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Abstract—This paper deals with the problem of defining the
Power Purchase Agreement (PPA) that enables power exchange
between two or multiple parties. Generally, PPA is a long-
term contract with predefined price and power profiles. Energy
reliability risk needs to be properly considered to make PPA more
attractive to a potentially interested party. That is the reason, why
we decided to propose the concept of a so-called dynamical power
purchase agreement. The method provides short-term contracts
where parameters can change as often as needed. Dynamical PPA
should allow each party to selfishly minimize its cost or maximize
its revenue while producing a consensus solution. The dynamic
PPA is formulated as a model predictive control optimization
problem in a multi-objective fashion, solved by the Pareto front
and method of global criterion. Results show the potential of
such an agreement to react to the power market conditions and
still satisfy the needs of each involved party.

Index Terms—power purchase agreement, microgrid, multi-
objective optimization, Pareto front, method of global criterion

I. INTRODUCTION

A Power Purchase Agreement (PPA) has become popular
recently because it ensures power transfer between two parties
under favorable conditions. The PPA specifies the price, quan-
tity, delivery schedule, payment terms, and other conditions
under which the two parties will agree to cooperate. Typically,
the exchanged power is renewable-based and the agreed-upon
price is reduced compared to the utility price. The ”green”
energy and negotiable price motivate the business sector to
pursue PPAs as stated in [1]. An International Energy Agency
reports in [2] a more than five-fold increase in corporate PPA
volumes between 2015 to 2022 (4.7 GW in 2015, 25 GW in
2022). This shows that sustainability has moved from mere
public relations to a core value for companies.

Generally, the PPAs are managed in literature by introducing
preferences. For instance, in [3], the electricity seller’s benefit
is preferred over the buyer’s (in terms of PPA), while in [4],
the perspective is reversed. This type of prioritization can be
justified from a practical point of view, but in reality, the
preference is difficult to define. Authors of [5] proposed a
methodology for each party’s interests to be acknowledged.
However, while the seller’s financial benefits are considered,
the buyer’s perspective is only on energy reliability.

This paper is concerned with optimizing the parameters of
a PPA, which stipulate business terms under which two or
multiple parties exchange electric energy. The exchange terms

are made of two quantities: the amount of energy traded and
the unit energy price. In conventional PPAs, the energy price
is kept constant throughout the duration of the contract [6],
which may be as long as 25 years. In this paper, we aim
at so-called ”dynamic PPAs”, which are short-term contracts
whose parameters can change as often as on a daily basis. In
addition, the energy price in dynamic PPAs is time-varying
even throughout the duration of the contract. This yields more
business flexibility and increases the willingness of involved
parties to exchange energy on more favorable terms. Such
dynamic PPAs allow each involved party to monetize its
temporary or permanent excess of own-generated energy and
to compensate, at favorable economic terms, temporary spikes
in local power demand.

Naturally, each party wants to optimize the PPA terms in
a selfish manner, i.e., minimizing its cost and maximizing its
revenues. This selfish approach, however, makes it difficult
for the parties to agree on one joint agreement. Our goal,
therefore, is to devise an optimization-based procedure that
takes as inputs the technical expectations of each party (e.g.,
the expected local energy demand, expected local energy
production, variability in energy demand/production, etc.) and
synchronizes them in a way of achieving consensus between
their contradicting objectives (e.g., the energy importer natu-
rally wants the energy price to be low while the exporter wants
to maximize the price). The output from our procedure is a
time-varying profile of exchanged energy, accompanied by a
time-varying energy price.

The problem at hand is nontrivial because of two main
reasons. First, it is a multi-objective optimization problem
where each party wants to achieve its selfish goals. These
goals, however, are interconnected in a business sense. The
second reason is that the total cost of energy, which each
party wants to minimize individually, is naturally given as
the product of the energy amount and the energy price.
Thus the cost functions involve bilinear terms. Thus, from
a mathematical point of view, the problem is a non-convex
multi-objective optimization setup.

