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Abstract: 

A virtual representation of a physical procedure or product is called digital twin which can enhance efficiency 

and reduce costs in manufacturing process. Utilizing the digital twin, production teams can examine various data 

sources and reduce the number of defective items to enhance production efficiency and decrease industrial 

downtime. Digital Twin can be utilized to visualize the asset, track changes, understand and optimize asset 

performance throughout the analysis of the product lifecycle.  Also, the collected data from  digital twin can 

provide the complete lifecycle of products and processes to optimize workflows of part production, manage 

supply chain, and manage product quality. The application of digital twin in smart manufacturing can reduce time 

to market by designing and evaluating the manufacturing processes in virtual environments before manufacture. 

Comprehensive simulation platforms can be presented using digital twins to simulate and evaluate product 

performances in terms of analysis and modification of produced parts. Commissioning time of a factory can also 

be significantly reduced by developing and optimising the factory layout using the digital twin. Also, the 

productivity of part manufacturing can be enhanced by providing the predictive maintenance and data-driven 

root-cause analysis during part production process. In this paper, application of digital twin in smart 

manufacturing systems is reviewed to analyze and discuss the advantages and challenges of part production 

modification using the digital twin. So, the research field can advance by reading and evaluating previous papers 

in order to propose fresh concepts and approaches by using digital twins in smart manufacturing systems. 
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1- Introduction 

A digital twin is a virtual representation of a physical system or process that allows for real-time monitoring, 

analysis, and optimization. In the context of smart manufacturing, a digital twin can be used to simulate and 

optimize the production process, predict and prevent equipment failures, and improve efficiency and quality of 

part production [1, 2]. The digital twin can provide a detailed, accurate representation of the physical object or 

system, including its behavior, performance, and interactions with the environment [3]. Digital twins use machine 

learning, data analytics, and multi-physics simulation in order simulate and analyze different working conditions 

and other factors affect a system [4].   The creation of the digital twin is a critical component of future technology 

that will have an impact on several global sectors [5]. By analyzing data from the physical object, the Digital Twin 

can provide real-time feedback, monitor its performance, and identify potential issues before they occur [6]. A 

digital twin can be used in order to optimize the operation of a physical system, by simulating its behavior and 

identifying areas where improvements can be made. [7]. Furthermore, companies can utilize digital twins to 

model, anticipate, and improve products and manufacturing processes in different industries, including 

automotive, green energy, and aviation before organizations invest in actual prototypes and assets, [8]. As a 

result, digital twins can help businesses and manufacturing process in order to make better decisions, reduce 

costs, and improve performance across a range of industries and applications.   
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By creating a digital twin, engineers and designers can test various scenarios and make improvements, reducing 

the time and costs associated with physical testing and prototyping [9]. The use of digital twin technology is 

essential for product manufacturers in order to improve the productivity of their manufacturing processes and 

shorten time-to-market [10]. Digital twins in smart manufacturing are created by combining real-time data from 

physical sensors with computer-aided design (CAD) models and other simulation tools. This allows manufacturers 

to monitor and analyze the performance of equipment and processes in real time, identify potential issues before 

they occur, and make data-driven decisions to optimize production. [11]. By creating a digital twin of a part, 

engineers can analyze its performance under different conditions, such as changes in temperature, pressure, and 

load. This allows them to predict how the part will perform in real-world situations, identify potential issues or 

failures, and optimize its design to improve its performance [12]. The digital twin provides several benefits to 

smart manufacturing. For one, it enables real-time monitoring of manufacturing processes, allowing for quick 

identification and resolution of issues. Additionally, it allows for the testing and optimization of products and 

processes before they are physically produced, which can save time and resources [13]. Moreover, production 

digital twins are employed to verify the effectiveness of a manufacturing process prior to component 

manufacture. A digital twin can be used to monitor the performance of individual machines or production lines, 

detect potential issues before they occur, and optimize the system's operations to minimize downtime and 

maximize output. It can also be used to simulate and test new production processes or equipment before they 

are implemented in the physical system in order to reduce the risk of costly errors or failures [3]. Performance 

digital twins enable the manufacturing managers to enhance models and system performance while generating 

new commercial prospects [14]. A digital twin, which spans the full engineering lifecycle, makes it possible to 

test and apply continuous improvements at any point in the manufacturing process in a digital setting that is far 

less expensive to run than the real world. Some businesses utilize digital twins to simulate whole manufacturing 

lines and identify more effective ways in order to enhance productivity in part production process [15]. 

Smart manufacturing is a manufacturing approach that incorporates advanced technologies such as artificial 

intelligence, the Internet of Things (IoT), robotics, and big data analytics to optimize production processes and 

increase efficiency. The complexity of the production environment is rising, and the tasks involved in 

manufacturing are getting more customized [16]. As a result, the production system requires a high degree of 

cognitive and learning skills in terms of analysis and modification of manufacturing process. Smart manufacturing 

also provides opportunities for product customization and personalization, as well as real-time supply chain 

management. It enables manufacturers to respond quickly to changes in demand, market trends, and customer 

preferences, and to create products that are tailored to individual customers' needs [17]. It involves the use of 

connected devices, automation, and real-time data to improve efficiency, productivity, and quality in 

manufacturing operations [18]. Smart manufacturing aims to create a more agile, flexible, and responsive 

manufacturing environment that can quickly adapt to changing market demands and provide high-quality 

products at lower costs. [19]. Thus, it uses and integrates digital software tools and data throughout the product 

lifecycle. In a smart manufacturing process, every resource is digitalized in order to be nalyzed and modified in 

virtual environments [20]. The transition from conventional MSD to digital twins-based SMSD approach is shown 

in the figure 1 [21].  



 

Fig. 1. The switch from the traditional MSD strategy to the SMSD approach based on digital twins [21]. 

