

NiSe₂ Modified Carbon Fibre Cloth as the High-Performance Electrode for Thermally Chargeable Supercapacitors

P. Rupa Ranjani^{a, b, c}, N. Padmanathan^a, Subhajit Biswas^{b, c}, Justin D. Holmes^{b,c*} and Kafil M. Razeeb^{a*}

^aMicro-Nano System Centre, Tyndall National Institute, Cork T12 R5CP, Ireland., ^bSchool of Chemistry, University College Cork, Cork T12 YN60, Ireland. ^cEnvironmental Research Institute, University College Cork, Cork, T23 XE10, Ireland. Address to correspondences: <u>kafil.mahmood@tyndall.ie</u>; <u>j.holmes@ucc.ie</u>

Introduction to "TRANSLATE"

Flexible carbon cloth (CC) can provide high mechanical integrity and large surface area.

Direct integration of metal selenide on conducting substrates increase the stability and specific capacity

NiSe2@ ACC

Schematic representation of NiSe₂ microsphere@ACC preparation

Results and discussion

Structural characterization and surface area analysis of NiSe, microspheres

Figure. (a) XRD pattern of NiSe@ACC, (b) Raman Spectroscopy analysis of ACC and NiSe₂@ACC and (c) BET and BJH plot of NiSe@ACC

- ➤ The XRD pattern confirms the NiSe2cubic crustal structure.
- The Raman spectra further supports the growth of NiSe₂ on ACC and shows sharp peak at 212 cm⁻¹ and an other peak at 225 cm⁻¹ which are attributed to Ni-Se vibrations.
- The BET and BJH plot reveals the surface area and average pore diameter of NiSe₂ microsphere to be 15.0 m2 g-1 and 17 nm, respectively.

10 nm

> The SEM images confirms the integration and growth of $NiSe_2$ microspheres on carbon cloth.

- The Elemental mapping and EDX spectra confirms the chemical composition of NiSe₂ on carbon cloth with appropriate atomic weight distribution.
- > The TEM image further confirms the formation of $NiSe_2$ microsphere.
- The d spacing obtained from HR-TEM corresponds to 220 plane, which matches well with the XRD pattern and confirms the formation NiSe₂ cubic crystal structure.

Figure . (a) SEM image of NiSe microsphere prepared through hydrothermal process at 180 °C for 12, (b) Elemental mapping and EDAX Spectra NiSe microsphere and (c-e) TEM images of NiSe₂ microsphere

³⁰(b)

Morphological Analysis of NiSe,@ACC

Electrochemical performance of NiSe₂@ACC

NiSe₂// NiSe₂ electrodes based thermo-cell

20	
(a)	 10 V

0.29 nm (d_{hki} 220

32 10 K

60		
00	$\left(a \right)$	

(b)

The electrochemical performance of NiSe₂@ACC electrode was evaluated in three-electrode configuration using 1 M NaOH electrolyte

100 nm

- CV profile shows the explicit oxidation and reduction peaks due to the Ni^{2+/3+} redox couples.
- GCD graph at various specific current denotes the batterytype charge storage process at the electrodes.
- At 1 mA cm⁻² the electrode shows a high specific capacity of 36 mAhg⁻¹ and decreases to 26 mAhg⁻¹ at 8 mA g⁻¹.
- NiSe₂@ACC electrode exhibits a good capacitive retention and coulombic efficiency of 50% and 94.5% over 600 charge-discharge cycles, respectively.

Time (s)

Figure. (a) Open circuit voltage obtained at different temperature gradient (0.2 K to 10 K), (b) Linear fitting of open circuit voltage Vs. temperature gradient (d) Thermally charging and discharging cycle of NiSe²//NiSe₂ symmetric thermo-electrochemical cell.

- > The thermo- cell is assembled by sandwiching the 1 M NaOH infiltrated celgard separator between two symmetric porous NiSe₂ electrodes
- > The thermo-voltage obtained from $NiSe_2/NiSe_2$ based thermo-cell is 2.3 mV K⁻¹ ± 0.05.
- > This results can be further improved by increasing specific surface area and can extended to thermally chargeable supercapacitor application.

	References	Acknowledgement	
ion	 Wang, Xun, et al. Nature communications 10.1 (2019): 4151. Wang, Hui, et al. Advanced Electronic Materials 3.4 (2017): 1700013. Zhao, Dan, et al. Energy & Environmental Science 9.4 (2016): 1450-1457. 	Authors acknowledge the funding received from European Unions horizon 2020 research and innovation program under grant agreement number 964251 (TRANSLATE).	

Figure. (a) CV profile at different scan rates (5 to 50 mV s⁻¹), (b) (a) GCD profile of a at different current densities (2 mA g⁻¹ to 10 mA g⁻¹) (c) Nyquist plot and (d) Stability and Coulombic Efficiency of NiSe₂@CC electrode

Conclusion and Future Study

CCACADEMY

- > NiSe₂//NiSe₂ symmetric thermo-cell has been successfully fabricated and a thermo-voltage of 2.3 mV K⁻¹ \pm 0.05 is obtained.
- From this study, it can be concluded that NiSe₂@ACC can be a better choice of porous electrode when compared to metal electrodes for conventional supercapacitor or thermo-cell application.
- This work can be extended to fabricate sustainable ternary metal selenides or sulphides (CuFeSe, etc.,)based chalcogenides for high performance thermo-energy application.
- > Further, research on improving thermo-voltage is in progress.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 964251.