
Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)

PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering

(ESCAPE 33), June 18-21, 2023, Athens, Greece

© 2023 Elsevier B.V. All rights reserved.

Data-Driven Indication of Flooding in an Industrial

Debutanizer Column

Martin Mojtoa,*, Karol L’ubuškýb, Miroslav Fikara and Radoslav Paulena

aSlovak University of Technology in Bratislava, Bratislava, Slovakia
bSlovnaft, a.s., Bratislava, Slovakia

martin.mojto@stuba.sk

Abstract

The profitability and sustainability of process industries are affected by the performance of each

unit involved. A key measure of a unit’s performance is based on whether it operates in a desired

production window or whether it trips into an abnormal condition. In this contribution, we study

flooding of industrial distillation columns. We aim to improve the performance of an industrial

debutanizer column by designing a data-driven flooding indicator. The design of the indicator

consists of three steps; (a) the data treatment, (b) a priori labeling, and (c) indicator design. The

prior knowledge about flooding within the column is used to design a reference indicator. This

knowledge is either unused or fully exploited during the design of the indicator. We compare

various design methods and show the potential of data-driven approaches for flooding indication.
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1. Introduction

Flooding is an undesired phenomenon in industrial distillation columns. It occurs when the liquid

level rises above a tray, because of foaming or excessive downcomer fill-up (King, 2016). This

state causes a significant loss in tray separation efficiency and, hence, plant profitability. Early

detection (prediction) of flooding is thus crucial for a profitable and sustainable plant.

Several works dealt with the problem of flooding detection. They considered correlation of the

flooding effect with internal process variables, especially the pressure difference (drop) across

the column (Peiravan et al., 2020) and the time derivative of the pressure drop (Pihlaja, 2008).

Industrial experts use these results and combine them often with an insight into the principal

trigerring cause of flooding, creating a tailored solution for each column. The effort of creating a

tailored solution could be saved by the use of machine learning (ML) approaches.

Several ML approaches (Mojto et al., 2021; Oeing et al., 2021; Fuentes-Cortés et al., 2022) were

employed to aid decision making in industrial columns. A subset of unsupervised ML approaches,

such as k-means clustering (Forgy, 1965) or principal component analysis (PCA) (Pearson, 1901),

consider no prior knowledge about the model outcome. The supervised ML techniques, on con-

trary, use knowledge about the desired outcome for training. The representative methods are subset

(feature) selection (SS) (Smith, 2018) or support vector machine (SVM) (Boser et al., 1992).

This paper investigates the design of data-driven flooding indicators for an industrial debutanizer.

Performance of indicators designed via data-driven approaches (unsupervised and supervised ML)
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is assessed by comparison against the reference indicator. The reference indicator (considered as

ground truth) is designed according to the industrial specifications and knowledge about flooding.

2. Problem Statement

Flooding indication is essentially a binary classification problem. We aim to design an indicator I

that assigns a categorical label ŷ according to the classification model (classifier) f (x) as:

ŷ =

{

+1 (flooding), if f (x)≥ 0,

−1 (normal operation), if f (x)< 0,
(1)

where x ∈Rnp represents a subset (sparse representation, n > np) of all online plant measurements

ξ ∈ R
n at one time instant. In this contribution, we consider a linear classifier in the form:

f (x) = w⊺x+w0, (2)

where w ∈ R
np represents a classifier normal vector and w0 is a classifier off-set.

2.1. Industrial Debutanizer Column

We study a debutanizer (distillation) column that is a part of the FCC unit of the refinery Slovnaft,

a.s. in Bratislava, Slovakia. The column separates the C4/C5 fraction into the C4-fraction-rich

distillate product and the C5-fraction-rich bottom product. The column contains 40 trays.

The available dataset involves the measurements from January 2019 to April 2021 (28 months).

The input variables are recorded every minute by online sensors, yet their 30-minute moving

average values are considered in this study. Overall, the dataset involves 34,297 measurements.

The measurements from two plant shutdowns (May – July 2019 and December 2020) are excluded.

