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Abstract: Remote sensing is a key information source for improving the spatiotemporal 

understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest 

change remains challenging, particularly in areas where a number of interacting disturbance 

agents simultaneously affect forest development. The forest ecosystems of Central Europe are 

coupled human and natural systems, with natural and human disturbances affecting forests 

both individually and in combination. To better understand the complex forest disturbance 

dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances 

in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites 

constituted of a National Park and the surrounding forests, reflecting three management zones 

of different levels of human influence (managed, protected, strictly protected). This allowed 

for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from 

natural to coupled human and natural disturbances. Disturbance maps achieved overall 

accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of 

the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% 

yr-1, and differed substantially between management zones and study sites. Natural 

disturbances in strictly protected areas were longer in duration (median of 8 years) and 

slightly less variable in magnitude compared to human-dominated disturbances in managed 

forests (median duration of 1 year). However, temporal dynamics between natural and 

human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks 

are driven by natural events affecting managed and unmanaged areas simultaneously. Our 

study is the first to systematically analyze and compare historic disturbance dynamics of 

protected and managed forests in Central Europe using Landsat time series. It furthermore 

highlights the potential of remote sensing for mapping forest disturbances in coupled human 

and natural systems, such as the forests of Central Europe.  
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1. Introduction 

Forest disturbances shape the structure and composition of forests for many decades, and thus 

play a vital role in ecosystem functioning and service provisioning (Turner 2010). 

Disturbance rates in temperate forests have increased in recent decades (Cohen et al. 2016; 

Seidl et al. 2014), and there is evidence that climate change and past land use both have 

contributed significantly to this observed increase in disturbance activity (Franklin et al. 2002; 

Seidl et al. 2011). Yet, our understanding of the causes and consequences of disturbances 

remains incomplete, in part because of a limited inferential potential of established methods in 

forest ecology (e.g., repeated plot-based forest inventory, dendroecology) regarding the 

spatiotemporal patterns created by disturbances. A prerequisite for a better understanding of 

disturbance regimes is the accurate reconstruction of past forest disturbance dynamics at 

spatial, temporal, and thematic scales that will allow advanced ecological analyses 

(McDowell et al. 2015). In this regard, it has long been suggested that the spatially and 

temporally explicit view offered by time series from the Landsat sensor family can help 

tackling the challenge of a comprehensive disturbance inventory (Cohen and Goward 2004). 

The opening of the Landsat archive in 2008 has substantially changed the way Landsat 

is used for mapping forest ecosystem change (Wulder et al. 2012). The dense time series 

information now available allows for a seamless mapping of forest disturbances at annual 

intervals (Hansen et al. 2013), and for the characterization of disturbances in terms of 

disturbance magnitude and duration (Kennedy et al. 2014). These new information streams 

enable the quantification and attribution of recent disturbance activities within a region 

(Kennedy et al. 2012a). Yet, studies on disturbance mapping and characterization have to date 

either largely focused on ecosystems characterized by large-scale natural disturbances (e.g., 

forest fires and insect outbreaks), or on areas characterized by relatively simple (in terms of 

spatiotemporal patterns) human disturbances, e.g. in the western US or Canada (Hermosilla et 

al. 2015b; Kennedy et al. 2012a; Meigs et al. 2015; White et al. 2017). However, many forest 



ecosystems around the globe are driven by natural disturbances that are relatively small in 

scale and/or have low severity (e.g., blowdown of patches of trees, mortality from pathogens). 

Furthermore, management regimes are often temporally and spatially complex, e.g. in areas 

characterized by small-scale ownership structure. Moreover, natural disturbances and human 

disturbances are often not independent events, particularly in densely populated and actively 

managed landscapes, where forest management frequently aims to contain the spread of 

disturbance or salvage disturbed timber (Lindenmayer et al. 2012; Stadelmann et al. 2013). 

Hence, disturbances in such coupled human and natural systems are more complex than in 

systems dominated by natural disturbances, yet little knowledge about their spectral, 

temporal, and spatial patterns exists. 

The forests of Central Europe are prime examples of coupled human and natural 

system. Most of the forested area in the region is under intensive human use (Levers et al. 

2014), and has been influenced by humans and intensively managed for centuries (Bebi et al. 

in press; Munteanu et al. 2015). In recent decades, there has been great effort to protect parts 

of the European forests in order to conserve forest biological diversity, yet less than 1% of the 

total forest area in Central Europe is allowed to develop freely without any management 

(Parviainen and Frank 2003), and only 0.4% of the forests in Europe are considered old-

growth (Parviainen 2005). Despite the intensive management, forests in Central Europe are 

also prone to natural disturbances, with wind and bark beetles being the most important 

disturbance agents (Schelhaas et al. 2003; Seidl et al. 2014). Both agents strongly interact 

with each other (Seidl and Rammer 2016; Stadelmann et al. 2014), and respond to changes in 

the climate system and human land use (Kulakowski et al. in press; Seidl et al. 2011). 

