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Abstract: Contrary to microgrids (MGs) for which grid code or legislative support are lacking in
the majority of cases, energy communities (ECs) are one of the cornerstones of the energy transition
backed up by the EU’s regulatory framework. The main difference is that, unlike MGs, ECs grow and
develop organically through citizen involvement and investments in the existing low-voltage (LV)
distribution networks. They are not planned and built from scratch as closed distribution systems
that are independent of distribution system operator plans as assumed in the existing literature.
An additional benefit of ECs could be the ability to transition into island mode, contributing to the
resilience of power networks. To this end, this paper proposes a three-stage framework for analyzing
the islanding capabilities of ECs. The framework is utilized to comprehensively assess and compare
the islanding capabilities of ECs whose organic development is based upon three potential energy
vectors: electricity, gas, and hydrogen. Detailed dynamic simulations clearly show that only fully
electrified ECs inherently have adequate islanding capabilities without the need for curtailment or
additional investments.

Keywords: converter-dominated power systems; dynamic stability; electrification; energy communities;
islanding; low-inertia power systems; multi-energy systems; optimization

1. Introduction
1.1. Motivation

The ever-increasing use of renewable energy sources (RESs) is encouraged and im-
posed by the European legislative framework. To achieve a fundamental transformation of
the energy system, the current European ”Clean Energy Package” places local consumers
at the heart of the energy transition [1]. Its aim is to foster citizens’ investment in RESs,
furnishing the transition from a centralized network with passive consumers into a flexible
network of active consumers [2]. Hence, rapid growth of RESs in distribution networks
can be expected in the near future, which leads to new challenges in energy market reform
and operation of distribution system operators (DSOs) in terms of system management
and planning. The rise of consumer cooperation in (renewable) energy production creates
opportunities for small-scale actors for market participation and service provision [3]. The
realization of these opportunities usually relies on structures such as aggregators, virtual
power plants, microgrids (MGs), and energy communities (ECs) [3].

The EC as a cornerstone of the energy transition is the focus of European research [3],
enabling self-producing, self-consuming, sharing, and selling energy from distributed
sources. A regulatory framework of ECs is given by the Renewable Energy Directive
and the Electricity Market Directive. The EU has introduced two concepts of ECs in its
legislation, i.e., Citizen Energy Communities and Renewable energy communities [4].
The primary goal of these communities is to allow citizens to collectively organize their
participation in the energy system while providing a host of benefits such as local provision
of ancillary services, alleviation of the need for traditional network upgrades, higher

Energies 2023, 16, 4321. https://doi.org/10.3390/en16114321 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16114321
https://doi.org/10.3390/en16114321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7657-150X
https://orcid.org/0000-0002-5748-9455
https://orcid.org/0000-0002-8891-2738
https://orcid.org/0000-0001-8187-7581
https://doi.org/10.3390/en16114321
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16114321?type=check_update&version=1


Energies 2023, 16, 4321 2 of 24

integration of RESs, market participation of end consumers, lower energy prices, and
economic income for members [5]. However, national (by)laws often spatially limit ECs;
for instance, the EC in Croatia is limited only to the end-users downstream of the same
MV/LV substation [6]. The EC is usually managed by the community manager that has
access to the data of devices and meter measurements of each community member [7].
ECs are built, sized, and managed to provide economic savings and benefits for their
end-users. In this context, the possibility of islanding could be an added feature that the
EC will provide to its end-users. Although islanding capability is commonly related to
MGs in the literature, MGs are not consistently defined in the existing standards. In fact,
only five of them (IEC 62898-1, IEC 62898-2, IEEE P2030.8, IEC 62898-3, and IEEE 1574 [8])
deal with MGs, but primarily as a power supply for remotely located systems with weak
or non-existing grid connections, e.g., telecommunication systems and islands. In reality,
most of MGs will not be planned and built as separate, closed distribution systems that
are operated and managed independently of a DSO considering existing standards. Since
the EC and islanding capability are recognized and defined in legislation, islanding as
an added feature to ECs would contribute to the resilience, self-sufficiency, and energy
independence of electric networks. Controllable RESs and loads in MGs and ECs reduce
dependence on the main grid. If there is sufficient energy controlled in a proper way, the
EC could separate and operate independently from the external grid in the case where there
is an interruption of electricity supply. Therefore, islanding requires a lot of attention when
talking about RES integration in MGs and ECs. Islanding can be planned, which means
MG or EC disconnects from the main network in a controlled manner as it has enough
electric power to reliably supply the local load. In addition, islanding can be unplanned
as an undesired event caused by failures in the main grid, line tripping, etc. The objective
of MG/EC planning is to ensure safe and reliable MG/EC operation for both planned
and unplanned islanding. This paper aims to investigate in which cases and with which
transition strategies the EC can enable islanding to its end-users.

1.2. Literature Review

In the context of islanding capability, developing an appropriate MG/EC scheduling
model that can ensure reliable grid-connected and islanded operation (as well as smooth
islanding transition) is of fundamental importance. There are several papers tackling this
issue. Reference [9] presents the optimal scheduling of cooperative ECs, observing the
energy exchange among assets within ECs as well as energy exchange with the utility grid.
However, this approach ensures only reliable grid-connected operation, and the possibility
of islanding is neglected. Authors in [10–17] propose different models of optimal MG
scheduling for both grid-connected and islanded modes. However, the islanding constraints
are based only on the energy balance ensuring that production is equal to consumption in
both modes, not considering the dynamics during the transition to islanded mode. The
same shortcoming can be noticed in [18–20] where the optimal reserve capacity required for
successful islanding is determined. These references place emphasis on meeting frequency
constraints after islanding, while voltage constraints are neglected. Moreover, the authors
in [21–24] consider only the dynamic frequency behavior through limits of the maximum
rate of change of frequency (RoCoF), nadir, and the steady-state frequency deviation.
These limitations are derived analytically and incorporated into the MG scheduling model.
Nonetheless, the voltage stability is ignored. On the other hand, the study in [25] proposes
a methodology to satisfy the dynamic voltage security constraints during MG islanding
and the post-islanding steady state, neglecting the dynamic frequency constraints. The
authors in [26] use an AC power flow to calculate the voltages and frequency deviations and
to guarantee acceptable nodal voltages and system frequency during islanded operation,
while grid-connected operation and off-grid transition are not observed. Reference [27] also
investigates the microgrid islanded operation, where EV flexibility is utilized to improve
the frequency fluctuation and stability, while the voltage stability, as well as transient
constraints, are omitted. Only islanded microgrid operation is also observed in [28], where
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authors derive the frequency security constraints according to hierarchical frequency control
levels to optimally schedule energy and reserves. Moreover, the steady-state stability and
transient stability in all operation modes are assured by AC optimal power flow (OPF)
in [29], yet the voltage stability is not fully considered. The proposed model is tested on
a distribution network containing conventional distributed generators, photovoltaic (PV)
units, and wind turbine (WT) units. However, their dynamics and control systems are not
considered when deriving transient stability constraints. A step further is made in [30]
where both static and transient islanding constraints (i.e., the maximum RoCoF and the
frequency nadir as transient state criteria, and the frequency deviation as a quasi-steady-
state criterion) are derived considering the contribution of traditional SGs, droop-based
and virtual inertia-based converters to frequency control. Notwithstanding the inclusion of
transient frequency constraints, the authors assume sufficient energy storage behind the DC
capacitor as well as perfect tracking of the DC-side storage device. This approach essentially
eliminates any distinction between various technologies (PV, wind, battery, hydrogen, etc.).
Furthermore, transient and quasi-stationary voltage constraints are not considered. In [31],
a detailed representation of unit dynamic response is used to define frequency nadir
constraints. However, voltage transient constraints and RoCoF constraints are not observed
by the presented method. A similar approach is presented in [32], where a neural network
is used to derive the nonlinear relation between system operating conditions and frequency
nadir to achieve successful islanding. By this approach, realistic factors such as saturation
and dead-band can be considered, yet the voltage constraints are not modeled.