The following 41 input variables are directly measured (by online sensors) at the column:

ξ = (voB,voD,1–3,voR,voreb,h,Tcol,1–5,TB,1–2,TD,1–3,TF,Treb,h,1–2,Qcon,

pcol, pD,1–4, pdf,col, pcon,FR,FB,FD,1–4,FF,Freb,h,1–2,Lreb,1–2,Lcon,1–3 ) ,
(3)

where vo, T , Q, p, and F stand for a valve opening, temperature, heat input, pressure, and flow

rate, respectively. Indices B, D, F, R, col, con, reb, and df represent a bottom section, distillate

section, feed section, reflux section, column section, condenser section, reboiler section, and cross-

column difference, respectively. Note that exact location of sensors cannot be disclosed due to the

confidentiality reasons. The input set of directly measured variables is extended with important

ratios (FR/FF, FB/FF, Qcon/FF) and pressure compensated temperatures (PCTB, PCTD).

The studied debutanizer column usually operates within the desired operating regime. At times,

however, the operating conditions within the unit induce flooding. The envisioned low-cost solu-

tion to the flooding problem is to design a reliable indicator. The key aspect of this approach is that

the designed indicator is not only used for monitoring the plant condition, but it can communicate

directly with the advanced process controller that can provide a fast response.

The dataset does not contain any direct indication of flooding that could be used to label the data.

However, it is possible to attribute flooding occurrence to the increased values of pdf,col, FR, Freb,h,2,

and Tcol,4 and decreased values of Treb,h,1. We use this knowledge to design the reference indicator

to provide the ground truth of the flooding indicator for our study.

3. Methodology

Data-driven indicators are designed using unsupervised (IUns) and supervised (ISup) ML approaches.

For training (ISup-type indicator) and testing, the ground truth is provided by the aforementioned

reference indicator resulting from industrial knowledge about debutanizer flooding.
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3.1. Indicator Design

The design procedure of the data-driven indicator consists of three sequential steps:

1. Data processing (data filtering, data treatment, distribution to training/testing dataset).

2. A priori labeling of the training dataset (only applied for IUns-type indicators).

3. Training of a classifier (calculation of the f (x) parameters on the labeled training dataset).

After the standardization of the data set (removing the mean and scaling all the variables to unit

variance), the aim of the data treatment (the 1st step) is to reduce the number of outliers. Due

to the non-ideal (yet close normal) noise distribution within the industrial dataset, the minimum

covariance determinant (MCD) approach (Hubert and Debruyne, 2010) is applied. The outlier

detection is performed using the F-distribution, retaining data with 99.9999 % probability. The

high probability value follows from the need to eliminate only the most deviated measurements

while maintaining the data representing the flooding, which can be otherwise seen as outliers.

It is optional to smoothen the dataset by filtering out the high-frequency noise that does not rep-

resent slower effects of flooding. Subsequently, as flooding is characterized by the changes of the

process variables, we extend the dataset (here, 46 variables) by time differences of each variable:

∆ξi(k) = ξi(k)−ξi(k−1), ∀i = {1,2, . . . ,n}, (4)

where k is a time instant. The resulting dataset considers both, the original dataset and time

differences, i.e., 92 variables in this study. Effectively, we assign ξ ← (ξ , ∆ξ ) in this step.

The 2nd step, applied to label the data for IUns-type approaches, is performed by k-means clus-

tering (Forgy, 1965) with the elbow method to determine the optimal number of clusters. The

clusters with a low cardinality but large distance between the cluster center and the dataset mean

are considered to represent the debutanizer flooding.

The training phase needs to choose an appropriate indicator input space (Rnp ) among all the pro-

cess variables and their time differences. The methods used in this study are:

1. Industrial patent by (Pihlaja, 2008), which exploits ∆pdf, col only (referred to as Ipat).

2. Industrial experience (specific to the studied debutanizer) using ∆pdf,col, ∆FR, ∆Freb,h,2,

∆Tcol,4, and ∆Treb,h,1 (referred to as Iref).

3. PCA approach (Pearson, 1901) that chooses a number principal components that explain at

least 95 % of variance in the dataset (referred to as IPCA).

