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Abstract 

Deliverable D4.4 extends the work conducted within D4.2 “Intelligent D-Band wireless 
systems and networks initial designs” and includes the final results of the work performed 
within Task 4.2 “Machine Learning based network intelligence” of WP4 “D-Band wireless 
network optimization leveraging ML principles”. Within ARIADNE, optimization of D-band 
network performance has been investigated through different perspectives, i.e., hardware 
imperfections at the Tx and the Rx, directional connectivity, LOS and NLOS connectivity, 
prediction of channel parameters, optimization of RISs performance, resource allocation with 
Users – AP association, mobility management. Optimization has been achieved by applying 
suitable ML algorithms depending on the problem to be solved. Specifically, our approaches 
include Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL), hybrid 
Metaheuristic-Machine Learning models, complex event forecasting, combination of 
Recurrent Neural Network (RNN), Convolutional Neural Network (CNN) and Constrained Deep 
Reinforcement Learning (C-DRL) models. Overall, the deliverable analyzes and evaluates 
innovative methods and concepts towards beyond 5G and 6G communication systems. 
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Executive Summary

Deliverable D4.4 builds upon the work conducted within D4.2 “Intelligent D-Band wire-
less systems and networks initial designs” and includes the final results of the work per-
formed within Task 4.2 “Machine Learning based network intelligence” of WP4 “D-Band
wireless network optimization leveraging ML principles”. Wireless network optimization
has been investigated in ARIADNE through different perspectives, i.e., hardware im-
perfections at the Tx and the Rx, directional connectivity, LOS and NLOS connectivity
towards advanced adaptive transceivers, channel modeling, optimization of RISs per-
formance, resource allocation with UE – AP association, mobility management. De-
pending on the problem to be solved, reinforcement learning (RL) and deep reinforce-
ment learning (DRL), hybrid Metaheuristic-Machine Learning models, complex event
forecasting, combination of Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN) and Constrained Deep Reinforcement Learning (C-DRL) models were
applied accordingly.

The deliverable is structured in 7 Chapters and their main contribution is described
below.

In Chapter 1, we introduce intelligence in the design of Tx and Rx by employing
ML to train their mapper and de-mapper, i.e., suitable constellations and detection
approaches, in order to mitigate I/Q imbalance in the THz band. Conventional and
RL-based training was used and the efficiency of the methods was validated by means
of Monte Carlo simulations. Baseline approaches were also tested, i.e., methods that
do not involve AI/ML techniques. Our investigations prove the superiority of the ap-
proaches exploiting ML potential to achieve lower BER and rely on lower SNR re-
quirements. Specifically, for high constellation orders RL-based training outperforms
conventional training schemes while intelligent transceivers require lower level of SNR
for a fixed BER requirement.

In Chapter 2, we deal with UE-AP association problem, avoiding LOS blockages at
the time of allocating resources for connection establishment. The problem is solved by
means of a hybrid Metaheuristic-Machine Learning framework which has been gradu-
ally developed within Tasks 4.1 and 4.2 and partly presented in D4.2. In the present
deliverable, we extend the work to dynamic scenarios i.e., to dense and evolving net-
works providing dual solutions based on online optimizations and ML predictions. The
online solver delivers a best solution which can be extracted at any time instant and ini-
tiate pro-active handovers in order to retain stable connectivity for users. Moreover, for
the case of evolving networks, diverse training data for ML models are generated reg-
ularly to capture current network’s topology and resource availability. Finally, our work
investigates the trade-off between training rounds and training time achieving maximum
accuracy.

In Chapter 3, we apply ML models to predict LOS connectivity and wireless chan-
nel parameters analyzing their interdependence with environmental conditions and ge-
ometrical conditions of the links. For this purpose, we use a dataset that includes
pathloss, delay spread, angular spread at the BS and MS, relative coordinates of BS
and MS, environmental/geometrical parameters. The objective of the work is to train
ML models to predict the probability of a LOS connection (between MS and BS) inves-
tigating the existence of certain pattern within the above parameters. Moreover, LOS
probability is predicted while the users are moving within the area under study which
can be exploited in different aspects of mobility management. Results are provided for
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different ML models which are evaluated for their accuracy and scoring time.
In Chapter 4, we look into the problem of assigning APs to mobile users assisted

by ML techniques. Typically, sophisticated optimization algorithms are used in such
problems that operate on a given input state. However, when this state changes, the
generated assignments become outdated in a short period of time. To tackle this prob-
lem, we explore an approach based on Complex Event Forecasting by computing more
informed user-to-AP assignments, based on training data. Specifically, we forecast
overloading of APs in a network with mobile users. The training data are produced
by system level simulations presented in the next Chapter of the deliverable. Event
forecasting is realized by means of Wayeb, an open-source Complex Event Recogni-
tion and Forecasting engine while UE-AP assignments are produced by an individual
system level simulation tool. Thus, a messaging system based on Kafka interface has
been developed to synchronize the two modules in an on-line fashion. The work of the
present and the next Chapter are complementary.

In Chapter 5, we exploit the system level simulation model that has been developed
during Tasks 4.1 and 4.2, and presented in D4.3, to investigate an intelligent proce-
dure for UE-AP association. Initially, Fulkerson-Ford algorithm (FFA) is implemented to
maximize the number of served UEs in the simulated network. Then, our objective was
to run the algorithm taking into account the forecasted load of the APs, described in the
previous Chapter. System level simulations were synchronized with the forecasting en-
gine and FFA was applied taking into account the APs scoring. Our simulations show
a considerable reduction of handover incidents, proving the efficiency of our approach
on resource and mobility management.

