
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 55

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

Abstract: The increasing number of IoT devices leads to the
demand for updating them securely, and stably. Without updating
there is a high risk of being attack by hackers or malfunction due
to outdated packages. To the date of this article, a lot of IoT
updating methods were introduced. Among them are updating
using VM containers, using packages, or using blockchain.
However, some methods take time to recover a failed update while
some cases require the minimum downtime of the IoT devices, or
even some devices cannot communicate to the control server or
cannot perform the rollback themselves after the update failure.
In this article, our contribution is implementing different methods
to reduce the rollback down time issue including using primary -
secondary selection, using git revert, and using blockchain-based
revert.

Keywords: Blockchain, Internet of Things, Networks.

I. INTRODUCTION

Until 2020, around 200 billion IoT devices connect to the

Internet. The rise of covid-19 leads to a higher demand for
using IoT for working and living [1]. The main reason is
remote working requires more devices to keep the daily tasks
easier such as a smart camera for video call, smartwatch for
health monitor, smart speakers for home convenience. With
the average estimation of 26 smart devices for every person,
we also see a high risk of being attacked via IoT devices. The
more reliant on devices, the more vulnerable people are with
the diversity of cyberattacks. Take an example, the house is
not safe anymore because the hacker can disable your alarm
by attacking the IoT system before a physical attack happens.

That kind of danger leads to a demand for updating the IoT
device frequently to avoid being attacked. However, most of
the updates are over-the-air, which means, on one hand, the
owner or the organization doesn’t have to bring the devices to
a central location to do the update, but on the other hand, the

Manuscript received on December 05, 2021.
Revised Manuscript received on December 10, 2021.
Manuscript published on December 30, 2021.
* Correspondence Author

Hoai-Nam Nguyen*, Institute of Information Technology, Vietnam
Academy of Science and Technology, Hanoi, Vietnam. Email:
nguyenhoainam@ioit.ac.vn

Truong-Thang Nguyen, Institute of Information Technology, Vietnam
Academy of Science and Technology, Hanoi, Vietnam. Email:
ntthang@ioit.ac.vn

Thu-Nga Nguyen Thi, Institute of Information Technology, Vietnam
Academy of Science and Technology, Hanoi, Vietnam. Email:
nttnga@ioit.ac.vn

Manh-Dong Tran, Institute of Information Technology, Vietnam
Academy of Science and Technology, Hanoi, Vietnam. Email:
dongtm@ioit.ac.vn

Ba-Hung Tran, Institute of Information Technology, Vietnam Academy
of Science and Technology, Hanoi, Vietnam. Email: tbhung@ioit.ac.vn

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

engineer cannot validate the update after the device updated.
That means if the update fails, it takes time to recover the
device to the server the operation, which might bring a lot of
damages to the owner or the organization.

For those reasons, updating IoT devices is a -must-
however it must satisfy the following factors:

▪ Integrity: Ensure the update files are transferred
without losing or being damaged.

▪ Stability: Ensure the IoT devices work as before they
were updated.

▪ Roll-back: Ensure the update can be rolled back when
failure happens.

Concentrating on how the system can keep continuing to
operate after the update and how the device can be
recovered/rolled back, in this paper, we focus on the
following issues:
▪ Researching different approaches to handle the failed

update cases, including (i) Using Primary - Secondary
device selection; (ii) Using git to roll back the update;
(iii) Using blockchain to roll back the update.

▪ Comparing the above approaches in terms of (i) the
Possibility to handle failures to keep the system
running; (ii) the Time to roll back to the previous
version.

By defining the general scope of updating IoT devices as
updating the OS or packages or configuration, we only filter
the existed solutions of the same scope. With that scope, the
update falls into application update, which has several
solutions including virtual ma-chine containers, using
packages, or using blockchain to store the update
information. The solution using virtual machines is not dug
deeper in this article, because it only serves powerful IoT
devices that cannot be a wide applicable solution. Moreover,
one of the below solutions - using the snap package - already
contains the idea of using a virtual machine.