4. SS approach (Smith, 2018), which determines the best subset of input variables via cross-

validation and comparison of different structures with np = {1,2, · · · ,5} (referred to as ISS).

The finalization of the training phase designs a linear classifier (see Eq. (2)) based on the chosen

input structure (x ∈Rnp ). To this end, we use support vector machines (SVM) (Boser et al., 1992).

3.2. Performance Assessment

The outcome of an indicator can fall into four categories: true positive (TP) and false positive

(FP), when flooding is indicated correctly and incorrectly, respectively, and, vice versa, true neg-

ative (TN) and false negative (FN), for indicating of normal operation. We use some well-known

normalized performance criteria for the designed indicators:

AC =
TP+TN

TP+FP+TN+FN
, PR =

TP

TP+FP
, RC =

TP

TP+FN
, F1 =

2×PR×RC

PR+RC
, (5)

where AC (accuracy) is a measure of how often the classifier makes the correct prediction, PR

(precision or correctness) is a measure of how precisely is the true prediction achieved, RC (recall

or sensitivity) is a measure of how actual observations are predicted correctly. F1-score (F1) is a

harmonic mean between PR and RC. In industrial conditions, it is much more important to warn

about the potential of flooding and thus low value of FN (high RC) is preferred.
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Figure 1: Histogram of two variables from the debutanizer dataset treated by the MCD method.

Figure 2: Visualization of training and testing datasets and ground truth labels.

4. Results

The results of data treatment using the MCD method are shown in Figure 1. The data values are

anonymized for confidentiality reasons. As desired, only the most deviated measurements (0.75 %)

are considered as outliers, and the rest of the measurements (99.25 %) is retained for further anal-

ysis. The dataset is further smoothened by filtering using a 10th-order low-pass Butterworth filter

with a cut-off frequency of 0.028 mHz (with zero-phase distortion).

To guarantee fairness of indicator assessment, we distribute the retained data chronologically on

an alternating monthly basis into the training and testing datasets (see Figure 2). From the entire

dataset (25,775 measurement points), 12,781 and 12,994 points are assigned to the training and

testing dataset, respectively. Figure 2 illustrates the training-testing data division together with

(ground truth) labels assigned based on industrial experience with the reference indicator.

4.1. Training of Data-Driven Indicators

Design of the data-driven flooding indicators for the debutanizer column is conducted via MAT-

LAB based on the methods from Section 3.1. MATLAB built-in routines for k-means clustering,

PCA, and SVM are exploited. We design indicators based on unsupervised ML (IUns
pat , IUns

ref , IUns
PCA,
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Table 1: The comparison of the true positives (TP), false positives (FP), true negatives (TN), false

negatives (FN), accuracy (AC), precision (PR), recall (RC), and complexity (no. of input variables

np, no. of principal components npc) of the designed data-driven indicators on the testing dataset.

ML method Unsupervised learning Supervised learning

Structure IUns
pat IUns

ref IUns
PCA I

Sup
pat I

Sup
ref I

Sup
PCA I

Sup
SS

TP 1,784 1,704 618 1,192 2,031 1,720 2,029

FP 3,828 2,823 3,147 1,358 4 168 0

TN 7,097 8,102 7,778 9,567 10,921 10,757 10,925

FN 285 365 1,451 877 38 349 40

AC 68.3 75.5 64.6 82.8 99.7 96 99.7

PR 31.8 37.6 16.4 46.7 99.8 91.1 100

RC 86.2 82.4 29.9 57.6 98.2 83.1 98.1

F1 46.5 51.7 21.2 51.6 99 86.9 99

np/npc 1 5 17 1 5 17 2

IUns
SS ) and supervised ML (I

Sup
pat , I

Sup
ref , I

Sup
PCA, I

Sup
SS ). A main difference between these approaches is

the use of the k-means algorithm to classify the data (used for IUns indicators).

A key success factor of unsupervised ML is an appropriate data labeling. The results indicate that,

unsurprisingly, the best results are obtained when the k-means clustering is performed on a dataset

with reduced dimensionality (e.g., one variable for IUns
pat indicator or seventeen principal compo-

nents determined for IUns
PCA), with appropriate input structure. The clustering method reveals 4–5

clusters out of which 1–2 clusters are selected to represent flooding. This result suggest that merg-

ing of steps 1 and 2 mentioned in Section 3.1 is a sensible approach to successful indicator design.

