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Overview
This data set provides supplementary material supporting the verification of the
solution sets of several systems of equations appearing in [1] that ensure a property
of algebraic systems called equational additivity, cf. [4]. By [2, Theorem 2.5], for
an algebraic system A = (A; (f)f∈F ) on a finite set A, equational additivity is
characterised by the fact that the relation

∆(4)
A :=

{
(x, y, u, v) ∈ A4 ∣∣ x = y ∨ u = v

}
is the set of solutions of a finite system of quaternary term equations over A;
in other words, A is equationally additive if there is n ∈ N \ {0} and there are
quaternary terms s1, . . . , sn, t1, . . . , tn over the language of A such that

∆(4)
A =

{
x ∈ A4 ∣∣ s1(x) = t1(x) ∧ · · · ∧ sn(x) = tn(x)

}
.

The article [1] relies on the (non-)expressibility of ∆(4)
A via certain systems of

equations in the subsequently listed sections (for the meaning of the respective
function symbols we refer the esteemed reader to [1], the systems of equations
are merely listed here for better recognisability in [1]):

Section 6 Remark 6.7
h(x3, x4, x1) = h(x3, x4, x2) (1)

and
τ(x3, x4, x1) = τ(x3, x4, x2),
τ(x4, x3, x1) = τ(x4, x3, x2);

(2)

moreover

∀f, g ∈ S[4]
00 : ∆(4)

{0,1} ̸=
{

x ∈ {0, 1}4
∣∣∣ f(x) = g(x)

}
. (3)
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Section 7 Lemma 7.1,
f(x1, x2, x3) ≈ f(x1, x2, x4),
f(x2, x1, x3) ≈ f(x2, x1, x4),
f(x3, x4, x1) ≈ f(x3, x4, x2),
f(x4, x3, x1) ≈ f(x4, x3, x2).

(4)

Theorem 7.6
m(x1, x2, x3) ≈ m(x1, x2, x4),
m(x2, x1, x3) ≈ m(x2, x1, x4).

(5)

Section 8 Proposition 8.2

f(x1, x2, x3) ≈ f(x1, x2, x4),
f(x2, x1, x3) ≈ f(x2, x1, x4),
f(x3, x4, x1) ≈ f(x3, x4, x2),
f(x4, x3, x1) ≈ f(x4, x3, x2).

(6)

We observe that the systems (4) and (6) are syntactically identical, they only
appear in different contexts where the function symbol f is instantiated with
two different concrete functions, cf. [1].

The solution sets of the systems (1)-(6) are mainly computed and verified in
the script checking_systems_of_equations.py; note, however that the code
for the verification of (3) relies on results arising from the script write_uacalc_
files.py.

List of files
We now give a brief overview of the files in the data set, before focusing on the
content of checking_systems_of_equations.py in a little more detail.

checking_systems_of_equations.py python script verifying the definability of ∆(4)
A

from the systems (1)–(6); outputs check_of_
systems_of_equations.txt; the code partially
depends on F4_over_S00.txt.

check_of_systems_of_equations.
txt

output log of running the script checking_
systems_of_equations.py.

write_uacalc_files.py python script writing source files (*.alg) for
the universal algebra calculator [3]; outputs
output_write_uacalc_files.txt; results in
the files aP.alg, AP.alg, L2.alg, S00.alg,
S10.alg, SL.alg.
The script mainly defines functions for the gener-
ators of these clones according to the literature
(referenced in the code) and then outputs the
value tables of these functions in a format1 suit-
able to be read by [3].

output_write_uacalc_files.txt output log of running the script write_uacalc_
files.py
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aP.alg, AP.alg, L2.alg, SL.alg,
S00.alg, S10.alg

input files1 for the universal algebra calcu-
lator [3], representing algebras the clone of term
operations of which equals aP, AP, L2, SL ap-
pearing in [1, Section 7] and S00 and S10 from [1,
Section 6], respectively; these have been written
by running write_uacalc_files.py.

F4_over_S00.csv, F4_over_S10.csv result of computing in UACalc [3] the free al-
gebra on four generators (using all coordinates,
no decomposition, no thinning) over the algebra
represented by S00.alg and S10.alg, respect-
ively.

F4_over_S00.txt, F4_over_S10.txt the same file as F4_over_S00.csv and F4_
over_S10.csv, respectively, but after slight
manual editing to enhance readability.
Columns 3 to 18 of the table in F4_over_S00.
txt are used as part of the code of the func-
tion check_implication_re_F4_S00_in_67()
in checking_systems_of_equations.py.

systems4_eqn_add.pdf this documentation
systems4_eqn_add.tex LATEX source file to produce this documentation

Details regarding the script checking_systems_of_
equations.py

The initial functions in checking_systems_of_equations.py implement gen-
erator functions as explained in [1] or as presented in the literature referenced
in the comments of checking_systems_of_equations.py. This is rather self-
explanatory given the comments. We briefly explain the remaining functions:

get_Deltarelation(k) computes a sorted list containing the quadruples
in ∆(4)

{0,...,k−1} where k ∈ N.
get_solution_set_71_82(f) computes a sorted list containing the solutions

of the systems (4) (and (6), respectively); the
parameter is the ternary operation that instan-
tiates the symbol f in the systems (4) and (6).

get_solution_set_76(f) computes a sorted list containing the solutions
of the system (5); the parameter is the ternary
operation that instantiates the symbol f in the
system.

get_solution_set_67h(f) computes a sorted list containing the solutions
of the system (1) over {0, 1}; the parameter is
the ternary Boolean function that instantiates
the symbol h in the system.