In Chapter 6, we introduce deep reinforcement learning (DRL) for beam prediction
for multi-user multi-input-single-output (MISO) downlink transmission. Specifically, dis-
tributed DRL method is used to obtain the optimal beam from a predefined codebook
set, where the reliability constraint is satisfied. In this study, we consider that the agent
(base station) can predict one or more beams at a given time to serve multi-UE simul-
taneously. We consider that UE moves in low speed, i.e., 3 km/hr (Users walking). The
PPO based DRL works well in this scenario, since the system throughput improves.

Finally, in Chapter 7 we combine different ML architectures to optimize users’ per-
formance in an RIS-assisted D-band network. Specifically, we apply Recurrent Neural
Network (RNN) and Convolutional Neural Network (CNN) algorithms to predict, in the
uplink, the viewpoints of the users, their locations and LOS or NLOS status. In the
downlink, Constrained Deep Reinforcement Learning (C-DRL) is deployed to select
the optimal phase shifts of the RIS elements under latency constraints. Our approach
is implemented for Virtual Reality (VR) users in a network with mobile edge comput-
ing (MEC) architecture that fulfills low-interaction latency requirements. The simulation
results show that our proposed learning architecture achieves near-optimal quality of
experience (QoE).

Overall, in this deliverable we propose, analyze and evaluate novel approaches to
insert intelligence in a wireless network tackling a number of problems that have been
investigating during ARIADNE time-life and are connected to the peculiarities of the
D-band and the incorporation of RISs. The results presented in this deliverable refer to
innovative methods and concepts towards beyond 5G and 6G communication systems.
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Introduction

The present deliverable extends various works described in previous deliverables namely
deliverable D4.1, D4.2 and D4.3. It also adds some completely new contributions. The
results presented here focus on the AI/ML solutions for D-band directional connectivity
including dynamic environments, some of whom are shaped by the employment of re-
configurable intelligent surfaces (RIS) systems. The presented work thus delivers high
quality solutions to the maximization/optimization of energy efficiency in wireless net-
works, optimal assignment between receivers and transmitters and optimal deployment
density of base stations or network optimization through reconfigurable metasurfaces.

In this direction, the present deliverable consists of 7 chapters. Chapter 1 intro-
duces an intelligent TX and RX architecture that allows for IQI (I/Q 1 Imbalance) impact
compensation without coefficients estimation. More specifically, the design of an intelli-
gent TX and RX that use machine learning (ML) to create their respective mapper and
de-mapper constitutes the technological contribution of this study. Two methods for
training the mapper and de-mapper namely, the traditional method and the reinforce-
ment learning (RL)-based method were applied and evaluated to reduce the channel
pollution due to information exchanging between the TX and RX.

Chapter 2 focuses on extending prior resource allocation and blockage avoidance
work to dynamic situations, such as dense and evolving networks, in order to achieve
reliable connectivity using AI and ML algorithms. The approach is expanded by combin-
ing machine learning and metaheuristics to create dual solutions that, when used with
online optimizations and machine learning predictions, are demonstrated to respect re-
source satisfaction and blockage minimization criteria to variable degrees - improving
as the ML model is trained on more training data.

Chapter 3 focuses on the potential of machine learning in predicting the line of sight
(LOS) and non-line of sight (NLOS) conditions using channel parameters datasets. The
main focus of this work lies on one of the primary problem landscapes in ARIADNE,
which covers connectivity scenarios involving outdoor and indoor environments, where
LOS and NLOS links need to be efficiently supported, in order to provide dependable
connectivity utilizing AI and ML techniques.

In Chapter 4, a sophisticated strategy for complex event forecast prediction is exam-
ined. Using prior data that was used to train the forecasting model, this technique trains
the machine to forecast future changes in the current input state. Additionally, the opti-
mization process is introduced, which considers user-to-AP assignments on extremely
likely future states of affairs, resulting in assignments that are valid for lengthy periods
of time and ultimately reducing needless hand-over incidents and improving the qual-
ity of service provided. Chapter 5 provides an update on the system-level simulation
model, presented in ARIADNE deliverable D4.3. The work presented in this chapter
focuses on the implementation of the Fulkerson-Ford algorithm (FFA) for UE-AP asso-
ciation in order to maximize the number of served UEs in a mmWave network. What is
most important, the developed framework exploits the forecasting strategy employed in
the previous chapter.

Chapter 6 presents downlink beamforming optimization based on single-agent deep
reinforcement learning schemes. Primarily, it focuses on a single BS predicting one or
more beams to serve multiple moving UEs at the same time, while the reliability con-

1In-phase/Quadrature
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straint is satisfied. Distributed DRL based on proximal policy optimization (PPO) with
the help of Rayllib is introduced in this chapter. The system throughput is considered as
reward of DRL framework. The current implementation will be extended to multi-agent
DRL and results will be reported in future deliverables. In multi-agent DRL scenario,
two or more BSs can collaborate with each other and jointly select the beams to serve
multiple moving UEs at the same time.

Finally, Chapter 7 combines a number of ML algorithms to optimize users perfor-
mance in an RIS-assisted D-band network, specifically by predicting users’ position,
LOS/NLOS conditions and RIS phase shifts. The methodology is applied for demand-
ing Virtual Reality requirements while low-latency is modeled by means of mobile edge
computing (MEC) principals.
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Chapter 1

Training Terahertz Wireless Systems
to Battle I/Q Imbalance

1.1 Introduction

To solve the spectrum scarcity problem that fifth generation (5G) systems are destined
to face, the wireless world has turned its attention to the terahertz (THz) band, in which
more than 50GHz contiguous bandwidth is available [1–8]. Although THz wireless
systems can open the door in a number of novel applications, including holographic
and extended reality, autonomous robotics, and massive self-driving vehicles, it comes
with several challenges that need to be addressed, before commercialization. The
most important of them is the effect of hardware imperfections [9–12].

