020
to seasonal modes of Antarctic sea ice variability
Lejiang Yu1,∗, Shiyuan Zhong2, Timo Vihma3, Cuijuan Sui4 and Bo Sun1

1 MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, People’s Republic of China
2 Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI, United States of America
3 Finnish Meteorological Institute, Helsinki, Finland
4 National Marine Environmental Forecasting Center, Beijing, People’s Republic of China
∗ Author to whom any correspondence should be addressed.

E-mail: yulejiang@sina.com

Keywords: Antarctic, sea ice extent, trend, planetary wavetrain, sea surface temperature (SST)

Supplementary material for this article is available online

Abstract
The Antarctic sea ice extent slowly expanded through the four-decade-long satellite era until 2014
when the expansion came to a halt, followed by a rapid contraction in the next couple of years.
This sudden unexpected trend reversal has sparked considerable research interest and several
mechanisms have been proposed to explain it; however, much remains to be explored. In this study,
we show that the long-term increasing trend in the Antarctic sea ice extent and its recent reversal
can be largely explained by the first, second and fourth empirical orthogonal function mode of sea
ice variability in austral summer, autumn and spring, respectively. We illustrate that the sea ice
variability represented by the three modes is mostly consistent with what is expected from the
anomalous atmospheric circulations associated with planetary wavetrains that are triggered by
anomalous sea surface temperature (SST) and convective activities over the Southern Indian and
Pacific Oceans. More specifically, the results suggest a teleconnection between the increasing
periods in the Antarctic sea ice extent in the past four decades and the positive SST anomalies over
the southeastern Indian Ocean and the western tropical Pacific Ocean. The opposite occurs over
the decreasing period. Accordingly, the same mechanisms, in different phases, have been associated
with the periods of increasing and decreasing Antarctic sea ice extent.

1. Introduction

The impact of the Antarctic sea ice extends from
the stability of local ice shelves (Massom et al 2018)
to regional weather (Uotila et al 2011) and mar-
ine ecosystems (Norkko et al 2007), and to global
ocean circulation (Heuzé 2021) and radiation bal-
ance (Riihelä et al 2021). In the past four decades,
the overall Antarctic sea ice extent slowly expanded
from 1979 to 2014, followed by a rapid contraction
to a minimum in 2016 (Parkinson 2019). This abrupt
shift in the trend of the Antarctic sea ice extent has
attracted much attention from academics and practi-
tioners, but the underlying causes are yet to be fully
understood.

A myriad of mechanisms have been proposed to
explain the increasing trend in the total Antarctic

sea ice extent prior to 2014 (Hobbs et al 2016).
A primary mechanism is believed to be changes
in wind fields, including the strengthening circum-
polar westerly winds and changes in local/regional
winds (Holland and Kwok 2012, O’Kane et al 2013,
Blanchard-Wrigglesworth et al 2021). These changes
in wind fields have been linked to the increases
in atmospheric greenhouse gases and decreases in
stratospheric ozone concentrations (Thompson et al
2011, Marshall et al 2015), and also to large-scale
climate modes, represented mainly by the South-
ern Annular Mode (SAM) (Ferreira et al 2015), the
Amundsen Sea Low (ASL) (Raphael et al 2017),
the zonal wave three (ZW3) (Raphael 2007), the
Pacific decadal oscillation (PDO) (Yu et al 2017,
2022), the Atlantic Multidecadal Oscillation (AMO)
(Li et al 2014, Yu et al 2017), the South Pacific
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Oscillation (Yu et al 2021) and the El Niño–Southern
Oscillation (Stammerjohn et al 2008). Other plaus-
ible explanations include the feedbacks related to
ocean–ice interaction (Zhang 2007, Goosse and
Zunz 2014), local sea surface temperature (SST)
(Blanchard-Wrigglesworth et al 2021), ice drift (Sun
and Eisenman 2021), and melting ice shelves with an
increase in freshwater amount in the Southern Ocean
(Bintanja et al 2013, 2015).