1The format of .alg-files is briefly explained in the final section of this document.
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get_solution_set_67t(f) computes a sorted list containing the solutions
of the system (2) over {0, 1}; the parameter is
the ternary Boolean function that instantiates
the symbol τ in the system.

check_solution_set_equals_
delta(sol,k)

checks whether the solution set given as an
ordered list of quadruples over {0, . . . , k − 1} via
the parameter sol is identical to ∆(4)

{0,...,k−1}.
aux_fg_agree_on_delta(f,g) an auxiliary function checking if two quatern-

ary Boolean functions f, g : {0, 1}4 → {0, 1},
represented by their list of 16 values on
{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), . . . , (1, 1, 1, 1)}
satisfy f↾∆(4)

{0,1}
= g↾∆(4)

{0,1}
. This function is used

in check_implication_re_F4_S00_in_67().
aux_fg_agree_somewhere_outside_
delta(f,g)

an auxiliary function checking if two quatern-
ary Boolean functions f, g : {0, 1}4 → {0, 1},
represented by their list of 16 values on
{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), . . . , (1, 1, 1, 1)}
satisfy f(0, 1, 0, 1) = g(0, 1, 0, 1) ∨

f(0, 1, 1, 0) = g(0, 1, 1, 0) ∨
f(1, 0, 0, 1) = g(1, 0, 0, 1) ∨
f(1, 0, 1, 0) = g(1, 0, 1, 0).

This function is used in check_implication_
re_F4_S00_in_67().

check_implication_re_F4_S00_in_
67()

a function checking the truth of the uni-
versally quantified inequality (3) by veri-
fying the following universal implication
∀f, g ∈ S[4]

00 : ∆(4)
{0,1} ⊆

{
x ∈ {0, 1}4

∣∣∣ f(x) = g(x)
}

⇒ ∆(4)
{0,1} ⊊

{
x ∈ {0, 1}4

∣∣∣ f(x) = g(x)
}

.

For this check the algorithm iterates over all
pairs f, g ∈ S[4]

00 , finds those where the inclu-
sion ∆(4)

{0,1} ⊆
{

x ∈ {0, 1}4
∣∣∣ f(x) = g(x)

}
holds (via aux_fg_agree_on_delta(f,g)),
and then checks (via aux_fg_agree_
somewhere_outside_delta(f,g)) that each
time this happens the proper inclusion
∆(4)

{0,1} ⊊
{

x ∈ {0, 1}4
∣∣∣ f(x) = g(x)

}
holds,

as well. When this is true, we either have
proper inclusion, or no inclusion at all, hence
never equality, as claimed in (3).
We remark that the iteration over all f, g ∈ S[4]

00
is achieved by iterating over the rows in the
hard-coded list F4, which contains the functions
in the free four-generated algebra as taken from
F4_over_S00.txt.
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remaining code uses the previously discussed functions to answer
the questions that can be read from the log file
check_of_systems_of_equations.txt.

Format description of .alg-files
This section contains a short explanation of the format used in .alg-input files
for the universal algebra calculator [3]. A finite algebra A with n ≥ 1 elements
is represented in UACalc by the standard carrier set n = {0, 1, . . . , n − 1}. An
.alg-file contains, line by line, the following integer numbers.

• The first line contains the value n, the cardinality of the algebra.

• For each fundamental operation f of A, say with k ≥ 0 arguments, the
following lines are included:

– a line with the value k

– nk lines with the values of f in the following order:

f(0, 0, 0, . . . , 0)
f(1, 0, 0, . . . , 0)
...

f(n − 1, 0, 0, . . . , 0)
f(0, 1, 0, . . . , 0)
f(1, 1, 0, . . . , 0)
...

f(n − 1, 1, 0, . . . , 0)
f(0, 2, 0, . . . , 0)
...

f(0, n − 1, 0, . . . , 0)
...

f(n − 1, n − 1, 0 . . . , 0)
f(0, 0, 1, . . . , 0)

. . .
f(n − 1, n − 1, . . . , n − 1),

that is to say, the first argument changes fastest, the last argument
changes slowest.

Example. The left-zero semigroup on {0, 1, 2}, that is, ({0, 1, 2}; f) where f

is the binary operation f : {0, 1, 2}2 → {0, 1, 2} given as f(x, y) := x for each
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x, y ∈ {0, 1, 2}, having the operation table

x\y 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2 ,

would be stored in .alg -format as follows:

3
2
0
1
2
0
1
2
0
1
2
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