However, natural disturbances are actively managed in the vast majority of forests in Central 

Europe, restricting the study of natural disturbance regimes to areas where human 

intervention is excluded (i.e., protected forests). Outside protected forests, sanitary felling and 

salvage logging are routinely applied to recover economic losses from disturbances, and to 



prevent the spread of bark beetle outbreaks (Stadelmann et al. 2013). Hence, forests in Central 

Europe are affected by natural and human disturbances both individually and in combination, 

making the distinction between natural and human disturbances challenging and not always 

meaningful. Since natural forest disturbance dynamics are, however, an important guiding 

indicator for ecosystem management (Cyr et al. 2009; Kulakowski et al. in press), a better 

understanding of natural disturbances dynamics in Central Europe, as well as the effect of 

management on natural disturbances, is urgently needed. 

In order improve our understanding of natural disturbances dynamics and the effect of 

management upon those, we here make use of Landsat time series analysis to contrast forest 

disturbance dynamics and characteristics within protected forests (natural disturbances) to 

forest disturbance dynamics and characteristics in their surrounding managed forests (human-

dominated disturbances). That way, we aim at gaining a better understanding of the gradient 

from natural to coupled human and natural disturbances present in Central European forests. 

Specifically, our objectives were to: 

1) Map forest disturbances across five protected forests and their surrounding managed 

forests in Austria, the Czech Republic, Germany, Slovakia, and Poland, using 32 years 

of Landsat observations (1985-2016); 

2) Characterize and compare forest disturbances among protected and managed forests to 

understand the effect of management on spectral, temporal, and spatial characteristics 

of forest disturbances in coupled human and natural systems.  

2. Study sites 

We here focus on five forest sites in Austria, the Czech Republic, Germany, Slovakia, and 

Poland (Table 1; Fig. 1). The sites represent a wide variety of the forest types and ecological 

conditions occurring in Central Europe. All five sites are national parks with a strictly 

protected core zone. While the strictly protected core zones of each national park prohibit all 

human interventions, the management zones contained in each national park can be treated, 



yet park authorities usually aim at limiting management to a minimum. In Central Europe, 

this usually means sanitation felling and salvage logging to prevent the percolation of bark 

beetle outbreaks into areas adjacent to the national park. In addition to the five national parks, 

a 30km buffer around the national park boundaries was included in the analysis of the five 

sites (Fig. 1). These buffers are characterized by managed forests of varying management 

intensity. 

Table 1: Summary of the five study landscapes. All landscapes consist of the respective 

national parks and a 30km buffer zone of managed forests surrounding them. Bark beetle here 

refers mainly to the European spruce bark beetle (Ips typographus L.). 

Site Year of 
establishment 

Total size (km2; 
managed/protected/strictly 
protected) 

Countries Main disturbance evens 
since 1985 

Berchtesgaden  1978 1194 (986/179/29) Austria/Germany Storms Vivian/Wiebke 
(1990) as well as Kyrill 
(2007) and Emma (2008), 
followed by increased bark 
beetle activity 

Bohemian Forest 1970 (Bavarian 
Forest)/1991 
(Šumava) 

3114 (2183/836/95) Austria/Czech 
Republic/Germany 

Two waves of bark beetle 
outbreaks in the late 2000s 
and 2010s, local impacts of 
storm Kyrill (2007). 

Harz  1990 (East-
Germany)/1994 
(West-Germany) 

1496 (1248/119/129) Germany Storm Kyrill (2007) and 
following bark beetle 
outbreaks 

Kalkalpen  1997 1339 (1131/52/156) Austria Storms Vivian/ Wiebke 
(1990) as well as Kyrill 
(2007), Emma (2008), and 
Paula (2008), followed by 
increased bark beetle 
activity 

Tatra  1949 
(Slovakia)/1954 
(Poland) 

2756 (1676/1015/65) Poland/Slovakia Storm events in 1988 and 
1989, particularly severe 
Bora-type storm event in 
2004, followed by high 
bark beetle activity 

 

According to the European Environmental Agency European forest type classification 

(European Environmental Agency 2006), lower-elevation forests across all sites are 

characterized by beech-dominated forest types (Fagus sylvatica L.), transitioning into mixed 

mountain forest types at elevations of about 800 m a.s.l (dominated by F. sylvatica, Norway 

spruce Picea abies (L.) Karst., and silver fir Abies alba Mill.). In higher elevation regions 

(roughly >1,200 m a.s.l.), forests are characterized by coniferous forests dominated by 



Norway spruce, with the importance of European larch (Larix decidua Mill.) increasing with 

elevation. The tree line (approximately at 1,800 m a.s.l., but varying throughout the region) is 

characterized by a krummholz belt of mountain pine (Pinus mugo Turra). 

	

 

Figure 1: Location and protection status of the five study sites. 