Besides devising a mutually acceptable profiles of ex-
changed energy and its price, an added benefit of our method
is that it explicitly accounts for the stochastic nature of energy
production and consumption. This is of imminent importance
when renewable energy sources (photovoltaics, wind turbines)



are part of the play. Energy production of these assets is subject
to quickly varying environmental conditions, which are diffi-
cult to predict. Thus, our approach operates with confidence
intervals that dictate the lower/upper bounds of achievable
energy production. A scenario-based sampling is then used to
inform the optimization problem about the fluctuations. As an
important feature, our method supports battery energy storage
systems that can be used to temporarily store energy at one
moment in time and to supply the stored energy at a later
time, thus allowing energy production and consumption to be
shifted in time.

II. MICROGRID SYSTEM

In our setup, each party involved in the dynamic PPA
optimization is represented by a microgrid with its own energy
production (typically from renewable sources such as sun or
wind) and energy consumption. Moreover, each microgrid is
assumed to be connected to the main utility grid, from which
it can import and export energy at pre-specified financial
terms. In addition, each microgrid might be equipped with
energy storage that is capable of shifting energy utilization
in time. Finally, microgrids can exchange energy through the
PPA contract. At each point in time, each microgrid must
maintain the produced (or imported) power in balance with
the consumed (or exported) power. Therefore, the following
power balance equation must be satisfied at all times

Pimp(t) + Pprod(t) + Pdis(t) + PPPA(t) =

= Pexp(t) + Pcons(t) + Pchar(t).
(1)

Here, Pimp(t) is the amount of power drawn from the utility
grid at time instant t, Pprod denotes own power production, Pdis
is the power discharged from the energy storage, PPPA is the
power exchanged through the PPA contract, Pexp is the power
exported to the utility grid, Pcons is the own consumption of
the microgrid, and Pchar denotes the power charged into the
energy storage. All power quantities are non-negative with the
exception of PPPA, which is positive if power is imported, and
negative if power is exported.

In addition, the energy storage unit is assumed to have a
limited energy capacity, represented by known quantities Emin
and Emax. The energy storage is a dynamic system whose
internal state E(t) represents the amount of energy held by
the storage at time t. The time evolution of the state is given
by

Ė(t) = ηcharPchar(t)−
1

ηdis
Pdis(t), (2)

where ηchar and ηdis are the charging and discharging effi-
ciencies, respectively. Note that most energy storage systems
(e.g., battery-based) do not allow simultaneous charging and
discharging, thus the following constraint must be imposed:

Pchar(t)Pdis(t) = 0. (3)

The economics of the microgrid operation is represented by
the cost function J , which is composed of the following
terms: (i) the cost of energy imported from the utility grid

cimp(t)Pimp(t), (ii) the profit from exporting energy to the util-
ity grid cexp(t)Pexp(t), (iii) term cPPA(t)PPPA(t) representing
the cost (if PPPA is positive) or profit (if PPPA is negative) of
energy exchange through the PPA.

Note that cimp and cexp, although time-varying, are assumed
to be a-priori known quantities. On the other hand, the
import/exported/exchanged powers Pimp, Pexp, PPPA, as well
as the PPA energy unit cost cPPA, are to be determined by the
PPA optimization.

Since the PPA decision-making needs to optimize the cost
function and enforce satisfaction of constraints, we propose to
formulate the problem as a Model Predictive Control (MPC)
setup, which considers the current conditions along with the
forecasted future behavior of the microgrid. In simple terms,
the MPC problem of each microgrid can be formulated as

min

∫ tf

t=0

(
cimp(t)Pimp(t)− cexp(t)Pexp(t)+

+ cPPA(t)PPPA(t)
)
dt,

(4a)

s.t. Pimp(t) + Pprod(t) + Pdis(t) + PPPA(t) =

= Pexp(t) + Pcons(t) + Pchar(t),
(4b)

Ė(t) = ηcharPchar(t)−
1

η dis
Pdis(t), (4c)

Emin ≤ E(t) ≤ Emax, (4d)
Pchar(t)Pdis(t) = 0, (4e)

where tf denotes a finite prediction horizon. The problem’s
optimization variables that need to be determined are (i) mi-
crogrid variables Pimp, Pexp, Pchar, Pdis, (ii) consensus variables
PPPA, cPPA.