Status monitoring, simulation, and visualization make up the majority of the present uses of digital twins in smart 

manufacturing. Machines are continually monitored utilizing internet of things for status monitoring, and the 

most recent state of a machine may be evaluated by querying its digital twin [22]. Also, digital twins of physical 

assets (such as machines) are generated in order to analyze and modify the mechanism and process of machines 

in part production [23]. Digital twins of products, systems, and equipment are developed for simulation in order 

to simulate actual working environments. Using the proposed digital twins, new products and processes can be 

designed, developed, and modified using virtual simulation before being implemented on genuine physical assets 

in order to enhance the performances of products and production process [24]. Real-time dashboards and alarm 

systems can be integrated into digital twins for display in order to track and troubleshoot an operational 

environment [25]. Digital twins are now only thought of as an identical clone of physical assets without any value-

added services placed on top that would allow physical assets to become autonomous intelligent agents [26]. 

Digital twins in predictive maintenance can increase productivity, identify issues early, and continue to provide 

fresh perspectives in addition to process optimization [27]. The company can identify the main source of the 

issue with the aid of a contextual model of your machines created by the digital twin during the production 

process [28]. Additionally, testing operating conditions and receiving anticipated results digitally, identifying new 

revenue streams, cutting down on waste, costs, and energy use, performing predictive maintenance on 

manufacturing processes, improving quality and customer satisfaction, tracking each product from production 

to finish, enabling new business models, cutting down on time to market, and finally enhancing productivity of 

part manufacturing are all important [29]. A big advantage of this upgraded digital twin design is the potential to 

give much more than just a perfect duplicate in order to provide value-added services on top of digital twins 

which are not accessible on physical assets [30]. Figure 2 depicts the architecture of the Digital Twin for digital 

production [31]. 

 

 



 

Fig. 2. The design of the digital twin for manufacturing [31]. 

 

The use of digital twins in a manufacturing system could be categorized into three phases. In the system design 

phase, digital twin could be used to conduct validation and test that can quickly locate the inefficiency reason, 

and test the practicability of physical manufacturing solution in execution. In this phase, a digital twin can be 

used to monitor and analyze the performance of manufacturing system in real-time. This can help in order to 

identify issues before they become critical, predict failures, and optimize the operation of system [20, 32]. 

In the system configuration/reconfiguration phase, the digital twin-based configuration is supposed to enable 

the validating of manufacturing system performance in a semi-physical simulation manner. This phase typically 

involves designing the digital twin based on the physical system's specifications, such as its geometry, material 

properties, and operating conditions. Once the digital twin is created, it can be used to simulate the behavior of 

system under various conditions, such as changes to the input parameters or the introduction of new 

components. During this phase, the digital twin can also be used to identify potential failures and vulnerabilities 

in the physical system before they occur [33]. 

In the system operation, how to update the online parallel controlling in the cyber model and feedback on the 

adjustment instructions to the physical manufacturing system is a key enabling technology. In this phase, digital 

twins can be used to monitor and optimize the performance of manufacturing systems in real-time. This can help 

manufacturers to identify and resolve issues before they cause downtime, reduce waste, and improve efficiency 

of part production [34, 35]. 

The benefit of a digital twin is that it can provide a virtual replica of a physical system, allowing for testing and 

analysis without disrupting the actual system. A digital twin for smart manufacturing can provide significant 

benefits in terms of efficiency, cost reduction, and product quality. As manufacturing becomes increasingly 

complex and interconnected, digital twins are likely to become an essential tool for manufacturers looking to 

stay competitive in the global marketplace. However, the disadvantage is that creating and maintaining a digital 

twin can be expensive and time-consuming, and may require specialized knowledge and expertise. To develop a 

digital twin in the modern production systems, there are significant obstacles, nevertheless. Low-quality data 



collected during part manufacture can reduce a digital twin's ability to modify a manufacturing process. All of 

these endpoints contribute to a massive amount of data collection, and each one is a potential security 

vulnerability. Therefore, firms should examine and update current security procedures before deploying digital 

twin technology. Advanced Internet of Things (IoT) algorithms should be developed in terms of analysis and 

adjustment of component manufacture to manage a huge amount of data that are acquired from the sensors in 

the machines. Digital twin models are powered by data from hundreds of remote sensors connected via shaky 

networks. Businesses who want to deploy digital twin technology need to be able to manage data stream gaps 

and eliminate inaccurate data. Building digital twins also requires real-time data communication. Because for 

digital twins to be effective, they must accurately mirror the condition of real devices. Privacy and security of 

data is also another challenge of part manufacturing modification using digital twin. Moreover, the lack of stable 

and sustainable technologies stands in developing a concrete end-to-end collaborative digital twin system for 

smart distributed manufacturing. 

To improve the green performance of smart manufacturing systems, Li et al. [36]developed the concept of the 

digital twin. Lu et al. [37] described the status and development of digital twin-driven smart manufacturing in 

order to create applications for this technology. Lattanzi et al. [38] presented a review of concepts for a practical 

industrial implementation of the twin in smart manufacturing in order to assess and modify the current state-of-

the-art on Digital Twin concepts and to draw their most recent state for use and deployment in actual industrial 

processes. To improve the impact of the digital twin on the energy consumption of component production, Wang 

et al. [39] provide an overview of digital twin approaches in smart manufacturing and management of energy 

applications.  

Regrading the presented review papers in application of digital twin in part manufacturing process [19], [36-40] 

, more published papers in different topics of part manufacturing such as continues improvement and production 

monitoring system, optimization of part production process, quality enhancement of produced part, safety 

enhancement of working conditions, virtual commissioning, and predictive maintenance of production machines 

are discussed. Moreover, application of digital twin in different industries such as automotive industry, 

aeronautical industry, renewable energy industry and telecom industry are studied in order to enhance the 

performances of digital twin in productivity enhancement of part production. 