3. Data and methods 

3.1 Landsat processing 

We downloaded all available Landsat Thematic Mapper (TM), Enhanced Thematic Mapper 

Plus (ETM+), and Operational Land Imager (OLI) images from the United Stated Geological 

Service (USGS) and European Space Agency (ESA) archives. All L1T images were corrected 

to surface reflectance using LEDAPS algorithm (Masek et al. 2006), except for Landsat OLI, 

for which we used the methods described in Vermote et al. (2016). Images from ESA were 

geometrically corrected using the AROP algorithm (Gao et al. 2009) to improve spatial 

alignment with images from the USGS archive. We used Fmask for creating cloud and cloud-

shadow masks (Zhu and Woodcock 2012). Further, we excluded coastal, cirrus, thermal and 

panchromatic bands and transformed the six remaining Landsat spectral bands into Tasseled 

Cap (TC) space to derive brightness, greenness, and wetness components (Crist 1985). The 



TC components have routinely been used for detecting forest disturbance in North America 

(e.g., Healey et al. 2005; Senf et al. 2015; Wulder et al. 2006), and also proved useful in a 

previous case study in Europe (Hais et al. 2009). For all three TC components, we developed 

annual summer median composites using all available cloud-free observations (Rufin et al. 

2015). We selected cloud-free observations between June 1st and August 31st to capture 

summer maximum vegetation conditions (Senf et al. 2017), except for the Tatra site, where 

we extended the time frame to October 31st, in order to counterbalance lower data availability. 

3.2 Disturbance mapping 

3.2.1 Reference data collection 

We applied a stratified random sampling design to select 500 Landsat pixel center locations 

per study site, with sampling strata based on a disturbance magnitude estimate (see Section 

3.2.2 for further information). Samples were classified into five classes using Jenk’s natural 

breaks classification (Pflugmacher et al. 2012). The sampling unit was defined as one Landsat 

pixel (30 × 30 meters), and we focused on stand-replacing disturbances at this spatial grain. 

For each sampling unit, a trained interpreter estimated the land cover and disturbance history 

following the procedures described in Cohen et al. (2010), previously applied in a wide range 

of forest disturbance studies in other study areas (Cohen et al. 2016; Griffiths et al. 2014; 

Hermosilla et al. 2015b; Kennedy et al. 2012a; Potapov et al. 2015; Thomas et al. 2011). In 

particular, we first determined the land cover in 1985 to create a forest mask by visually 

interpreting the 1985 TC composite and, where available, high resolution imagery. Second, 

we assessed whether a disturbance occurred between 1985 and 2016 for each sampling 

location. A disturbance was defined as an abrupt or gradual change visible in the TC time 

series, resulting from either removal or natural mortality of the majority of trees within a 

pixel. Since it is difficult to assess percent canopy change from Landsat time series, we 

applied a minimum spectral change threshold and labeled all spectral changes larger than this 

threshold as disturbance. In particular, a sampling unit was assessed as being disturbed if the 



relative change in TC brightness was greater than 40%, assuming that a substantial proportion 

of soil reflectance is required to qualify a disturbance as stand-replacing (i.e. residual canopy 

cover being <50%). We evaluated the chosen spectral change threshold using Lidar data 

available for two sites (Bohemian Forest and Kalkalpen), comparing the canopy cover for 

trees >5m for disturbed and undisturbed reference pixels. This analysis confirmed that 

96.30% of the disturbed reference pixels had a residual canopy cover <50%. We furthermore 

corroborated our disturbance classification using high-resolution imagery where available. 

Third, we estimated the year of disturbance based on the first year of spectral change 

observable in the TC wetness trajectory. Finally, we randomly split the 500 reference pixels 

per site into one subset for calibration and one for validation (Table A1 in the Appendix). 

3.2.2 Mapping workflow 

We applied a hierarchical classification workflow (Fig. 2) to map disturbances for each site 

individually: First, we created a forest mask for the beginning of the study period in 1985. We 

then created a binary map of undisturbed and disturbed forest pixels between 1985 and 2016. 

Both maps were subsequently combined into one map containing three classes: No forest, 

undisturbed forest, and disturbed forest. This map was then validated using the reference data 

held back during model calibration. Finally, the disturbance year was determined for each 

disturbed pixel. 

 

Figure 2: Visualization of the hierarchical disturbance mapping workflow employed in this 

study. 



For creating the forest mask, we trained a random forest model (Breiman 2001) based 

on the initial year’s TC composites. We further used a digital elevation model as input to the 

classification (Shuttle Radar Topographic Mission [SRTM] data with 90 m spatial resolution, 

which was resampled to 30 m using bilinear interpolation); as well as slope values calculated 

from the digital elevation model. We used the land cover information available in the 

calibration data for training (see Section 3.2.1).  

For detecting disturbances, we made use of a recently developed disturbance detection 

algorithm (shapeselectionforest; Moisen et al. (2016)). The algorithm fits six pre-defined 

splines to each pixel’s spectral trajectory and identifies the best fitting spline using Bayes 

Information Criteria (BIC). We applied shapeselectionforest to all three TC composite time 

series individually, assuming that TC wetness would decrease when forests are disturbed, 

whereas TC brightness and greenness would increase (Hais et al. 2009). We filled each 

missing observation with the mean of the four neighboring observations before fitting the 

splines to account for missing pixels in the spectral time series (e.g. from remnant clouds, 

shadows, missing observations from Landsat 7’s failed scan line corrector). We excluded the 

pixel from further analysis if more than five missing values occurred in a time series, as we 

noted substantial misfits with more than five missing observations during initial data 

exploration. 