1.3. Contributions and Paper Organization

Based on the literature review, the shortcomings of the state-of-the-art are as follows:
(i) no papers investigate islanding capabilities of ECs based on different energy vectors;
(ii) none of them comprehensively consider detailed device-level dynamics with static
and dynamic constraints in a quiescent and transient state, both on-grid and off-grid. The
taxonomy of existing literature and contributions of this paper with respect to the state
of the art is shown in Table 1. With that in mind, the contributions of this paper can be
summarized as follows:

• Three-stage framework for analyzing the capabilities of ECs to transition into island
mode considering steady-state and transient voltage/frequency constraints.

• Comprehensive analysis of the capabilities of three ECs based on different energy
vectors (gas, hydrogen, fully electrified) taking into account detailed device-level
dynamics on the DC side of converters.

The rest of paper is organized as follows. The EC optimization and dynamic models
are described in Section 2. A case study is described in Section 3. Results are discussed in
Section 4. Section 5 concludes the paper.

Table 1. Comparison of the proposed three-stage modeling framework for islanding capabilities and
existing models available in the literature.

Modeling Aspects [10–17] [18–20] [21–24] [25] [26] [27,28] [29] [30] [31,32] This Work
grid-connected operation 3 3 3 3 7 7 3 3 3 3

islanded operation 3 3 3 3 3 3 3 3 7 3

off-grid transition 7 7 3 3 7 7 3 3 7 3

steady-state constraints 3 3 3 3 3 3 3 3 3 3

transient nadir constraints 7 7 3 7 3 3 3 3 3 3

transient RoCoF constraints 7 7 3 7 3 7 3 3 7 3

transient voltage constraints 7 7 7 3 3 7 7 7 7 3

consideration of control systems 7 7 7 7 7 7 7 3 3 3

full consideration of dynamics 7 7 7 7 7 7 7 7 3 3

including virtual inertial response 7 7 7 7 7 7 7 3 7 3

testing on different MG/EC setups 7 7 7 7 7 7 7 7 7 3
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2. Energy Community Modeling

Three specific EC layouts with different ways of producing heat, electricity, and storing
energy are considered in this paper: (i) fully electrified EC consisting of a centralized heat
pump (HP), and battery energy storage systems (BESSs) and PV units in every household
(Figure 1); (ii) gas-based EC consisting of a centralized CHP unit and a boiler, and also PV
units in every household (Figure 1b); (iii) hydrogen-based EC consisting of a centralized
fuel cell + electrolyzer, and PV units in every household (Figure 1c). Layout (i) presents the
current trend for EC architecture based on full electrification. EC layout (ii) represents tra-
ditional end-user system architecture still mostly present in today’s systems, where heating
is primarily provided by fossil gas. Lastly, layout (iii) represents an electrified architecture
based on hydrogen technologies, considered more as a future possibility to replace natural
gas as a more environmentally friendly technology. Please note that we intentionally choose
to focus on one type of technology for each EC instead of mixing technologies together as
we are analyzing specific technology paths toward decarbonization. This approach will
provide better insight into the flexibility potential of each option separately. Finding an
optimal mix of the technologies for an energy community (or collaboration of multiple
ECs) is outside the scope of this paper. Devices in ECs are sized to ensure that the energy
needs are met, supported by the energy production from PVs, especially in the case of
heat consumption, where all energy needs must be produced locally, since it cannot be
bought directly. Additionally, each EC has a different way of storing energy (BESS, heat,
hydrogen). This approach makes ECs mostly autonomous while still being able to perform
market arbitrage. Layouts for ECs (i) and (iii) are chosen as they do not produce local
greenhouse gas emissions. However, they are indirectly responsible for emissions produced
by generating electricity bought from the market. These emissions are mostly dependent
on the energy mix in a given market and, following the current emission reduction trends,
they will be reduced. Additionally, every EC has a PV system to reduce their electricity
import, thus lowering their carbon footprint. Every EC layout can be adapted in terms of
(de)centralization of different units and redesigned for satisfying local energy consumption.
The proposed framework is generic enough for analyzing the islanding capabilities of an
arbitrary EC layout.

The EC model consists of three stages. The first stage is the optimization problem
based on the mixed-integer linear model, which is used to determine the optimal schedule
of ECs from the energy balance perspective. In the second stage, a dynamic analysis of
EC island transition is conducted. If the transition was not possible, new constraints are
introduced to the model to ensure the feasibility of islanding. Finally, the third stage
updates the first stage with constraints obtained from the second stage, providing an
optimal schedule of ECs while ensuring islanding capabilities. The proposed framework is
shown in Figure 2.

2.1. Optimization Model

Before introducing the model formulation, sets of devices in each EC m are de-
fined: boilers (Db,m), CHP units (Dc,m), electrolyzers (De,m), fuel cells (D f ,m), and heat
pumps (Dh,m). Energy storage devices are BESS (Dβ,m), heat storage (Dτ,m), and hydrogen
storage (Dh̄,m).