Compared to the increasing trend in the Antarc-
tic sea ice extent prior to 2014, fewer explanations
have been given to the recent sea ice decline (Eayrs
et al 2021), which include warming subsurface South-
ern Ocean (Meehl et al 2019), anomalous SST in the
tropical oceans (Stuecker et al 2017,Wang et al 2019),
anomalous high-latitude climate modes (Turner et al
2017, Schlosser et al 2018), and anomalous Antarctic
stratospheric polar vortex (Wang et al 2019). These
factors are strongly interactive. For example, the rapid
sea ice decline in 2016 has been attributed to the
extreme atmosphere-ocean anomalies over both the
eastern tropical Indian Ocean and the far-western
Pacific Ocean, which triggered atmospheric planet-
ary wavetrains that propagated to the Antarctic, gen-
erated wind anomalies, changed the sea ice patterns
and reversed the hemispheric sea-ice-extent trend
(Schlosser et al 2018).

Most previous studies have investigated the evol-
ution of the Antarctic sea ice extent separately for the
periods before and after the trend reversal around
2014. However, is it possible that both the increase
of the Antarctic sea ice extent prior to 2014 and the
decrease thereafter are actually linked to the same
mechanisms but different phases? Our study here is
aimed at addressing this question through analyses of
monthly sea ice and SST data as well as atmospheric
data in the past four decades using statistical method
such as empirical orthogonal function (EOF) and lin-
ear regression.

2. Datasets andmethods

Monthly Antarctic sea ice concentration data, which
is produced using the U.S. National Aeronautics and
Space Administration Team algorithm on a polar ste-
reographic grid of 25 km grid spacing (Cavalieri et al
1996), was obtained from the U.S. National Snow
& Ice Data Center for the period of October 1978
through December 2020. For this study, the Antarc-
tic sea ice extent for each season is defined as the sum
of the areas of the pixel with seasonal sea ice concen-
tration of at least 0.15. In addition, the four austral
seasons here refer to spring: October, November, and
December (OND); summer: January, February and
March (JFM); autumn: April, May, and June (AMJ);
winter: July, August and September (JAS). Because
the leading EOF modes fail to capture a large portion

of the sea ice trend in austral winter, winter season is
excluded from the rest of the analyses.

The source of atmospheric variables used for our
analysis is the European Centre for Medium Range
Weather Forecasts fifth-generation reanalysis (ERA5)
(Hersbach et al 2020). The atmospheric variables,
which include 200 hPa geopotential height, mean sea
level pressure, 2 m air temperature, 10 m wind field,
and surface downward longwave radiation, are used
to explore the connections between sea ice variabil-
ity and the atmospheric circulation anomalies. As the
next-generation reanalysis, the ERA5 is superior to
other global reanalysis products in capturing atmo-
spheric variables over the Antarctic continent and the
Southern Ocean (Gossart et al 2019, Ramon et al
2019, Tetzner et al 2019, Dong et al 2020). In addi-
tion, SST data fromU.S. National Oceanic and Atmo-
spheric Administration Extended Reconstructed SST
V5 (Huang et al 2017) also is utilized to assess the rela-
tionship between the changes of the Antarctic sea ice
concentration and the global SST anomalies.

EOF analysis (Wilks 2006) is utilized to extract the
main modes of the variability of the seasonal sea ice
concentration anomalies over the Southern Ocean.
The seasonal sea ice concentration anomalies are cal-
culated by the subtraction of the climatological sea-
sonal sea ice concentration from the seasonal con-
centration for each year from 1979 to 2020. The EOF
modes reveal possible spatial patterns (EOFs) of sea
ice variability and how they change with time (cor-
responding time coefficients or principal component,
PC), and the EOFs and PCs are orthogonal to each
other. The first four modes are distinguishable from
the neighboring modes following North et al (1982).
Regression analysis is employed to explain the spa-
tial pattern of each EOF mode. Correlation analysis
is also used to relate the Antarctic sea ice extent to
the PCs. The significance level of the regression ana-
lysis was assessed by the student’s t-test. To determ-
ine the propagation and source of planetary waves,
we utilize wave activity flux (WAF) defined by Takaya
andNakamura (2001) andRossbywave source (RWS)
suggested by Sardeshmukh and Hoskins (1988).