Scanning the technical literature, there are several published contributions that quan-
tify the impact of hardware imperfections [13–17] and present possible mitigation ap-
proaches [18–21]. For example, in [13], the detrimental effect of residual hardware
imperfections on the energy detection performance of full-duplex cognitive radio net-
works was studied. The impact of IQI on the outage performance of wireless systems
that experience cascaded fading was discussed in [14]. In [15], the negative effect
of hardware imperfections on the outage probability of wireless systems, which em-
ploy digital beamforming, was quantified. In [16], the authors experimentally assessed
the hardware imperfections performance degradation in terms of spectral efficiency in
wireless systems that use hybrid beamforming. The authors of [17] quantified the im-
pact of IQI on the spectal efficiency in cell-free massive multiple-input multiple-output
wireless systems. From the hardware imperfection mitigation point of view, the authors
of [18] presented an IQI coefficients estimation and IQI mitigation approaches based
on digital signal processing (DSP). The mitigation efficiency of this approach depends
on the accuracy of the IQI coefficients estimator. A bind IQI compensation approach
that is based on the least mean square filter and recursive least square filter adap-
tation algorithms was presented in [19]. This approach although it achieves a high
image rejection ratio (IRR), it cannot fully mitigate the impact of IQI. In [20], the authors
presented a data-aided IQI estimation and compensation approach for orthogonal fre-
quency division modulation systems that isolate the IQI parameters estimation for the
channel estimation. Finally, in [21], an IQI pre-compensation scheme for THz wireless
systems, which uses as input the estimation of the transmitter (TX) and receiver (RX)
IQI coefficients was reported. The efficiency of the scheme presented in [21] depends
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on the estimation accuracy of the IQI coefficients.
From the aforementioned contributions, two important observations can be extracted,

i.e., i) the impact of hardware imperfections and especially the IQI can significantly de-
grade the reliability and spectral efficiency of THz wireless systems; thus, it is neces-
sary to utilize high-efficient hardware imperfections de-emphazation techniques; and
ii) current IQI mitigation approaches cannot fully mitigate its impact. The main draw-
back of the nowadays mitigation approaches lies on the fact that they first perform IQI
coefficients estimation using DSP, which is a relatively complex procedure, and then ei-
ther use the estimated coefficients to mitigate the impact of IQI or design pre-distortion
schemes. However, both these approaches heavily depend on the accuracy of the esti-
mation. In order to disengage from the estimation error, we follow a different approach.
We design suitable constellations and detection approaches that take into account the
level of IQI, which is a specification of the transceivers, without performing any IQI es-
timation. In more detail, the technical contribution of this work lies on the design of an
intelligent TX and RX that employ machine learning (ML) in order to respectively design
their mapper and de-mapper. To train the mapper and de-mapper, we document two
approaches, namely: i) conventional; and ii) reinforcement learning (RL)-based train-
ing. The former employs the Adam optimizer in order to train the TX and the stochastic
gradient descent (SGD) in order to train the RX, while the latter employs SGD to train
both the TX and RX. Both training approaches are designed in order to minimize the
channel pollution due to information exchanging between the TX and RX. Their main
difference is on the size of the training dataset that they require. RL-based training
requires a dataset that its size is approximately an order of magnitude lower compared
to the conventional-one. To validate the performance of the proposed approaches, re-
spective Monte Carlo simulations that quantify the BER as well as comparison with the
new radio transmission and reception scheme were performed. The results highlight
the superiority of the proposed approach against the baseline concepts.

1.2 System model

We consider a short-range single-carrier THz wireless system that consists of a single
TX and a single RX. The baseband unit of the TX is responsible of converting a block
of information bits, b, into a block of complex symbols s ∈ C2m×1, where m stands for
the number of bits loaded in each symbol. To achieve this task, a neural network (NN)
maps b into s, using as an additional input the system’s signal-to-distortion-plus-noise-
ratio (SDNR), γ. The output of the NN is a complex baseband signal that is fed to the
TX radio-frequency front-end.

As illustrated in Fig. 1.1, the TX consists of the mapper, a conventional in-phase
and quadrature (I/Q) modulator and a typical analog beamformer. The mapper has
two modules, namely: i) bit to one-hot; and ii) NN. The bit to one-hot modules takes as
input the bit stream of length m and output a tuple, u, of size 2m that has all its elements
equal to zero except the except the one whose index has b as its binary representation,
which is set to one. The NN takes as input the SDNR. It consists of two dense layer of
2m + 1 units and one normalization layer. The first dense layer uses a rectified linear
unit (ReLU) for activations, while the second has linear activations. The second dense
layer outputs 2m+1 elements that corresponds to the real and imaginary part of the
2m constellation points. The normalization layer ensures that the mean power of the
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generated constellation is equal to 1.
At the k-th, the output of the NN, C, is multiplied by u in order for the transmission

symbol to be extracted, i.e., sk = u C. Next, sk is fed to the I/Q modulator. We assume
that the I/Q modulator suffers by amplitude and phase mismatches. As a consequence,
its output is distorted by I/Q imbalance (IQI). Hence, the baseband equivalent transmit-
ted signal at the k−th timeslot can be expressed as in [22]

xk = G1 sk +G2 s
∗
k, (1.1)

where sk is the k−th component of s, while, according to [],

G1 =
1

2

(
1 + ϵ1 e

jϕ1

)
and G2 =

1

2

(
1− ϵ1 e

−jϕ1

)
. (1.2)

In (1.2), ϵ1 and ϕ1 respectively stand for the amplitude and phase mismatches.
Both the TX and the RX are assumed to employ analog beamforming in order to

mitigate the high path and molecular absorption losses. In short-range THz wireless
systems in which high directional antennas are employed, the line-of-sight (LoS) path
plays a dominant role, since the received power by non-LoS paths is usually more than
30 dB lower that the received power by the LoS path. As a result, the channel coeffi-
cient can be calculated as h =