Soori et al. suggested virtual machining techniques to evaluate and enhance CNC machining in virtual 

environments [41-44]. To investigate and enhance performance in the component production process employing 

welding procedures, Soori et al. [45] suggested an overview of current developments in friction stir welding 

techniques. Soori and Asamel [46] examined the implementation of virtual machining technology to minimize 

residual stress and displacement error throughout turbine blade five-axis milling procedures. Soori and Asmael 

[47] explored applications of virtualized machining techniques to assess and reduce the cutting temperature 

throughout milling operations of difficult-to-cut objects. Soori et al. [48] indicated an advanced virtual machining 

approach to improve surface characteristics throughout five-axis milling procedures for turbine blades. Soori and 

Asmael [49] created virtual milling processes to reduce displacement error throughout five-axis milling 

operations of impeller blades. In order to analyze and develop the process of part production in virtual 

environments, virtual product development is presented by Soori [50]. Soori and Asmael [51] proposed an 

overview of current advancements from published research to review and enhance the parameter technique for 

machining process optimization. In order to improve the efficiency of energy consumption, the quality and 

availability of data across the supply chain, and the accuracy and dependability of component manufacture, 

Dastres et al. [52] proposed a review of RFID-based wireless manufacturing systems. Soori et al. [53] explored 

machine learning and artificial intelligence in CNC machine tools to boost productivity and improve profitability 

in production processes of component employing CNC machining operations. To improve the performance of 

machined components, Soori and Arezoo [54] reviewed the topic of measuring and reducing residual stress in 

machining operations. To improve surface integrity and decrease residual stress during Inconel 718 grinding 

operations, Soori and Arezoo [55] proposed the optimum machining parameters employing the Taguchi 

optimization method. In order to increase the life of cutting tools during machining operations, Soori and Arezoo 

[56] examined different method of tool wear prediction algorithms. Soori and Asmael  [57] investigated 

computer assisted process planning to boost productivity in the part manufacturing procedure. Dastres and Soori 

[58] addressed improvements in web-based decision support systems to give solutions for data warehouse 



management using decision-making assistance. Dastres and Soori [59] reviewed applications of artificial neural 

networks in different sections, such as analysis systems of risk, drone navigation, evaluation of welding, and 

evaluation of computer simulation quality, to explore the execution of artificial neural networks for improving 

the effectiveness of products. Dastres and Soori [60] proposed employing communication system in 

environmental concerns to minimize the negative effects of technological advancement on natural catastrophes. 

To enhance network and data online security, Dastres and Soori [61] suggested the secure socket layer.  Dastres 

and Soori [62] studied the developments in web-based decision support systems to develop the methodology of 

decision support systems by evaluating and suggesting the gaps between proposed approaches. To strengthen 

network security measures, Dastres and Soori [63] discussed an analysis of recent advancements in network 

threats. To increase the potential of image processing systems in several applications, Dastres and Soori [64] 

evaluated image processing and analysis systems. Dimensional, geometrical, tool deflection, and thermal defects 

have been modified by Soori and Arezoo [65] to improve accuracy in 5-axis CNC milling processes. Recent 

developments in published articles are examined by Soori et. al. [66] in order to assess and improve the impacts 

of artificial intelligence, machine learning, and deep learning in advanced robotics. Soori and Arezoo [67] 

developed a virtual machining system application to examine whether cutting parameters affect tool life and 

cutting temperature during milling operations. Soori and Arezoo [68] studied the impact of coolant on the cutting 

temperature, roughness of the surface, and tool wear during turning operations with Ti6Al4V alloy. Recent 

developments from published papers are reviewed by Soori[69] in order to examine and alter composite 

materials and structures. Soori et al. [70] examined the Internet of things application for smart factories in 

industry 4.0 to increase quality control and optimize part manufacturing processes To minimize cutting tool wear 

during drilling operations, Soori and Arezoo [71] designed a virtual machining system. Soori and Arezoo [72] 

decreased residual stress and surface roughness to improve the quality of items produced utilizing abrasive water 

jet machining. 

In order to provide the most recent developments from the published papers in the analysis and modification of 

smart manufacturing systems, a review of recent developments in smart manufacturing by intelligent digital twin 

is presented in the study work. The review paper is novel as new aspects of application of digital twin in smart 

manufacturing such as  continuous improvement of manufacturing systems, process and product performance 

optimization using the digital twin, downtime reduction in process of part production, virtual commissioning and 

assembly simulation are studied and recent achievement from published papers are also discussed. Moreover, 

the implementation of digital twins in a variety of industries, including the automotive, aerospace, renewable 

energy, and telecom sectors, has also been investigated in order to improve their productivity enhancement of 

part manufacturing. As a result, the gaps between the proposed ideas and methodologies are obtained  by 

analyzing the previous published papers in the research field and ideas and directions of future research works 

are also presented. So, the productivity of the production process can be increased, modern smart manufacturing 

methodologies can be introduced. 

 

2- Applications of digital twin in smart manufacturing 

The performance of a product can be analyzed and modified using the applications of digital twin in part 

manufacturing. A digital twin can be used to model the entire manufacturing process, from raw materials to 

finished products. It can be used to simulate different scenarios and predict how the system will behave under 

different conditions. This allows manufacturers to identify potential issues and optimize the system for better 

performance [73]. In smart manufacturing, the digital twin can be connected to real-world sensors and other 

devices, allowing it to be updated in real-time based on the data collected from the manufacturing process. This 

allows manufacturers to monitor and control the system more effectively, and to make adjustments to optimize 

performance [74]. A digital twin can simulate the actual performances of produced parts regarding to the 

different working conditions in virtual environments. Testing is a critical step of designing component in order to 

evaluate the performance targets of produced parts in working conditions and industry compliances. By creating 

a digital twin and using the digital simulation and analysis, the need for developing physical prototypes can be 

removed  [75]. This leads to a shorter development period and better final quality of product or process. The use 



of digital twins at a manufacturing site can also be used to monitor and enhance a whole production line or even 

the complete manufacturing process from product conception and development to production [76]. By using the 

digital twins in analysis and modification of parts, optimization process of part designing can be enhanced. As a 

consequence, companies can use this technology to evaluate product design in a virtual environments in order 

to enhance accuracy and quality of produced parts [77]. 

