Systems for equational additivity^{*}

Mike Behrisch^{†‡§}

Bernardo Rossi^{‡¶} I

Erhard Aichinger[‡]

 $20\mathrm{th}$ June2023

Overview

This data set provides supplementary material supporting the verification of the solution sets of several systems of equations appearing in [1] that ensure a property of algebraic systems called *equational additivity*, cf. [4]. By [2, Theorem 2.5], for an algebraic system $\mathbf{A} = (A; (f)_{f \in \mathcal{F}})$ on a finite set A, equational additivity is characterised by the fact that the relation

$$\Delta_A^{(4)} := \left\{ (x, y, u, v) \in A^4 \ \middle| \ x = y \lor u = v \right\}$$

is the set of solutions of a finite system of quaternary term equations over \mathbf{A} ; in other words, \mathbf{A} is equationally additive if there is $n \in \mathbb{N} \setminus \{0\}$ and there are quaternary terms $s_1, \ldots, s_n, t_1, \ldots, t_n$ over the language of \mathbf{A} such that

$$\Delta_A^{(4)} = \left\{ \boldsymbol{x} \in A^4 \mid s_1(\boldsymbol{x}) = t_1(\boldsymbol{x}) \land \dots \land s_n(\boldsymbol{x}) = t_n(\boldsymbol{x}) \right\}.$$

The article [1] relies on the (non-)expressibility of $\Delta_A^{(4)}$ via certain systems of equations in the subsequently listed sections (for the meaning of the respective function symbols we refer the esteemed reader to [1], the systems of equations are merely listed here for better recognisability in [1]):

Section 6 Remark 6.7

$$h(x_3, x_4, x_1) = h(x_3, x_4, x_2) \tag{1}$$

and

$$\tau(x_3, x_4, x_1) = \tau(x_3, x_4, x_2),$$

$$\tau(x_4, x_3, x_1) = \tau(x_4, x_3, x_2);$$
(2)

moreover

$$\forall f, g \in \mathsf{S}_{00}^{[4]}: \qquad \Delta_{\{0,1\}}^{(4)} \neq \left\{ \boldsymbol{x} \in \{0,1\}^4 \mid f(\boldsymbol{x}) = g(\boldsymbol{x}) \right\}.$$
(3)

^{*}Support by the Austrian Science Fund (FWF), grant P33878 is gratefully acknowledged. †Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria

[‡]Institut für Algebra, Johannes Kepler Universität Linz, Austria

[§]https://orcid.org/0000-0003-0050-8085

[¶]https://orcid.org/0000-0002-0404-6634

https://orcid.org/0000-0001-8998-4138

Section 7 Lemma 7.1,

Theorem 7.6

$$f(x_1, x_2, x_3) \approx f(x_1, x_2, x_4),$$

$$f(x_2, x_1, x_3) \approx f(x_2, x_1, x_4),$$

$$f(x_3, x_4, x_1) \approx f(x_3, x_4, x_2),$$

$$f(x_4, x_3, x_1) \approx f(x_4, x_3, x_2).$$
Theorem 7.6

$$m(x_1, x_2, x_3) \approx m(x_1, x_2, x_4),$$

$$m(x_2, x_1, x_3) \approx m(x_2, x_1, x_4).$$
(5)

e (

Section 8 Proposition 8.2

$$f(x_1, x_2, x_3) \approx f(x_1, x_2, x_4),$$

$$f(x_2, x_1, x_3) \approx f(x_2, x_1, x_4),$$

$$f(x_3, x_4, x_1) \approx f(x_3, x_4, x_2),$$

$$f(x_4, x_3, x_1) \approx f(x_4, x_3, x_2).$$

(6)

We observe that the systems (4) and (6) are syntactically identical, they only appear in different contexts where the function symbol f is instantiated with two different concrete functions, cf. [1].

The solution sets of the systems (1)-(6) are mainly computed and verified in the script checking_systems_of_equations.py; note, however that the code for the verification of (3) relies on results arising from the script write_uacalc_ files.py.