A. Using package to handle update and rollback [2]

One solution is using a snap package by Ubuntu Core.
Ubuntu Core is a secure, lightweight, robust,
application-centric operating system created for the Internet
of Things. Its read-only root filesystem is built from the same
packages used to build the wider set of Ubuntu distributions,
but differs in the way packages are delivered, and crucially,
updated. This is all handled by snap, a secure, confined,
dependency-free, cross-platform Linux packaging system.

The main approach of Ubuntu Core is updating via snap
packages. Those packages have a clean separation between
the system and the application. For that reason, unlike
traditional updates, a failed update does not affect the whole
system.

Proposed Methods to Rollback A Failed Update
of IoT Devices

Hoai-Nam Nguyen, Truong-Thang Nguyen, Thu-Nga Nguyen Thi, Manh-Dong Tran, Ba-Hung
Tran

http://www.ijeat.org/
mailto:nguyenhoainam@ioit.ac.vn
mailto:ntthang@ioit.ac.vn
mailto:nttnga@ioit.ac.vn
mailto:dongtm@ioit.ac.vn
mailto:tbhung@ioit.ac.vn
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3297.1211221&domain=www.ijeat.org

Proposed Methods to Rollback A Failed Update of IoT Devices

 56

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

The system can run in any state of update: either success or
failure. In case of failure, the system can revert to a previous
version because the system can store multiple versions of the
same snap. This mechanism, according to the Ubuntu Core
document, is known as parallel installation, which means
independent instances of the same snap can be installed and
run within their own namespace. As we experienced the snap
revert, the time for rolling back is 0.2 second to 0.3 second.

Fig. 1. Transactional updates using snap by Ubuntu Core
(Source:
https://pages.ubuntu.com/rs/066-EOV-335/images/Over-the-air%20software_12.
05.20.pdf)

B. Using docker to perform the rollback

Fig. 2. Docker roll back mechanism (Source:
https://www.balena.io)

One of the solutions that use docker is Balena. It is a
platform that allows docker containers to run with reliability.

The container update uses 4 strategies [3-4]:
▪ Download then kill: Download the new container

first then kill the old one
▪ Kill then download: Kill the current container then

download the new one.
▪ Delete then download: Kill then download the

current container, then download the new one.
▪ Hand-over: In case the required downtime is zero, the

old container and new container run together, then

the Supervisor of Balena kill the old container and
delete it.

Among those strategies, the Hand-over strategy is the most
suitable one to roll back a failed update. The Supervisor of
Balena simply switch back to the old container. However,
there will be a step of taking back all the resources grant to
the new container before switch back to the old one. The
default time-out for this approach is 1 minute.

C. Using partitions to handle update [5]

One of the commercial solutions use this method is
Mender [6]. The requirement of this method is the IoT device
must have at least 2 partitions so that the update can be
installed to either of those partitions.

The mechanism of this update method is the passive
partition will receive the update. After that, the device will
reboot to the passive partition, then perform the update
progress. In this case, the passive partition will become the
active partition. If the update fails, the device can roll back to
the original active partition.

This method can assure that the device will not become a
brick after being updated. However, it contains many
drawbacks including:
▪ The hardware cost: because the device needs larger

storage for multiple partitions.
▪ Higher downtime: the device must be rebooted to

perform the update, even the smallest update. In this case
the downtime cannot be counted as seconds.

▪ Larger data transferred and longer update time: because
the whole partition is updated.

For the above reasons, this method is not considered as a
method to investigate in this paper, because the main target of
this article is to minimize the downtime for rollback process.

II. PROPOSED SOLUTIONS

The three above solutions can handle the updating IoT
device process, which ensures the integrity and availability of
the update, however focusing on the rollback part of updating
the IoT device process, those solutions can mostly handle the
following cases:

▪ The devices may malfunction however they can still

connect to the gateway and can be controlled by the
gateway.