The other variables (cimp, cexp, Pprod, Pcons) are assumed
to be known a-priori as they are either dictated by long-term
contracts with the utility grid operator (in the case of cimp,
cexp), or a location-dependent (in the case of Pprod and Pcons).
To arrive at a computationally tractable problem formulation,
we discretize the continuous-time MPC problem with a fixed
sampling time ∆.

The MPC structure of the problem is motivated by the
fact that it employs a prediction of certain parameters and
optimizes the system’s performance with respect to a given
cost function, which is formulated over a fixed time window
into the future. Additionally, since the properties of dynamic
purchase agreement naturally change in time, the optimization
is repeated on a periodic basis. This is precisely what MPC,
implemented in the receding horizon fashion, achieves.

III. OUR APPROACH

The difficulty of calculating the profile of exchange power
PPPA(t) and the associated price cPPA(t) from the MPC prob-
lem stems from two crucial points: own production and own
consumption at each microgrid is often stochastic in nature,
which means that the respective quantities Pprod and Pcons can
only be forecasted to a certain extent, represented by respective
confidence intervals. Thus, the MPC problem needs to operate
with forecasting intervals instead of one concrete evolution.



Each microgrid minimizes its own objective in a selfish
manner. This means that the microgrid that wants to import
energy from the other PPA party naturally wants the associated
price cPPA to be low. On the other hand, the microgrid that has
a surplus of energy naturally wants the PPA price to be high.
Therefore, it is necessary to coordinate the various parties,
which gives rise to a multi-objective optimization setup.

A. Forecast Scenarios

To address challenge number 1, we suggest employing a
scenario-based approach where each uncertain quantity (Pprod
and Pcons) is represented by a set of possible evolutions. Thus,
instead of having one particular forecasted trajectory Pprod(t)
and Pcons(t), we consider a whole set of trajectories (i.e.,
scenarios) Pprod(s, t), Pcons(s, t), where s is the scenario index.
In the following paragraphs, we will show the procedure of
obtaining prediction and, subsequently, scenario generation on
the production signal.

First, we forecast production with a recurrent neural network
(RNN) that was trained using historical measurements and
weather data w(t) as

P̂prod(t) = fprod
(
w(t)

)
, (5)

for all t ∈ {1, . . . , N}. This RNN model is built to pro-
vide a confidence interval due to the presence of inevitable
uncertainties. The confidence interval is determined by using
the maximum likelihood method. This method separates the
variable of interest into its expected value, P̂prod(t), and the
noise component. This allows for estimating the total predic-
tion variance, σ2(t), which considers both model uncertainty
and measurement noise. Second RNN is trained to predict the
total variance σ̂2(t). The upper and lower bounds are then
calculated as[

P ub
prod(t)

P lb
prod(t)

]
=

[
P̂prod(t) + Sf

√
σ̂2(t)

P̂prod(t)− Sf
√
σ̂2(t)

]
, (6)

where Sf is the scaling factor.
Scenarios are then generated within given bounds with

normal distribution ωd ∼ N (0.5, σ2
d) and additional white

noise ωn(t) ∼ N (0, σ2
n(t)) as

Pprod(s, t) = ωdP
ub
prod(t) + (1− ωd)P lb

prod(t) + ωn(t) , (7)

for all s ∈ {1, . . . , NS}, where NS is number of scenarios.
Forecast scenarios for energy consumption of the microgrid
are generated using the same procedure, but instead of RNN,
the seasonal autoregression model is used to provide P̂cons(t)
values for the whole prediction horizon.

Once the scenarios are generated, the cost function in the
MPC problem needs to be changed to account for the expected
value of the financial representation of the cost function, i.e.:

min E
(
cimp(t)Pimp(s, t) + cexp(t)Pexp(s, t)+

+cPPA(s, t)PPPA(s, t)
)
.

(8)

If all scenarios appear with the same probability, the expected
value E can be replaced by the average 1

Ns

∑Ns
s=1 E(·).