The optimization model is a mixed-integer linear programming model which aims to
minimize the operational cost of EC m, described by (1). The model is created in the Python
programming language, using Gurobi solver [33]. It consists of charges for electricity and
gas bought from their respective markets (εm,tπ

E
t , γmπG) reduced by electricity sold on

the market (εm,tπ
E
t ). Electricity bought from the market has an additional cost in terms of

transmission and distribution charges (πtrans., πdistr.) which are not present when selling
electricity to the market. zd,m,t is the start-up cost of units.

min

{
∑
t∈T

(
εm,t

(
πE

t + πtrans. + πdistr.
)
− εm,tπ

E
t + ∑

d∈Db,m∪Dc,m

zd,m,t

)
+γmπG

}
(1)
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Figure 1. Layouts of observed ECs: (a) fully electrified EC, (b) gas-based EC, (c) hydrogen-based EC
Figure 1. Layouts of observed ECs: (a) fully electrified EC, (b) gas-based EC, (c) hydrogen-based EC.

Input power of non-storage devices DC
m = Db,m ∪Dc,m ∪De,m ∪D f ,m ∪Dh,m is limited

by Equation (2). For storage devices DS
m = Dβ,m ∪ Dτ,m ∪ Dh̄,m, Equations (3) and (4)

limit the maximum charging and discharging power; (5) prohibits simultaneous activa-
tion of charging and discharging; (6) calculates the state-of-energy at any give time step;
and (7) limits the maximum and minimum available state-of-energy. All of these equations
are standard in the literature and are used for most devices; thus, we did not want to repeat
them for each specific device. Equation (8) models the start-up cost of boilers and CHPs
through an additional binary variable zd,m,t, which takes on value 1 if the device has started
in that time step. The output power of boilers and electrolyzers is calculated by reducing
the respective input power by the conversion efficiency ηd, and for HPs, the coefficient of
performance is used, represented by the same symbol (ηd) for simplicity (9). Since the CHP
and fuel cell generate both electricity and heat, their power outputs are calculated using
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electricity efficiency (ηE
d ) and heat efficiency (ηT

d ), given by (10) and (11). The sum of output
electric and heating power must always be less than input power after losses are taken
into account. Please note that in the implementation, only the input variables are defined.
When the output variable is needed in the equation it is instead expressed through the
input variable and efficiency as shown in the previous equation. This approach reduces the
total number of variables in the model.
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Pmin
d xd,m,t ≤ pd,m,t ≤ Pmax

d xd,m,t∀t, m, d ∈ DC
m (2)

pd,m,t ≤ Pmax
d xc

d,m,t∀t, m, d ∈ DS
m (3)

p
d,m,t
≤ Pmax

d xd
d,m,t∀t, m, d ∈ DS

m (4)

xc
d,m,t + xd

d,m,t ≤ 1∀t, m, d ∈ DS
m (5)

ed,m,t = ed,m,t−1 + pd,m,tη
c
d − p

d,m,t

1
ηd

d
∀t, m, d ∈ DS

m (6)

Emin
d ≤ ed,m,t ≤ Emax

d ∀t, m, d ∈ DS
m (7)

xd,m,t − xd,m,t−1 ≤ zd,m,t ∀t, m
∀d ∈ Db,m ∪Dc,m (8)

p
d,m,t

= ηd pd,m,t∀t, m
∀d ∈ Db,m ∪De,m∪
Dh,m

(9)

pE
d,m,t

= ηE
d pd,m,t∀t, m

∀d ∈ Dc,m ∪D f ,m (10)

pT
d,m,t

= ηT
d pd,m,t∀t, m

∀d ∈ Dc,m ∪D f ,m (11)

Each EC is based on a specific energy vector: electricity, gas, and hydrogen. Therefore,
the energy balancing equations for each energy vector of the considered EC are written
to represent interconnections between devices along with the balancing equation for heat
energy. Heat, electricity, hydrogen, and gas balances are given by Equations (12)–(15),
respectively. Heat balance Equation (12) ensures that there is enough local heat produc-
tion to satisfy the load. Electricity balance Equation (13) adds up all consumption and
production of electricity while it can sell surpluses or buy deficits from the market. The
produced hydrogen has to be stored or consumed since it cannot be bought or sold on any
market (14) (acquired from an outside source). Since the gas is bought in a single bid for
a 24 h period on the day-ahead market, its consumption must be summed for the entire
optimization horizon (15).

∑
n∈Nm

LT
n,m,t = ∑

d∈Db,m∪Dh,m

pT
d,m,t

+ ∑
d∈Dc,m∪D f ,m

pT
d,m,t

+ ∑
d∈Dτ,m

(
pT

d,m,t
− pT

d,m,t

)
(12)

∑n∈Nm LE
n,m,t = ∑n∈Nm PVE

n,m,t + εm,t − εm,t −∑d∈De,m∪Dh,m
pE

d,m,t

+∑d∈Dc,m∪D f ,m
pE

d,m,t
+ ∑d∈Dβ,m

(
pE

d,m,t
− pE

d,m,t

) (13)

0 = ∑
d∈De,m

pH
d,m,t
− ∑

d∈D f ,m

pH
d,m,t + ∑

d∈Dh̄,m

(
pH

d,m,t
− pH

d,m,t

)
(14)

γm = ∑
t∈T


 ∑

d∈Dc,m

pG
d,m,t + ∑

d∈Db,m

pG
d,m,t


 (15)
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2.2. Dynamic Model

In this section, dynamic models of devices in each EC are described. The electrical
models of ECs and devices with corresponding control systems are modeled in DIgSILENT
PowerFactory 2019.

The network model is based on a real three-phase low-voltage distribution feeder of
Zagreb, Croatia. Residential loads are modeled as constant impedance loads. CIG takes full
advantage of available grid-forming schemes as RES should provide voltage and frequency
references during islanded operation of EC. Since the grid-forming capability depends
on the available energy on the DC side, appropriate control schemes are chosen for each
device; CIG with a sufficient amount of energy at the DC side (FC, BESS) is controlled as PQ-
VSM, while sources with a negligible amount of energy (PV) are controlled as DCVQ-VSM.
VSM technologies emulate the static and dynamic performance of synchronous machines,
i.e., their inertia and damping effect. Therefore, their implementation is based on some
form of the swing equation, assuming the presence of the virtual rotor and virtual governor.
Converter-interfaced loads (electrolyzer) are grid-following operating in grid-supporting
mode, which means they can adjust their output active and reactive power according to
frequency and voltage changes, respectively. All grid-side converters are voltage source
converters (VSCs). The design of inner voltage and current control loops is not described
in detail, for which we refer the reader to [34].