 

2-1- Digital twin for continuous improvement of manufacturing systems 

Digital twins offer a powerful tool for continuous improvement of manufacturing systems, enabling 

manufacturers to reduce costs, improve quality, and increase productivity [78]. In the context of continuous 

improvement of manufacturing systems, a digital twin can be used to simulate and optimize the performance of 

the actual system. Manufacturers can now track machine performance in real time and compare it to 

expectations thanks to the usage of digital twins. After then, the knowledge may be used to improve machine 

performance and extend its usable life. Hitachi, a pioneer in the industry, is helping to advance things.  This allows 

manufacturers to identify and address potential issues before they occur, reducing downtime and improving 

overall efficiency [79]. In addition to simulation and optimization, digital twins can also be used for monitoring 

and analysis of manufacturing systems in real time. By collecting data from sensors and other sources, 

manufacturers can use digital twins to identify patterns, trends, and anomalies in their systems. This information 

can then be used to make data-driven decisions about how to optimize production and improve overall 

performance [80]. Digital twins can also be used to test and validate new manufacturing processes or equipment 

before they are implemented in the real world. This can help to reduce the risk of costly errors or failures, and 

accelerate the time to market for new products [81]. The utilization of digital twins generates a lot of information 

on anticipated performance outcomes, enabling more effective product research and development. Businesses 

can utilize this data to get insights that will help them make the required product adjustments before they start 

production [82]. 

2-2- Part production monitoring and modification using digital twin 

The digital-twin strategy can be used to improve quality of products, production methods, or even whole value 

chains. In the context of part production, a digital twin can be created for a specific machine or production line, 

allowing for real-time monitoring of production processes. This includes tracking variables such as temperature, 

pressure, and flow rate, which can impact the quality of the final product [83]. By analyzing data from the digital 

twin, manufacturers can identify areas where production processes can be optimized or modified to improve 

efficiency and product quality. For example, if the digital twin detects that a certain machine is producing parts 

with higher defect rates than others, adjustments can be made to the production process to improve quality. 

[84]. Digital twins can also be used to track energy consumption in process of part manufacturing and find areas 

where money can be saved. Continuous Improvement at manufacturing sites can also implemented  by using 

digital twins [85]. Manufacturers can now track machine performance in real time and compare it to expectations 

thanks to the usage of digital twins [86]. A hypothetical shop floor for a digital twin is shown in Figure 3[87]. 



 

Fig. 3. Conceptual model of digital twin shop-floor [87]. 

2-3- Process and product performance optimization using digital twin 

Industrial processes can be optimized by using digital twins without losing time or resources. To increase 

productivity in the part production process, manufacturing industry operations can be optimized using a digital 

twin [40]. The use of digital twins can help companies to optimize the performance of their processes and 

products by providing a virtual replica that can be used for simulation and analysis. By leveraging the power of 

advanced analytics and machine learning, companies can make data-driven decisions to improve their 

performance, reduce costs, and increase efficiency [88]. For manufacturers in all industries, the process can be 

very valuable, from forecasting quality in real time to doing away with the need for costly physical testing [89]. 

By using sophisticated simulations based on actual data collected by Internet of Things sensors, digital twins can 

contribute to the improvement of current industrial processes [90]. A digital twin of a production line can be 

used to simulate how changes in the manufacturing process, such as adjusting machine settings or modifying the 

assembly line layout, would affect production output and efficiency. This can help companies identify the most 

effective process changes before implementing them in the real world, saving time and money [91]. Utilizing the 

digital twin, production teams may examine various data sources and reduce the number of defective items to 

increase efficiency and save money in process of part production. Industries are able to boost production and 

decrease industrial downtime. The concept is also used to predict maintenance concerns more quickly [92]. 

Smart manufacturers can predict the final product's quality by utilizing a digital twin in order to enable them to 

make more informed decisions about things like material and process changes [93]. Digital twins can be used in 

industrial manufacturing to ensure consistency during mass production [94]. Figure 4 illustrates a digital twin 

mapping strategy through model update and optimization procedure [31]. 

 



 

Fig. 4. Digital Twin mapping scheme by model updating and optimization process [31]. 

2-4- Downtime reduction in process of part production using digital twin 

To reduce downtime in the process of part production, the digital twin can be used to simulate different scenarios 

and identify potential problems before they occur [95]. The digital twin can be used to simulate the effects of 

changing the parameters of the production process, such as the speed of the machines or the temperature of 

the environment. By simulating these conditions, it is possible to identify potential issues and make adjustments 

to the process to prevent downtime. [96]. Another way that a digital twin can help reduce downtime is by 

providing real-time monitoring of the production process. By monitoring the production process in real time, it 

is possible to identify potential issues as they arise and take corrective action before they lead to downtime [97]. 