▪ The devices can handle the rollback themselves after a
failed update.

▪ The update part is the same with every updated device,
so that the roll-back process requires only one update
binary file, however, in the case of updating the
config-uration, which is different for each device, we
need another mechanism.

▪ Downtime for updating is not a factor to be
considered.

To expand the capability of roll back a failed update, we would
like to propose different methods as the following.

http://www.ijeat.org/
https://pages.ubuntu.com/rs/066-EOV-335/images/Over-the-air%20software_12.05.20.pdf
https://pages.ubuntu.com/rs/066-EOV-335/images/Over-the-air%20software_12.05.20.pdf

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 57

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

A. Perform the rollback using Git system

To rollback a device application to the previous version,
using Git will bring the following advantages:

▪ The version can be customized for each device.
Using a package and do the rollback is possible,
however, if changing or preserving the device
parameters is required, that solution is not suitable.
Moreover, sometimes the configuration is changed
after an update that rolling back cannot help
restoring the previous configuration. Using Git can
help saving parameters, configuration, and the
application version.

▪ Using Git system allows the replacement of a
“brick” device by a new device, with the ability to

restore the full state of the previous device.

Fig. 3. Device update information as a snapshot for each
git version

In the figure, if the updated version #3 fails, all devices can
be restored to the pre-vious version #2, while waiting for the
update of version #3 (named #3u). The mechanism
introduced here is instead of pulling the update from the
master branch, each device has its own branch, and each
branch will merge the update from the master branch first,
then the update progress is made from each device’s branch.

This helps preserve the configuration of each device and save
the storage size of the git update folder that each device only
stores its own git branch and the master branch in the local
storage. The Figure below describes the progress of updating
a device using Git system. The Control Server pushes the
update to the Git Server, then requests the device to perform
the update. After that, the device will pull the update from the
Git Server. The Control Server will test the device after the
update. If the test is not passed, the Control Server will
request the device to perform the rollback progress.

Fig. 4. Update process using git mechanism

B. Perform the rollback using a blockchain-based
system

There are already plenty of solutions that serve the update
process of IoT devices using a blockchain-based system. The
blockchain-based system helps the devices pull the latest
update without the dependency on a single server. Based on
those, the main idea of using a blockchain-based system is in
case of cannot connect to the central server, there will be
many alternative version control sources that help the device
revert to the previous version or download a new fix. The
alternative version control sources can be another control
server or the gateway servers.

Fig. 5. Rollback using blockchain-based system model

In the above Figure, not only the control server, but each
gateway is also a node that stores the version of updates,
including the config file. With this model, in case of update
failure, a device can connect to the nearest gateway to
perform the rollback. However, if the closet gateway does not
work, a device can connect to the second nearest gateway to
do that.

Fig. 6. Block structure for rollback process

The above Figure describes how the updated versions of
each device are store. Each version (including the
configuration) information is represented as a transaction in a
block. To roll back, the device will ask for the previous
transaction of itself, then download the specific version to
install. To avoid using the predefined transaction fields, the
blockchain used for this solution should be Private or
Consortium Blockchain. It not only helps to store the
necessary information but also helps reduce the time for
inserting a block.

http://www.ijeat.org/

Proposed Methods to Rollback A Failed Update of IoT Devices

 58

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

The information of a transaction can be (1) Transaction
hash; (2) Device ID; (3) Version; (4) file hash/signature.
Once getting the information for the transaction, the device
can download the specific version to roll back. The same
mechanism is made for the case of a failed update; however,
the devices need to download a new version to fix the update.