3. Results

We begin with showing how the total Antarctic sea
ice extent for austral summer, autumn and spring
changed from 1979 through 2020. The time series
show an increasing trend from 1979 to 2014 and a
sharp decrease in spring 2015 and 2016 and in sum-
mer and autumn 2016 and 2017, followed by an
increase in all three seasons (figure 1). The rates of
reduction of the sea ice extent from 2014 to 2020
(−3.3, −3.5, and −1.4 × 105 km2 yr−1 for austral
summer, autumn, and spring, respectively) are an
order of magnitude larger than the rates of expansion
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Figure 1. The time series of Antarctic sea ice extent for austral summer (JFM), autumn (AMJ) and spring (OND).

prior to 2014 (2.4, 2.9, and 2.2 × 104 km2 yr−1 for
austral summer, autumn, and spring, respectively).
The results are in line with those of previous studies
(Parkinson 2019).

Next, we determine if these trends and variations
can be explained by themodes of the sea ice variability
identified using EOF for the same season. The results
reveal that the PC for some of the EOFmodes exhibits
a trend shift similar to that in the sea ice trends. In par-
ticular, the trend reversal around 2014 appears in the
PC1 for austral summer, PC2 for austral autumn and
PC4 for austral spring (figure 2 left panel). No such
trend shift is present in the other PCs of the first four

modes (supplement figure 1S). There are significant
(p< 0.01) correlations between the time series of Ant-
arctic sea ice extent and the PC1 in austral summer
(0.66), PC2 in austral autumn (0.74), and PC4 in aus-
tral spring (0.76), which are the highest correlation
coefficients among the first four modes for each sea-
son (supplement table 1S). The correlations indic-
ate that 44%, 55% and 58% of the variance of the
Antarctic sea ice extent in austral summer, autumn,
and spring can be statistically explained by the first,
second, and fourth modes of sea ice concentration,
respectively. The high correlations between the times
series for the sea ice extent and for the three EOF
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Figure 2. The time series (left) and spatial patterns (right) of the first mode of EOF analysis of summer sea ice concentration (top
panels), the second mode of EOF analysis of autumn sea ice concentration (middle panels), and the fourth mode of EOF analysis
of spring sea ice concentration (bottom panels). The numbers in brackets denote the percentages of sea ice variance explained by
the modes.

modes also suggest that an examination of these EOF
patterns and the changes in their frequency of occur-
rence over time may offer clues for the observed Ant-
arctic sea ice evolution, particularly the trend reversal
around 2014, and their regional variations.

The first mode (EOF1) in austral summer, which
accounts for 20.5% of the variance of sea ice con-
centration for the season, displays a dipole struc-
ture of negative sea ice anomalies in the Belling-
shausen, Amundsen, and the northern Ross Seas, in
contrast to positive anomalies elsewhere in the South-
ern Ocean (figure 2). The EOF2 in austral autumn,
which explains 19.7% of the variance of the autumn
sea ice concentration, is also characterized by a dipole
structure with opposite sea ice changes between the
Bellingshausen and Amundsen Seas and the rest of
the Southern Ocean (figure 2). The spatial pattern
for the fourth spring mode (EOF4), accounting for
7.6% of spring sea ice concentration variance, is more

complicated, showing negative sea ice anomalies in
the northern parts of the Atlantic sector, northern
Amundsen Sea, a portion of the Bellingshausen Sea
and Davis Sea, and positive elsewhere (figure 2). Each
of these spatial patterns (figure 2) bears a resemblance
to that of the sea ice trend for the corresponding sea-
son (supplement figure 2S), as reflected by large spa-
tial correlation coefficients of 0.86 and 0.81 (p < 0.01)
for austral summer and autumn, and somewhat smal-
ler coefficient of 0.59 (p < 0.01) for austral spring due
mainly to the differences in the Weddell Sea. Despite
the differences in their spatial structures, these three
modes share a common feature in that the overall
spatial pattern is related to the long-term increasing
trend prior to 2014, whereas the opposite is associated
with the period of rapid sea ice retreat.

