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ABSTRACT. The SIR (Susceptible-Infected-Recovered) is one of the simplest
models for epidemic outbreaks. The present paper derives the parametric
solution of the model in terms of quadratures and derives a double exponential
analytical asymptotic solution for the I-variable, which is valid on the entire
real line. Moreover, the double exponential solution can be used successfully
for parametric estimation either in stand-alone mode or as a preliminary step in
the parametric estimation using numerical inversion of the parametric solution.
A second, refined, asymptotic solution involving exponential gamma kernels
was also demonstrated. The approach was applied to the ongoing coronavirus
disease 2019 (COVID-19) pandemic in four European countries — Belgium,
Italy, Sweden, France, Spain and Bulgaria.
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1. INTRODUCTION

Epidemic models have been steadily developed in the last 100 years. The coro-
navirus 2019 (COVID-19) pandemic, which became a global emergency in 2020,
played the role of a catalyst for renewing the interest in epidemic models and re-
sulted in a plethora of new developments. Interested readers are directed to the
recent review of [1]. Since the pandemic is about ot enter its endemic phase new
epidemiological tools, which can accurately predict the time course of different out-
breaks, can be of considerable public utility for this and future outbreaks.

The SIR (Susceptible- Infected- Recovered) model was introduced by Kermack
and McKendrick in 1927 under some simple assumptions, but it is still remains a
very useful conceptual tool [2]. The SIR model is used to model epidemic outbreaks
(see the monograph of Martcheva [3] or [4]). Outside epidemiology, SIR is also
used in modeling of social networks, viral marketing, diffusion of ideas, spread of
computer viruses, financial network contagion, etc. (see recent survey by Rodrigues
and the references therein [5]). Very recently, some authors have convincingly
demonstrated that the SIR epidemiological model can successfully model the short-
term dynamics of COVID-19 outbreaks in 2020 for a number of countries [6, 7, 8, 9,
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2 ASYMPTOTIC ANALYSIS OF THE SIR MODEL

10, 11]. Of course, the SIR model can be extended with an ”Exposed” intermediate
compartment, however such compartment is unobservable and most applied studies
need to make additional assumptions to constrain the model parameters.

While sophisticated mathematical models may be desirable for simulating dif-
ferent control strategies, it is difficult to accurately estimate all necessary inputs.
Therefore, relatively simple epidemiological models can turn out also to be of com-
parable merits.

Very early in the COVID-19 pandemic, it was also demonstrated by Carletti,
Fanelli and F. Piazza that COVID-19 can be approximated by a SIRD model [12].
This was a very surprising finding given the sophistication of the present mathe-
matical epidemiological literature. This result is supported by the findings in [13]
where the deceased population could also be fitted by the SIR model.

The analytical solution of the SIR model was derived only relatively recently
[14] as an equation of state between the phase space variables. As an alternative
approach, Barlow and Weinstein derived a series for the S-variable and introduced
rational convergents having better regions of convergence than the infinite series[10].
A different approximation scheme was introduced in [15]. Very recently, an inverse
parametric solution for the I-variable has been also obtained [11, 13, 16].

The exact analytical solution of the SIR model can be computed by numeri-
cal inversion of a non-elementary integral equation for the I-variable by a New-
ton iteration (NI) scheme [13]. However, the numerical stability of the iteration
scheme could not be thoroughly established in the original publication, since the
asymptotic analysis of the model is non-trivial. The objective of the present work
is to demonstrate an approximation scheme in terms of standard transcendental
functions: exponents and gamma incomplete functions and to compare them with
the previously introduced NI scheme. Moreover, the presented results rigorously
demonstrate that the approximation scheme also provides asymptotic solutions for
the incidence variable, which are valid on the entire real line. The purpose of the
present work is not to argue about the advantages of SIR or another model but to
demonstrate that asymptotic, closed-form models also have substantial merits.

2. PRELIMINARIES OF THE SIR MODEL

The SIR model is formulated in terms of 3 populations of individuals [3]. The S
population consists of all individuals susceptible to the infection of concern. The
I population comprises the infected individuals. These persons have the disease
and can transmit it to the susceptible individuals. The R population comprises
recovered individual who also cannot become infected and cannot transmit the
disease to others. The dynamical formulation of the model comprises a set of three
ordinary differential equations ODEs:

S(t) = —s(1(1) )
i(t) = Zs(0)11) 1) 2
B(t) = 1) Q

By construction, the model assumes a constant overall population N = S(¢)+I(¢t)+
R(t) [2]. The interpretation of the parameters is that a disease carrier infects on
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average § individuals per day, for an average time of 1/v days. The 8 parameter
is called disease transmission rate, while v — recovery rate. The average number
of infections arising from an infected individual is then modeled by the number
Ry = B/, the basic reproduction number. Typical initial conditions are S(0) =
So, I(0) = Iy, R(0) =0 [2].