From the best fitting spline, we extracted two disturbance metrics for each TC 

component: disturbance magnitude and disturbance duration (for further information on the 

disturbance metrics see Moisen et al. 2016). We used those disturbance metrics as input to a 

second random forests model, which was trained using the disturbance occurrence 

information available in the calibration data (see Section 3.2.1). We created a final map with 

the categories non-forest, undisturbed forest, and disturbed forests for each study site by 

applying the second random forest model to all areas identified as forested in the previous 



classification. We subsequently applied a minimum mapping unit of 0.5 ha to create the final 

map, i.e. only disturbances affecting six or more Landsat pixels were mapped.  

We determined the disturbance year for all disturbed pixels using the spline fitted to 

the TC wetness time series, because a decrease in TC wetness correlates best with changes in 

the upper tree canopy, whereas changes in TC brightness and greenness are more influenced 

by understory and regeneration responses than TC wetness (Hais et al. 2009). Further, we 

adjusted the time estimate from the spline model to match the time estimate from the 

interpreter. Specifically, splines characterizing disturbances that occurred over several years 

systematically estimated earlier disturbance onsets than the interpreter. To be consistent with 

the reference data, we matched the spline estimate by calculating the mean difference between 

the spline estimate and the disturbance onset recorded in the calibration data. The mean 

difference was subsequently applied to match the estimated disturbance onset for all pixels. 

Finally, we dropped all disturbances occurring in 1985, as disturbance detection in the starting 

year is generally unreliable (Cohen et al. 2017). 

For each study site, we evaluated the overall accuracy and class-specific commission 

and omission errors following the approach suggested by Olofsson et al. (2014). In particular, 

we weighted each observation according to its inclusion probability stemming from the 

stratified sampling design employed in this study. The approach then uses a post-stratified 

estimator to estimate overall accuracy and class-specific errors of the final disturbance maps. 

The error of the disturbance onset was evaluated by calculating the root mean squared error 

(RMSE) between the disturbance onset estimated from Landsat data and the onset recorded in 

the validation data, as well as the percentage of correctly classified onset dates. 

3.3 Analysis of disturbance dynamics and characteristics 

We used the spatial information on the protection status (Fig. 1) to stratify each site into three 

management zones: 1) managed, 2) protected, 3) strictly protected. This allowed for assessing 

the effect of management on spatiotemporal disturbance dynamics, as well as on the spectral-



temporal characteristics of forest disturbances. Disturbance patterns within strictly protected 

forests are solely driven by natural disturbance agents. Disturbances in protected forests (i.e., 

the management zones of national parks) result from the combined effect of natural 

disturbances and management. Natural disturbances in the protected zones of national parks 

are often salvaged in Central Europe, meaning that disturbed trees are removed from site to 

prevent the spread of bark beetles breeding in those trees. Furthermore, also sanitation 

logging, that is removing alive but susceptible trees, or trees that are in the green attack stage, 

is also applied within the management zones of national parks, in order to prevent the spread 

of bark beetle outbreaks across the park boundary (Wermelinger 2004). Disturbances in the 

forests outside of national park boundaries mostly result from harvesting activities. Harvests 

can be planned, but might also be triggered by natural disturbances. In particular, sanitation 

felling of bark beetle infested trees in the green attack stage or susceptible trees in the vicinity 

of previous attacks is a common management practice in Central Europe (Stadelmann et al. 

2013). Furthermore, salvage logging of wind-felled trees is common to prevent the build-up 

of bark beetle populations (Stadelmann et al. 2013; Thorn et al. 2014). For all sites and 

management zones, we calculated average annual disturbance rates based on the forest cover 

estimated for 1985, and annual changes in disturbance areas. Further, we derived disturbance 

patch size distributions by site and management zone. We identified connected disturbance 

patches using an eight-neighbor moving window approach. Finally, we compared the 

spectral-temporal disturbance characteristics derived from the Landsat time series analysis 

(see Section 3.2.2) between the three management zones. 

4. Results 

4.1 Disturbance mapping accuracies 

The disturbance mapping resulted in overall accuracies ranging from 82% to 93% (Table 2). 

Disturbance commission and omission errors were highly variable across sites, with highest 

disturbance commission estimated for the Berchtesgaden site (24%), and highest disturbance 



omission estimated for the Harz site (28%). For the undisturbed class, commission errors 

ranged between 3% (Bohemian Forest) and 20% (Kalkalpen), and omission errors between 

8% (Kalkalpen) and 20% (Bohemian Forest). Non-forest area was mapped with commission 

errors ranging from 5% (Tatra) to 25% (Bohemian Forest) and omission errors ranging from 

0.5% (Harz) to 35% (Kalkalpen). The year of disturbance (Fig. 3) was estimated with errors 

ranging from 3.1 to 4.3 years (Table 2). In total, >60% of the reference pixels were assigned 

the correct year (except for the Bohemian Forest site), which increased to >80% if the 

matching threshold was set to ±1 year (except for the Tatra site; Table 2). 