We proceed to examine, through regression, the
patterns of the anomalous atmospheric circulations
and SST corresponding to the three EOF modes
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Figure 3. Regression maps of SST (oC) onto (a) the PC1 in austral summer (JFM), (b) the PC2 in austral autumn (AMJ), and
(c) the PC4 in austral spring (OND). Dotted regions indicate above 95% confidence level.

(figures 3–9) to explain the anomalous sea ice distri-
butions (figure 2). For austral summer, while the PC1
is positive, positive SST anomalies dominate the trop-
ical Indian, the western tropical Pacific and northern
AtlanticOceans (figure 3(a)). The positive SST anom-
alies over the tropical western Pacific Ocean trigger

more convective activities, as suggested by the neg-
ative anomalies in the top-of-the-atmosphere outgo-
ing longwave radiation (OLR) (figure 4(a)) and the
200 hPa divergent wind (figure 4(c)). Strong con-
vection activities produce high clouds with cold tops
emitting little OLR, and diverging upper tropospheric
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Figure 4. Regression maps of (a) OLR (Wm−2), (b) 200 hPa geopotential height (gpm), (c) 200 hPa divergent wind (vectors) and
RWS (10−10 s−2), and (d) streamfunction (107 m2 s−1) and WAF (vectors), onto the PC1 in austral summer (JFM). Dotted
regions in panels (a) and (b) denote above 95% confidence level. Solid green circle in (c) denotes RWS. The yellow line in
(d) denotes wavetrain propagating direction.

horizontal winds. The convective activity anomalies
also occur over eastern Australia and the subtropical
Southern Pacific Ocean. These convective activities
generate positive anomalies in Rossby wave sources
(figure 4(c)), which excite a wavetrain propagat-
ing eastwards and southeastwards into the Southern
Ocean (figures 4(b) and (d)). The wavetrain weakens
the ASL and strengthens the negative height anom-
alies over the Weddell Sea (figure 4(b)). Meanwhile,
the convective activity anomalies over eastern Aus-
tralia also produce a wavetrain propagating south-
wards into the Southern Ocean before turning east-
wards into the Ross and Amundsen Seas, which leads
to negative height anomalies over East Antarctica and
positive height anomalies over the Ross and Amund-
sen Seas. The weakened summertime ASL produces

zonal asymmetry of the positive SAM (figure 5(a)),
which generates anomalous westerly surface winds
over most of the Southern Ocean (figure 5(b)). The
anomalous cyclonic circulation over the Ross Sea
pushes sea ice onshore in the Amundsen Sea and east-
ern Ross Sea, but offshore in the western Ross Sea
(figure 5(b)), which lead to negative sea ice anom-
alies in the Amundsen Sea, but predominantly pos-
itive ones in the Ross Sea (figure 2). The negative sea
ice anomalies in the Amundsen and Bellingshausen
Seas are partly due to the anomalous high north of
these Seas (figure 5(a)). The anomalous southwest-
erly winds over the Weddell Sea increase sea ice cover
there (figure 5). Besides mechanical sea ice trans-
port, the anomalous atmospheric circulations also are
related to sea ice anomalies through thermodynamic
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Figure 5. Regression map of (a) mean sea level pressure (Pascal), (b) 10 m wind field (vectors), (c) 2 m air temperature (oC), and
(d) surface downward longwave radiation (105 W s−1), onto the PC1 in austral summer (JFM). Dotted regions on panels
(a), (c), (d) and shaded regions on panel (b) indicate above 95% confidence level.

processes. The asymmetric positive phase of SAM
are associated with negative surface air temperature
anomalies over most of East Antarctica as well as the
Weddell and Ross Seas in summer (figure 5(c) and
Marshall and Bracegirdle 2015), favoring positive sea
ice anomalies (figure 2). In the Amundsen Sea and the
southern Bellingshausen Sea, the positive anomalies
in air temperature and surface downward longwave
radiation (figure 5(d)) are in concert with the negat-
ive sea ice anomalies in the region (figure 2).