√
hp hm, where hp stands for the geometry path gain

and hm denotes the molecular absorption gain. The geometry path gain can be eval-
uated, according to the free space loss expression [], as hp = Gt Gr c

(4π)2 f2 d2
, where c, f ,

and d are respectively the speed of light, the carrier frequency, and the transmission
distance, while Gt and Gr are the TX and RX antenna gains. The molecular absorption
gain can be expressed as hm = exp

(
−κ(v, T, p, f) d

)
, where κ(v, T, p, f) is the absorp-

tion coefficient that depends on atmospheric conditions, like the relative humidity, v,
the temperature, T , the atmospheric pressure p, and the carrier frequency, f . Note
that scanning the technical literature, there are several models that can be used to
model the absorption coefficient [5, 23]. In this work, for simplicity and without loss of
generality, the model presented in [24] and used in [25] was adopted.
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As depicted in Fig. 1.2, the RX consists of the analog beamformer, the I/Q demod-
ulator, and the demapper. The RF received signal at the output of the RX analog
beamformer is transformed to baseband signal by the I/Q demodulator. However, the
I/Q demodulator suffers from IQI. Therefore, the baseband equivalent received signal
at the k−th timeslot can be obtained as in

rk = K1 hxk +K2 h
∗ x∗k +K1 nk +K2 n

∗
k, (1.3)

where nk is a zero-mean complex Gaussian random variable that models the additive
white Gaussian noise. Moreover, K1 and K2 are the RX IQI coefficients that can be
evaluated as

K1 =
1

2

(
1 + ϵ2 e

−j ϕ2

)
and K2 =

1

2
(1− ϵ2 ej ϕ2) , (1.4)

with ϵ2 and ϕ2 respectively being the RX amplitude and phase mismatch. By apply-
ing (1.1) in (1.3), we obtain

rk = ξ1 h sk + ξ2 h s
∗
k +K1 nk +K2 n

∗
k, (1.5)

where ξ1 = K1G1 +K2G
∗
2 and ξ2 = K1G2 +K2G

∗
1.

From (1.5), the SDNR can be written as

γ =
|ξ1|2 h2 Ps

|ξ2|2 h2 Ps +
(
|K1|2 + |K2|2

)
No

, (1.6)

where Ps and No are the transmission and noise power distributions.
The baseband received signal is forwarder towards an NN that acts as the RX

demapper. The demapper uses as an additional input the SDNR and returns an esti-
mation of b, i.e., b̂. It consists of three dense layers. The first two consists of N units
and employs ReLU activations. The last one has m units and uses linear activation.
Based on the received signal and the SDNR, the demapper estimates the probability
of that each one of the symbols that belongs to C to have been sent, and selects the
one with the maximum probability.

1.3 Training the intelligent transceivers

Conventional training: At the k−th timeslot, the TX’s mapper transforms the tuple uk to
the symbol sk through the NN function f1 (u; zt), where zt are the TX’s NN parameters.
The symbol sk is transformed to the transmitted symbol xk through the I/Q modulator
that its process can be described as f2 (sk;G1, G2). Thus, the relationship between the
input beam stream, or equivalently the input one-hot, and the transmitted signal can be
described as xk = f2

(
f1 (u; zt) ;G1, G2

)
, or, for simplicity xk = f (u; zt, γ) , where f ()

denotes the input-output relationship of the TX.
In order to describe the channel, the conditional probability density function p

(
yk |xk

)
can be used. The received symbol yk is then transformed to rk through the I/Q demodu-
lator that can be described by f3 (yk;K1, K2), or equivalently yk = f−1

3 (rk; γ) . Thus, the
conditional density probability can be written as p

(
f−1
3 (rk; γ) |xk

)
. Moreover, since the
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decoded bit stream, b̂ corresponds to the xk and in turn to the u that maximizes the con-
ditional probability, the demapper objective is to maximize p

(
f−1
3 (rk; γ)

∣∣f (u; zt, γ)).
This can be achieved by minimizing a categorical cross-entropy (CCE) function be-
tween u and p, where p is a probability vector over all possible messages, for all the
possible transmitted messages. In other words, the end-to-end training problem can
be seen as the following optimization problem:

argmin
zt,zr

CE (u,p)

s.t.

C1 : E
[∣∣|x|∣∣2] ≤ 1

(1.7)

where zr are the RX’s NN parameters and CE (u,p) denotes the CCE function between
u and p that can be defined as CE (u,p) = −∑Nt

i=1 u
T
i log (pi) , where Nt denotes the

size of the labeled dataset, ui is the i−th one-hot tuple of the training data set, and pi

is the corresponding probability vector.
The optimization problem in (1.7) requires both the TX and the RX to have knowl-

edge of both zt and zr, in each step of the training process. This would cause an
important channel pollution and the feasibility of such system would be questionable.
Motivated by this the optimization problem in (1.7) can break into the following two
optimization problems:

argmin
zt

CE (u,p)

s.t.

C1 : E
[∣∣|x|∣∣2] ≤ 1

(1.8)

and

argmin
zr

CE (u,p) (1.9)

that the first one can be solved by the TX and the second by the RX with exchanging
only the constellation in each training step. The optimization problem in (1.8) is not a
convex one and cannot be transformed to a convex problem. Therefore, to provide a
global solution, we employ the Adam optimization method [26]. The initial weights are
set according to the Glorot approach [27]. On the other hand, the optimization problem
in (1.9) is solved using the SGD method [28].