List of files

We now give a brief overview of the files in the data set, before focusing on the content of checking_systems_of_equations.py in a little more detail.

checking_systems_of_equations.py	python script verifying the definability of $\Delta_A^{(4)}$ from the systems (1)–(6); outputs check_of_ systems_of_equations.txt; the code partially depends on F4_over_S00.txt.
$check_of_systems_of_equations.$	output log of running the script checking_
txt	<pre>systems_of_equations.py.</pre>
write_uacalc_files.py	python script writing source files (*.alg) for
	the universal algebra calculator [3]; outputs
	<pre>output_write_uacalc_files.txt; results in</pre>
	the files aP.alg, AP.alg, L2.alg, S00.alg,
	S10.alg, SL.alg.
	The script mainly defines functions for the gener-
	ators of these clones according to the literature
	(referenced in the code) and then outputs the
	value tables of these functions in a format ¹ suit-
	able to be read by $[3]$.
output_write_uacalc_files.txt	output log of running the script write_uacalc_
	files.py

aP.alg, AP.alg, L2.alg, SL.alg S00.alg, S10.alg	, input files ¹ for the universal algebra calcu- lator [3], representing algebras the clone of term
	pearing in [1, Section 7] and S_{00} and S_{10} from [1, Section 6], respectively; these have been written
	by running write_uacalc_files.py.
F4_over_S00.csv, F4_over_S10.csv	result of computing in UACalc [3] the free al- gebra on four generators (using all coordinates,
	no decomposition, no thinning) over the algebra
	represented by S00.alg and S10.alg, respect-
	ively.
F4_over_S00.txt, F4_over_S10.txt	the same file as F4_over_S00.csv and F4_
	over_S10.csv, respectively, but after slight
	manual editing to enhance readability.
	Columns 3 to 18 of the table in F4_over_S00.
	txt are used as part of the code of the func-
	<pre>tion check_implication_re_F4_S00_in_67()</pre>
	in checking_systems_of_equations.py.
systems4_eqn_add.pdf	this documentation
systems4_eqn_add.tex	$\ensuremath{\mathbb{I}}\xspace{T}\ensuremath{\mathbb{E}}\xspace{X}$ source file to produce this documentation

Details regarding the script checking_systems_of_ equations.py

The initial functions in checking_systems_of_equations.py implement generator functions as explained in [1] or as presented in the literature referenced in the comments of checking_systems_of_equations.py. This is rather selfexplanatory given the comments. We briefly explain the remaining functions:

get_Deltarelation(k)	computes a sorted list containing the quadruples		
	in $\Delta_{\{0,\dots,k-1\}}^{(4)}$ where $k \in \mathbb{N}$.		
get_solution_set_71_82(f)	computes a sorted list containing the solutions		
	of the systems (4) (and (6), respectively); the		
	parameter is the ternary operation that instan-		
	tiates the symbol f in the systems (4) and (6).		
get_solution_set_76(f)	computes a sorted list containing the solutions		
	of the system (5) ; the parameter is the ternary		
	operation that instantiates the symbol f in the		
	system.		
<pre>get_solution_set_67h(f)</pre>	computes a sorted list containing the solutions		
	of the system (1) over $\{0, 1\}$; the parameter is		
	the ternary Boolean function that instantiates		
	the symbol h in the system.		

¹The format of .alg-files is briefly explained in the final section of this document.

get_solution_set_67t(f)

check_solution_set_equals_
delta(sol,k)

aux_fg_agree_on_delta(f,g)

aux_fg_agree_somewhere_outside_
delta(f,g)

check_implication_re_F4_S00_in_
67()

computes a sorted list containing the solutions of the system (2) over $\{0, 1\}$; the parameter is the ternary Boolean function that instantiates the symbol τ in the system.

checks whether the solution set given as an ordered list of quadruples over $\{0, \ldots, k-1\}$ via the parameter sol is identical to $\Delta^{(4)}_{\{0,\ldots,k-1\}}$.

an auxiliary function checking if two quaternary Boolean functions $f, g: \{0, 1\}^4 \rightarrow \{0, 1\}$, represented by their list of 16 values on $\{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), \dots, (1, 1, 1, 1)\}$ satisfy $f|_{\Delta^{\{4\}}_{\{0,1\}}} = g|_{\Delta^{\{4\}}_{\{0,1\}}}$. This function is used in check_implication_re_F4_S00_in_67().

an auxiliary function checking if two quaternary Boolean functions $f, g: \{0, 1\}^4 \rightarrow \{0, 1\}$, represented by their list of 16 values on $\{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), \dots, (1, 1, 1, 1)\}$ satisfy $f(0, 1, 0, 1) = g(0, 1, 0, 1) \lor$

 $f(0,1,1,0)=g(0,1,1,0) \lor$

$$f(1,0,0,1) = g(1,0,0,1) \lor$$

f(1, 0, 1, 0) = g(1, 0, 1, 0).