For simplicity of the presentation, the SIR model can be re-parametrized using
time-rescaled variables as

§=—si (4)
i:si—gi, gz%zio (5)
P = gi, (6)

where 7 = ft.
Eq. 5 has a zero at s = g. Moreover, it is a maximum since
. .. . . .. )
1 =514+ 81—gi =38 =—8"|__ <0
+ 9 ZZZ(TWL)

and all variables are positive defined.

3. SOLUTION PROCEDURE

Since by construction, there is a first integral the system can be reduced to two
differential equations in the phase planes (i, s) and (i, r), respectively:

di g

. W 4

ds * s (7)
di s

-2 1

dr g (8)

In order to solve the model we will consider the two equations separately. Direct
integration of equation 7 gives the first integral

1=—-s+glogs+c (9)
where the constant ¢ can be determined, for example, from the initial conditions.

3.1. The s-variable. The s variable can be determined by substitution in equation
4, resulting in the autonomous system

$=—-s(—s+glogs+c) (10)

which was solved implicitly by Harko [14]. The disadvantage of this formulation is
that s is not an observable variable so it should be used only as an intermediate
step to express the observable i or r variables.

3.2. The i-variable. The s variable can be represented explicitly in terms of the
Lambert W function [17]. This allows for reduction of the original problem to an
autonomous differential equation, which is implicitly solvable [13, 18]:

-/ (. () o) "

So the remaining task is to identify and interpret the integration constant.
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3.3. The r-variable. The r variable can also be conveniently expressed in terms
of 4. For this purpose we solve the differential equation

dr g -1

T L ()

i—c

Therefore, r = ¢; — glog (—gWi (—e ; > = ¢; — glogs, following [13, 16].

Furthermore, ¢; = glog s* since (s*,0,0) is a stable point. Therefore,

T:gw<_6; )—i+c+61 (12)

using the first integral. Since (s*,0,0) is a stable point, it follows that the popula-
tion size can be related to the integration constants as follows:

N=s"=c+c¢ =—gW_ (_egg ) (13)

where the first equality follows from the number conservation. Therefore, we can
identify the integration constant

c=s"—glogs*= N —glogN (14)

i—s*4glogs*
e g
r=gWsy <_’7‘> + 5 —i (15)

where the branch changes at a point determined by the parameterization used. The
range of r is [0, gW5 (—e_c/g/g) —gW_ (—e_c/g/g)} and the size of the epidemic
outbreak is its supremum given by the quantity
w 8* «, 8F
r=gW, (—e_s /9> —gW_ (—e_s /g) (16)
g g
if there are no recovered individuals at the start of the outbreak.

Finally,

4. THE PARAMETRIC SOLUTION

The parametric solution takes ¢ = 0 as the position of the peak incidence i,
although time shifting and formulation as initial value problem are straightforward
to implement [16]. Remarkably, all involved integrals are non-elementary [13]. The
parametric solution can be computed from eq. 9 and eq. 14:

S dy
7(s) = — - "
g Y(glog(y/s*) —y+s*)
where the domain of s is [—gW (—s*e_s*/g/g) ,—gW_ (—s*e‘s*/g/g)].
The implicit solution eq. 11 can be computed as a definite integral, however
this requires the computation of the Lambert W function on every integration step,

which does not seem to be efficient. Alternatively, the solution can be computed
more efficiently by substitution from eq. 17.

() /QWi <*%eii§£ ) dy (18)
T(1) = —
p y(glogy/s* —y+s*)

(17)
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This equation involves computations of quadrature of only elementary functions,
which are present in any numerical package.
Finally, to solve for 7(r) we differentiate eq. 12 by s to arrive at:

gr(r) = / (ydy (19)

From the above we see that the population size s* provides a natural foliation of
the solution manifold.

4.1. Peak value parameterization. Alternatively, the solution can be parame-
terized by the global maximum of the i-variable i,,. This is especially beneficial
for curve fitting since the raw data can fluctuate. In such case, sg = g The link
between the two foliations is provided by the equation i, = s* — g — glog s*/g and
consequently, the SIR model can be reformulated as

__ [ dy
(e = /gy(glogy/g—y+g+im) (20)

(i) = —/ﬂm(ﬂw_l) &
g

y (9logy/g —y+g+im)

(21)

gr(r) = / — (Ciy_ 67%), R (_e*“#* ) (22)

§* —im—g
As it turns out this form is especially suitable for parameter estimation from ob-
served data.