Table 2: Overall accuracy, omission and commission errors, as well as errors in the 

disturbance year for the five landscapes. 

Site 
Overall 

accuracy 
[%]  

Class-specific errors [%] Year of occurrence 

Disturbed Undisturbed Non-forest RMSE 
[years] 

Percent 
correct 

Commission Omission Commission Omission Commission Omission ±0 
years 

±1 
years 

Berchtesgaden 81.45 23.75 11.43 17.13 17.51 19.45 20.76 3.96 75.00 86.54 
Bohemian 
Forest 87.31 5.12 2.80 3.29 19.94 25.24 3.70 4.26 55.17 80.46 

Harz 88.51 17.15 27.53 4.21 17.63 16.66 0.54 3.14 64.86 82.43 
Kalkalpen 82.29 16.44 9.71 20.23 7.99 12.26 35.38 3.26 74.42 90.70 
Tatra 92.62 6.64 15.25 12.06 8.55 5.41 4.84 3.78 67.24 70.69 

 

Table 3: Disturbance rates. 

Site Disturbance rates (% of forest area disturbed per year) 
Total Strictly protected Protected Managed 

Berchtesgaden 0.29 0.22 0.30 0.29 

Bohemian Forest 0.58 1.73 0.78 0.39 

Harz 0.48 0.68 0.66 0.46 
Kalkalpen 0.47 0.23 0.54 0.53 
Tatra 0.95 0.56 1.18 0.76 

 

4.2 Spatiotemporal dynamics of forest disturbances 

From the disturbance maps (Fig. 3) we estimated mean annual disturbance rates ranging from 

0.3% (Berchtesgaden) to 1% (Tatra). Disturbance rates varied substantially between the three 

management zones (Table 3). For the Berchtesgaden, Kalkalpen and Tatra sites disturbance 

rates were lowest in strictly protected areas. Conversely, in the Bohemian Forest and Harz 



sites, lowest disturbance rates were found in managed forests. Highest disturbances rates were 

generally found in protected forests, except for the Bohemian Forests, where the highest 

disturbance rate was found in strictly protected forests.  

 

Figure 3: Spatiotemporal disturbance dynamics mapped from Landsat. Annual disturbance 

years are grouped in 5-year steps to facilitate visualisation. 

The disturbance patch size distributions were highly right-skewed for all sites (Table 

4), with – averaged over all sites and management zones – 45 % of the disturbance patches 

being smaller than 1 ha, and 95% of the disturbances patches being smaller than 10 ha. We 

did not find substantial differences in median patch size between sites and management zones. 

Yet, maximum patch sizes varied considerably among sites and management zones (Table 4). 

Largest patches were either found in protected forests (Bohemian Forest [6,679 ha] and Tatra 

[12,801 ha]), in strictly protected forests (Harz [329 ha]), or in managed forests 

(Berchtesgaden [211 ha] and Kalkalpen [170 ha]). 



Table 4: Patch size summary. 

Site 

Patch size [ha] 

Strictly protected Protected Managed 
Median 95% 

quantile 
Maximum Median 95% 

quantile 
Maximum Median 95% 

quantile 
Maximum 

Berchtesgaden 1.17 5.56 13.5 1.08 13.64 51.12 1.17 8.46 211.86 
Bohemian 
Forest 

1.17 15.22 269.46 1.17 10.80 6,679.26 1.08 7.74 549.36 

Harz 1.35 25.61 329.13 1.26 18.45 145.89 1.26 14.76 124.65 
Kalkalpen 0.99 7.13 77.67 1.22 10.98 56.43 1.26 9.72 169.56 
Tatra 1.08 9.79 183.15 1.17 18.36 12,801.33 1.26 17.16 1,046.25 

 

The temporal analysis of disturbance dynamics (Fig. 4) revealed a general synchrony 

in the variation of disturbed area between the three management zones within each site. A 

strong peak in disturbed area was observed around the years 2007. Only at the Tatra site 

disturbances peak in 2005. Both dates correspond to large storm events that have affected our 

study sites across all three management zones (Table 1).  

 

Figure 4: Temporal disturbance dynamics. Note that for facilitating comparisons between 

management zones, disturbances areas were scaled to units of standard deviation. 



4.3 Spectral-temporal disturbances characteristics 

We found distinct differences in disturbance duration between strictly protected, protected, 

and managed forests (Fig. 5). Most notable was a longer disturbance duration in strictly 

protected forests, which was most obvious in the TC wetness component. Disturbances in 

strictly protected forests had a median disturbance duration of eight years for TC wetness, 

with only 19% of the disturbances being shorter than three years. Disturbances in managed 

and protected forests had a median duration of only one year, with 58% (managed) and 51% 

(protected) of the disturbances being shorter than three years. Hence, disturbances in managed 

and protected forests were dominated by short-duration disturbances, whereas disturbances in 

strictly protected forests had a considerably longer duration. 