B. Risk Management

Generally, the microgrid in the exporter role seeks to
increase its profit by agreeing to exchange as much power
as possible expressed by cost cPPA(s, t)PPPA(s, t). However,
the uncertainties in predictions add to the risk of the potential
inability to deliver the agreed power quantity. Moreover, it
yields additional exporter expenses because residual energy
must be bought from the utility grid for market prices. Since
generated scenarios represent the possible outcomes, we use
them to evaluate the reliability risk.

Fig. 1. Evaluation of power production of the microgrid. The black line
represents the agreed power profile for exchange, the green-dashed line
represents scenario si, where high production is expected, and the red-dashed
line portrays sj scenario with predicted low power production.

As illustrated in Fig. 1, there are two possible situations.
First, for any scenario s in time step t, the microgrid produces
more power (green-dashed line) and then is exported (black
line). Here, no penalization is considered because no risk is
present, and the excessive power can be stored in the battery or
sold on the energy market. Second, if the microgrid produces
less energy (red-dashed line) than is agreed to export, residual
energy is bought from the utility grid resulting in increased
variable Pimp(s, t). The risk is represented by the amount of
extra power imported to the microgrid and the price on the
energy market cimp(t)Pimp(s, t).

The risk in this form can only be taken into account through
scenario-based MPC. It is important to mention that additional
restrictions exist in our MPC formulation. Essentially, all sce-
narios must produce same power PPPA(s, t) and price cPPA(s, t)
profiles.

C. Multi-objective Optimization

To address the second challenge, we first deliberately restrict
ourselves to just two parties in the PPA optimization. Note that
such a restriction is based purely to simplify the exposition and
all results of this paper can be directly extended to support
multiple parties.

First, note that the PPA optimization problem that needs to
be solved can be stated as

min

[
J1(x1(t), cPPA(t), PPPA(t))
J2(x2(t), cPPA(t), PPPA(t))

]
, (9)

where xi aggregates the optimization variables that are local to
each microgrid (i.e., xi = [Pimp(t), Pexp(t), Pchar(t), Pdis(t)]).
Important to notice is that the optimization objective is vector-
valued where the task is to minimize each term individually



while taking into account that individual objectives are coupled
with the PPA parameters (the prices cPPA(t) and the power
profiles PPPA(t)). It is well known that multi-objective opti-
mization problems of such a form give rise to a Pareto optimal
front that describes all optimal solutions [7].

D. Pareto Front

The Pareto front is the set of solutions called Pareto optimal
solutions as introduced in [8] that represents the best trade-off
between multiple objectives. It consists of all possible combi-
nations of objective values which cannot be improved upon
without sacrificing another objective. Typically, the Pareto
front provides a solution to a multi-objective optimization
problem in the form

min
y∈Y

(
f1(y), f2(y), . . . , fM (y)

)
, (10)

where y ∈ Rn represents vector of optimized variables, Y is
the feasible set of decision variables, and M ≥ 2 is a number
of considered objectives fi(y). A feasible solution y1 ∈ Y
dominates solution y2 ∈ Y if ∀i ∈ {1, . . . ,M}, fi(y1) ≤
fi(y2) and ∃i ∈ {1, . . . ,M}, fi(y1) < fi(y2). The solution
y? ∈ Y is considered Pareto optimal if there is no other
solution that dominates it [9]. There are multiple ways how to
evaluate the Pareto front. One simple approach is to transform
multi-objective cost to mono-objective using weights αi. This
approach is called scalarization. Each weight αi gives relative
importance to the objective fi(y) in an overall solution as
presented in [10]. The mono-objective optimization problem
is mathematically defined as

min
x
J =

(
α1f1(y) + α2f2(y) + · · ·+ αMfM (y)

)
, (11)

where J represents linear combination of all objectives with
αi ≥ 0 and

∑M
i=1 αi = 1. The problem (11) is solved multiple

times for a different combination of αi values. Solutions to
(11) are declared as Pareto optimal, and they define the shape
of the Pareto front.

In PPA terms, the Pareto front is evaluated as a solution to

min
x
J =

(
α1J1(x1(t), cPPA(t), PPPA(t))+

+α2J2(x2(t), cPPA(t), PPPA(t))
)
,

(12)

subject to original constraints of both parties, where α1, α2

are non-negative and satisfies α1 + α2 = 1.