Remark 1. This author is grateful to the anonymous referee who brought into his
attention the work of Kudryashov et al. [18]. In their recent work, these authors
discussed the SIR and SIS models as epidemic tracking and warning tools. The
authors obtained an equation, equivalent to eq. 22. In the present notation, the @
variable is equivalent to the 2" order ODE

i+ gi® +i%i -2 =0 (23)
The starting equation of Kudryashov et al. is
NNy — nf +an’n, + afn® =0,

where the subscript denotes time differentiation. Dividing by 5% and re-scaling time
as in the rest of the present work T = [t yields

« «
NNy — ng + —nQnT +-n3=0

B B
On the other hand, dividing by o and re-scaling yields
NNy — nz +nn, + én?’ =0
e

where now T = at. Therefore, we identify g = B/« for a match to be obtained.
The resulting eqs. 18a and b in the cited work correspond to the present eq. 22

by time and mass re-scaling. Unfortunately, the authors did not use it for fitting

and parameter estimation purposes. Instead, they have used an approrimation that
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can be traced back to the original work of Kermack and McKendrick [2] who develop
asymptotics for r under the assumption that r/g is small. This corresponds to

1
i (t) = imsec ( % 7')

originally derived by Kermack and McKendrick [2] and also stated in Kudryashov
et al. The disadvantage of such an approach is that the hyperbolic secant approz-
imation is symmetric, which does not correspond to the asymmetric shape of the
i-variable (see Fig. 1). The curve’s shape is approrimated much better by the
asymptotic equations to be presented in the next section.

5. APPROXIMATION PROCEDURE

Since the SIR solution is non-singular anywhere in R, one can make use of the
Banach Fixed-Point Theorem. Notably, one can use the non-linear approximation
scheme of Daftardar-Gejji-Jafari (DJM method) for solving the equivalent integral
equations [19]. If we treat the equations of the SIR model as independent we can
formally solve eq. 4 as

s(r) = soefj i(r)dr
On the other hand, eq. 5 can be transformed formally as
d(e971)

i+ gi = si <= e 97d(e97i) = sidr = o = sdr
[

Therefore, formally,
Z(T) _ k2efg-r+f s(T)dr

Starting from the 0" order approximation i(?) & iy, it follows that s(©) ~ sge~%7.
However, this does not guarantee convergence of the iteration. To establish conver-
gence we observe that s = ¢ is a fixed point of eq. 7 since di/ds = 0 for this point
and, therefore, Banach theorem can be applied. Therefore, we must take sg = g as
an initial condition. This corresponds to the peak-value parameterization so that
i0 = im, ¢'(0) = 0-and

’L(T) = Zm exp (g/ e_.foz i(y)dy dz — g7—> (24)
0

can be formulated as a functional integral equation to be approximated by DJM.
From the above integral equation the 1%¢ order approximation for the i-variable
becomes the double exponential function

i) =, e (1e7 ) —at (25)

The second iteration of the DJM method results in a non-elementary I'-integral as

follows. Let
J::/eﬁ(l‘eﬁ"ﬁ)‘gw

Then, by change of variables y = e~ """, the expression J can be recognized as a

I-integral:
T ( g g e—imf)
9 _ 9 _ gy T % g
J:_/yim O dy‘ _ g il
y

—e—tmT g im
im
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where I'(a, x) is the upper incomplete Euler’s gamma function. Therefore,

T (,i, ,lefim'r)
T(l) — gJ _ g@ﬁ Tm ' tm .

g \im
im

Then the second iteration step becomes

9
s = kye ! = kyexp (—ei:JnF (zg, ige_i””)/(ig> )

Matching the initial condition gives the value of the constant

a tm
Therefore,
0 <o (e ) (PP (D)

Finally, following the same procedure for the i-variable we obtain

i = L €XP (g / eq(l"(a,a)—l"(a,ae*imz))dz - 97') (27)
0

This is another non-elementary integral so if considered as a function of time, its
values must be computed by quadratures. The asymptotics of the i-variable are
compared with the parametric solution in Fig. 1.

The plot of the asymptotic solution for all variables is demonstrated in Fig. 2.
The figure demonstrates the qualitative characteristics of the first-order approxi-
mated SIR model.

Remark 2. Recently, [20] applied the Simple Equations Method (SEsM) to ob-
tain approzimate solutions of the SIR model. The correspondence with the present
approach can be revealed as follows. From eq. 22 we formulate the autonomous
system

7 =gr—gs" (1 — efr/")

Therefore,
o0 k
1 1
. * - -k
r=gr+gs k§_1< g) o’

The last equation is truncated to some finite number N, resulting in an approximate
solution. For example, N = 2 results in the Bernoulli equation

S*

s o s
7= (g 5)7’+2gr

2

which is exactly solvable. However, this approximation corresponds only to small
values of r/g, which corresponds with the initial and final stages of an epidemic
outbreak.
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FiGURrE 1. Comparison between parametric and asymptotic solu-
tions i(7)

Asymptotic solutions compared to parametric plots of (7(7),¢) parameterized by
im = 5.0 and g = 2.0. Legends: LB denotes the left branch involving W_(x), RB
denotes the right branch involving W (x), eq. 18. A denotes the asymptotic
solution. A — the double exponential asymptotic for i(7) is computed from eq. 25;
B — the gamma-asymptotic for i¢(7) is computed from eq. 27; C — the parametric
solution (7(i),4); D ~ comparison between 15 and 2" order i-asymptotics. Plots
were produced using the quad_gags Maxima numerical integration command.