In austral autumn, SST anomalies associated with
the second EOF mode have positive values in the
low and mid latitudes of the Southern Hemisphere
(figure 3(b)). The positive SST anomalies near New
Zealand generate more convective activities reflec-
ted in negative anomalies in OLR and divergent
wind (figures 6(a) and (c)). The convection excites

a wavetrain propagating eastwards to South Amer-
ica and another wavetrain propagating southeast-
ward to over the Southern Ocean (figures 6(b) and
(d)). The atmospheric circulation anomalies induced
by the second wavetrain display a strengthened ASL
(figures 6(b) and 7(a)). The anomalous northerly
winds over the easternAmundsen andBellingshausen
Seas (figure 7(b)) decrease the regional sea ice cover
(figure 2). The opposite occurs over the western
Amundsen and Ross Seas. The southwesterly winds
over the eastern Weddell Sea (figure 7(b)) also help
expand sea ice cover there. The positive surface air
temperature anomalies (figure 7(c)) related to the
positive surface downward longwave radiation anom-
alies (figure 7(d)) over the Bellingshausen Sea corres-
pond to the reduced sea ice extent in the region, and
the opposite occurs in the rest of the Southern Ocean.
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Figure 6. The same as figure 4, but for the PC2 in austral autumn (AMJ).

In austral spring, the SST anomalies related to
the fourth EOF mode show a negative phase of the
PDO (Mantua et al 1997) or Interdecadal Pacific
Oscillation (Power et al 1999), a positive phase of
the AMO (Enfield et al 2001), and positive values
over the tropical Indian Ocean (figure 3(c)). The pos-
itive SST anomalies over the southwestern tropical
Pacific Ocean generate negative OLR anomalies and
200 hPa divergent wind to the northeast of Australia
(figure 8(a)) (figures 8(a) and (c)), which excite a
planetary wavetrain propagating southeastwards to
the Southern Ocean, forming the structure of the
ZW3 mode (figures 8(b) and (d)). The suppressed
convective activities over the southeastern Pacific
Ocean favor northward propagation of the wavetrain
into the tropics. The anomalous mean sea level pres-
sure, surface wind, surface air temperature and sur-
face downward longwave radiation also display the

ZW3 structure (figure 9). Over the southwestern
Pacific Ocean, anomalous southwesterly and south-
easterly winds expand sea ice cover (figure 9(b)). Sim-
ilarly, southerly winds over the Bellingshausen and
western Weddell Seas also increase the regional sea
ice cover. On the contrary, northerly wind anomalies
over the eastern Weddell Sea diminish sea ice cover
there. The anomalous surface air temperature and
surface downward longwave radiation patterns are in
agreementwith the sea ice anomalies (figures 9(c) and
(d)). For example, negative surface air temperature
anomalies over the Southern PacificOcean are in con-
cert with increased regional sea ice cover.

4. Summary

The Antarctic sea ice extent displayed an overall
increasing trend from 1979 to 2014, followed by an
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Figure 7. The same as figure 5, but for the PC2 in austral autumn (AMJ).

abrupt decrease over 2015–2017. We first showed
that the 40 year (1979–2020) trends, including the
recent reversal, in the sea ice extent in austral sum-
mer, autumn and spring are significantly correlated to
the time series of the first, second and fourth modes
of sea ice variability in the corresponding season,
respectively, suggesting that the changes in the occur-
rences of the leading sea ice variability modes over
the same time period may offer clues to the sea ice
trends and their regional variations across the South-
ern Ocean. We next examined the spatial patterns
of these three modes and the associated anomalous
SST and atmospheric circulation patterns. The first
mode in summer and the second mode in autumn
display a dipole structure (negative anomalies in the
Amundsen Sea in contrast to positive anomalies else-
where in the Southern Ocean) and the fourth mode

in spring is characterized by positive sea ice anom-
alies over most of the Southern Ocean. We demon-
strated that these spatial patterns of sea ice variabil-
ity are largely consistent with what is expected from
the patterns of the anomalous surface wind fields and
the resulting sea ice transport and heat advection in
different regions of the Southern Ocean. We further
showed that these atmospheric circulation anomalies
are related to planetary wavetrains triggered by pos-
itive SST anomalies and enhanced convective activ-
ities over the southwestern Pacific Ocean. The SST
and OLR anomalies over other regions also contrib-
ute to the wavetrains. These results suggest that both
the long-term increasing trend and the abrupt change
to a sharp decrease in the Antarctic sea ice extent
are teleconnected to the SST anomalies in the south-
ern Pacific and Indian Oceans through the formation
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Figure 8. The same as figure 4, but for the PC4 in austral spring (OND).

and propagation of planetary wavetrains. Accord-
ingly, the same mechanisms, in different phases, have
been associated with the increasing trend and its
reversal.