To reduce downtime, the proof method will not be the
proof of work or the proof of stake, but rather the proof of
authority, which means the proof method will check whether
the node is in the trusted list to have the permission to insert a
block. The roll back flow is described as the following:

Fig. 7. Blockchain roll back flow

C. Perform the rollback using primary - secondary
selection

The main problem of the first 2 solutions or some other
existed solution is the downtime is significant. For critical
system, if the devices need a lot of time to recover to the
previous state, there might lead to damage or dangerous
situation, for example, the camera system or the health care
system.

Another problem of the other solutions is the rollback
progress can only perform when the devices can still operate
the function themselves. In the case of “brick” devices or the

devices freeze or in a long process, it requires someone to
come and handle the failure manually, which takes some time
for traveling from one location to the next location.

For that reason, to accelerate the process to reduce the
downtime and to keep the system running before the engineer
approaches the device, another solution is to switch from the
failed update device (the primary device) to the working
device with the previous software version (the secondary
device).

To apply this solution, for each device we must prepare
another secondary device, with the same update version as
the primary one. The control server or the IoT gateway will
have the responsibility of deciding which device will become
the primary device and which device will become the
secondary device.

The general architecture of the update system will be:
1) For the case of using one central control server as the

selection server:

Fig. 8. Primary Secondary Selection solution with one
central control server

2) For the case of using the IoT Gateway as the selection
server:

Fig. 9. Primary Secondary Selection solution using a
gateway to select the device

The update process is described as below:

Fig. 10. Primary - Secondary selection rollback process

This solution solves the problem of downtime; however, it
increases the cost due to the implementation of an extra
device as the secondary device.

III. IMPLEMENTATION

A. Environment

To demonstrate the solutions, we proposed the following
environment:

Table- I: Central server

Hardware Specification

CPU 2GHz single core

Memory 2 GB

Location Singapore

OS Ubuntu 20.04 LTS

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 59

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

Table- II: Client device

Hardware Specification

CPU 2GHz 1 core

Memory 2 GB

Location Hanoi, Vietnam

OS Raspberry Pi OS

Table- III: Technology Stack

Purpose Technology

Update package PIP package

API Django Rest Framework
Private

Blockchain
Python

Git version control Private Git

Emulator Sense HAT Emulator

The package: In this case, we created a package that

obtains the temperature from the sensor and sends it to the
central server for storing via /api/device-temp API. The
information sent including {‘device_ip’: ‘The IP of the

device; ‘temp’: ‘The device tem-perature’, ‘timestamp’:

‘Timestamp taken’}. The size of the old package is 1.725

bytes, and the new package is 1.953 bytes.
The command: The central server will take care of

deciding when the rollback happens. It can be the loss of the
request from the devices, or the update found wrong. The
device will request to an API /api/central-server-command to
perform the suitable action.

B. Git rollback system

To demonstrate how a failed update can be recovered, we
introduce 2 scenarios:
▪ The device will roll back to the previous version by

using git.
▪ The device downloads a new fix from the central

server and performs the update.
The central Git server will store each device’s package

versions in a branch. This helps the device store include its
own configuration without being overwritten by others.

The device will either pull the update from the Git server
or push the current version to the central Git server to backup.

To perform the private Git server, each device must add
the origin repo url. In our demonstration the URL is:

git remote set-url origin
<usernam>@<git-url>:<path_to_git_folder>

In the first case, the device will roll back using reset to
switch back to the previous version stored in its storage. The
Python subprocess will perform it as:
subprocess.run(

['git', 'reset', '--hard', 'HEAD^1'],
stdout=subprocess.PIPE,\

cwd=pi_git_path)
The second case, the device will pull the update fix from

the central server:
subprocess.run(['git', 'pull', 'origin', 'device1'],

 stdout=subprocess.PIPE,
cwd=pi_git_path)

After pulling, the device will install the package using
Python pip package install.

C. Blockchain-based rollback system

We have built a private blockchain [7] using Python with
the following attributes:
▪ current_transactions: A list of pending transactions

that are not stored in a block.
▪ chain: A chain of blocks. Each block has the following

attributes: index, timestamp, transactions, proof,
previous_hash.