6. THE SIR MODEL AND SOME EMPIRICAL DISTRIBUTIONS

In most interesting manner, the first asymptotic of the i-variable eq. 25 reveals a
link to the empirical Gompertz density [21, 22]. This finding could be interpreted in
the direction that in the cases where the Gompertz density ”law” fits the data there
could be an underlying multiplicative dynamics of the SIR type. The argument can
be illustrated with the Gompertzian-SIR model of Borisov and Markov [23]. Briefly,
the authors treat them SIR model as a chemical reaction network with an auto-
catalytic step, which is equivalent to the ODE system

§= —vs
i =ksi —yi

r =y
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B

FIGURE 2. First order approximation of the SIR model
, R denote the s(t), i(t) and r(t) first order approximations, respectively. A —
g=1, iy = 5; B — g=2, i,y = 5.

S,

—

It is easy to see that the above system does not conserve the numbers, since
s+i+i=(ki-v)s#0

in general. The system is equivalent to the SIR model at the fixed point i = i,,
if v = i,,k, where the G-SIR model also conserves the numbers. Therefore, the
G-SIR model, which is exactly solvable with solution s(7) = spe™""

i(1) = igexp(sok/v(l — e "7) —~7)
(Prop. 16, [23]), is the asymptotic of SIR around the fixed point ¢ = 4,,. This is so
because sg = ¢ at the fixed point and k/vg =1 so that k = 1, v = iy, ig = i, and
v = g reproduces eq. 25 in our parameterization.

On the second place, the present asymptotic analysis reveals links to the Gumbel
distribution [24, 25]. In his analysis of the SIR model Giubilei assumes empirically
an exponential decay for B(t). In contrast to the approach in [25], here the asymp-
totics are derived from first principles, that is the DJM algorithm [19].

7. COMPUTATIONAL ASPECTS

7.1. Computation via the Wright ) function. There is another equivalent

form of the system using another special function — the Wright Q function [26] The
Q(z) function is defined as the solution of the equation

logQ+Q ==z
Using this formulation

W<—6;C> =Q<igc—log(—g)>
iz—ig(Q(i_gim —1j:j7r)+1>

where j denotes the imaginary unit to make distinction with the notation used for
the SIR model. This is better suited for numerical evaluation at large arguments

so that
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as remarked by Corless and Jeffrey. The (2 formulation using Newtonian iteration
was used for the MATLAB implementation of the solution.

The numerical schema is given briefly as follows. The principal branch starts
from the initial approximation wg = e® while for the non-principal branch the
iteration starts from wg = —z — log (—x).

dwy = = + wo — log ||

wp (1 — dwy,)
(1= wp)?/wn — dwy /2wy

Wp41 = Wy +

The iteration is continued until € > log |x| — w, — x, which is typically machine
precision.

7.2. Numerical approximation. A Newtonian approximation schema can be de-
rived for a given t as

o = iy e (167 ™) gt (28)

w, = Wi (—6%71) (29)

. . . Tgn dy
int1 = in + Jin (wn + 1) (t /g y (g log y/g Ty tim + g) > (30)
where we take the non-principal branch for ¢ < 0 and the principal one for ¢ > 0.
This formulation has the advantage of requiring only one Lambert W function
evaluation per step.
In a different implementation, instead of Lambert W function one can use the €
function where

i — 1
wn:Q(n m—lﬁ:jw) (31)
)
On the other hand, the schema depends on numerical quadrature. The approxi-
mation schema is exact at t = 0 since then ig = i,, and w, = Wx(—e 1) = —1.

Therefore, i, 11 = i,,. The convergence of the method can be proven as follows. Let

1)
=3 75|

Then

—im+ti—g

G (W (=) -)
o () o)

where W denotes the appropriate branch of the Lambert W function. Using the
appropriate identities of the function we obtain

W (e

2 (W (—6_%4_%_1) + 1)

This quantity is bounded away from i,, in the i-variable. Indeed, suppose that
1 < im,. Considering the range of the principal branch

|My| = |-

|My| =

i

1< W, (—e* Z"**é’l) —A<0

10
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it follows that
Mot A 1 1
T2 T 2A+1) T2 201+ A4)

which is bounded if A # —1. For the non-principal branch
—o0 < W (=T HH ) =A< 1
holds. Then 1
which is also bounded provided A # —1. Therefore, the schema has the desired
quadratic convergence. From this analysis it can be noticed that the convergence

of the method slows down as i approaches i,,. However, there to first order i ~ ig.
Furthermore, define the logarithmic derivative as

dlogi  We(—e 7" 1) +1
~ dlogi®M 1—e~imt

M

q(t) :