This function is used in check_implication_ re_F4_S00_in_67().

a function checking the truth of the universally quantified inequality (3) by verifying the following universal implication $\forall f, g \in S_{00}^{[4]}: \Delta_{\{0,1\}}^{(4)} \subseteq \left\{ \boldsymbol{x} \in \{0,1\}^4 \mid f(\boldsymbol{x}) = g(\boldsymbol{x}) \right\}$

 $\Rightarrow \Delta^{(4)}_{\{0,1\}} \subsetneq \left\{ \boldsymbol{x} \in \{0,1\}^4 \ \Big| \ f(\boldsymbol{x}) = g(\boldsymbol{x}) \right\}.$ For this check the algorithm iterates over all

For this check the algorithm iterates over all pairs $f, g \in \mathsf{S}_{00}^{[4]}$, finds those where the inclusion $\Delta_{\{0,1\}}^{(4)} \subseteq \left\{ \boldsymbol{x} \in \{0,1\}^4 \mid f(\boldsymbol{x}) = g(\boldsymbol{x}) \right\}$ holds (via aux_fg_agree_on_delta(f,g)), and then checks (via aux_fg_agree_somewhere_outside_delta(f,g)) that each time this happens the proper inclusion $\Delta_{\{0,1\}}^{(4)} \subsetneq \left\{ \boldsymbol{x} \in \{0,1\}^4 \mid f(\boldsymbol{x}) = g(\boldsymbol{x}) \right\}$ holds, as well. When this is true, we either have proper inclusion, or no inclusion at all, hence never equality, as claimed in (3).

We remark that the iteration over all $f, g \in S_{00}^{[4]}$ is achieved by iterating over the rows in the hard-coded list F4, which contains the functions in the free four-generated algebra as taken from F4_over_S00.txt. remaining code

uses the previously discussed functions to answer the questions that can be read from the log file check_of_systems_of_equations.txt.

Format description of .alg-files

This section contains a short explanation of the format used in .alg-input files for the universal algebra calculator [3]. A finite algebra **A** with $n \ge 1$ elements is represented in UACalc by the standard carrier set $n = \{0, 1, ..., n-1\}$. An .alg-file contains, line by line, the following integer numbers.

- The first line contains the value n, the cardinality of the algebra.
- For each fundamental operation f of \mathbf{A} , say with $k \ge 0$ arguments, the following lines are included:

- a line with the value k

 $-n^k$ lines with the values of f in the following order:

$$\begin{array}{c} f(0,0,0,\ldots,0) \\ f(1,0,0,\ldots,0) \\ \vdots \\ f(n-1,0,0,\ldots,0) \\ f(0,1,0,\ldots,0) \\ f(1,1,0,\ldots,0) \\ \vdots \\ f(n-1,1,0,\ldots,0) \\ \vdots \\ f(n-1,1,0,\ldots,0) \\ \vdots \\ f(0,n-1,0,\ldots,0) \\ \vdots \\ f(n-1,n-1,0\ldots,0) \\ f(0,0,1,\ldots,0) \\ \ddots \\ f(n-1,n-1,\ldots,n-1), \end{array}$$

that is to say, the first argument changes fastest, the last argument changes slowest.

Example. The left-zero semigroup on $\{0, 1, 2\}$, that is, $(\{0, 1, 2\}; f)$ where f is the binary operation $f: \{0, 1, 2\}^2 \rightarrow \{0, 1, 2\}$ given as f(x, y) := x for each

 $x, y \in \{0, 1, 2\}$, having the operation table

$x \backslash y$	0	1	2
0	0	0	0
1	1	1	1
2	2	2	2,

would be stored in .alg-format as follows:

References

- Erhard Aichinger, Mike Behrisch, and Bernardo Rossi. On when the union of two algebraic sets is algebraic. arXiv:2309.00478 [math.RA]:1-50, September 2023. doi: https://doi.org/10.48550/arXiv.2309.00478.
- [2] Èvelina Yur'evna Daniyarova, Alexei Georgievich Myasnikov, and Vladimir Nikanorovich Remeslennikov. Algebraic geometry over algebraic structures. IV. Equational domains and codomains. *Algebra i Logika*, 49(6):715– 756, 844, 847, 2010. Translation in *Algebra and Logic*, 49(6):483–508, 2011. doi: https://doi.org/10.1007/s10469-011-9112-2.
- [3] Ralph Freese, Emil Kiss, and Matthew Valeriote Universal Algebra Calculator, 2022. Available on-line from http://www.uacalc.org.
- [4] Aleksandr Georgievich Pinus. Algebraically equivalent clones. Algebra i Logika, 55(6):760-768, 2016. Translation in Algebra and Logic, 55(6):501-506, 2017. doi: https://doi.org/10.1007/s10469-017-9420-2.