RL-based training: The key idea behind RL-based training is to alternatively train the
RX and the TX. In more detail, the RX uses as a the following loss function gradient:

▽zrL = Eb,r

[
− log

(
fzR

(
b̂ |b

))]
. (1.10)

At the TX side, the following loss function gradient is used for training:

▽ztL̂ = Eb,s,r

[
− log

(
fzR

(
b̂ |b

))
▽zt f1 (b1)

× ▽b

(
log
(
πs,r (b)

∣∣
x=f1(b)

))]
, (1.11)
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Figure 1.3: BER vs SNR for different types of training and levels of IRR.

where fzR
(
b̂ |b

)
denotes the estimated bits for a given block of transmission bits, and

πs,r (b) is the estimated distribution of s for a given b. Using (1.10) and (1.11), both the
TX and RX are trained by the SGD.

1.4 Results & Discussion

This section focuses on presenting simulation results that highlight the effectiveness of
the ML approach in mitigating the impact of IQI. The following scenario is considered.
The distance between the TX and RX is set to 10m and the operation frequency is
100GHz. The channel bandwidth is 50MHz. Both the TX and RX are equipped with
30 dBi antennas. Standard atmospheric conditions are assumed, i.e., the relative hu-
midity is set to 50%, the temperature is equal to 27 oC and the atmospheric pressure is
101325Pa. Finally, N = 128, the ML methodology with conventional training employs a
dataset of 105 data, while the ML methodology with RL training uses a dataset with 104

data, from which 3000 are used for fine tuning.
Figure 1.3 depicts the BER as a function of the SNR for different types of train-

ing and levels of IRR, assuming m = 6. Note that TX and RX IRRs can be respec-
tively defined as IRRt =

|G1|2

|G2|2
and IRRr = |K1|2

|K2|2
. For this scenario, we assumed that

IRRt = IRRr = IRR. Moreover, we used as a baseline a new radio modulation and
coding scheme that employs low-density parity-check code with code rate equal to 0.5
and 64 quadrature amplitude modulation (QAM). As expected, for given IRR, trans-
mission and reception scheme as well as training methodology, as the SNR increases,
the BER decreases. Moreover, from this figure, it becomes evident that for fixed IRR
and SNR, the ML methodologies outperform the baseline approach. For instance, for
IRR = 20 dB and SNR = 5dB, using the baseline approach would lead to BER that
are respectively equal to 0.2067. On the other hand, for the same IRR and SNR values,
if ML with conventional training was employed, the BER would be respectively equal
to 0.0208, while if ML with RL training was used, the BER would be respectively equal
t0.018. This indicative example reveals the capability of ML to enable the use of low-
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Figure 1.4: BER vs SNR for different types of training and levels of IRR.

cost transceivers, which otherwise could not be used, while significantly reducing the
required SNR and in turn the energy consumption of the THz wireless system. Another
observation from the previous example is that ML with RL training outperforms ML with
conventional training. Likewise, we observe that for the baseline, for a fixed SNR, as
IRR increases, i.e., the severity of IQI becomes less detrimental, the BER decreases.
On the other hand, when the ML methodologies are employed, for a given SNR, as IRR
increases, the BER increases. The reason behind this is that the ML methodologies
output a new constellation that exploits the diversity that can be gained by the TX and
RX IQI [29].

Figure 1.4 illustrates the error performance of the ML-empowered THz wireless sys-
tem. In particular, the BER is plotted against the SNR for different values of m, assum-
ing that the IRR is equal to 15 dB. Again, for both the baseline and ML-empowered
schemes as well as a fixed m, as the SNR increases,the BER decreases. For exam-
ple, for the baseline, for m = 4, as SNR increases from 4 to 7, the BER changes from
9.31 × 10−2 to 1.04 × 10−4. Moreover, for given transmission and reception scheme
as well as SNR, as m increases, the complexity of the transmission constellation in-
creases; thus, the BER increases. Likewise, we observe that, for medium and high
values of m, where the constellations have higher complexity, the ML-empowered
methodologies outperform the baseline approaches in terms of error performance. For
instance, for m = 4 and SNR equals to 2 dB, the achievable BER is equal to 0.19, when
the baseline transmission scheme is used. On the other hand, for the same m and
SNR, the BER is equal to 1.36× 10−2, when the ML with conventional training method-
ology is employed, and equal to 1.52×10−2, when the ML with RL training methodology
is used. Moreover, for m = 6 and a SNR that is equal to 5 dB, the BER is equal to 1 and
0.18, in the case that the baseline scheme is employed. For the same m and SNR, if
the ML methodology with conventional training was employed, the BER would be 0.14,
while, if the ML methodology with RL training was used, the BER would be r 0.14. From
these examples, it becomes evident that ML with RL training is the optimal selection
for high m THz wireless systems, while, for medium m, the optimal selection is the
ML with conventional training. Finally, from this figure, we observe that the baseline
outperforms in term of error rate both the ML-empowered methodologies, in the low m
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region.

1.5 Conclusions

In this paper, we presented an intelligent TX and an intelligent RX architecture that
enables compensation of the impact of IQI without IQI coefficient estimation. The idea
was based on automatically co-designing constellation and detection schemes that
maps bits to symbols and received signals to bits. To achieve this, a ML approach
was followed that was build upon two NN, one at the TX and the other at the RX.
Two methods was used to train the NNs, i.e., i) conventional and ii) RL-based train-
ing. The latter require a considerable lower number of training data than the former
and achieves similar performance in terms of BER. Both the training approaches were
designed in order to minimize the channel pollution through training data exchange
between the TX and RX. To validate the feasibility and quantify the efficiency of the
proposed concept, Monte Carlo simulations were performed. The results revealed that
for low constellation order, baseline approaches achieve the minimum BER. On the
other hand, for medium constellation order, the ML with conventional training achieved
the minimum BER. Moreover, for high constellation order, the ML with RL-based train-
ing outperformed both the ML with conventional training and the baseline. Finally, it
was highlighted that for a fixed BER requirement, the required SNR when employing
ML is always lower or equal than the required SNR with baseline approaches. This
indicates that intelligent transceivers may lead to greener THz wireless systems.
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Chapter 2