▪ nodes: A list of neighbor nodes in the network.
▪ last_block: The last stored block in the chain.

Below is the blockchain’s methods:
▪ __init__(): The blockchain constructor, that sets the

default value of current_transactions, chain, nodes.
▪ new_block(self, proof, previous_hash): Create a new

block that stores all current transactions, proof, and
previous hash.

▪ proof_of_authority(self, node): The proof value of
each block is calculated using the proof_of_authority,
which takes a node’s information as the input and
validates if it is a trusted node or not.

▪ hash(block): To generate the hash of the block.
▪ new_transaction(self, tx_hash, device, version,

file_hash): To append a transaction to the current
transaction list.

▪ register_node(self, address): To register a new node
into the network.

▪ valid_chain(self, chain): To validate if a chain is
correct based on the hash comparison and the proof of
authority.

▪ resolve_conflict(self): To update the chain if there is
any node that contains a newer chain.

To demonstrate the rollback using the blockchain-based
system, we also have 2 scenarios:
▪ The device will get the previous package by searching

its previous transaction via the central node.
▪ The device will get the previous package by searching

its previous transaction via a gateway node; however,
the gateway node must sync the chain from a nearby
gateway node that has the full chain with all
transactions.

The first scenario, we performed the steps to obtains the
previous update versions:
▪ Find all transactions that belong to the current device

via the central node.
▪ Get the transaction details of the N-1 transaction.
▪ Download the specific package version from the

server.
▪ Compare the hash (or check the signature if the

package has the signature). If the package is validated,
the device will install the package including the
configuration.

The second scenario, besides the steps of the first scenario,
there will an extra step:
▪ The requested node will sync the chain with other

nodes.
The above step we have built with the case of 100 blocks

difference between the target node and the central node.

http://www.ijeat.org/

Proposed Methods to Rollback A Failed Update of IoT Devices

 60

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

D. Primary - Secondary section system

The primary - Secondary selection system is the simpliest
implementation. The central server or the gateway waits for
the requests from the device periodically. After a predefined
timeout, the central server or the gateway will update in the
database that: (1) the primary device will be in “secondary”

mode; (2) the sencondary device will be in “primary” mode.

IV. RESULTS AND DISCUSSION

Having the implementation as above with pre-defined
scenarios, we have the fol-lowing comparison results among
3 methods:

A. Comparison of update failure cases

Table- IV: Update failure cases

Methods

Cases

Update
causes

“brick”

device

Some
devices

lost
network

connection

Devices
roll back

using
local

package
version

Cannot
connect

to
central
server

Rollback using
Git system

Not
solved

Solved Solved
Partly
solved

Rollback using
Blockchain-based
system

Not
solved

Not solved
Not

solved
Solved

Rollback using
primary –
 secondary
selection

Solved Solved
Not

solved
Not

solved

Rollback
 using snap

Not
solved

Solved Solved Solved

Rollback using
partitions

Solved Not Solved
Not

Solved
Not

Solved

B. Comparison of down time

To evaluate the time to recover a stable state, we have
made 10,000 requests for each of the following cases.
1) Case 1: Using Git system

The chart below describes the response time using git
revert when a failure happens.

Fig. 11. Execution time using git revert to previous
version.

 The chart below describes the response time using git pull
when a failure happens.

Fig. 12. Exection time using git pull to install the
previous version.

In comparison, the execution time of ‘git revert’ solution is

significantly less than the one of ‘git pull’.

Fig. 13. Comparison of exection time between git revert
method and git pull method

2) Case 2: Using a blockchain-based system
The chart below describes the execution time if the devices

connect directly to the central server as a node.

