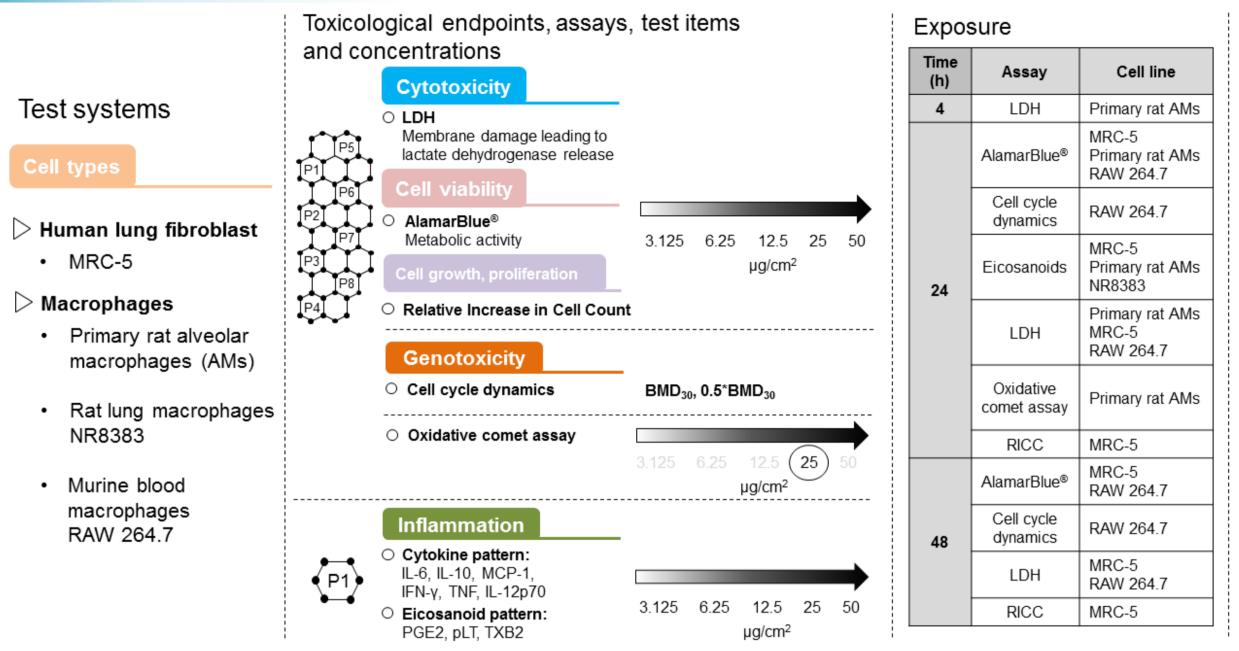
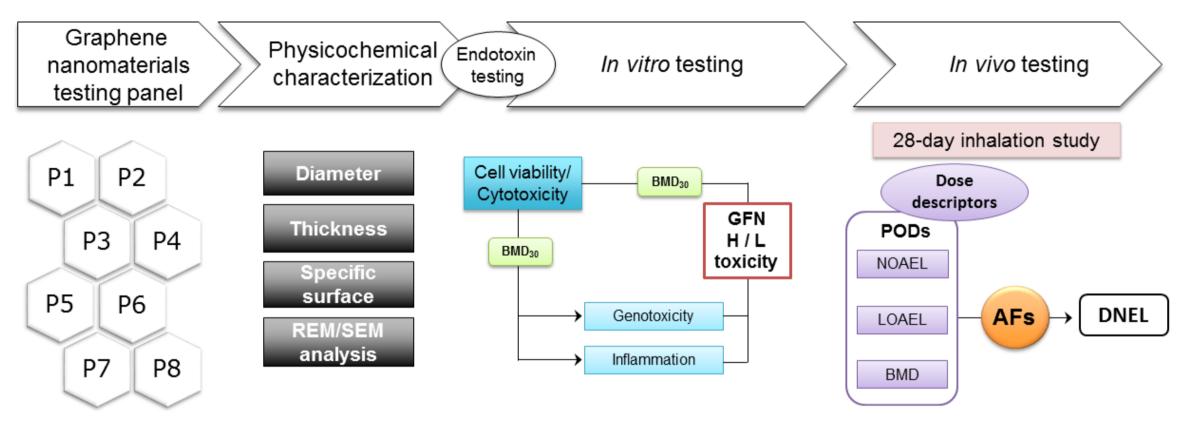
An integrated testing approach to generate validated, lung-relevant toxicity data on graphene nanoplatelets

Lucian Farcal¹, Christina Ziemann², Helena Oliveira³, Sabina Burla¹, Ana Mendes³, Ana Catarina Menezes³, Otto Creutzenberg^{2*}