Directional Connectivity using AI/ML
in Dense and Evolving Networks

2.1 Introduction

One of the main problems in future high frequency networks is that of directional Line of
Sight (LoS) based connectivity of user equipments (UE) with access points (AP). The
future networks are expected to get dense and even cell-free. Given the LoS block-
ages that higher frequencies are susceptible to, establishing connectivity between UE
and AP would not just require resource allocation at the AP but also stable and reliable
LoS links. Hence, directional connectivity demands avoidance of LoS blockages at
the time of connection establishment but also regularly adapting UE-AP associations
to avoid new blockages that may appear as the network continues to evolve. To es-
tablish reliable connectivity using Artificial Intelligence (AI) and Machine Learning (ML)
techniques, this work extends our past work on joint resource allocation and blockage
avoidance to dynamic scenarios i.e. to dense and evolving high frequency networks.

As part of past work, we had already investigated detection and prediction of block-
ages between UEs and APs, which we now integrate into our extended work to asso-
ciate UEs to APs in dynamic settings. We achieve this by means of extending our hy-
brid Metaheuristic-Machine Learning framework. The extended work also delivers dual
solutions (from online optimizations and ML predictions), which are demonstrated to re-
spect resource satisfaction and blockage minimization constraints at different extents.
Results also show that the quality of machine learning predictions improve drastically
with more data, while resorting to merely a small sample of each data for training. This
speeds up training time while the scoring of a single UE remains within millisecond
ranges using rather complex Gradient Boosted Tree (GBT) models.

2.1.1 Resource Allocation and LoS Blockage Minimization for Dy-
namic UE-to-AP Associations

This chapter presents work done on AI and ML models that solve the UE-to-AP associ-
ation problem in dynamic scenarios. It presents new results after substantially extend-
ing the past work shared in Deliverables D4.1 (chapter 4), D4.2 (chapter 7) and D4.3
(chapter 5) in that the previously presented “Hybrid Metaheuristic-Machine Learning
framework” now employs online optimizations, which respond to user-executed triggers
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that change the problem on the fly. By empowering the user to interactively engage with
the framework using a graphical interface, our work also paves way for the generation
of diverse and near-reality training data for retraining of ML models.

The presented work achieves the main objectives of task T4.2 within the context of
UE-AP association problem. This required investigating and delivering an AI/ML solu-
tion that ensures continuous reliable connectivity between a UE and an AP by associat-
ing all UEs to optimal APs under dynamic conditions, where the network is dense and
evolving. Providing high quality associations in dense and evolving networks increases
the challenge manifolds because the associations must satisfy resource requirement of
each UE in an environment where the partial blockages obstructing the LoS between
UEs and APs are frequently changing. Thus, partial blockages must be automatically
detected and considered in real time.

To achieve and demonstrate this dynamic behavior, it became necessary to develop
a graphical user interface (GUI) based application that allows user interaction with a
network model (given dataset) and evolve the network using a concept of event triggers
that programmatically invoke the system model pipelines in real time. This capability al-
lows to detect the UEs whose LoS with their last assigned AP is effected by the dynamic
event and the associations are adjusted by injecting these blockage-level updates into
the online solver and getting a near instant on-the-spot solution from it. Similarly, we
can get a prediction from the machine learning model that has been trained on past
network models (datasets) to adjust the associations i.e. initiate handovers for the ef-
fected UEs or even the whole network. These solutions minimize partial blockages by
initiating proactive handover of effected UEs to different APs, while also avoiding to
overload the APs; thus delivering associations that make optimal use of AP resources
and also use LoS links that are obstruction-free or minimally obstructed so the end user
(UE) receives a reliable and stable QoS.

The multiple contributions provided by this work are listed as follows:

1. A custom GUI application has been developed to let the end user (engineer or
analyst) engage with the extended hybrid Metaheuristic-Machine Learning frame-
work, import network models, run and pause online optimization, save solutions,
trigger changes of interest in the network model and get dual solutions (through
online optimization and ML predictions) on the fly.

2. The extended hybrid framework delivers an on-the-spot solution (UE-AP asso-
ciations) that can be extracted from the online solver and which respects the
changes happening dynamically in the network.

3. The extended hybrid framework also delivers machine learning prediction solution
(UE-AP associations) for side-by-side comparison with the optimization solution.
Multiple ML models have been trained to illustrate their capabilities.

4. 4) Multiple diverse datasets (representing diverse snapshots) can be generated
on top of the base datasets in accordance with how the domain experts perceive
the real networks to evolve. These evolved datasets can now be generated with
relative ease using the GUI controls for the event triggers.

5. Automated processes (data processing pipelines) are implemented to convert the
evolved datasets into training data for retraining (updating) the ML models.
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6. Automated processes are implemented to regularly update machine learning model(s)
that predict UE-AP associations.

We provide a thorough evaluation of the performance of dual solutions i.e., the quality
of optimized solution as well the quality of the predictive solutions delivered by differ-
ent ML models. The qualitative aspect of the solutions relates with the satisfaction of
optimization constraints. For evaluating the ML models, we also provide evaluation
in terms of ML metrics. The non-qualitative aspects of the solutions are evaluated in
terms of runtimes to better understand the impact on latency level KPIs when inducting
ML models in 5G and B5G network management systems.

The work presented in this chapter is accepted for presentation at the IEEE ICC
conference 2023 at the IF&E (Industry Forum and Exhibition) Programme track, which
is organized by the technology board of the 5G-PPP community. This acceptance was
a result of a competitive selection process, which invited submissions from multiple
5G-PPP projects to showcase their main outcome(s) [30]. Furthermore, a poster and
system demonstration is accepted for presentation at the EUCNC conference 2023
[31].