Therefore,

@ _ (#%))q“*’

Im Im

by the mean value theorem. On the other hand, for ¢ > 0

i

0< W, (fe _5’“—1)+1§1

since Wy (—e™!) = —1 and W, (z) is monotone increasing in z € [—1/e, o0]. There-
fore,
0<q(t) < -
<at) < 7=
On the other hand, around 0, by I’'Hopital’s rule

. i )
—iW4 <76 9 1) etmt

RAOZ 0, i -
Also
et (i)W (=T ) et 4 (i — i)W (=) i)
q(t) =~

(et —1)°

For ¢/(t) after tedious calculations, involving 'Hépital’s rule, we obtain that ¢’(0) =
—im /2, therefore 0 is a maximum. However, it is a maximum on the entire positive
half axis as well by the above inequality. Therefore, ¢(t) € [0, 1] and

i(t) i@\
o= () 2!

Therefore, we can conclude that i(t) dominates i()(¢) as t grows from 0. On the
other hand,

im

i

W_ (—e ’im—l) +1<0

and »
W (e

q(t) = >0

1 — e imt -

11
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since W_(z) decreases away from —1 for z € [—1/e,0) while the sign of the denom-
inator is negative. Since W is smooth at the branching point, we can employ the
same calculations as above. Therefore, we can conclude that i(t) dominates (") ()
as t decreases towards —oo.

7.3. Implementation. All three integrals can be efficiently computed by numeri-
cal quadratures. Reference implementation on the Computer Algebra System Max-
ima has been developed and the code is available through the Zenodo repository
[27]. Maxima incorporates an efficient numerical integration routine ported from
QUADPACK [28]. The integration functions compute a result to a user specified
accuracy. The numerical integrals were computed with relative precision 10715,

7.4. Numerical experiments. The Newton approximation is demonstrated in
Fig. 4 using two parameter value combinations: 4,, = 6.0 and g = 1.0, and 4,, = 7.0
and g = 1.5, respectively. Computations have been preformed in MATLAB. The
maximum number of iterations was set to 15 and the relative precision to 1071°
(Fig. 4 A,B) or 1078 (Fig. 4 C,D). Slower convergence could be identified for the
left solution branch. For the experiment with higher precision the approximation
converged within 3 (g=1.0) to 4 (g=1.5) iterations in the majority of the time
points. However, in some cases the maximal number of iterations was reached. For
the lower precision experiment the right branch of i(%) consistently converged in 2
(g=1.0) or 3 steps (g=1.5). Slower convergence could be attributed to cancellation
issues. Considering that the asymptotic solution already provides good approxima-
tion along the entire real line, absolute precision of 10~8 can be considered sufficient
for most applications.

In a different experiment, using the same parameter values, a custom routine
computing the  function was used. Results are demonstrated in Fig. 3.

The comparison of Figs. 3 and 4 demonstrates that the formulation using the €2
function has an advantage for lower absolute error setting.

8. DATA SETS

The COVID data sets were downloaded from the European Centre for Disease
Prevention and Control (ECDC) website: https://opendata.ecdc.europa.eu/
covidl9/casedistribution/csv. The downloadable data file was updated daily
until 14 Dec 2020 and contains the latest available public data on COVID-19 ag-
gregated per country worldwide.

A second data set was downloaded on 15 Sept 2021. Inspection of the data set
demonstrated that the new data started from 1 March 2021 and included the 31
countries from the European Economic Area (EEA). The data collection policy is
available from https://www.ecdc.europa.eu/en/covid-19/data-collection.

9. DATA PROCESSING

The data were imported in the SQLite https://www.sqlite.org database, fil-
tered by country and transferred to MATLAB for parametric fitting using native
routines. Quadratures were estimated by the default MATLAB integration algo-
rithms. Estimated parameter values were stored in the same database. The process-
ing is described in [13], The parametric fitting was conducted using least-squares
constrained optimization algorithm.

12
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F1GURE 3. Numerical inversion of eq. 18
Legends: n — number of iterations; ¢ — i(t) A,C: i, =7 and g = 1; B,D: i,,, = 6
and g = 1.5.

The least-squares constrained optimization was preformed using the fminsearchbnd
routine [29]. The fitting model is given by

I, ~ N i (t/10.0 — T|g, i)

where I; is the observed incidence or case fatality, respectively. The model has 4
free parameters: N, T, g,i,,. For numerical stability reasons the time variable was
rescaled by a factor of 10.