2.2.1. Electrolyzer

The electrolyzer is a responsive, flexible end-use load [35] that uses electric power to
produce hydrogen and can participate in the procurement of ancillary services, such as
frequency balancing, voltage control, and congestion management [36]. The electrolyzer is
based on the polymer electrolyte membrane (PEM) technology that is promising for large-
scale applications. Compared to the other types of electrolyzers (e.g., alkaline electrolyzers,
anion exchange membrane electrolyzers, and solid oxide electrolyzers), PEM electrolyzers
have a host of advantages, such as lowest capital cost [37], higher power density, scalable
design, wider dynamic range [38], wide partial load range, and high adaptability in terms
of operation [39]. In this paper, the electrolyzer is modeled as grid-following converter-
interfaced load, as shown in Figure 3.
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The electrolyzer model consists of three sub-models: electrical, thermal, and H2
production sub-model [40,41]. The H2 production sub-model can be ignored since it does
not provide any signals to the other two sub-models. Since the thermal constant of the
electrolyzer is in the order of hours, but the simulation time-horizon of interest is several
seconds, the thermal sub-model is not necessary [40]. In other words, the temperature of
the electrolysis stack can be assumed to be constant during dynamic analysis. Therefore,
the electrical sub-model is a sufficiently accurate representation of the electrolyzer in
dynamic analysis. The electrolyzer stack model is implemented according to [40–42]. The
equivalent electrical circuit of the electrolyzer is given by a voltage source in series with
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internal resistance and an electrical double layer (EDL) branch [41,42]. The magnitude of
the voltage source is given by Nernst Equation (16):

E = E0 − 0.85× 10−3(T − 298.15) +
RT
zF

ln
( pH2 p0.5

O2

pH2O

)
(16)

where E0 is the constant reversible voltage, R is the universal gas constant, F is the Faraday
constant, z is the number of electrons in reaction (z = 2 for hydrogen–oxygen reaction), T is
the stack temperature, pH2 is hydrogen partial pressure, pO2 is oxygen partial pressure, and
pH2O is water vapor pressure. Because of the ideal gas law (pV = nRT), the pressure is also
considered constant. The output voltage of electrolysis cell Vcell is the result of reversible
voltage, ohmic voltage drop, and voltage drop on the EDL branch VEDL. Ohmic voltage
drop is a function of membrane resistance Rohm, which is assumed to be constant, and the
current density i.

Vcell = E + VEDL + Rohm · i (17)

The EDL voltage drop is given by (18):

dVEDL

dt
=

i
CEDL

− VEDL

RaCEDL
(18)

where Ra is the double-layer resistance associated with activation voltage drop and CEDL is
the double-layer capacitance related to concentration voltage drop. The electrolyzer stack
voltage Vst is then calculated by (19) where N is the number of electrolysis cells in the stack.

Vst = N ·Vcell (19)

The current density is initialized and calculated as a function of electrolyzer input power P,
stack voltage Vst, and cell area Acell in cm2 (20).

i =
P

Vst Acell
(20)

Technically, electrolyzers are capable of providing fast frequency response with the
presence of an accurate control system. They respond to over-frequency conditions by
increasing their power/current, and to under-frequency conditions by reducing their
power consumption [40]. The following text describes the electrolyzer control system.
The reference active power signal p? is a result of inverse droop control [43,44], as given by
expression (21):

p? = p +
1
R
(ω−ω∗) (21)

where p is the measured input power of the electrolyzer, R is the frequency droop, ω is the
measured grid frequency (PLL) at the PCC, and ω∗ is the frequency reference.

Moreover, reactive power control is realized as follows:

q? =
1
‖vo‖

(
Kpq +

Kiq

s

)
(q∗ − q) (22)

where ‖vo‖ is the magnitude of terminal voltage, Kpq and Kiq are PI controller gains, q∗ is
the reference reactive power (q∗ = 0 in this paper), and q is the measured reactive power of
the electrolyzer system [38]. Active and reactive power references (p?, q?) are inputs to the
inner voltage and current control loops [34].

2.2.2. Fuel Cell

The fuel cell is based on the PEM technology that converts the chemical energy of
hydrogen and oxygen or air into electrical energy and thermal energy [45]. It consists of two
electrodes, anode and cathode, separated by a polymer electrolyte [46,47]. Each of these
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components is assumed as a one-dimensional system [48]. At the anode, the hydrogen
supplied from an external tank is dissociated into protons as described by (23). Hydrogen
ions are transferred to the cathode via osmosis as the polymer electrolyte permits the
transfer of only positive ions, while an external electric circuit is used to link electrodes and
to carry electrons, producing DC electricity. At the cathode, the oxidant is merged with
electrons and hydrogen ions as described by (24). The total chemical reaction occurring in
the fuel cell is shown by (25), resulting in water, residual heat, and electricity [45,49–51].
Thermal energy is associated with atomic and molecular vibration [52].

H2 2 H+ + 2 e– (23)

2 H+ + 2 e– +
1
2

O2 H2O (24)

H2 +
1
2

O2 H2O + heat + electricity (25)

The PEM fuel cell behavior is non-linear and dependent on different factors, such
as temperature, reactant pressure, membrane hydration, and reactant concentrations [53].
However, the following assumptions are considered for dynamic analysis:

• Due to slow thermal dynamics of the fuel cell, the temperature is assumed to be
constant, i.e., it can be well-controlled by the cooling system [54].

• The gases are ideal and uniformly distributed [55].
• Because of slow changes in the humidifier, the input humidity is constant [54].
• The internal resistance is constant [56].
• The output stack voltage is described by the Nerst equation [56].

The fuel cell and the electrolyzer have the same electrochemical model. Therefore,
the same equivalent electrical circuit is used to represent the fuel cell [57]. However, the
current flow is in the opposite direction since the fuel cell produces electricity, while
the electrolyzer uses electricity to produce hydrogen. All equations that describe the
electrolyzer model are also valid for the fuel cell model, except that the fuel cell voltage is
now described as (26) due to the opposite current direction.

Vcell = E−VEDL − Rohm · i (26)

The described fuel cell dynamics are subsumed under the PEM fuel cell stack in
Figure 4. However, the challenging part is its control system that is implemented as PQ-
VSM, i.e., the active and reactive power outputs are controlled. The implementation of
the active power controller is based on the swing Equations (27) and (28), representing the
dependence of the virtual rotor speed and power balance:

dω?
VSM
dt

=
1
Ta

(
p∗ − p− Kd(ω

?
VSM −ω)− Kω(ω

?
VSM −ω∗)

)
(27)

dθ?VSM
dt

= 2π fnω?
VSM (28)

where p∗ is the active power reference, p is the measured electrical power flowing from
the fuel cell system, and Ta is the mechanical time constant that corresponds to 2H in
conventional synchronous machines. Terms Kd(ω

?
VSM − ω) and Kω(ω?

VSM − ω∗) model
the damping and droop control, respectively, in which ω?