 

Figure 5: Spectral-temporal properties of disturbances in strictly protected, protected, and 

managed forests. 

Spectral magnitude showed a less clear picture, with no substantial differences in 

median spectral magnitudes across management zones (Fig. 5). Slightly higher variability in 

spectral magnitudes was found in management and protected forests, and very high-spectral 



magnitude disturbances (change in wetness > 2,000 and changes in brightness > 2,500) were 

rarely found in strictly protected forests. 

5. Discussion 

5.1 Mapping forest disturbances in coupled human and natural systems 

Studies using earth observation data for mapping forest disturbances in complex coupled 

human and natural systems are rare, and we thus lack a deeper understanding of the potential 

and challenges of Landsat-based algorithms for mapping and characterizing forest 

disturbances in these systems. Our study contributes towards filling this gap by mapping 

forest disturbance from Landsat time series across five sites representative of the forests of 

Central Europe. Overall, we achieved classification accuracies being comparable to, or 

slightly lower than, those achieved by studies in North America (Hermosilla et al. 2015b; 

Kennedy et al. 2012a). Given the higher complexity in spatial disturbance patterns in Central 

Europe – i.e., a much smaller patch size compared to North America and a thus higher 

abundance of mixed pixels – our results encourage the use of Landsat time series for a wider 

reconstruction of disturbance dynamics in Europe. 

Besides good classification results overall, however, we found substantial variation in 

classification accuracies between study sites. This variation in classification accuracies 

suggests that site-specific factors can influence the large-scale mapping of forest disturbances. 

Our five study sites span a gradient from mid-elevation landscapes with relatively mild 

topography (i.e., Bohemian Forest and Harz) to high elevation and alpine landscapes 

characterized by rough and steep terrain (i.e., Kalkalpen, Berchtesgaden). High commission 

errors of undisturbed forests and high omission errors of non-forest areas were particularly 

found for the sites situated in the northern front range of the Alps (Kalkalpen and 

Berchtesgaden). At those sites, high elevation forests are often characterized by open canopies 

and a clustered arrangement of trees, resulting from a decreasing number of microsites 

suitable for tree growth due to rock outcrops and a transition into krummholz formations of 



mountain pine. Those krummholz formations are spectrally similar to lower elevation pine and 

spruce forests, though not defined as forests here, since their height is usually below five 

meters. Hence, for high elevation landscapes, separating forest/no forest was most 

challenging. 

Cloud cover was an issue across all sites. Compared to North America, data density in 

Europe is still considerably lower (Wulder et al. 2016). This lower data density dramatically 

reduced the probability of acquiring cloud-free Landsat observations with similar 

phenological characteristics. We aimed to overcome this challenge by integrating data from 

the USGS and ESA archives to create robust median summer composites from all available 

observations across archives (Rufin et al. 2015). Missing years were filled using linear 

interpolation between observations from neighboring years (Hermosilla et al. 2015a). 

Nonetheless, we still had to adjust the time window for creating our median summer 

composites for the Tatra to achieve data densities high enough for spatially continuous 

analyses. Increasing the temporal window of acceptable observations introduced additional 

noise into the analysis, likely due to increased phenological variation, which might especially 

affect strongly climate-sensitive areas (e.g., high elevation areas in mountain regions) and 

regions with a higher share of deciduous trees. Frequent cloud cover (and frequent snow) also 

likely explain the higher disturbance commission errors in the higher-elevation sites 

(Berchtesgaden and Kalkalpen). 

 We experienced difficulties in determining the exact disturbance onset from Landsat 

time series, with only 60% of the disturbance onsets being identical to the onset estimated by 

visual interpretation. However, the percentage of correctly classified disturbance onsets 

increased to 80% when onsets that matched the reference date within ±1 years where 

included. This finding is similar to previous studies mapping annual forest disturbances of 

varying intensities in the USA (Kennedy et al. 2012a). Onset estimates were particularly 

variable for disturbances with long duration. It is challenging to determine an exact onset for 



those disturbances, because they are often caused by bark beetle infestations that slowly build 

up (Kautz 2014; Meigs et al. 2011). We hence acknowledge that the disturbance onset might 

be uncertain for many disturbances, and we suggest caution in its interpretation. 

We here focussed on stand-replacing disturbances, defined as disturbances that reduce 

canopy cover in a pixel below 50%. Thus, we did not map ephemeral disturbances, such as 

insect defoliation (Senf et al. 2015) or water stress/drought (Assal et al. 2016). Including 

ephemeral disturbances of low spectral magnitude can substantially increase omission errors, 

since these are easily confused with noise from phenological variations and residual clouds 

(Cohen et al. 2017). Thinning – which is an often-applied management technique in the 

coupled human and natural systems of Central Europe – also results in relatively low intensity 

spectral changes (Jarron et al. 2016). We thus have largely omitted thinning operations in our 

analysis, as thinning intensities are usually below 50% in Central Europe (Seidl et al. 2017), 

and there is no substantial exposure of forest soil. Furthermore, multi-stage harvesting 

operations that aim at fostering natural regeneration (e.g., gap or shelterwood cuts) are also 

likely to be omitted by our analysis. 