¹BIOTOX SRL, Cluj-Napoca, Romania; ²Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany; ³University of Aveiro, Aveiro, Portugal; *Project Coordinator contact: <u>otto.creutzenberg@item.fraunhofer.de</u>


INTRODUCTION

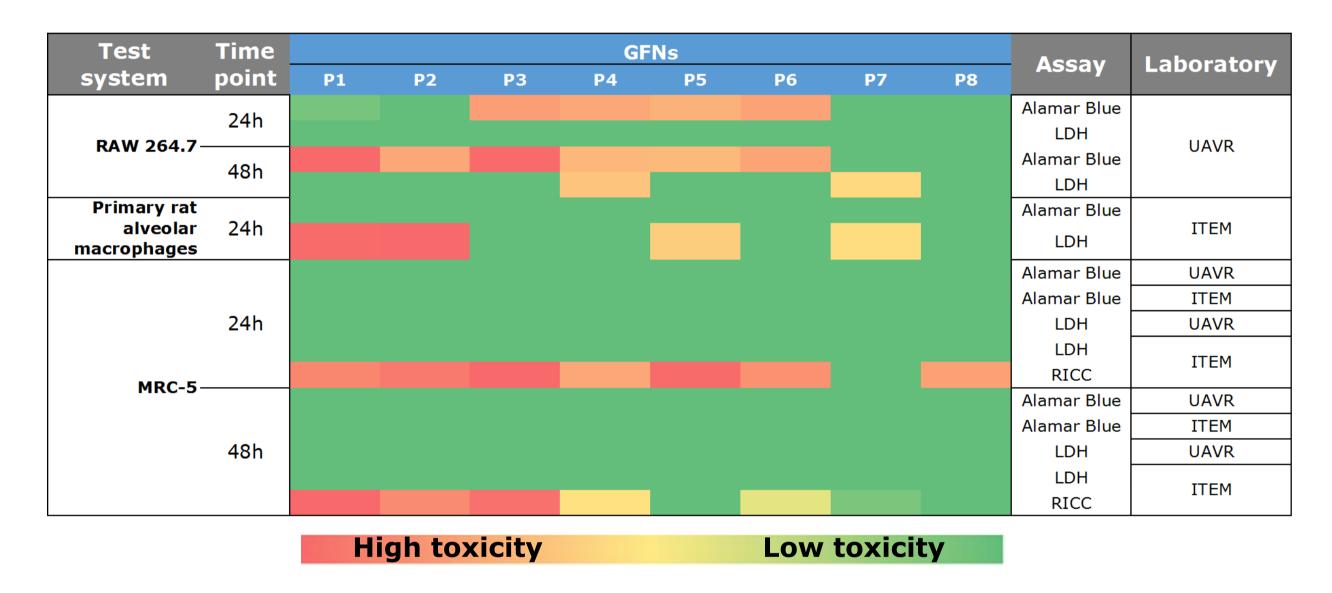
Graphene family nanoplatelets (GFNs) are a group of carbon-based engineered nanomaterials with special properties, which enable innovation in nanomedicine and technology. Within the general framework of safety assessment of nanomaterials (NMs) during their lifecycle, the main objective of the PLATOX project (funded by EU FP7-SIINN ERA-NET Programme) is to apply a tiered approach to assess the toxicity of GFNs and identify the derived no-effect level (DNEL) parameter for inhalation exposure.


OBJECTIVES

- Selection of GFNs with different chemistry suggesting a varying toxic outcome
- In vitro testing: cytotoxicity, direct genotoxicity, cytokine and eicosanoid release in order to identify the candidates with the highest and lowest biological activity

In vitro study

- Validation of *in vitro* results with an *in vivo* 28-day inhalation test (on two selected GFNs, most and least active)
- To evaluate available information on physicochemical properties of the tested GFNs and compare it with the toxicological *in vitro* and *in vivo* results and exposure data
- Perform risk assessment and derivation of DNEL for the two selected GFNs according to current regulatory procedures. The workflow proposed for the risk assessment integrates the physicochemical characterization, *in vitro* and *in vivo* methodologies (**Figure 1**)


MATERIALS AND METHODS

Test items: Six different commercially available GFNs (P1-P6) and reference pristine graphene nanoplatelets (P7) were selected for *in vitro* testing (**Table I**). Carbon-black particles (P8) are used as spherical reference material.

Dispersion of GFNs and exposure: Materials were dispersed in serumcontaining cell culture medium, 3 x 5 min of ultrasonication on ice, 1 min breaks, Bandelin Sonoplus HD2070 (70 W) with sonotrode VS70T (\emptyset 13 mm), 90% cycles (9/10), amplitude 80 μ m_{ss}. Cells were incubated with the test items of increasing concentrations up to 50 μ g/cm² for 24h or 48h.