By connecting the digital twin to sensors in the real production environment, it is possible to monitor the process 

in real-time and identify any issues that may lead to downtime. This allows for quick corrective action to be taken 

before downtime occurs [98]. By connecting the digital twin to sensors in the real production environment, it is 

possible to monitor the process in real-time and identify any issues that may lead to downtime. This allows for 

quick corrective action to be taken before downtime occurs [99]. The digital twin can be used to train operators 

and test different scenarios before they are implemented in the real world. This can help to reduce human error 

and improve the efficiency of the production process, ultimately leading to less downtime [100]. The digital twin 

can also be used to simulate different production methods and identify the most efficient process for producing 

the part. By optimizing the production process, it is possible to reduce the risk of downtime caused by process 

inefficiencies. [101]. By analyzing sensor data and other information from the digital twin, it is possible to identify 

patterns and trends that may indicate potential issues with equipment. This can allow maintenance teams to 

schedule repairs or replacements before a breakdown occurs, reducing the risk of downtime [102]. Overall, the 

use of a digital twin in the process of part production can be an effective way to reduce downtime. By simulating 

different failure conditions and providing real-time monitoring, it is possible to identify potential risk and make 

adjustments to the process to prevent downtime [103]. 

2-5- Safety enhancement by identifying hazards and risks of manufacturing process 

Identifying hazards and risks is a critical step in enhancing safety in the manufacturing process. By recognizing 

dangers and risks through preventative maintenance, digital twins can increase safety in prat production process. 

Machine health and operational conditions are evaluated using digital twin data [104]. In the context of a 

manufacturing process, a digital twin can be used to identify hazards and risks and enhance safety [105]. A digital 

twin can be used to identify hazards in the manufacturing process by simulating the behavior of the system under 

different conditions. Once hazards have been identified, a digital twin can be used to assess the risks associated 

with them. This can be done by simulating the consequences of a hazard under different scenarios and 

quantifying the likelihood and severity of those consequences. [106]. Based on the results of hazard identification 

and risk assessment, a digital twin can be used to optimize safety measures. A digital twin can also be used for 

training and education purposes in process of part production. By simulating hazardous scenarios, workers can 

be trained on how to respond to them in a safe and effective manner. Additionally, preventative maintenance 



using digital twins cuts down on time spent in the field, which lessens the danger of mishaps and injuries. Instead 

of doing actual testing, it is safer and less expensive to train and validate algorithms using digital twins [107]. 

Overall, a digital twin can be a valuable tool for enhancing the safety of a manufacturing process by identifying 

hazards, assessing risks, optimizing safety measures, and providing training and education. 

 

2-6- Digital twin in predictive maintenance  

Predictive maintenance is an approach that uses data analysis tools and techniques to monitor equipment and 

predict when maintenance is required, with the goal of minimizing downtime and reducing maintenance costs. 

Digital twin technology is an approach that involves creating a virtual model of a physical asset or system, which 

can be used for simulations and testing [108]. Early problem identification aids in avoiding failures that might 

lower production quality. Manufacturers can forecast when problems will arise and address maintenance issues 

before they stop production by utilizing digital twins to examine the internal workings of their complicated 

machines [109]. In predictive maintenance, digital twins can increase productivity, identify issues early on, and 

keep providing fresh perspectives [110]. Understanding the core cause of the problems can be aided by using a 

contextual model of machining processes through the digital twin in the production process. A proactive method 

of equipment maintenance is predictive maintenance [111]. It enables real-time monitoring of equipment 

performance and failure prediction. This forecast aids in preventing circumstances where a machine malfunction 

can result in production halts. Early defect analysis and identification also aid in upholding safety standards and 

regulations in an industrial setting. Condition monitoring is one of the key components of predictive maintenance 

[112]. Additionally, predictive maintenance aids in the early identification of faults that may later develop into 

more serious ones. Real-time equipment monitoring should lead to better decision-making for executives in the 

manufacturing industry [113]. Additionally, the equipment will operate more effectively overall and last longer. 

The success that manufacturing companies have had is one of the factors contributing to the increased success 

of predictive maintenance. A part of manufacturing's predictive analytics is predictive maintenance [114]. 

Manufacturers need predictive maintenance solutions because they may improve product quality, optimize 

preventive or corrective measures taken on assets, eliminate production delays caused by unscheduled machine 

downtime, and ultimately keep company expenses low [115]. Figure 5 depicts a defect diagnostic framework 

with a digital twin [31]. 

 

Fig. 5. Framework for problem diagnostics using Digital Twin [31]. 

2-7- Reduction of product time to market using the digital twin 



Digital twin technology can help reduce the time to market for a product by providing a virtual model of the 

product that can be tested and optimized before the physical product is built. This can help to identify potential 

problems early on in the design process and make necessary changes before production begins [116]. In addition, 

By creating a digital twin of the product, designers can test different configurations and optimize the design for 

performance and efficiency. This can help to reduce the number of physical prototypes needed and speed up the 

design process [117]. Operators can accelerate all phases of the manufacturing process, including design, 

development, testing, and maintenance, as a result of the removal of the delays associated with physical goods 

in terms of hardware, labour, and materials [118]. Digital twins can be used to simulate the product in a virtual 

environment, allowing for testing and validation of different scenarios. This can help to identify potential 

problems and make necessary changes before the physical product is built [119]. Digital twins can be shared 

among different teams and stakeholders, allowing for better collaboration and communication throughout the 

product development process. This can help to speed up decision-making and reduce the time to market [120]. 

Digital twins can be also used to monitor the performance of the product in real-time, allowing for early detection 

of potential problems and maintenance needs. This process can help to reduce downtime and improve overall 

product reliability. Overall, digital twin technology can help to reduce the time to market for a product by 

providing a virtual model that can be optimized and tested before the physical product is built, as well as by 

enabling better collaboration and communication among different teams and stakeholders. 