VSM, ω and ω∗ are respective
VSM speed, estimated grid frequency (PLL), and grid frequency reference. θ?VSM is the
internal converter angle reference, with fn being the nominal frequency in Hz. Since the
PQ-VSM has the ability to provide the inertial response and damping effect, as well as the
power–frequency droop control, the fuel cell controlled in this way will change its output
power according to the frequency deviations.
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The reactive power control of the fuel cell system is based on the Q/V (reactive
power/voltage) droop strategy (29):

v? = v∗ + Kq(q∗ − q) (29)

where v∗ is the external voltage amplitude reference, q∗ is the reactive power reference, q is
the measured reactive power, and Kq is the reactive power droop gain.

Voltage and angle references (v?, θ?VSM) provided by these controllers are input signals
to the cascaded inner control loops. Detailed implementation of the VSM converter is
explained in [58].
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2.2.3. Battery Energy Storage System

The BESS model consists of a DC-side model, battery cell model, and control system.
The DC side serves to detect the DC voltage UDC (30) and calculate the DC current (31)
that is needed as the input signal to the battery cell model. The active power signal P is
obtained by load flow analysis and measured in MW, while DC current I is expressed in
kiloamperes (kA).

dUDC

dt
=

Vterm −UDC

0.01
(30)

I =
P · 103

UDC
(31)

The battery cell model is based on the available model in the PowerFactory library
and can be found in [59]. The battery model is described by Equations (32)–(35):

Icell =
I

Np
(32)

SoC = − 1
3600Cr

∫ t

t0

Icell(τ)dτ (33)

Ucell = Umax · SoC + Umin · (1− SoC)− Icell · Ricell (34)

Vterm = Ucell · Ns (35)

where Ns is the amount of serial connected cells; Np is the amount of parallel connected
cells; Cr is the rated cell capacity in Ah; Umax and Umin are the maximum and minimum
allowed voltages of a battery cell; Ricell is the internal resistance per cell [59]. Output signals
are the current of single cell Icell, state-of-charge SoC, and battery terminal voltage Vterm.
Furthermore, the BESS control system is also based on the PQ-VSM, as shown in Figure 4.
Therefore, the active and reactive power controllers are implemented in the same way as
for the fuel cell control system. Additionally, the BESS control system includes charge
control that checks whether the current and state-of-charge (SoC) values are within certain
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limits. It prevents discharging of the battery if SoC falls below the minimum threshold, and
prevents charging of the battery if SoC is above the maximum threshold. The device-side
model is subsumed under the BESS block in Figure 4. The BESS and its control system are
described in detail in [58,60].

2.2.4. Photovoltaic Unit

The PV dynamic model is presented in Figure 5 where the device-side model is
subsumed under the PV array. It is also based on the available model in PowerFactory and
described by (36)–(39) [61]:

Umpp = NskT,UUmpp
0

ln E
ln E0

(36)

IPV = NpkT,I Isc
0

E
E0

[
1− e

N−1
s UDC−Uoc

N−1
s Umpp−Uoc ln

(
1− I

mpp
0
Isc
0

)
]

(37)

Uoc = kT,UUoc
0

ln E
ln E0

(38)

PPV = U · IPV (39)

where Ns is a number of modules in series that form a string; Np is the number of strings
in parallel that form an array; Umpp

0 and Impp
0 are maximum power point voltage and

current; Uoc
0 and Isc

0 are open-circuit voltage and short-circuit current; kT,U and kT,I are
linear temperature correction factors for voltage and current [61]. The PV voltages and
currents are assumed at standard conditions: E0 = 1000 Wm−2 and T = 25 oC. Outputs of
PV array model are the maximum power point voltage Umpp and active power PPV.
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The PV system (Figure ??) is operated in MPPT mode, so the control system of the PV
converter is based on the DCVQ-VSM where the DC link voltage and reactive power are
controlled. The reactive power control is achieved by setting the reference values (q∗,v∗)
as in PQ-VSM. The DC-link voltage controller provides the frequency reference value and
achieves active power synchronization utilizing the dynamics of the DC-link capacitor to
achieve the inertial response (albeit small due to the negligible amount of stored energy
in the PV system). The DC-link voltage is a function of power flow through the DC-link
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where ω∗ is the grid frequency reference; UDC is the measured DC-link voltage; U∗DC is
the reference value of the DC-link voltage; KT is the DC-link voltage tracking coefficient;
KD is the damping coefficient; KJ is the inertia emulation coefficient [? ]. The internal
converter angle is the same as in (??). This control strategy enables the provision of inertial
response and damping effect, yet the power–frequency droop control cannot be achieved,
and therefore the PV unit cannot contribute to the steady-state frequency value. The
detailed model of the implemented PV system can be found in [? ].

2.2.5. CHP Unit and Heat Pump

The CHP unit in the GEC is modeled as a synchronous (diesel) generator with a GAST
gas turbine-governor model and AC5A excitation system, both with default parameters
in PowerFactory.

The heat pump (HP) in EEC is modeled as an induction motor with a single cage rotor.
HP is directly connected to the grid. Its mechanical torque is quadratically proportional to
the motor speed.

2.2.6. on the Controller Parameters

In previous subsections, implementations of active and reactive power controllers
for different devices are discussed. Although these are different control strategies, similar
requirements are set to adjust their parameters as improper tuning may lead to instability
in some cases.

Therefore, the following paragraphs aim to explain the parameter tuning of active
power controllers. Regardless of the control strategy (PQ-VSM, DCVQ-VSM, droop control),
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The PV system (Figure 5) is operated in MPPT mode, so the control system of the PV
converter is based on the DCVQ-VSM where the DC link voltage and reactive power are
controlled. The reactive power control is achieved by setting the reference values (q∗,v∗)
as in PQ-VSM. The DC-link voltage controller provides the frequency reference value and
achieves active power synchronization utilizing the dynamics of the DC-link capacitor to
achieve the inertial response (albeit small due to the negligible amount of stored energy
in the PV system). The DC-link voltage is a function of power flow through the DC-link
capacitor and its capacity CDC as given by (40):

CDC
dUDC

dt
=

1
UDC

(
pPV − p

)
(40)

where pPV is the per-unit value of PV active power, while p is the per-unit value of converter
power output. VSM speed ω?

VSM is governed by (41):
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ω?
VSM = ω∗ +

s + KT
KJs + KD

[(UDC)
2 − (U∗DC)

2] (41)

where ω∗ is the grid frequency reference; UDC is the measured DC-link voltage; U∗DC is
the reference value of the DC-link voltage; KT is the DC-link voltage tracking coefficient;
KD is the damping coefficient; KJ is the inertia emulation coefficient [62]. The internal
converter angle is the same as in (28). This control strategy enables the provision of inertial
response and damping effect, yet the power–frequency droop control cannot be achieved,
and therefore the PV unit cannot contribute to the steady-state frequency value. The
detailed model of the implemented PV system can be found in [58].