E. Solving Multi-objective Optimization

Once we have constructed the Pareto front, we need to
select one final solution while knowing it will not be better
than others. Since there is no difference in overall cost, the
presence of a decision-maker is often demanded. The methods
for solving multi-objective optimization are categorized based
on the role of a decision-maker into four groups, as shown in
[11]. Since, we want to solve optimization problems without
any preference, we will focus on the frequently used method
of global criterion from the no-preference methods category.

F. Method of Global Criterion

The method of the global criterion was introduced in [12].
The main idea is to obtain a single solution from the Pareto
front that is closest to the ideal objective vector z? ∈ RM cal-
culated as z? = [f1, . . . , fM (y)]>, where f i = miny∈Y fi(y)
as stated in [13]. The final solution depends on chosen Lp

space. The problem is mathematically defined as

min
y∈Y

M∑
i=1

‖fi(y)− z?i ‖p. (13)

The solution to (13) is Pareto optimal as proved in [14]
and serves as the single final solution to our multi-objective
optimization problem.

To find one exact solution to the PPA optimization problem,
we apply the method of global criterion to problem (9) in the
following manner

min
x,cPPA,PPPA

M∑
i=1

‖Ji(xi, cPPA, PPPA)− z?i ‖22, (14)

subject to the original constraints of each party. The ideal
objective vector z? is gained as

z? =

[
min J1(x1, cPPA, PPPA)
min J2(x2, cPPA, PPPA)

]
, (15)

again including original constraints. The square of 2-norm
was chosen to formulate an optimization problem to find the
minimal distance d between the ideal solution and Pareto front
while avoiding mathematical problems with roots.

IV. CASE STUDY

In this paper, we focused on the PPA agreement, where
one microgrid was insufficient in covering its consumption.
Therefore, it made a pack with a second microgrid (power
producer) to deliver the remaining green power. Furthermore,
the agreement stated that the prices and amounts of exchange
energy would be defined as an output of an offline optimization
problem, including risks in the form of scenario penalization.

A. First Party

The first party (buyer) in our showcase represents a foundry
fabric. The site consists of a photovoltaic system with a
maximum 150kW peak power and a battery storage system
with dimensions 50kW/150kWh, which supports the foundry’s
power needs. The factory buys electricity from the grid,
so the energy market gives c1,imp. The maximal amount of
imported/exported energy is based on structure capacity. The
grid connection is bidirectional, meaning the site can feed in
spare power.

B. Second Party

Grid-connected power producer owns a photovoltaic panel
system with a maximum 500kW peak. It is supplemented
with two battery storage systems with dimensions of
50kW/150kWh. The import price c1,imp is given by market
prize, but for showcase purposes, we consider different profiles



for both buyer and seller. For showcase purposes, the second
party (seller) only generates energy and does not report any
consumption. However, the presented approach can handle any
setup (with/without consumption, with/without battery), even
with multiple parties.

C. Exchange Conditions

The limitations on exchanged power and price are given by
both parties and must be included in the PPA optimization
problem in the form of minimum and maximum constraints.
First, the maximum exchanged power depends on the con-
nection capacity between the two parties. Second, the buyer
desires to purchase power from the cheapest source, which
implies he is not willing to pay more than the grid price.
Therefore, the upper boundary on export price is defined as
85% of grid price resulting in cPPA ≤ 0.85 · c1,imp. On the
other hand, the seller does not tolerate prices lower than
investments and operating costs per time unit. We calculated
it to 0.2C/kWh resulting in cPPA ≤ 0.2.

D. Offline Optimization

After each party was modeled in terms of model predictive
control in form (4) creating two objectives of multi-objective
optimization, the Pareto front was gained by solving (12)
for each α1 ∈ {0, 0.1, 0.2, . . . , 0.9, 1}, where α2 = 1 − α1.
Finding (15) enabled to solve multi-objective PPA optimiza-
tion problem defined in (14). This problem was evaluated in
discrete time for prediction horizon N = 96 representing one
day with ∆ = 15 minutes sampling time. For solving PPA in
the form of stochastic model predictive control, we generated
20 scenarios for each prediction with a 90% confidence
interval, where all parties must agree upon one final exchanged
power and price profile.