Figure 2. Overview of in vitro testing

IN VITRO RESULTS

Figure 3. Preliminary toxicity ranking based on cytotoxicity results and comparison of BMD30 for all GFNs

Table II. Ranking of toxic effects detected in *in vitro* assays at UAVR and ITEM

Test item graphene	P1	P2	Р3	P4	P5	P6
Ranking of toxic effect	high	high	low	moderate	moderate	low
Parameter						
LDH, cytotoxicity, Primary rat					L	_
alveolar macrophages 24 h	+++	+++	-	-	+	-
LDH, cytotoxicity, RAW 24 h	+	-	-	-	+	+
LDH, cytotoxicity, RAW 48 h	+	+	+	++	+	+
Comet assay, genotoxicity, Primary			I			
rat alveolar macrophages 24 h	++	++	+	+	+	-
Cell cycle, G0/G1, RAW 24h	+	-	-	+	-	-
Cell cycle, %G0/G1, RAW 24h	-	+	-	-	-	+
Cell cycle, varG0/G1, RAW 24h	++	++	-	+	+	+
Cytokines, TNF-a, RAW 24h	_	-	+	-	-	-
Cytokines, MCP-1, RAW 24h	-	-	+	-	-	-

	e investigated GFNs						
No.	GFN	Diameter (µm)	Thickness (nm)	BET surface area (m²/g)	Endotoxin content (ng/mg)	SEM image	Preparation/ Properties
Ρ1	Single layer graphene powder	~ 5	2 - 10	278 (400-1000)*	0.0553		Thermal exfoliation reduction + Hydrogen reduction
P2	Single layer graphene (graphene factory series)	0.5 – 5	2 - 10	620 (650-750)*	0.0467		1-5 atomic layer graphene nanosheets
Р3	Carboxyl graphene	1 – 5	0.8 - 1.2	1.5	<0.005		 Modified Hummer's method to make graphene oxide Convert -OH and C-O-C into -COOH. Carboxyl ratio: 5%
Р4	Graphene nanoplatelets	~ 5	2 - 10	15 (20-40)*	<0.005		Stacks of multi-layer graphene, with a high aspect ratio, width to thickness
Р5	Single layer graphene oxide powder (S method)	1-15	0.8 - 1.2	5.2 (5-10)*	<0.005		Stauden-Maier method; oxygen content: 35%
P6	Graphite oxide powder	0.5 – 5	1 - 3	2.7	0.142		Modified Hummer's method; oxygen content: 35%
Р7	Reference pristine graphene nanoplatelets (GR1)	2	3	195 (70)*	0.0343	20	No XPS (low defects by RAMAN) all C1s carbons; 8±0,5 atomic layer graphene
P8	Reference carbon black particles (Printex 90 [®])	14	-	317 (337)*	<0.005	•	Specified as >99% pure Carbon Black, PAH=0,039 ppm

Table I. Physicochemical properties of the investigated GFNs

*range given by the supplier

Test systems: RAW 264.7 murine blood macrophage cell line (University of Aveiro - UAVR), primary rat alveolar macrophages (Fraunhofer ITEM), MRC-5 human lung fibroblasts (both laboratories).

Endpoints and assays: Membrane damage (LDH assay), cell viability (AlamarBlue[®] assay), proliferation (relative increase in cell count, RICC), cytokine release (ELISA), unstimulated/stimulated eicosanoid pattern (highly sensitive and specific competitive EIA), direct genotoxicity by measuring DNA-strand breaks and oxidative DNA-damage (hOGG1-modified alkaline comet assay), cell cycle dynamics/ploidy level (flow cytometry).

DISCUSSION AND CONCLUSIONS

- Fully characterized GFNs are used in this study, in order to perform an integrated risk assessment based on *in vitro* and *in vivo* studies.
- The preliminary *in vitro* results show that P1 and P2 are the most toxic GFNs, while P3 and P6 are less toxic; a higher sensitivity of both primary rat alveolar macrophages and murine blood macrophages was observed, as compared to lung fibroblasts. However, the results on macrophages show no correlation between the two assays applied (Figure 3 and Table II).
- Non-toxic concentrations of GFNs were used for evaluation of additional *in vitro* parameters, genotoxicity and cytokines. Therefore the selection of the GFNs for *in vivo* validation is based on a complex *in vitro* test battery. The selected graphenes with high and low toxicity are P2, respectively P4, for the 28-days inhalation study, in order to reduce the overall number of animals used in the project. Selection relies on the clear toxicity in primary cells of the respiratory tract of the test system used for the *in vivo* experiments, chemical composition as they are pure carbon typical graphenes, by contrast to other test items which represent technical intermediates to synthesize graphene by reduction.
- In summary, the expected outcome of the project will be a toxicological ranking of the tested GFNs, providing an improved basis for risk assessment of these NMs and ensure their safety from production phase to use of medical products and applications that incorporate graphene nanoplatelets.