5.2 The effect of management on spatiotemporal dynamics of forest disturbances 

Disturbance rates varied substantially between sites and management classes. Disturbance 

rates in strictly protected forests were lower than in protected and managed forests in the 

mountainous sites (Berchtesgaden and Kalkalpen). This result suggests that disturbance rates 

resulting from natural disturbances – in this case the combined effect of wind and bark beetle 

disturbances – are lower than disturbance rates resulting from management in the northern 

Alps and Tatra mountains. For the Bohemian Forest and Harz sites, however, highest 

disturbance rates were found in strictly protected forests. Both sites have seen large-scale 

outbreaks of bark beetles that affected large parts of the spruce-dominated strictly protected 

core zones. Hence, for those two sites we found that natural disturbances – in this case large-

scale bark beetle outbreaks – resulted in higher disturbance rates than human and natural 



disturbances in the surrounding managed forests. This finding also suggests that for these 

regions proactive management to counter bark beetle outbreaks was successful relative to the 

natural development in strictly protected areas. 

Interestingly, disturbance rates in the management zones of national parks (i.e., here 

referred to as protected areas) were always higher than in managed forests, highlighting the 

combined effect of natural disturbances and reactive management. Indeed, in the coupled 

human and natural system of Central Europe, the strategy of many national parks not to 

manage bark beetle outbreaks in core zones has led to intensive public debate about natural 

disturbances, and increased the pressure on park authorities to prevent the spread of 

disturbance outside the park boundaries. As a consequence, many parks have established 

buffer zones between 100 m and 1,500 m to prevent bark beetle dispersal (Wermelinger 

2004). The harvest operations in these dedicated buffer zones (i.e., salvage logging and 

sanitation felling), in combination with natural disturbance dynamics, likely explain the 

finding of high disturbance rates in these areas. 

Forest disturbances in Central Europe are much smaller compared to previous studies 

in North America (Kennedy et al. 2012b; White et al. 2017). Smaller patch sizes result in a 

generally higher abundance of mixed pixels, likely affecting disturbance mapping accuracies. 

We applied a minimum mapping unit of 0.5 ha to reduce disturbance commission errors. By 

doing so, we might have omitted small disturbances, that is mortality of small patches of trees 

or small-scale felling in managed forests. Patch size distributions were not substantially 

different between the three management zones and across the five sites. Yet, patch sizes in the 

protected zones of the national parks were slightly higher than in strictly protected and 

managed forests. In the protected zones, we also found the overall largest patch sizes, both 

resulting from large-scale salvage operations after wind and bark beetle disturbances 

(Bohemian Forest and Tatra). Salvage operations often remove all vegetation including 

residual trees, leading to generally larger non-treed patches than in areas of natural 



disturbances alone (Lindenmayer and Noss 2006). Patch sizes in managed forests were, in 

turn, slightly larger than those in strictly protected forests. This result suggests that human 

management increases disturbance size relative to natural disturbances. However, for the two 

low mountain range sites we found opposite results (Bohemian Forest and Harz). Those two 

sites have experienced large-scale outbreaks of bark beetles, which have resulted in relatively 

large and continuous disturbances patches. Hence, in sites affected by more complex 

interactions of wind and bark beetles (Berchtesgaden, Kalkalpen, Tatra), natural disturbances 

were smaller than disturbances in managed forests. Whereas patches of natural disturbances 

were larger in sites affected by large-scale bark beetle outbreaks (Bohemian Forest and Harz). 

Major storm events were a principal driver of disturbance dynamics throughout all 

sites, such as Kyrill in January 2007 and the Bora-type storm event affecting the Tatra 

mountains in December 2004. Both storms had by far the biggest impact on inter-annual 

variation in disturbance rates, with significant increases in disturbance rates during the storm 

years detected throughout all management classes. Yet, disturbance rates in managed forests 

dropped again rapidly after the storm events, while disturbance rates in protected and strictly 

protected forests showed a second increase in disturbance rates two to three years after the 

storm events. This finding suggests that in protected and strictly protected forests, where 

disturbances are allowed to progress without or with minimal human intervention, wind 

disturbances triggered a substantial eruption of subsequent bark beetle infestation. This 

finding is in congruence with observations and theoretical understanding, highlighting that 

storm events are a principal driver of bark beetle population dynamics in Central Europe 

(Seidl and Rammer 2016; Stadelmann et al. 2014; Wermelinger 2004).  

We also found a consistent increase in disturbances rates in protected and strictly 

protected forests around 1995 for the Berchtesgaden, Bohemian Forest, and Harz sites. For 

the Bohemian Forest, this peak is the result of a large-scale outbreak of bark beetles at around 

this time (Kautz et al. 2011). Less information is available for the other sites, but we assume 



that bark beetle is the driver also there, as bark beetle population development tends to be 

synchronized across larger regions, e.g. as a result of regional drought (Seidl et al. 2016). 