For this reason, we can expect PCA-based approaches to give inferior performance overall. Also,

we exclude IUns
SS from further assessment as its performance would suffer from the inappropriate

data labelling. A much more complicated design method (iterating over design steps 1–3 from

Section 3.1) would be needed to construct a useful indicator.

The performance assessment of the designed indicators on the testing dataset is shown in Tab. 1,

taking into account the so-called confusion matrix elements (i.e., TP, FP, TN, and FN) and perfor-

mance criteria (i.e., AC, PR, RC, and F1). The complexity of designed indicators is represented

by the number of principal components npc for PCA-based approach and by the number of input

variables np for the rest of approaches. We can directly see that the supervised ML approaches

outperform the unsupervised ones when we compare similar structures. The only exception appear

to be the RC criterion when evaluated for Ipat indicator. There are two reasons for this performance

drop: 1. RC is given up in training for the AC and precision as the dataset is more populated with

data points of normal operation; 2. the industrial data labels indicate flooding based on other vari-

ables than pressure (the sole input to Ipat indicator) and thus Ipat indicator falls short in terms of

model (input) adequacy (some extra input variables would explain flooding better). Note that, the

first reason can be remedied by a modification to SVM objective and some proper tuning, which,

however, is beyond the scope of this study.

Among the IUns-type approaches, it is interesting that, although the structure of the reference

indicator is optimal, the highest RC criterion (low number of FN) is achieved by IUns
pat . Of course,

this is paid off by worse accuracy as the classifier indicates flooding wrongly (high FP) more often

overall. The PCA-based indicator appears to be the least effective (worst in all criteria). This is

attributed to the aforementioned inappropriate labelling in high dimensions.

Unlike for the unsupervised learning approaches, the performance of the I
Sup
PCA indicator is suffi-
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cient. It also appears that the I
Sup
PCA is more efficient compared to the I

Sup
Pat indicator viewed by each

performance criterion. The highest efficacy among supervised learning approaches is achieved for

I
Sup
ref and I

Sup
SS indicators. These approaches already consider or can find the best possible input

structure. It is noteworthy that I
Sup
SS achieves the best performance (almost 100 % in all perfor-

mance criteria) using a very simple structure. This effectively tells that the reference structure is

overly complicated (some inputs are redundant) and that it is possible to indicate flooding with

data from just two sensors. It is also a very interesting result as it allows the industrial practition-

ers to concentrate efforts regarding sensor maintenance towards smaller subset of online sensors.

Surprisingly, pressure is not among the inputs selected for the best indicator. The input structure

involves reflux flow ∆FR and the time difference of heating medium flowin the reboiler ∆Freb,h,2,

which are both part of the reference indicator structure. It is possible that the two selected flow

rates are measured with better precision and that they do not involve high-frequency fluctuations

as pressure measurements do. These results need, of course, further validation in an industrial

setup as the reference indicator (ground truth) involves the the same input variables as the best

indicators found.

5. Conclusions

This contribution is focused on the design of a data-driven flooding indicator for an industrial

debutanizer column. As the ground truth, a reference indicator is used that is designed according

to the industrial knowledge and observations of the debutanizer flooding. The effectiveness of

unsupervised and supervised machine learning approaches was evaluated by considering various

input structures. The results showed that the unsupervised learning approach can provide sufficient

flooding indicators if appropriate input variables are used. The supervised learning approaches

achieved higher effectiveness compared to unsupervised learning approaches, resulting from the

direct usage of reference indicator labels. The results of supervised learning approaches revealed

that the most accurate estimate of the debutanizer flooding is provided by the reflux flow rate

and heating medium flow in the reboiler. Future work might involve design of indicators for the

chosen performance criterion in a multi-objective fashion. It would also be possible to design an

unsupervised approach that would be capable of choosing the optimal indicator input structure

much like the structure achieved with supervised learning in this study.
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