Fig. 14. Execution time by directly connecting to central

node

The chart below describes the execution time if the devices
connect to a nearby gateway as a blockchain node, while the
gateway node will sync the chain with other nodes.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-11 Issue-2, December 2021

 61

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

Fig. 15. Execution time by connecting to a nearby node

and sync with other nodes

In comparison, the method of synchronizing among the
nodes took more time for rolling back than the method of
connecting to the central server as a node. The time
dif-ference will be higher if the number of nodes increases.
However, the execution time can be shorter if the nodes sync
with each other before the rollback action is performed.

Fig. 16. Comparison of execution time between direct
connecting to central node and connecting to nearby

node

Without calculating the primary - secondary selection
solution because the downtime depends on the predefined
timeout, we can observe the execution time of the 2 other
solu-tions:

Fig. 17. Comparison of execution time among 4 cases:
git revert, git pull, direct connecton, node sync

connection

Therefore, the self revert to the previous update version is
the fastest way for a device to roll back. While using the same
method, the git pull method tends to be the slowest way to
perform the rollback.

V. CONCLUSIONS

In this paper, we proposed 3 solutions to roll back a failed
update of IoT devices with the target of reducing the
downtime for the devices: (1) using Git system; (2) using the
blockchain-based system; (3) using primary - secondary
selection. Depends on the condi-tion of the devices, including
the self-operated capability, network connections, the
con-nection among the central server and gateways, each
solution has its own advantages and limitation.

The implementation in this paper is only for the proof of
concept which serves the 2 factors: availability and integrity
of the rollback. Our future work will include the
confidentiality factor that ensures the roll-back package will
not be modified or misused by an unauthorized access.

ACKNOWLEDGMENT

We would like to thank CS'20.10 project of the Institute of
Information Technology, Vietnam Academy of Science and
Technology that has provided funding for the study.

REFERENCES

1. The IoT landscape in 2020 and the need to keep our connected devices
secure. Available online:
https://licelus.com/insights/the-iot-landscape-in-2020-and-the-need-to-
keep-our-connected-devices-secure

2. How Ubuntu Core transforms over-the-air software updates. Available
online:
https://pages.ubuntu.com/rs/066-EOV-335/images/Over-the-air%20soft
ware_12.05.20.pdf

3. Balena Mechanism. Available online:
https://www.balena.io/static/flow-desktop@1x-291bec507a7c6ed12a8d
2d7e282c4a0b.png

4. Balena update strategies. Available online:
https://www.balena.io/docs/learn/deploy/release-strategy/update-strateg
ies/

5. Two Ways to Update Embedded Devices Over-The-Air. Available
online:
https://mender.io/blog/the-two-main-ways-to-update-embedded-device
s-over-the-air

6. Konstantinos Arakadakis, Pavlos Charalampidis, Antonis
Makrogiannakis, Alexandros Fragkiadakis, Firmware over-the-air
programming techniques for IoT networks - A survey,
arXiv:2009.02260.

7. Learn Blockchains by Building One. Available online:
https://medium.com/@vanflymen/learn-blockchains-by-building-one-1
17428612f46

8. Elizabeth Nathania Witanto, Yustus Eko Oktian, Sang-Gon Lee and
Jin-Heung Lee, A Blockchain-Based OCF Firmware Update for IoT
Devices, Journal of Applied Science, 2020, 10, 6744;
doi:10.3390/app10196744.

9. Saraju P. Mohanty, Proof of Authentication: IoT-Friendly Blockchains,
Article in IEEE Potentials · January 2019, DOI:
10.1109/MPOT.2018.2850541.

10. Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis
Olivereau, Flavien Quesnel, Anthony Roger, Renaud Sirdey, Towards
Better Availability and Accountability for IoT Updates by means of a
Blockchain, IEEE Security & Privacy on the Blockchain (IEEE S&B
2017) an IEEE EuroS&P 2017 and Eurocrypt 2017 affiliated workshop,
IEEE, Apr 2017, Paris, France. hal-01516350

11. Jonathan Bell, Thomas D. LaToza, Foteini Baldmitsi and Angelos
Stavrou, 2017 IEEE/ACM 12th International Workshop on Software
Engineering for Science (SE4Science).

