Systems for equational additivity*

Mike Behrisch ${ }^{\dagger \ddagger}$
Bernardo Rossi ${ }^{\ddagger \pi}$
Erhard Aichinger ${ }^{\ddagger}$

20th June 2023

Overview

This data set provides supplementary material supporting the verification of the solution sets of several systems of equations appearing in [1] that ensure a property of algebraic systems called equational additivity, cf. [4]. By [2, Theorem 2.5], for an algebraic system $\mathbf{A}=\left(A ;(f)_{f \in \mathcal{F}}\right)$ on a finite set A, equational additivity is characterised by the fact that the relation

$$
\Delta_{A}^{(4)}:=\left\{(x, y, u, v) \in A^{4} \mid x=y \vee u=v\right\}
$$

is the set of solutions of a finite system of quaternary term equations over \mathbf{A}; in other words, \mathbf{A} is equationally additive if there is $n \in \mathbb{N} \backslash\{0\}$ and there are quaternary terms $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n}$ over the language of \mathbf{A} such that

$$
\Delta_{A}^{(4)}=\left\{\boldsymbol{x} \in A^{4} \mid s_{1}(\boldsymbol{x})=t_{1}(\boldsymbol{x}) \wedge \cdots \wedge s_{n}(\boldsymbol{x})=t_{n}(\boldsymbol{x})\right\} .
$$

The article [1] relies on the (non-)expressibility of $\Delta_{A}^{(4)}$ via certain systems of equations in the subsequently listed sections (for the meaning of the respective function symbols we refer the esteemed reader to [1], the systems of equations are merely listed here for better recognisability in [1]):

Section 6 Remark 6.7

$$
\begin{equation*}
h\left(x_{3}, x_{4}, x_{1}\right)=h\left(x_{3}, x_{4}, x_{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \tau\left(x_{3}, x_{4}, x_{1}\right)=\tau\left(x_{3}, x_{4}, x_{2}\right) \tag{2}\\
& \tau\left(x_{4}, x_{3}, x_{1}\right)=\tau\left(x_{4}, x_{3}, x_{2}\right)
\end{align*}
$$

moreover

$$
\begin{equation*}
\forall f, g \in \mathrm{~S}_{00}^{[4]}: \quad \Delta_{\{0,1\}}^{(4)} \neq\left\{\boldsymbol{x} \in\{0,1\}^{4} \mid f(\boldsymbol{x})=g(\boldsymbol{x})\right\} \tag{3}
\end{equation*}
$$

[^0]Section 7 Lemma 7.1,

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}\right) \approx f\left(x_{1}, x_{2}, x_{4}\right), \\
& f\left(x_{2}, x_{1}, x_{3}\right) \approx f\left(x_{2}, x_{1}, x_{4}\right), \\
& f\left(x_{3}, x_{4}, x_{1}\right) \approx f\left(x_{3}, x_{4}, x_{2}\right), \tag{4}\\
& f\left(x_{4}, x_{3}, x_{1}\right) \approx f\left(x_{4}, x_{3}, x_{2}\right)
\end{align*}
$$

Theorem 7.6

$$
\begin{align*}
& m\left(x_{1}, x_{2}, x_{3}\right) \approx m\left(x_{1}, x_{2}, x_{4}\right), \\
& m\left(x_{2}, x_{1}, x_{3}\right) \approx m\left(x_{2}, x_{1}, x_{4}\right) . \tag{5}
\end{align*}
$$

Section 8 Proposition 8.2

$$
\begin{align*}
& f\left(x_{1}, x_{2}, x_{3}\right) \approx f\left(x_{1}, x_{2}, x_{4}\right), \\
& f\left(x_{2}, x_{1}, x_{3}\right) \approx f\left(x_{2}, x_{1}, x_{4}\right), \\
& f\left(x_{3}, x_{4}, x_{1}\right) \approx f\left(x_{3}, x_{4}, x_{2}\right), \tag{6}\\
& f\left(x_{4}, x_{3}, x_{1}\right) \approx f\left(x_{4}, x_{3}, x_{2}\right) .
\end{align*}
$$

We observe that the systems (4) and (6) are syntactically identical, they only appear in different contexts where the function symbol f is instantiated with two different concrete functions, cf. [1].

The solution sets of the systems (1)-(6) are mainly computed and verified in the script checking_systems_of_equations.py; note, however that the code for the verification of (3) relies on results arising from the script write_uacalc_ files.py.