V. RESULTS

The approach proposed in this paper highly depends on the
prediction’s quality. Fig. 2 shows all generated scenarios with
upper and lower bounds over 24 hours for our case study (first
party - buyer, second party - power producer). These scenarios
are then used in multi-objective optimization.

The Pareto front for optimization problem (9) is visualized
in Fig. 3. The ideal solution is marked with a green star,
but there exists no combination of objectives that produce it.
Therefore, the goal is to find the closest solution possible. Blue
circles represent Pareto optimal solutions found using different
weights of individual objectives. The final solution obtained
by the method of global criterion is illustrated as a yellow
circle. As we can see, the algorithm converged to one of the
closest solutions.

The solution representing the amount of exchanged power
and the associated price is illustrated in Fig. 4. The exchanged
power is shown in the top subplot as a red curve. The
green area represents the space defined by scenarios. The
bottom subplot shows the evaluation of prices. The red curve
represents the exchange price, the light green area portrays
the feasible region, and the black dashed-dot line evolution
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Fig. 3. Pareto front gained by solving optimization problem (12) for different
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yellow-filled circle illustrates the final solution on the Pareto front as a result
of (14).

of c2, imp penalizes risk in the exporter objective. As we can
see, when c2, imp is high, the consensus is to increase the
PPA price since the risk for the exporter arises. However, it
still satisfies the importer price limit. On the other hand, if
c2, imp is lower, the exchange price is at its lower bound. This
behavior is justified since the exporter undergoes a higher risk
of additional cost in the first case and a lower risk in the
second. Subsequently, when the c2, imp is higher than the upper
bound on cPPA, the exchanged power is reduced considering
possible evaluations. The reason is simple. Higher penalization
causes exporter to risk less and offer conservative decisions
about the exchanged amount of power.

Blue areas on both graphs represent daytime, where no spare
energy is generated. Thus there is no exchanged power, and
the price value is unimportant. The red area identifies the
region where the lower and upper bounds collide, creating
an infeasible solution. Since there is no price consensus, the
amount of exchanged power is kept at zero. Note that the
situation is handled by slack variables and binary optimization
variables. Furthermore, we can see that the PPA price is still
on the feasible region boundary. It is caused by problem
formulation since using weighting in the Pareto front provides



results either on the upper or lower limit based on preferences
set by α.
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cost/profit. The green line illustrates the minimum possible cost/profit that can
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Last but not least, Fig. 5 portrays the final solution from a
cost/profit point of view with two other possible outcomes for
comparison purposes. The final solution in terms of cost/profit
cPPAPPPA is this time illustrated as an orange dashed-dot line.
The blue line represents the potential outcome considering the
maximum price of the feasible region at each time. It shows the
highest profit for the seller and the highest cost for the buyer.
On the other hand, the green line visualizes cost/profit if the
agreed price was at the lower bound of the feasible region
resulting in the buyer’s cost profit but the lowest seller’s. Our
approach does not prioritize seller over buyer or vice versa,
but it offers the solution in the form of compromise to ensure
the economical operation of both parties.

VI. CONCLUSION

This paper proposes a dynamic power purchase agreement
to ensure business flexibility and provide favorable terms
for involved parties. First, we deal with the optimization
problem of PPA as model predictive control, where each
party maximizes its satisfaction. Since the resulting problem

is in the form of multi-objective optimization, we review and
implement the Pareto front. Subsequently, we use the global
criterion method to yield one final solution. As results show, a
consensus in terms of both parties satisfaction can be achieved.
Moreover, it can be evaluated at any time considering every
limitation the involved parties specify. Based on the results,
our approach offers a no-preference solution to achieve the
economical operation of each involved subject. Another benefit
is the ability of the proposed procedure to take into account
multiple parties.

We see the space for future improvements. For example,
we would like to include bonuses ensuring preference for
so-called ”clean” instead of ”dirty” energy. We would also
like to switch from the centralized approach of solving multi-
objective PPA optimization problems to a more safe and com-
putationally less demanding distributed/decentralized domain.
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