 

2-8- Digital twin in virtual commissioning 

A digital twin can be used as a tool for virtual commissioning, as it allows engineers and technicians to simulate 

and test the control system and automation system in a virtual environment, before it is installed in the real 

world. Early system design validation through virtual commissioning enables the prediction and resolution of 

problems and errors that arise during the first integration of equipment and processes [121]. By using a digital 

twin, it is possible to identify and resolve potential issues and problems in the control system or automation 

system, before it is deployed in the field. This can help reduce the time and cost of commissioning, as well as 

improve the performance and reliability of the system. Contrary to physical commissioning, virtual 

commissioning has the substantial benefit that no one has to wait for the arrival of all hardware before beginning 

[122]. 

The use of a digital twin for virtual commissioning is becoming increasingly common in industries such as 

manufacturing, aerospace, and automotive, where complex automation systems and control systems are 

used.[123]. Manufacturers can save time, money, decrease risk, and promote concurrent engineering by  

predicting the expensive future problems in process of part production. Virtual commissioning is perhaps the 

most crucial step in the simulation process because it creates a risk-free testing environment [124]. It is also 

advantageous to system builders and integrators since it can accelerate project timelines. The digital twin can be 

integrated with other simulation tools, such as finite element analysis and computational fluid dynamics, to 

provide a comprehensive virtual testing environment for the system  [125]. 

A virtual commissioning digital twin provides a platform for engineers to design, test, and optimize systems and 

processes in a digital environment, reducing the risks and costs associated with physical commissioning. [126]. It 

is increasingly being used in a range of industries, including manufacturing, energy, and transportation, to 

improve efficiency, reduce costs, and enhance performance [127]. 

 

2-8- Collaboration Improvement between teams using digital twins for manufacturing 

Digital twins are virtual replicas of physical assets or processes that can be used to simulate and optimize 

performance. They can be particularly useful in manufacturing, where they can help teams collaborate more 

effectively and improve efficiency [128]. Digital twins can strengthen engineering specialties and product design 

teams in addition to enhancing cooperation and workflow among various production teams [129]. Here are some 

ways that digital twins can be used to improve collaboration between teams in manufacturing: 

1. Shared understanding: Digital twins can provide a shared understanding of the manufacturing process, 

allowing teams to work together more effectively. By creating a digital twin of a machine or process, 

teams can collaborate on a single model and avoid misunderstandings or miscommunications. This 



shared understanding can also help teams identify potential issues and make improvements more 

quickly. 

2. Real-time monitoring: Digital twins can be used to monitor the performance of machines or processes 

in real-time. This can help teams identify issues as they arise and make adjustments quickly. By sharing 

this real-time data with other teams, such as maintenance or quality control, teams can collaborate 

more effectively and avoid downtime. 

3. Simulation and optimization: Digital twins can be used to simulate different scenarios and optimize 

performance. By running simulations, teams can identify potential issues and test solutions before 

implementing them in the real world. This can help teams collaborate more effectively by giving them 

a common platform to test ideas and make decisions. 

4. Remote collaboration: Digital twins can be accessed from anywhere, allowing teams to collaborate 

remotely. This can be particularly useful for global teams or teams that are working from home. By using 

digital twins, teams can collaborate in real-time, even if they are in different locations. 

Figure 6 illustrates a digital twin in production.  

 

Fig. 6. Digital twin in manufacturing [130]. 

Overall, digital twins can be a powerful tool for improving collaboration between teams in manufacturing. By 

providing a shared understanding, real-time monitoring, simulation and optimization, and remote 

collaboration, digital twins can help teams work together more effectively and improve efficiency. 

2-9- Assembly simulation using digital twin 

Assembly simulation using a digital twin is a powerful tool for optimizing the manufacturing process. A digital 

twin is a virtual replica of a physical object or system that can be used to simulate and analyze its behavior in 

real-time. In the case of assembly simulation, a digital twin can be used to model the assembly process and 

identify potential issues before they occur in the physical world. It is useful for digital prototyping in order to 

design and analyze new ideas and concepts in utilizing the new devices and methods [131]. A Digital Twin of the 

manufacturing and assembly system can visualize the entire process, and enable the assembly line designers in 

order to identify bottlenecks and throughput before the operation phase. Performance and flexibility analysis 

and verification for decision-making is another application of digital twin in the assembly of manufacturing 

process [132]. Moreover, assembly simulation using a digital twin can help reduce costs and improve efficiency 

by identifying potential issues before they occur in the physical world. It can also help reduce the time and 

resources required for physical prototyping and testing, as the digital twin can be used to test various scenarios 

and identify the optimal assembly process [133]. Figure 7 illustrates the operation of the virtual environment for 

the creation of a smart assembly process based on DT. [131]. 



 

Fig. 7. Mechanism of DT-based smart assembly process design in virtual space [131]. 

Overall, assembly simulation using a digital twin is a powerful tool for optimizing the manufacturing process 

and improving product quality. It can help reduce costs, improve efficiency, and ensure that products are 

manufactured to the highest standards. 

3- Applications of digital twin in the different industries 

There are different applications for the digital twin in the different industries such as  aeronautical industries, 

automotive industry, power-generation equipment and the telecom industry. In this section, applications of 

digital twin in the different industries is reviewed and discussed. 

3-1- Aeronautical industries 

The application of digital twins in aeronautical industries can lead to improved safety, efficiency, and 

sustainability, as well as cost savings and increased innovation. Digital twins provide a variety of advantages to 

businesses in the aerospace industry, including the capacity to extend the life of machinery and parts and use 

data to improve next versions [134]. Aerospace businesses can utilize digital twins in R&D to enhance the 

engineering of new parts by simulating their performance under a wide range of circumstances. A digital twin 

can be used to simulate and analyze the behavior of aircraft and their components, from design and 

manufacturing to maintenance and operations [135]. By creating a virtual model of an aircraft or its components, 

engineers can simulate different scenarios and test various design options before committing to a physical 

prototype. This can reduce the time and cost associated with traditional design and testing methods [136]. 