2.2.5. CHP Unit and Heat Pump

The CHP unit in the GEC is modeled as a synchronous (diesel) generator with a GAST
gas turbine-governor model and AC5A excitation system, both with default parameters
in PowerFactory.

The heat pump (HP) in EEC is modeled as an induction motor with a single cage rotor.
HP is directly connected to the grid. Its mechanical torque is quadratically proportional to
the motor speed.

2.2.6. on the Controller Parameters

In previous subsections, implementations of active and reactive power controllers
for different devices are discussed. Although these are different control strategies, similar
requirements are set to adjust their parameters as improper tuning may lead to instability
in some cases.

Therefore, the following paragraphs aim to explain the parameter tuning of active
power controllers. Regardless of the control strategy (PQ-VSM, DCVQ-VSM, droop control),
the inertia constant should be tuned according to the desired sensitivity to grid-side power
imbalance, and typical values are [1, 20] s [63].

Droop gains can be determined according to maximum power rating and maximum
allowable frequency deviations. The standard range is [10, 100] p.u. The higher the droop
constant, the smaller the frequency steady-state deviation [63,64].

Furthermore, the damping coefficient of virtual inertia-based control strategies has a
wide range, i.e., [0, 1000] p.u. However, too large a value can increase oscillations [63,64].

Similar to frequency droop gain, the reactive power droop gain can be determined by
the maximum power rating and maximum allowable voltage deviations, resulting in the
usual range of [0, 0.2] p.u.

Since all grid-side converters are modeled as a VSC, the method of the parameter
tuning of cascaded voltage and current loops should be mentioned. In this paper, their
parameters are tuned by a trial-and-error process. Nonetheless, it should be taken into
account that the outer control loop (voltage controller) must be slower (by about 5–10 times
or more) than the inner control loop (current controller) to achieve timescale separation.

3. Case Study

The presented EC layouts (Figure 1) are chosen to showcase a set of diverse ECs based
on different energy vectors that developed organically over time, as opposed to MGs, which
are generally sized and built from scratch as standalone systems in the existing literature.
In this sense, organic development implies that the existing end-users in the LV network
have decided to incorporate different technology vectors over a certain period of time
and form an EC. Note that because of the limited space and a large number of network
elements, a detailed list of parameters was omitted. Most relevant case study information
is provided below.

All ECs contain rooftop PVs for electricity production. Each EC consists of 30 house-
holds (|Nm| = 30) with a 5 kW rooftop PV system. Each EC was given a different en-
ergy storage that logically fits in. Fully electrified EC has a BESS at every household
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(|Dβ,EEC| = 30), sized so that it can store all electricity from PV in one hour while the heat
demand is covered by a central HP (|Dh,EEC| = 1). Gas-based EC has a central heat storage
(|Dτ,GEC| = 1) since it is based on a central CHP system (|Dc,GEC| = 1) whose production is
mainly driven by heat consumption. It can store one hour worth of heat produced from the
CHP. Similarly, hydrogen-based EC has a central hydrogen storage (|Dh̄,HEC| = 1) that can
store one hour of hydrogen production from a central electrolyzer (|De,GEC| = 1). A central
FC system (|D f ,GEC| = 1) is used to generate heat alongside electricity. HP, CHP, and FC
are sized so that they can cover all the heat consumption that may occur. Therefore, sizing
the electrical output of HPs, CHPs, and FCs was secondary. In hydrogen-based EC, the
electrolyzer was sized so that it can produce enough hydrogen in order for the fuel cell to
operate for 1 h. For more details on device sizing, we refer the reader to [65].

Device parameters are given in Table 2. Electricity demand is generated using LoadPro-
fileGenerator 8.9.0.0. software [66]. Scenarios of PV production are generated using [67]
with the weather set for Zagreb, Croatia. Electricity prices are taken from Croatian power
exchange (CROPEX) [68]. The heat consumption set is generated from [69] and resembles
the climate conditions in Croatia. It is assumed that the gas price has a singular value of
πG = 85.7 €/MWh taken from Central European Gas Hub Virtual Trading Point [70].

Table 2. Parameters of all devices considered by ECs.

Device Power Rating Efficiency Capacity

Heat pump Pmax
h = 120 kW ηh = 2.5 -

CHP Pmax
c = 430 kW

ηE
c = 0.22 -

ηT
c = 0.7

Boiler Pmax
b = 180 kW ηb = 0.85 -

Fuel cell Pmax
f = 580 kW

ηE
f = 0.37 -

ηT
f = 0.52

Electrolyzer Pmax
e = 880 kW ηe = 0.66 -

Battery
(1 per household)

Pmax
β = 5 kW ηc

β = 0.9 5 kWh
Pmax

β = 5 kW ηd
β = 0.9

Heat storage Pmax
τ = 335 kW ηc

τ = 0.9 335 kWh
Pmax

τ = 335 kW ηd
τ = 0.9

Hydrogen storage Pmax
h̄ = 600 kW ηc

h̄ = 1 600 kWh
Pmax

h̄ = 600 kW ηd
h̄ = 1

In the optimization model (1)–(15), the power flow equations were omitted for two
reasons: (i) for simplicity; (ii) we assume that in normal, on-grid operation, the DSO is
in charge of voltage and power flow control. This is a realistic assumption since EC is a
part of an existing distribution system, and for every existing end-user grid connection,
an adequate grid integration study must have been conducted a priori by the DSO. Ad-
ditionally, in case there are some interruptions of electricity supply in the rest of the grid,
ECs are also allowed (by the DSO) to transition into islanding operation. During islanded
operation, the EC manager is in charge of the grid control until it resynchronizes to the
main grid. Therefore, power flow is run in the second stage to check if the node voltages
and line loadings are within predefined bounds.

The network model of each EC (Figure 1) is identical; short-circuit voltage of the
10/0.42 kV transformer is 4%. The main line from the feeder consists of 1 kV 4 × 240
PP41-A cable segment with R = 0.136 Ω/km, L = 0.252 mH/km, and 1 kV 4 × 240 mm2

NYBY cable segment with R = 0.0787 Ω/km, L = 0.23 mH/km. The total length of the
feeder line is about 600 m. The line connecting each household to the main line is a 1 kV
3 × 35 mm2 NFA2X cable with R = 0.868 Ω/km and L = 0.264 mH/km, with length in
the range 5–25 m.
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4. Simulations and Results
4.1. Stage 1: Initial Optimization

The optimization is executed for one year with steps of one hour, i.e., in total, there
are 8760 steps (|T | = 8760). The operational cost and operating point of all devices for
each hour are calculated by the optimization model for all ECs. In this paper, the results
focus on maximum export and maximum import at the PCC as these are the points of
the largest active power mismatch. Thus, they are the main driver of transient dynamics
during islanding.