List of files

We now give a brief overview of the files in the data set, before focusing on the content of checking_systems_of_equations.py in a little more detail.

checking_systems_of_equations.py	python script verifying the definability of $\Delta_{A}^{(4)}$ from the systems (1)-(6); outputs check_of_
	systems_of_equations.txt; the code partially depends on F4_over_S00.txt.
check_of_systems_of_equations.	
txt	output log of running the script checking_ systems_of_equations.py.
write_uacalc_files.py files (*.alg) for	
python script writing source file	
the universal algebra calculator [3]; outputs	

aP.alg, AP.alg, L2.alg, SL.alg, input files ${ }^{1}$ for the universal algebra calcuS00.alg, S10.alg lator [3], representing algebras the clone of term operations of which equals $\mathbf{a P}, \mathbf{A P}, \mathbf{L}_{2}, \mathbf{S L}$ appearing in $\left[1\right.$, Section 7] and S_{00} and S_{10} from [1, Section 6], respectively; these have been written by running write_uacalc_files.py.
F4_over_S00.csv, F4_over_S10.csv result of computing in UACalc [3] the free algebra on four generators (using all coordinates, no decomposition, no thinning) over the algebra represented by S00.alg and S10.alg, respectively.
F4_over_S00.txt, F4_over_S10.txt the same file as F4_over_S00.cSv and F4_ over_S10.csv, respectively, but after slight manual editing to enhance readability.
Columns 3 to 18 of the table in F4_over_S00. txt are used as part of the code of the function check_implication_re_F4_S00_in_67() in checking_systems_of_equations.py.
systems4_eqn_add.pdf this documentation
systems4_eqn_add.tex
LATEX source file to produce this documentation

Details regarding the script checking_systems_of_ equations.py

The initial functions in checking_systems_of_equations.py implement generator functions as explained in [1] or as presented in the literature referenced in the comments of checking_systems_of_equations.py. This is rather selfexplanatory given the comments. We briefly explain the remaining functions:

get_Deltarelation(k)	computes a sorted list containing the quadruples in $\Delta_{\{0, \ldots, k-1\}}^{(4)}$ where $k \in \mathbb{N}$.
get_solution_set_71_82(f)	computes a sorted list containing the solutions of the systems (4) (and (6), respectively); the parameter is the ternary operation that instan-
tiates the symbol f in the systems (4) and (6).	
computes a sorted list containing the solutions	
of the system (5); the parameter is the ternary	
operation that instantiates the symbol f in the	

[^1]check_solution_set_equals_ delta(sol,k)
aux_fg_agree_on_delta(f,g)
computes a sorted list containing the solutions of the system (2) over $\{0,1\}$; the parameter is the ternary Boolean function that instantiates the symbol τ in the system.
checks whether the solution set given as an ordered list of quadruples over $\{0, \ldots, k-1\}$ via the parameter sol is identical to $\Delta_{\{0, \ldots, k-1\}}^{(4)}$.
an auxiliary function checking if two quaternary Boolean functions $f, g:\{0,1\}^{4} \rightarrow\{0,1\}$, represented by their list of 16 values on $\{(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1), \ldots,(1,1,1,1)\}$ satisfy $f \upharpoonright_{\Delta_{\{0,1\}}^{(4)}}=g \upharpoonright_{\Delta_{\{0,1\}}^{(4)}}$. This function is used in check_implication_re_F4_S00_in_67().
aux_fg_agree_somewhere_outside_ an auxiliary function checking if two quatern-
delta (f,g)
ary Boolean functions $f, g:\{0,1\}^{4} \rightarrow\{0,1\}$, represented by their list of 16 values on $\{(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1), \ldots,(1,1,1,1)\}$ satisfy $f(0,1,0,1)=g(0,1,0,1) \vee$
\[

$$
\begin{aligned}
& f(0,1,1,0)=g(0,1,1,0) \vee \\
& f(1,0,0,1)=g(1,0,0,1) \vee \\
& f(1,0,1,0)=g(1,0,1,0)
\end{aligned}
$$
\]

This function is used in check_implication_ re_F4_S00_in_67().
check_implication_re_F4_S00_in_ a function checking the truth of the uni67() versally quantified inequality (3) by veri-
fying the following universal implication $\forall f, g \in \mathrm{~S}_{00}^{[4]}: \quad \Delta_{\{0,1\}}^{(4)} \subseteq\left\{\boldsymbol{x} \in\{0,1\}^{4} \mid f(\boldsymbol{x})=g(\boldsymbol{x})\right\}$

$$
\Rightarrow \Delta_{\{0,1\}}^{(4)} \subsetneq\left\{\boldsymbol{x} \in\{0,1\}^{4} \mid f(\boldsymbol{x})=g(\boldsymbol{x})\right\} .
$$