Moreover, digital twins can be used to monitor and optimize the performance of aircraft in real-time. By 

integrating data from sensors and other sources, operators can detect and diagnose potential issues before they 

become critical, and make informed decisions about maintenance and repairs. Figure 8 displays a mapping 

diagram between digital twin models and the manufacturing entity of a jet engine fan blade [137]. 

 

 

 



 

Fig. 8. Mapping diagram between digital twin models and manufacturing entity of jet engine fan blade [137]. 

Overall, the use of digital twins in aeronautical industries can lead to improved safety, efficiency, and 

sustainability, as well as cost savings and increased innovation. 

3-2- Automotive industry 

In the automotive industry, digital twins are used to simulate and test various aspects of a vehicle, from design 

and development to manufacturing and maintenance [138]. By creating a digital twin of a car, engineers and 

designers can analyze its performance and behavior in various scenarios, identify potential issues, and optimize 

its design and features before the actual production begins. This can save time and costs while improving quality 

and safety of car production process [139]. Digital twins are also used in predictive maintenance, where they can 

monitor the condition of a vehicle in real-time and detect potential problems before they become critical. This 

process can help to reduce downtime, prevent breakdowns, and extend the lifespan of the vehicle [140]. Access 

to real-time data of part production can also speed up car manufacturing by reducing data processing time and 

enhancing communication between automotive development teams [141]. By establishing a clever link between 

the automaker and the driver, this technology can help Maintenance Repair Operations (MROs) [142]. Figure 9 

illustrates the MRO's incorporated Digital Twin technology [138]. 



 

Fig. 9. Digital Twin technology embedded within the MRO [138]. 

In the system design phase, digital twins in the automotive sector can be used to a variety of things, including 

automobiles and robotic arms. Digital twins make vehicle design and development more dependable from a 

vehicle standpoint [143]. By accelerating simulations and executing them concurrently, it is possible to create 

thousands of hours of driving while retaining a realistic simulation environment with applied gravity, weight, and 

physical collision prediction [144]. A digital twin of an EV could be used to simulate various scenarios, such as 

different driving conditions, battery usage, and charging patterns. This can help the manufacturer optimize the 

design of the EV for maximum efficiency and performance, as well as identify potential issues before they arise 

[145]. Overall, digital twins have the potential to revolutionize the automotive industry by enabling more efficient 

and effective design, development, manufacturing, and maintenance processes. 

3-3- The renewable energy industry 

The market for renewable energy is expanding in light of the present climate change situation. Owners of 

renewable energy companies must increase the effectiveness of their power grids and cut costs in order to 

maintain growth in a fiercely competitive industry [146]. In the renewable energy industry, digital twins can be 

used to model and simulate various components and systems, such as wind turbines, solar panels, batteries, and 

power grids [147]. Additionally, the digital twin aids in life cycle management and behavior prediction for the 

solar power plant's system. Digital twins can also be used to monitor and predict the performance of renewable 

energy systems in real-time. By combining data from sensors, weather forecasts, and other sources, a digital twin 

can provide accurate predictions of power generation, maintenance needs, and potential failures. By creating a 

digital twin of a renewable energy system, engineers and operators can examine and optimize different designing 

procedures, identify potential problems, and improve performance and efficiency of final produced parts. For 

example, a digital twin of a wind turbine can simulate different wind speeds and directions to determine the 

optimal angle of the blades and the most efficient power output [148]. Figure 10 depicts a framework for applying 

Energy Digital Twin technology to the process and energy sectors. This technology includes Digital Model, Digital 

Shadow, and Digital Manager [149]. 



 

Fig. 10. A framework for utilizing Energy Digital Twin technologies in the process and energy sectors, 

encompassing Digital Model, Digital Shadow, and Digital Manager [149]. 

Overall, the application of digital twins in the renewable energy industry is expected to grow as renewable 

energy sources become more prevalent and complex. With the help of advanced analytics and machine 

learning algorithms, digital twins can help to maximize the value of renewable energy systems, reduce costs, 

and minimize downtime. 

3-4- The telecom industry 

The telecom industry digital twin is used to improve the efficiency, reliability, and performance of telecom 

networks by providing a platform for testing and optimizing new technologies, identifying potential problems 

before they occur, and improving overall network operations. By removing the silos, digital twins can provide a 

comprehensive end-to-end network picture that offers accurate real-time data and allows quick anomaly 

detection [150]. It can also be used to train network engineers and technicians, as well as to provide insights to 

customers on network performance. Telcos can guarantee flawless network operation and immediately alert 

customers of impending maintenance tasks. Digital twin technology is used by Neural Technologies to identify 

those who would be impacted by rising network latency [151].  Some potential applications of the telecom 

industry digital twin include: 

1. Predictive Maintenance: By analyzing real-time data from sensors and other sources, the digital twin 

can predict when a piece of network equipment may fail, allowing for proactive maintenance to prevent 

downtime[152]. 

2. Network Optimization: The digital twin can be used to test and optimize new network configurations, 

such as routing protocols or equipment upgrades, before they are implemented in the physical network. 

3. Performance Monitoring: By simulating the behavior of the physical network, the digital twin can 

provide real-time insights into network performance, allowing for quick identification and resolution of 

issues [153]. 

4. Customer Insights: The digital twin can be used to provide customers with insights into network 

performance, allowing them to better understand the quality of service they are receiving and to make 

informed decisions about their telecom services [154]. 



Figure 11 illustrates the justification for commissioning a system controlled by digital twins [155].  

 

Fig. 11. The purpose of commissioning controls for digital twin-based systems [155]. 

Overall, the telecom industry digital twin is a powerful tool for improving the efficiency, reliability, and 

performance of telecom networks, and is likely to play an increasingly important role as the telecom industry 

continues to evolve and expand. 