5.3 The effect of management on spectral-temporal disturbances characteristics 

We found distinct differences in disturbance characteristics between the three management 

zones. In particular, we found that disturbances of natural agents (i.e., in strictly protected 

forests) were longer in duration, whereas human-dominated disturbances (i.e., in managed 

forests) were characterized by very short (one-year) disturbance duration. This reflects the 

general understanding that disturbances caused by insects and pathogens result in long-term 

spectral declines (Meigs et al. 2011; Vogelmann et al. 2009), while harvest disturbances 

generally result in very-short (one-year) spectral changes (Goodwin et al. 2008; Meigs et al. 

2015). Our results thus demonstrate that the general notion of short (harvest) versus long 

(insect) disturbances also holds true for Central Europe, as has been suggested in an early case 

study on the Bohemian Forest (Hais et al. 2009).  

However, many disturbances in strictly protected forests were not only caused by bark 

beetles, but also by wind. Hence, unmanaged wind disturbances also were of longer duration, 

challenging our prior assumption that wind disturbances always result in short-term spectral 

changes. Reasons for the longer duration related to wind disturbances might be the fact that 

blowdowns in the mountainous sites are often small in size (due to topographically related 

differences in wind exposure and soil rooting capacity), and do not necessarily uproot all trees 

within a stand, thus resulting in complex disturbance patches with uprooted and residual trees 

mixed at Landsat spatial resolution. Residual trees and trees on the edge of blowdowns are 

very susceptible to subsequent moderate winds and bark beetle infestation (Seidl and Rammer 

2016; Stadelmann et al. 2014; Wermelinger 2004). Hence, unmanaged wind disturbances are 

likely mixed with secondary effects of subsequent wind events and bark beetle infestation, 

which results in longer spectral declines. One exception was the Tatra site, where disturbance 

durations in strictly protected areas dropped to one year following a major storm event in 



2004. While the wind event of 2004 in the Tatra was extreme (gust wind speeds of 54 m s-1) 

and differed meteorologically from the storms affecting the other sites (Bora-type wind vs. 

cyclonal storm), the drivers of different ecological patterns remain unresolved and should be 

addressed in future analyses. 

 Less pronounced differences were found regarding the spectral disturbance magnitude, 

with natural disturbances having similar median magnitudes as human-dominated 

disturbances. Yet, we found that maximum disturbance magnitudes were slightly higher for 

human-dominated disturbances. This finding is in agreement with earlier studies on wind 

(Baumann et al. 2014) and bark beetle disturbances (Hais et al. 2009), and reflects the 

contrasting ecological impacts of clearcut harvest disturbances (where virtually all biomass is 

removed from a site) and natural disturbances (where residual/understory vegetation, natural 

regeneration and deadwood remains onsite). However, we acknowledge that there is also a 

high proportion of low-severity disturbances in managed forests, highlighting that disturbance 

activity outside protected forests is the result of both natural and human agents. Furthermore, 

in many parts of Central Europe, small-scale harvests and thinning are preferred over large 

clearcut harvests, which is mirrored in the high abundance of small disturbance patches in our 

analysis. Consequently, even though we found distinct differences in the duration of natural 

and human disturbances, there is no clear distinction between natural and managed areas 

regarding the spectral magnitude of disturbances. 

6. Conclusion 

We here mapped forest disturbance patterns across five sites and three management zones in 

Central Europe using Landsat time series. We found that Landsat time series are suitable for 

mapping forest disturbances of varying agents in the coupled human and natural systems of 

Central Europe. Yet, we also highlighted some challenges in disturbance mapping, 

particularly regarding forests close to the timber line, as well as the correct determination of 

disturbance onset. We found that temporal disturbance dynamics were synchronized across 



different levels of human influence, with higher disturbance rates occurring in – and 

following after – years with large storm events. However, spectral-temporal disturbance 

characteristics between management zones were substantially different. In particular, we 

found that disturbances originating from natural agents were longer in duration and had lower 

peak spectral disturbance magnitudes. Disturbances in managed forests, originating from both 

human and natural agents, were short in duration and had higher peak spectral disturbance 

magnitudes. From those results, we conclude that remotely sensed natural disturbances in 

coupled human and natural systems are superimposed by a management signal (i.e., salvage 

and sanitation logging). This cofounding factor potentially hampers the attribution of a formal 

change agent with current methods. Our study presents the first systematic assessment of 

forest disturbances across Central Europe, highlighting opportunities and challenges for future 

remote sensing-based analyses of forest disturbances in Europe. 
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Appendix 

Table A1: Summary of the reference data collected for calibrating (Cal.) and validating (Val.) 

the disturbance classification. 

Number of 
samples 

Site 

Berchtesgaden 
Bohemian 

Forests 
Harz Kalkalpen Tatra 

 Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 
Total 251 249 236 264 225 275 246 254 242 258 
 Non-forested 100 92 55 59 80 86 55 56 96 119 
 Forested 149 153 180 202 135 176 190 192 142 132 
  Disturbed 66 64 103 113 70 88 87 102 76 67 
  Undisturbed 83 88 77 88 63 86 101 89 66 63 
 Not interpretable 2 5 1 4 2 3 3 7 4 9 

 