5. Discussion

Our statistical methods (regression and correlation
analyses) cannot warrant the causality among the dif-
ferent variables. Zhang et al (2021) suggested that
there is warming in the tropical Atlantic as a response
to the recently observed Southern Ocean cooling,
which is evident in figure 3. However, numerical
experiments need to be carried out to confirm the
cause and effects between SST anomalies in the Indian
and Pacific Oceans and the Antarctic sea ice concen-
tration anomalies. The modes displaying the changes
in the Antarctic sea ice extent explain a maximum

of 20% of the variability in the sea ice concentra-
tion. However, they explain 40%–60% of the decadal
change in the Antarctic sea ice extent, which is our
focus in this study. Other modes may account for the
interannual variability of Antarctic ice concentration.

Yu et al (2018) noted previously that the positive
phase SAM and a wavetrain originating over north-
ern Australia, similar to the austral summer EOF1
here (figure 2), contributed to the increasing trend
in Antarctic sea ice extent in austral summer. The
positive SAM phase may be associated with ozone
change in the southern stratosphere (Sigmond and
Fyfe 2010, Bitz and Polvani 2012, Landrum et al 2017,
Zambri et al 2021). From 2016 to 2019, the posit-
ive SST anomalies in the Weddell Sea in austral sum-
mer corroborated the decrease of sea ice in this region
(Turner et al 2020), which is opposite to the pattern
shown in figure 3.

10



Environ. Res. Lett. 17 (2022) 114026 L Yu et al

Figure 9. The same as figure 5, but for the PC4 in austral spring (OND).

For austral spring, the slow expansion of the over-
all Antarctic sea ice extent from 1979 until 2014 may
be attributed to the PDO and AMO (Ding et al 2011,
Hobbs et al 2015, Kohyama and Hartmann 2016,
Raphael et al 2017, Schneider and Deser 2018, Li
et al 2021, Chung et al 2022), which is evident in
figure 3. If AMO is indeed a driver (Turner et al 2020),
the variations in the SST often associated with AMO
would have affected the Antarctic sea ice conditions
in spring. For the period of sea ice decline since 2015,
The 2015/2016 El Niño event produced the ZW3
mode (Meehl et al 2019, Eayrs et al 2021) and pos-
itive SST anomalies over the eastern Ross, Amund-
sen and Bellingshausen Seas (Bintanja et al 2015). In
spring 2016, the anomalous high- and low-pressure
pair over the Ross and Amundsen Seas and the asso-
ciated wind fields help explain the unprecedented sea

ice retreat (Stuecker et al 2017). The SST pattern for
the case of 2016 is opposite to the pattern in figure 3.
Harangozo (2004) noted that SST anomalies in the
South Pacific Convergence Zone region do not tend
to create Rossby wavetrains, which were not observed
in this study.

Our results highlighted the important role
internal climate system variability has played in the
changes of Antarctic sea ice trend over the past four
decades in all seasons but winter, confirming the
findings from several previous studies (Polvani et al
2013, Zunz et al 2013, Fan et al 2014, Roach et al
2020). External forces, such as increases in the green-
house gas emissions and ozone depletion, have also
contributed to sea ice changes in the Antarctic, espe-
cially in austral summer (Sigmond and Fyfe 2010,
Bitz and Polvani 2012, Landrum et al 2017). The close
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relationship established in this study between the shift
of the trends in the Antarctic sea ice extent and the
changes in the atmospheric circulations triggered by
SST anomalies in the Indian Ocean and the tropical
Pacific Ocean provide knowledge relevant for projec-
tions of possible future changes in Antarctic sea ice
extent.
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