The goodness-of-fit (GOF) of the SIR model can be calculated in principle for
all three variables. This, however, is not practical as only the I statistical variable
is observed. Since R is by construction an increasing function, only the I statistical
variable can be used for the purposes of the goodness-of-fit. Denoting the observed
data vector by Y and the fitted model data by y, the goodness-of-fit measure can
be defined as
SST’CS
SStot

where SSior == > (Y = Y)2 Y := Y Y/n and 5S,cs := > (Y —
way, the adjusted R?* can be defined as

RZ:=1-

y)2. In a similar

R>:.=1-—

SSres/(n
SStot/(n — 1

_k)
)

(32)
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FIGURE 4. Numerical inversion of egs. 18 using the Omega func-
tion iteration, eq. 31
Legends: n — number of iterations; ¢ — i(¢t) A,C: i,,, =7 and g = 1; B,D: i,,, = 6
and g = 1.5.

where k is the number of free parameters and n denotes the length of the data
vector.

10. CASE STUDIES

10.1. Analysis of the outbreaks in 2020. The asymptotic approach is exempli-
fied with data from ECDC for several European countries in the period Jan 2020 —
Dec 2020. The data analysis in this section was limited to 14 Dec due to reporting
reasons [13].

The goodness-of-fit for the SIR model was computed using eq. 32. The data for
the case fatality and the incidence during the 1st COVID-19 wave are presented in
Table 1.

The most direct and ”brute-force” approach is to directly fit the time series using
the numerical inversion scheme. Such an approach has been followed in the pre-
vious publication [13]. This incurs a relatively high computational cost associated
with computation of integrals, followed by Newtonian iteration. Alternatively, the
parameters can be fitted using the asymptotic eq. 25 only (see Fig. 5). Moreover,
the asymptotic parameter estimation demonstrated faithful representation of the
exact model (see Fig. 5). The numerical inversion approach is illustrated in Figs.

14
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A B

COVID-19 mortality in BE since 31 Dec 2019 COVID-19 mortality in SE since 31 Dec 2019

FIGURE 5. Case fatality parametric fitting for Belgium and Sweden
Parametric fitting of the case fatality data of Belgium (A) and Sweden (B);
‘asymp’ refers to parametric fit using the asymptotic formula eq. 25, ’sir,’ refers
to the i-variable computed by numerical inversion using the parameters estimated
by eq. 25

data R?* fitting type
Belgium

case fatality 0.999909  asymp

case fatality 0.999917  sir

incidence 0.9999387 asymp

incidence 0.999939  sir
Sweden

case fatality ~0.9995981 asymp

cage fatality 0.9996032 sir

Italy

case fatality 0.9999445 asymp

case fatality 0.9999459 sir

incidence 0.9999920 asymp

incidence 0.9999923 sir
France

case fatality 0.9998866 asymp

case fatality 0.9998885 sir

incidence 0.9999724 asymp

incidence 0.9999726  sir

Spain
case fatality 0.9998590 asymp
incidence 0.9999904 asymp
TABLE 1. GOF for the SIR model

"asymp’ refers to fitting using asymptotic formula eq. 25 ’sir’ refers to fitting
using numerical inversion of eq. 25. R?* is computed according to eq. 32.

6 and 7, and compared to the asymptotic fitting in the subsequent tables. The raw
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series for the incidence demonstrated pronounced weekly variation. However, this
did not preclude successful parameter estimation.
The optimal fitting scheme involved three steps

(1) initial estimation from the raw data of the peak (i.e. incidence or case
fatality data), the time to the observed peak and the initial guess go = 1.

(2) asymptotic estimation of 4,,, g, and T

(3) refined estimation of 4,,, g, and T, involving numerical inversion of eq. 18.

Case fatality parameters for the first and second waves are presented in Tables
2 and 3. Incidence parameters are presented in Tables 4 and 5. From the data
it is apparent that the new fitting procedure did not change parameter estimates
for the countries with pronounced outbreaks. The estimates obtained using the
method in [13] are marked with asterisks. In contrast, variation in the fitting could
be observed for the first waves in Sweden and Spain. There the method did not
converge well for the incidence and the data are not presented. This corresponded
with the observed bimodal peak distributions in these countries.

Country g Ry  T[weeks] i, fitting type
Belgium 0.7518 1.33 14.85 303.80 asymp
Belgium 0.7328 1.36 14.32 285.85  sir
Sweden  0.2082 4.80 15.80 89.05 asymp
Sweden 0.1952 5.12 15.68 90.48 sir
Italy 0.3942 2.54 12.74 764.05 asymp
Italy 0.3767 2.65 12.64 785.75 sir
France  0.6522 1.3 14.00 957.18 asymp
France  0.6186 1.62 13.93 989.53  sir
Spain 0.5807 1.72 13.18 851.03 asymp
Spain 0.5520 1.81 13.10 873.79 sir
TABLE 2. Case fatality parameters, first wave

T is given in weeks starting from 15¢ Jan 2020. 'asymp’ refers to fitting using
asymptotic formula eq. 25 ’sir’ refers to fitting using numerical inversion of eq. 25.