4.1.1. Fully Electrified EC

The annual operational cost of the fully electrified EC is EUR 7966. Figure 6 shows elec-
tricity exchange with the market for the whole year on an hourly basis. During the winter
period when heating consumption is high and PV production is generally lower, EC buys
large amounts of electricity. On the contrary, during summer months, there is no heating
production and PV production is higher, and thus EC mostly sells electricity. The case of
maximum export happened in hour 5267 when all PV units generate 4.2 kW and all BESSs
are discharged with 4.5 kW. There is no HP consumption, and the total load is 2.3 kW. This
leads to a total export of 257.7 kW. In the case of the maximum import, there is no PV pro-
duction and all BESSs are charged with 5.0 kW. The HP consumption amounts to 94.9 kW,
while the total load is 1.4 kW. This leads to the total import of 246.3 kW in hour 796.

Figure 6. Electricity exchange of fully electrified EC.

4.1.2. Gas-Based EC

The result of the gas-based EC annual operational cost is EUR 24,420. Figure 7 shows
electricity exchange with the market for the whole year on an hourly basis. EC based on
gas technologies has a mostly similar pattern through the whole year because their heating
system is not powered by electricity. Overall, less electricity is needed, being replaced
with 580 MWh of gas. This EC mostly exports electricity produced from PV on the market,
importing only during insufficient production. During the maximum export, the CHP unit
and all PV units generate 94.6 kW and 3.7 kW, respectively, while the total load is 4.6 kW.
The maximum export happened in hour 7162 and amounts to 200.2 kW. The case of the
maximum import happened in hour 4069 when there is no production of the CHP unit and
all PV units generate only 0.5 kW. The total load is 136.9 kW. This leads to the maximum
import of 121.9 kW.
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Figure 7. Electricity exchange of gas-based EC.

4.1.3. Hydrogen-Based EC

The annual operational cost of hydrogen-based EC is EUR 97196. Figure 8 presents
electricity import/export for hydrogen-based EC for the whole optimization horizon. This
EC is the most electricity-intensive, because of the lower efficiency of hydrogen heating.
This is concluded from high electricity import during the heating period and exporting
excess PV production only during the non-heating period. During the maximum export
(hour 323), all PV units generate 4.0 kW and the FC generates 100.0 kW. The total load is
2.1 kW and there is no consumption from the electrolyzer. The maximum export amounts
to 219.8 kW. In the second case, maximum import (hour 2561), all PV units generate only
0.2 kW, the FC generates 20.0 kW, while the total load is 57.5 kW and the electrolyzer
consumes 880.0 kW. This results in a maximum import of 912.5 kW.

Figure 8. Electricity exchange of hydrogen-based EC

4.2. Stage 2: Dynamic Analysis

The dynamic stability of ECs is verified for two extreme operating points obtained
by the optimization in the first stage, e.g., maximum export/import to/from the electric
grid since these are the most challenging points for ECs to maintain the stability in case
of islanding. The goal is to check the ability of all three ECs to achieve a stable transition
to islanded operation. The stable transition is defined by reaching the steady state and
satisfying frequency and voltage constraints after islanding, i.e., terminal voltages have to
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remain within ±10% of nominal value, the maximum permissible frequency deviation is
limited to±2 Hz in the first second after islanding, after which the limit is set to±1 Hz, and
RoCoF is limited to ±2 Hz/s measured over a 500 ms time window. Firstly, the load flow
analysis is executed to calculate the steady-state performance and to initialize dynamic
models. Then, the RMS simulation is performed with the defined islanding event at time
t = 4 s, i.e., the switch event of the external grid is performed at t = 4 s. The results of the
dynamic analysis for all ECs are presented below.

4.2.1. Fully Electrified EC

Although no synchronous generation is present, the EEC can achieve a stable transition
to the islanded mode for both operating points as their control systems are based on
grid-forming converters with virtual inertia. During the transition to islanded mode in
the maximum export scenario, PV units temporarily change their output power, while
BESS switches to charge mode to store a surplus of the generation power (Figure 9d).
The frequency stabilizes at the above-nominal value after re-establishing the power balance
(Figure 9a). RoCoF and terminal voltage constraints are satisfied as shown in Figure 9b,c,
respectively. During the transition to islanded mode in a maximum import scenario, BESSs
are charged with maximum power and there is no PV production. The islanding is feasible
in this case as well, as frequency, RoCoF, and voltage constraints are satisfied (Figure 10a–c).
BESS switches to discharge mode after islanding to establish the power balance (Figure 10d).
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4.2.2. Gas-Based EC

The islanding of GEC is infeasible for the case of the maximum export since the PV
production is larger than the total power consumption, and CHP cannot provide enough
of a downward reserve. For these reasons, the frequency and RoCoF increase beyond
prescribed limits, as shown in orange in Figure 11a,b, respectively. To achieve stable
transition during maximum export, PVs need to be curtailed such that the CHP electrical
output is equal to or larger than the export power (i.e., that there is enough of a downward
reserve). The frequency, RoCoF, and voltage after PV curtailment are shown in blue in
Figure 11a, Figure 11b, and Figure 11c, respectively. The islanding is also infeasible in the
case of maximum import. After islanding, the total load is much higher than production
and CHP cannot provide enough upward reserve. The frequency and voltage are unstable
and constraints are not met, as shown in Figure 12a,c. To achieve the stable transition to
islanded operation, the maximum import must be limited to 95 kW. Results with respect to
this limit are presented in blue in Figure 12a–c. Note that the infeasibility stems from the
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fact that GEC was developed organically to satisfy heat and load demand during normal
operation; therefore, it does not have the inherent capability to provide islanding services
in the worst-case scenario without curtailment or specific investments in CHP sizing or
other devices that can provide transient power balancing.
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Figure 11. Results of GEC for maximum export [orange - without constraints, blue - with constraints]:
(a) Frequency, (b) RoCoF, (c) Terminal voltages, (d) CHP active power
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To achieve the stable off-grid transition of the GEC, two new constraints are added. 525
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(a) Frequency, (b) RoCoF, (c) Terminal voltages, (d) CHP active power.