12. Tanweer Alam, Blockchain and its Role in the Internet of Things (IoT),
International Journal of Scientific Research in Computer Science,
Engineering and Information Technology, pp. 151-157, 2019.

http://www.ijeat.org/

Proposed Methods to Rollback A Failed Update of IoT Devices

 62

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B32971211221
DOI: 10.35940/ijeat.B3297.1211221
Journal Website: www.ijeat.org

13. Liangqin Gong, Daniyal M. Alghazzawi and Li Cheng, BCoT Sentry: A
Blockchain-Based Identity Authentication Framework for IoT Devices,
Information 2021, 12, 203.

14. Alfonso Panarello * ID, Nachiket Tapas ID, Giovanni Merlino ID,
Francesco Longo ID and Antonio Puliafito, Blockchain and IoT
Integration: A Systematic Survey, Sensors 2018, 18, 2575;
doi:10.3390/s18082575.

15. Nidhi Agarwal, Framework for Integration of Blockchain with IoT
Devices, Mphasis.

16. K. Christidis, M. Devetsiokiotis, Blockchains and Smart Contracts for
the IoT, Digital Object Identifier 10.1109/ACCESS.2016.2566339.

17. Nafiz Al Asad; Md. Tausif Elahi; Abdullah Al Hasan; Mohammad Abu
Yousuf, Permission-Based Blockchain with Proof of Authority for
Secured Healthcare Data Sharing, 2020 2nd International Conference on
Advanced Information and Communication Technology (ICAICT)

18. Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui, Xiong, Student
Dusit Niyato, Ping Wang, Yonggang, Wen, and Dong In Kim, A Survey
on Consensus Mechanisms and Mining Strategy Management in
Blockchain Networks, IEEE Access (Volume: 7)

19. John D. Blischak, Emily R. Davenport, Greg Wilson, A Quick
Introduction to Version Control with Git and GitHub, PLOS
Computational Biology

20. Ismail Butun, Patrik ¨Osterberg, and Houbing Song, Security of the
Internet of Things: Vulnerabilities, Attacks and Countermeasures, IEEE
Communications Surveys & Tutorials 22(1):616-644, 2019

21. Miao Yu, Jianwei Zhuge, Ming Cao, Zhiwei Shi and Lin Jiang, A
Survey of Security Vulnerability Analysis, Discovery, Detection, and
Mitigation on IoT Devices, Future Internet 2019, 12, 27;
doi:10.3390/fi12020027.

AUTHORS PROFILE

Hoai-Nam Nguyen, received the BSc. in University of
Engineering and Technology of Vietnam National
University in 2009, MSc. in Hof University of Applied
Science, Germany in 2015. Currently working at the
Institute of Information Technology of Vietnam
Academy of Science and Technology. Research fields:
Cybersecurity, software engineering.

Truong - Thang Nguyen, received a Ph.D. in 2005 at the
Japan Advanced Institute of Science and Technology
(JAIST), Japan. Currently working at the Institute of
Information Technology, Vietnam Academy of Science
and Technology. Research fields: software quality
assurance, software verification, program analysis.

Thu-Nga Nguyen Thi, received MSc. in University of
Information and Communication of Thai Nguyen.
Currently working at the Institute of Information
Technology of Vietnam Academy of Science and
Technology. Research fields: Cyber security, crypto.

Manh-Dong Tran, received a M.S. degree in 2013 at
the University of Engineering and Technology, Vietnam
National University, Hanoi. Currently working at the
Institute of Information Technology, Vietnam Academy
of Science and Technology. Research fields: software
quality assurance, software verification, program
analysis.

Ba-Hung Tran, receivved a Master degree in 2014 at
Military Technical Academy working at the Institute of
Information Technology. Research fields: Network
Infrastructure, software verification, program analysis.

http://www.ijeat.org/