Country g Ry  T[weeks] i, fitting type
Belgium 0.4913 2.06 44.8 201.88 sir*
Italy 0.3039 3.29 47.61 731.09 sir*
Belgium 0.5780 1.73 44.61 198.51 asymp
Belgium 0.5051 1.98 44.52 202.29 sir
Italy 1.5505 0.64 47.49 739.82 asymp
Italy 0.3479 2.87 47.34 734.07 sir
France  2.9215 0.34 45.93 589.25 asymp
Spain 0.5520 1.81 13.10 873.79 sir
Spain 0.5807 1.72 13.18 851.03 asymp
TABLE 3. Case fatality parameters, second wave

T is given in weeks starting from 15* Jan 2020. ’asymp’ refers to fitting using
asymptotic formula eq. 25 ’sir’ refers to fitting using numerical inversion of eq. 25.

16
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COVID-19 mortality in IT since 31 Dec 2019
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Parametric fitting of the case fatality data for the first
and second waves in Italy, France, and Spain
A, B — case fatality fitting for Italy; C, D — case fatality fitting for France; E, F —

case fatality fitting for Spain; ’asymp’ refers to parametric fit using the

asymptotic formula eq. 25, ’sir’ refers to fitting the i-variable computed by

17

numerical inversion starting from the parameters estimated by eq. 25. Note the
pronounced weekly variation of the reported numbers.

The data demonstrate very good numerical (Tables 2, 3, 4, 5) and graphical
agreement of both methods between themselves. Moreover, there is also an excellent

agreement with the raw time series.
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COVID-19 incidence in IT since 31 Dec 2019
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FIGURE 7. Parametric fitting of the incidence data for the first
and second waves in Italy, France, and Spain
A, B — incidence fitting for Italy; C, D — incidencey fitting for France; E, F —
incidence fitting for Spain; 'asymp’ refers to parametric fit using the asymptotic
formula eq. 25, ’sir_a’ refers to computing the i-variable using the parameters
estimated by eq. 25. Note the pronounced weekly variation of the reported
numbers and the bimodal distribution of the data in France and Spain.

10.2. Analysis of the outbreaks in 2021. Bulgaria was selected for this case
study since there was a recurring epidemic wave since Jul 2021 and the vaccination
rate of the population remained low. The asymptotic approach is exemplified with

18
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Country g¢ Ry  T[weeks] im fitting type
Belgium 0.5500 1.82 14.00 1499.59  sir*

Ttaly 0.4006 2.50 12.30 5560.30 sir*
Belgium 0.5949 1.68 13.51 1495.37 asymp
Belgium 0.5991 1.67 13.51 1527.71 sir

Ttaly 0.4190 2.39 12.22 5401.13 asymp
Ttaly 0.3976 2.51 12.12 5557.86  sir

France  0.4899 2.04 13.00 4129.41 asymp
France  0.4808 2.08 12.97 4235.93  sir

Spain 0.6209 1.61 12.38 7565.90 asymp

TABLE 4. Incidence parameters, first wave

* — fitting method as used in [13]. T is given in weeks
passed since 15¢ Jan 2020.

and refers to the time

Country ¢ Ry  T[weeks] i, fitting type
Belgium 1.0000 1.00 42.43 14970.01  sir*

Italy 0.5548 1.80 45.25 34949.74  sir*
Belgium 1.3772 0.73 42.21 14642.57 asymp
Belgium 2.0921 0.48 42.29 15084.92  sir

Italy 0.7835 1.28 45.08 34412.50 asymp
Italy 0.5710 1.75 44.97 34963.18  sir

TABLE 5. Incidence parameters, second wave

* — fitting method as used in [13]. T is given in weeks and refers to the time
passed since 15° Jan 2020.

data from ECDC for 2021, reported daily in the period 2 March — 15 Sept 2021.
The data are summarized in Table 6. Plots are presented in Fig. 8.

g Ry T[weeks] im fitting type wave

1.1307 0.88 36.18 (2020) 3465.44 sir* second wave
0.7627 1.31 11.71 (2021) 3626.36 asymp third wave
1.2007 £ 0.83 11.81 (2021) 3663.88 sir third wave
0.3254 3.07 35.28 (2021) 1483.91 asymp fourth wave
0.1366 7.32 35.08 (2021) 1476.68 sir fourth wave

TABLE 6. Incidence parameters, Bulgaria

* — fitting method as used in [13]. T is given in weeks and refers to the time
passed since 15¢ Jan of the respective year.