4- Conclusion and future research work directions 

A digital twin for smart manufacturing typically involves the use of sensors and other data collection tools to 

gather real-time data about the physical system or process, such as machine performance, temperature, 

pressure, and other parameters. This data is then fed into a digital model, which simulates the behavior of the 

physical system and allows manufacturers to visualize and analyze their operations in real-time. Digital twin is a 

virtual simulation of a physical system or process, which is used to monitor, control, and optimize its real-world 

counterpart. In the context of smart manufacturing, a digital twin can be used to create a virtual representation 

of a factory or production line, allowing manufacturers to simulate and optimize their manufacturing processes, 

identify potential problems and opportunities for improvement, and make informed decisions about production 

planning and resource allocation. The implementation of digital twins can significantly boost a company's added 

value by improving time and cost efficiency, ensuring seamless product or process functioning, and encouraging 

operational excellence. Digital twins can aid organizations in achieving improved efficiency, better decision-

making, and operational optimization by utilizing data and sophisticated analytics. They can assist in detecting 

product problems before they cause damages and failure to the process of part production. So, manufacturers 

can extend the life of their physical assets and machines using the application of digital twin in predicting and 

analyzing the problems and errors of manufacturing process and products. The application of digital twin can 

also be applied to streamline of production procedures and save downtime in terms of productivity enhancement 

of part production.  Some benefits of using digital twins in smart manufacturing include: 



1. Improved productivity and efficiency: By simulating manufacturing processes and identifying potential 

bottlenecks and inefficiencies, manufacturers can optimize their operations to increase productivity and 

reduce waste. 

2. Predictive maintenance: Digital twins can be used to monitor machine performance and detect potential 

problems before they lead to downtime or costly repairs, enabling manufacturers to schedule 

maintenance activities proactively. 

3. Enhanced quality control: By monitoring the performance of machines and production processes in real-

time, manufacturers can detect defects and anomalies early in the production process, reducing the 

likelihood of defects in finished products. 

4. Reduced costs: By identifying opportunities for optimization and reducing waste, manufacturers can 

save money on materials, energy, and labor costs. 

Overall, the use of digital twins in smart manufacturing can help manufacturers achieve greater efficiency, reduce 

costs, and improve the quality of their products. The potential of digital twins in smart manufacturing is limitless 

since more and more cognitive resources are continuously being allocated to their exploitation. Since digital 

twins are always learning new skills, they can keep producing the insights needed to improve products and 

expedite processes. Digital twin technology is increasingly being adopted in smart manufacturing to improve 

efficiency, reduce costs, and enhance product quality. Here are some areas for future research in digital twin 

technology for smart manufacturing: 

 

1. Integration with the Internet of Things (IoT): The IoT is a network of physical devices that are embedded 

with sensors, software, and connectivity to enable data exchange. The integration of digital twin 

technology with IoT can enable real-time monitoring, analysis, and control of manufacturing processes. 

2. Integration with Industry 4.0 technologies: The integration of digital twin technology with other Industry 

4.0 technologies such as the Internet of Things (IoT), artificial intelligence (AI), and machine learning can 

enhance the functionality and effectiveness of digital twins for smart manufacturing. 

3. Multi-scale digital twins: Multi-scale digital twins can provide a more comprehensive and detailed 

understanding of the manufacturing process by incorporating multiple levels of detail, from the 

microscopic to the macroscopic. This approach can help identify and solve problems at different scales, 

leading to better process optimization. 

4. Integration with advanced analytics: Digital twin technology can provide a wealth of data on 

manufacturing processes and equipment performance. By integrating digital twin technology with 

advanced analytics tools such as machine learning and artificial intelligence, manufacturers can gain 

deeper insights into their operations and make more informed decisions 

5. Machine learning and artificial intelligence: Digital twin technology can be enhanced with machine 

learning and artificial intelligence algorithms to enable predictive maintenance, real-time optimization, 

and anomaly detection. This can help to reduce downtime and increase efficiency. 

6. Real-time optimization: Real-time optimization using digital twins can enable manufacturers to quickly 

adjust their processes to changing conditions, such as fluctuations in demand or supply chain 

disruptions. This can improve process efficiency, reduce downtime, and increase overall productivity. 

7. Collaboration and communication: Digital twins can facilitate collaboration and communication 

between different stakeholders in the manufacturing process, including designers, engineers, 

operators, and managers. Future research can focus on developing tools and platforms that enable 

seamless communication and collaboration. 

8. Optimization of supply chain processes: Digital twin technology can be used to create virtual 

representations of supply chain networks, enabling manufacturers to optimize their logistics and 

inventory management processes. Future research could focus on developing more sophisticated 

models for supply chain optimization using digital twin technology. 



9. Human-machine collaboration: As manufacturing processes become increasingly automated, it will be 

important to consider the role of human workers in these environments. Future research could explore 

ways to integrate digital twin technology with human-machine interfaces to improve collaboration and 

decision-making. 

10. Cybersecurity: With the increasing use of digital twins in manufacturing, it is important to ensure that 

these virtual replicas are secure from cyber attacks. Future research can focus on developing 

cybersecurity protocols and technologies to protect digital twins from malicious attacks. 

11. Scalability: As concerns about environmental sustainability become more pressing, manufacturers are 

looking for ways to reduce their carbon footprint and minimize waste. Digital twin technology can be 

used to model the environmental impact of manufacturing processes and identify opportunities for 

improvement. Digital twin technology is being used in various industries, including aerospace, 

automotive, and healthcare. Future research can focus on developing scalable digital twin solutions that 

can be easily customized and deployed across different manufacturing environments. 

Overall, digital twin technology has the potential to revolutionize smart manufacturing by enabling real-time 

monitoring, optimization, and collaboration. Future research can focus on addressing the challenges and 

limitations of digital twin technology to realize its full potential in smart manufacturing. 
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