2.2 Extending the Hybrid Metaheuristic-ML Framework

Before attempting to solve the UE-AP association problem in dynamic settings, it is
noteworthy to recall that the stated problem is an optimization problem that we already
transformed into a predictive analytics ML problem in past work. The challenge to re-
solve the problem in a recurring dynamic context requires arbitrary many ML training
rounds, where each round updates the ML model by exposing it to diverse situations
or different snapshots of the network. Hence, arbitrary many training data needs to
be generated for this purpose, so that the ML model may recognize the pattern from
ground truth that is discovered by a Metaheuristic algorithm. Employing the Meta-
heuristic algorithm in an online fashion, the extended work also paves the way for
online or frequent learning.

For ML to be effectively employed in dynamic problems, certain pre-requisites need
to be satisfied:

• There must exist a pattern in the Metaheuristic ground truth.

• The stronger the model may learn the pattern, the better the quality of its pre-
dictions would be as it would satisfy the constraints of the problem in a better
manner.

• The generalizability of any ML model expected to deliver reliable predictions for
dynamically changing problems would require generation of and training on arbi-
trary many training data.

Our past work revealed that the ground truth does indeed contain a pattern and
current work optimizes model training to reach high quality solutions (predictions). This
satisfies the first two requirements. The third requirement is facilitated by the use of on-
line optimizations and the GUI application that makes it easy to evolve the network from
a base dataset to an evolved dataset and persist the latter alongwith its corresponding
ground truth. This whole approach is captured by our Hybrid Metaheuristic-Machine
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Learning framework, whose main components as explained here, are depicted in Fig.
2.1

Figure 2.1: Hybrid Metaheuristic-Machine Learning Framework
for Autonomous Network Management

2.2.1 Problem Definition and System Model

Considering the dynamic nature of the association problem, one of the objectives of
this work is to engage the network system model in real-time as events are triggered
by the end user using the GUI application. A description of these “dynamic triggers”
is provided in the following section but first we recall the definition of the UE-AP as-
sociation problem and the artefacts belonging to a dataset generated by the system
model.

Problem Definition

The joint “association and blockage minimization” problem is an optimization problem
that is defined by the following hard and soft constraints:

• Hard Constraints

– C1: Unique Assignment

* One UE should only be assigned to one AP (1:1 relation)

– C2: Grouped Allocation

* One AP can be allocated multiple UEs (1:m relation)

– C3: Resource Satisfaction by Maximizing AP Use but Avoiding Overload

* Resources required by UEs are provided by their assigned APs. Maxi-
mize resource usage of APs without exceeding available capacity, while
also resorting to use minimal number of APs. This constraint is a bin
packing constraint.

• Soft Constraints

– C4: Minimize LoS Blockages

* Minimize the number of LoS blockages when assigning a UE to an AP -
at best reducing blockages to zero.
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As constraints C1 and C2 are implicitly handled in our solution, the objective function
score comprises of a hard score contributed by C3 and a soft score contributed by C4
constraint. A score is a negative integer value that represents the violation of that
constraint.

Hard constraints determine the feasibility of a solution, while the soft constraints
determine the quality of the solution. The capacity related constraints are considered
as hard (as in this case from C1-C3). Hard constraints have a priority over the soft
constraints i.e. the solver considers a solution to be better than the other if its hard
constraints are satisfied more than the other. Given two solutions with the same score
for hard constraints, the one with a higher soft constraint is preferred. The objective
of optimization is to find the best solution within the bounds of a termination criteria.
Termination criteria could be set to a timeout which we intentionally set to a large value
to cater for continuous online optimization.

An optimal solution is found when all constraints are satisfied completely i.e. hard
score and soft score equals 0. The solution comprises of (UE, AP) assignment pairs.
We term this assignment as ”ground truth” discovered by the optimization algorithm.
The end user may choose to persist the ground truth alongwith the current state of the
datasets using the GUI application. The end user may also pause or resume the opti-
mization at will. Even after an optimal solution is found, the user may trigger changes
in the network using the GUI application, upon which, the current best solution could
become infeasible and is quickly updated to a feasible solution. An optimal solution
may or may not exist, or may not be found in a reasonable time, hence the current best
solution is considered as the near-optimal solution. In the next section, we recall the
main elements of our system model and the datasets that are generated by it.

System Model and Dataset Representation

The system model is composed of several executable steps that encode network spec-
ification as per domain knowledge of the experts. In this work, the system model was
developed as a collaborative effort between UPRC, NCSRD and RapidMiner (now Al-
tair). The system model is implemented as data processing pipelines using RapidMiner
Studio. The pipelines are visual workflows that are easy to code, maintain and tweak
parameters to generate concrete network models with desired characteristics such as
density of APs and UEs within an area of interest. The area is represented in a spheri-
cal shape that is an outcome of two independent Point Poisson Process distributions -
one of which is used to generate location (x and y coordinates) of UEs and the other for
APs. Each pipeline builds upon the previous pipeline to extend or enrich the data with
additional attributes e.g. different angular or distance measures. Hence, the definition
of any step can be conveniently updated if need be. The final outcome is a dataset
composed of 3 artefacts: a table of UEs, a table of APs, a table of UE-AP pairs that
represent a potential connection properties including the count of partial blockages for
UE-AP pair. These 3 artefacts are explained in the following as tables which represent
files in Comma Separated Versions (CSV) format.