From the results presented in Tables 3, 5, and 6 it is apparent that the asymptotic
fitting of an ongoing outbreak can overestimate g (e.g. underestimate Ry) when
the peak of the epidemic has not yet occurred. This effect can be observed also in

Fig. 8.

11. DiSCUSSION

The present results can be discussed in three directions.
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A B

COVID-19 mortality in BG since 2 March 2021 COVID-19 mortality in BG since 1 Jul 2021
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time passed since 15¢ Jan 2021. ’asymp’ refers to parametric fit using the
asymptotic formula eq. 25, ’sir’ refers to fitting the i-variable computed by
numerical inversion using the parameters estimated by eq. 25. Note the
pronounced weekly variation of the reported numbers.

11.1. Analytical implications. The paper presents four solutions of the SIR
model: two of them are approximate and asymptotic at the same time on the
entire real line; one is the inverse parametric one, which has been identified before
[14] and the fourth one uses the special function i(t) introduced in [13]. The 15* or-
der solution i', which can be called Gompertzian, exhibits an interesting property.
That is, the emergence of two fundamental time scales — a longer one determined
by ¢g and a shorter one determined by 4,,. The presence of such a phenomenon
is not apparent from the form of the differential equations only, as these explicate
only the longer time scale g. Therefore, the appearance of the shorter scale is a
truly emergent phenomenon.

The 2°¢ order solution i? (eq. 27), which can be called Gamma because of the
appearance of the incomplete I" function in the integral kernel, further increases
the accuracy of the approximation to the analytical result. It retains the 2 scale
property of the Gompertzian solution.

11.2. Numerical implications. The asymptotic analysis of the SIR model is im-
portant for the Newtonian approximation scheme since incorrect initial guess will
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converge the iteration to the wrong branch of the Lambert W function. There-
fore, one needs an initial function, which is dominated by the i-variable on the
entire real line. The previous publication, which used Newtonian iteration [13],
did not address the asymptotic analysis of the SIR model. Instead, the original
asymptotic of Kermack and McKendrick and an ad hoc initialization function was
used. However, this did not work for all combinations of parameters. The new
asymptotic approach simplifies and stabilizes the data fitting procedure compared
to [13]. The employed numerical procedures also demonstrate increased robustness
to fluctuations demonstrated by the application to the COVID-19 data.

11.3. Epidemiological implications. A key finding of the presented results is
that simple models are very useful in studying epidemic outbreaks also in the quan-
titative sense. This comes in contrast to some shared beliefs that models should
be made more complicated to tackle real world epidemics [30]. Presented results
demonstrate the utility of the SIR model for estimating the basic reproduction num-
ber and the peaks of the infections, respectively case fatalities in the COVID-19
pandemic outbreaks.

The paper introduces (pseudo-)adjusted R? criterion to measure the goodness
of fit. It was demonstrated that both the Gompertzian and the analytic solutions
provide en excellent fit to the data of the 1st COVID-19 wave in Belgium, Italy
and France. In principle, one could introduce as well the asymptotic F-statistics
for computation of a p-value, however the observed weekly periodicity of the data
could make such an approach misleading.

There is a renewed interest in the applications of the SIR model in view of the
COVID-19 pandemics [6, 7, 8, 9, 25, 31, 32]. Furthermore, Blanco et al. have
performed fitting of the COVID-19 infections using the same data source, notably
ECDC in the period Jan 2020 — Oct 2020 [33]. The authors have demonstrated
the Gompertz model could fit very well (R*? = 0.998) 25 out of the 28 countries in
the data set amounting to 89% of the dataset. This corresponds with the data in
Table 1. In similar way, the Gompertz function has been shown to be well fitted
to the case fatalities for 73 countries compared by [34]. These findings correspond
also with the findings of the present paper as per the discussion above relating the
Gompertzian distribution and the SIR model.

12. CONCLUSION

In conclusion, the present paper demonstrates 2 approximate asymptotic solu-
tions of the SIR model- one elementary and Gompertzian, and another one using
numerical quadrature using an exponential I' kernel. The exact solution is com-
puted by numerical inversion of a non-elementary integral using numerical quadra-
ture followed by Newtonian iteration. Starting from the elementary approximation,
the convergence of the iteration is proven for the entire real line.
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15. AVAILABILITY OF DATA AND MATERIAL

The COVID datasets were downloaded from ECDC using https://opendata.
ecdc.europa.eu/covidl9/casedistribution/csv. The analysis pertains to the
version from 14 Dec 2020, which covers the period 1 Jan 2020 — 14 Dec 2021.
A second dataset was downloaded on 15 Sept 2021. Inspection of the dataset
demonstrated that the new data started from 1 March 2021 and covers the 31
countries from the European Economic Area (EEA).

16. CODE AVAILABILITY

Reference implementation in the Computer Algebra System Maxima has been
developed and the code is available through the Zenodo repository [27].
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