4.2.3. Hydrogen-Based EC

The HEC is specific due to the presence of a responsive load, the PEM electrolyzer.
After islanding during maximum export, the electrolyzer should increase its power con-
sumption. However, the electrolyzer provides the response within 100 ms-1/2 s [41].
With respect to this, the fuel cell has to be able to provide a downward reserve in the first
seconds after the disturbance. Since the fuel cell could not provide enough downward
reserve until the electrolyzer response, the islanding is infeasible. Results are not shown be-
cause the dynamic model could not achieve convergence during the transition. To achieve a
stable transition to islanded mode, the maximum export must be limited to 143 kW. Results
with constraints are shown in Figure 13. Due to the electrolyzer delay, the islanding in
the case of the maximum import is also not achieved. Therefore, the maximum import
must be limited to 234 kW. Results with this limitation are shown in Figure 14. Here, the
organically sized central hydrogen technologies are also inherently insufficient to provide
transient power balancing during the worst-case scenario. Curtailment, artificial sizing of
FC-electrolyzer, or investment into specific devices is necessary to achieve stable islanding
transition in hydrogen-based EC.
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production of hydrogen for heat production is insufficient after adding dynamic constraints. 533

The highest limit that can be set on maximum import for optimization to be feasible is 390 534
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4.3. Stage 3: Optimization with Additional Constraints

Constraints obtained from the dynamic analysis in the second stage are incorporated
into the initial optimization problem to ensure ECs are always capable of islanding. Since
EEC islanding was initially feasible, only GEC and HEC are considered in the third stage.

4.3.1. Gas-Based EC

To achieve the stable off-grid transition of the GEC, two new constraints are added.
The maximum import is restricted to 95 kW, while the electrical output of the CHP unit
must be equal to or larger than the maximum export. This results in 88.4% higher cost than
in the initial problem, i.e., the annual operational cost is EUR 46008.

4.3.2. Hydrogen-Based EC

To ensure the stable off-grid transition of the HEC, the maximum export and maximum
import are limited to 143 kW and 234 kW, respectively. However, once the optimization is
restarted with these constraints, the model proves infeasible. It can be deduced that the
production of hydrogen for heat production is insufficient after adding dynamic constraints.
The highest limit that can be set on maximum import for optimization to be feasible is
390 kW, which amounts to an annual operational cost of EUR 103201 (6.2% increase). It is
worth mentioning that in normal operation, HEC imports more than 234 kW for 1368 h
(15.6% of the year).

4.4. Discussion

The ability to transition to an islanding mode provides added value for ECs. If it is
managed correctly, it can guarantee constant security of supply to EC, while being less
dependent on the outside grid and interruptions in it. It also gives an additional layer of
benefits to existing technologies, making them more interesting as investments for ECs.
For system operators, this alleviates the need to cover part of the grid the EC is in during
interruption. It can also provide benefits for system operators in congestion management
and system frequency regulation, helping to mitigate or avoid interruption for other end-
users. Various technologies are tested for their ability to make such transitions. While
under certain conditions all technologies can make such a transition, it was shown that
some cannot reach a stable state in worst-case scenarios. Additional constraints were added
to ensure a stable transition at any given moment and their economic impact was analyzed.
ECs themselves would need to decide for the implementation of such technologies and
whether there are benefits of having the ability to always transition to island mode. On a
case-to-case basis, they would need to make a cost–benefit analysis and opportunity cost of
interrupted supply.

5. Conclusions

A three-stage method is proposed in this article for optimal EC scheduling considering
dynamic islanding constraints to ensure a stable off-grid transition. The first and third
stages are optimization models based on mixed-integer linear programming. The second
stage is a dynamic model to define islanding constraints during worst-case conditions.
The optimal schedule of EC is determined by the optimization formulation and translated
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into the dynamic model to verify the islanding capability. In the case of infeasible islanding,
the boundary conditions for stable off-grid transition are defined. They are then propagated
back to the initial optimization formulation to determine a new optimal schedule with
feasible islanding. The proposed method is applied to three different organically developed
ECs: fully electrified, gas-based, and hydrogen-based EC. The results indicate that only
fully electrified ECs inherently have adequate islanding capabilities without the need
for curtailment or additional investments. On the other hand, the islanding of gas and
hydrogen-based ECs is inherently infeasible due to the operational limitations of their
devices. Incorporating islanding constraints increased the operational cost of gas-based EC
by 88.4%, while hydrogen-based EC operation was deemed infeasible due to insufficient
heat production.
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Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery energy storage systems
CIG Converter-interfaced generation
CHP Combined heat and power
EC Energy community
EEC Fully electrified energy community
EU European Union
FC Fuel cell
GEC Gas-based energy community
HEC Hydrogen-based energy community
HP Heat pump
MG Microgrid
RES Renewable energy sources
RoCoF Rate-of-change-of-frequency
VSM Virtual synchronous machine
Superscripts
E/G/H/T Electrical/Gas/Hydrogen/Thermal quantity
Sets
Dm Set of all energy conversion devices in EC m
Dd,m Set of devices d ∈ {b, c, e, f , h, β, τ, h̄} in EC m
DC

m Set of all energy conversion devices in EC m that are not storage devices;
DC

m = Dm\DS
m, DC

m ⊆ Dm
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DS
m Set of all energy conversion devices in EC m that are also storage devices;

DS
m = Dm\DC

m, DS
m ⊆ Dm

M Set of ECs,M = {EEC, GEC, HEC}, indexed by m
Nm Set of network nodes in EC m, indexed by n
T Set of hours in a representative year, indexed by t
Parameters
Emax

d Maximum state-of-energy of device d
Emin

d Minimum state-of-energy of device d
LE

n,m,t Electric load demand at node n in EC m at time t
LT

n,m,t Heat demand at node n in EC m at time t
Pmax

d , Pmax
d Maximum input/ouput power of device d

Pmin
d , Pmin

d Minimum input/output power of device d
PVE

n,m,t PV production at node n in EC m at time t
ηd Energy conversion efficiency of device d
ηE

d Electricity conversion efficiency of device d
ηT

d Thermal conversion efficiency of device d
ηc

d Charging efficiency of device d
ηd

d Discharging efficiency of device d
πE

t Electricity price at time t
πtrans. Electricity transmission charge
πdistr. Electricity distribution charge
πG Gas price
Variables
pd,m,t Input power of device d in EC m at time t
p

d,m,t
Output power of device d in EC m at time t

xd,m,t Binary variable indicating whether device d in EC m is operational at time t
xc

d,m,t Binary variable indicating whether device d in EC m is charging at time t
xd

d,m,t Binary variable indicating whether device d in EC m is discharging at time t
zd,m,t Binary variable indicating whether device d in EC m has started up at time t
γm Gas volume bought from day-ahead market in EC m
εm,t Electricity volume bought from day-ahead market in EC m at time t
εm,t Electricity volume sold to day-ahead market in EC m at time t
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