For this check the algorithm iterates over all pairs $f, g \in \mathrm{~S}_{00}^{[4]}$, finds those where the inclusion $\Delta_{\{0,1\}}^{(4)} \subseteq\left\{\boldsymbol{x} \in\{0,1\}^{4} \mid f(\boldsymbol{x})=g(\boldsymbol{x})\right\}$ holds (via aux_fg_agree_on_delta (f,g)), and then checks (via aux_fg_agree_ somewhere_outside_delta(f,g)) that each time this happens the proper inclusion $\Delta_{\{0,1\}}^{(4)} \subsetneq\left\{\boldsymbol{x} \in\{0,1\}^{4} \mid f(\boldsymbol{x})=g(\boldsymbol{x})\right\}$ holds, as well. When this is true, we either have proper inclusion, or no inclusion at all, hence never equality, as claimed in (3).
We remark that the iteration over all $f, g \in \mathrm{~S}_{00}^{[4]}$ is achieved by iterating over the rows in the hard-coded list F4, which contains the functions in the free four-generated algebra as taken from F4_over_S00.txt.
uses the previously discussed functions to answer the questions that can be read from the log file check_of_systems_of_equations.txt.

Format description of .alg-files

This section contains a short explanation of the format used in .alg-input files for the universal algebra calculator [3]. A finite algebra \mathbf{A} with $n \geq 1$ elements is represented in UACalc by the standard carrier set $n=\{0,1, \ldots, n-1\}$. An .alg-file contains, line by line, the following integer numbers.

- The first line contains the value n, the cardinality of the algebra.
- For each fundamental operation f of \mathbf{A}, say with $k \geq 0$ arguments, the following lines are included:
- a line with the value k
$-n^{k}$ lines with the values of f in the following order:

```
f(0,0,0,\ldots,0)
f(1,0,0,\ldots,0)
\vdots
f(n-1,0,0,\ldots,0)
f(0,1,0,\ldots,0)
f(1,1,0,\ldots,0)
:
f(n-1,1,0,\ldots,0)
f(0,2,0,\ldots,0)
\vdots
f(0,n-1,0,\ldots,0)
\vdots
f(n-1,n-1,0\ldots,0)
f(0,0,1,\ldots,0)
    \ddots
f(n-1,n-1,\ldots,n-1),
```

that is to say, the first argument changes fastest, the last argument changes slowest.

Example. The left-zero semigroup on $\{0,1,2\}$, that is, $(\{0,1,2\} ; f)$ where f is the binary operation $f:\{0,1,2\}^{2} \rightarrow\{0,1,2\}$ given as $f(x, y):=x$ for each
$x, y \in\{0,1,2\}$, having the operation table

$x \backslash y$	0	1	2
0	0	0	0
1	1	1	1
2	2	2	2,

would be stored in .alg-format as follows:
3
2
0
1
2
0
1
2
0
1
2

References

[1] Erhard Aichinger, Mike Behrisch, and Bernardo Rossi. On when the union of two algebraic sets is algebraic. arXiv:2309.00478 [math.RA]:1-50, September 2023. doi: https://doi.org/10.48550/arXiv.2309.00478.
[2] Èvelina Yur'evna Daniyarova, Alexei Georgievich Myasnikov, and Vladimir Nikanorovich Remeslennikov. Algebraic geometry over algebraic structures. IV. Equational domains and codomains. Algebra i Logika, 49(6):715756, 844, 847, 2010. Translation in Algebra and Logic, 49(6):483-508, 2011. doi: https://doi.org/10.1007/s10469-011-9112-2.
[3] Ralph Freese, Emil Kiss, and Matthew Valeriote Universal Algebra Calculator, 2022. Available on-line from http://www. uacalc.org.
[4] Aleksandr Georgievich Pinus. Algebraically equivalent clones. Algebra i Logika, 55(6):760-768, 2016. Translation in Algebra and Logic, 55(6):501-506, 2017. doi: https://doi.org/10.1007/s10469-017-9420-2.

[^0]: *Support by the Austrian Science Fund (FWF), grant P33878 is gratefully acknowledged.
 ${ }^{\dagger}$ Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria
 ${ }^{\ddagger}$ Institut für Algebra, Johannes Kepler Universität Linz, Austria
 §https://orcid.org/0000-0003-0050-8085
 ${ }^{1}$ https://orcid.org/0000-0002-0404-6634
 $\|_{\text {https://orcid.org/0000-0001-8998-4138 }}$

[^1]: ${ }^{1}$ The format of .alg-files is briefly explained in the final section of this document.