Tables 2.1 and 2.2 respectively show the basic features of the UEs and APs, before
data preparation steps are performed. Table 2.3 shows the intermediary (UE, AP) pairs
table containing additional features that result from adjusting the x-y plane around each
AP, i.e. considering AP at origin (0,0) and computing further features such as distance
and various angles. Next, clustering is applied to discover spatial neighborhoods i.e.
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UEs that have similar and dissimilar geographical properties are identified. There are
as many (UE, AP) intermediary tables as many APs in the topology.

Table 2.1: Attributes of User Equipment (UE)

Table 2.2: Attributes of Access Point (AP)

Table 2.3: Intermediary table of (UE, AP) pairs with additional attributes

Partial LoS Blockages

To recall the definition of partial LoS Blockages, we refer to Fig. X that shows UEs
with respect to 1 highlighted AP that is positioned at the origin i.e. location (0,0) for x
and y coordinates in an (x,y) plane. Notice that the datapoints representing UEs are
clustered using unsupervised ML method of ”k-Means Clustering” to identify spatial
neighborhoods among UEs. The angular and euclidean distance parameters play a
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main role in identifying UE clusters with respect to an AP. Fig. 2.2 only shows a network
view for 1 AP.

The main parameter is k which (after some test and trial for our datasets), we fixed
at around 20% of the total number of UEs as the number of clusters to be discovered.
The k value determines how much the cluster members would be similar to each other
and dissimilar to members of other clusters. If k is too small, lesser clusters are created
but many UEs would fall into one cluster, which may not be spatially close enough to
each other. If k is too large, too many clusters will be formed but with fewer members,
hence a balance is required as per domain understanding.

In 2.2, the color of datapoints (UEs) shows its cluster and the size of the datapoint
(bubble shape) represents the UE’s radius. Note that due to limited colors, some clus-
ters that may seem (to human eye) to be using the same color but seen at distant
locations. These are distinct clusters whose color may vary only slightly.

Figure 2.2: Network topology showing clustered UEs with
respect to the highlighted AP. Color represents cluster and

bubble size represents UE radius

As per the definition of partial blockages, there may be multiple blocking UEs that
obstruct the LoS of a UE that tries to connect with an AP. Hence, both the count and
identity of blocking UEs are of interest. Hence, for each (UE-x, AP) pair as shown in
Table 2.3, the count of blocking UE-y(s) and their identifiers are obtained by applying
a blockage identification method among members of a cluster. The method is best
explained using the cross section diagram as seen in Fig. 2.3, where a UE-x is shown
to be blocked in its LoS by a UE-y.

The blockage identification method is composed of three inequality conditions which
are shown in the Fig. 2.4 where:

• The rb is the radius of UE-y.

• The dB is the distance of UE-y from AP

• The θo is the angle between UE-y and AP on the x-y plane

• The do is the distance of UE-x from AP

• The θUE is the angle between UE-x and AP on the x-y plane
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Figure 2.3: UE-x faces a partially blocked LoS with AP due to
UE-y

Figure 2.4: Partial blockage determining conditions

• The θ3dB is the beamwidth of the AP at UE-x

The blockage identification conditions generate additional attributes as shown in
Table 2.4.

Table 2.4: Partial blockages tables

The presented work extends the application of system model to dynamic scenarios.
This means that the system model has to be invoked in real-time to identify partial LoS
blockages due to events such as addition, removal or mobility of UEs. The original
method of clustering is computationally expensive. Hence, we trained a predictive ML
model by treating the attribute ”Count of Blockers” as ground truth and shaping a multi-
class nominal label attribute from it. This blockage predicting ML model (presented
in Deliverable D4.1, chapter 4, section 4.9) is used to replace the clustering step with
computationally fast model application step. As a result, the UE-AP pairs table (see
table 2.3) is quickly enriched with partial blockage attributes shown in the table 2.4.

2.2.2 Dynamic Triggers and Continuous Online Optimizations

We used the listener methods of ”Apache OptaPlanner” - an open-source and free con-
straint programming solver to apply Metaheuristic algorithms for online optimizations.
The online solver was configured to keep improving the solution on ongoing basis, such
that it listens to changes applied to the best solution in working memory of the solver
in a thread-safe manner. On top of these technical facilities, we devised a concept of
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trigger events that allow to evolve the base datasets with activity expected in the real
network such as mobility of UEs, change in required bandwidth, addition or removal of
a UE, or addition or removal of an AP to resemble events such as drone like on-demand
deployment, or crash of an AP to examine accidental events.

Online optimization quickly adapts the solution to such diverse or abrupt changes
and delivers new associations on the spot. These solutions are then converted auto-
matically into training data using the data processing pipelines. The following section
explains various dynamic triggers and their impact on continuous online optimizations.
The subsequent section explains retraining of machine learning models, compares per-
formance of these models in terms of machine learning metrics as well the quality of
the solution delivered by model predictions.

Addition of a UE

This trigger allows the user to dynamically add a new UE at a desired location in the
network and requiring a given bandwidth. As soon as the event is triggered, the on-
line optimization is automatically paused and a RapidMiner based (visual) process is
executed, which reuses the system model to identify a group of UEs that lie behind the
newly added UE in terms of euclidean distance and phase (angle) with respect to all
APs in the network. Fig. 2.5 shows this concept in a pictorial where the red trapezoidal
shape highlights the UEs whose LoS blocking count are effected due to the addition of
a new UE shown as a grey circular dot. For these effected UEs, as well for the new
UE itself, the LoS blocker count is obtained by applying the data transformation steps
of the system model and also applying the ML model to get the updated LoS blocker
count. As soon as this information is received back from the RapidMiner process, it is
updated in the working memory of the OptaPlanner online solver, which automatically
resumes, updates the solution and continues on with the discovery of more feasible
optimal solutions within millisecond or even microsecond ranges.

Figure 2.5: A UE is added to a network

Removal of a UE

This trigger allows the user to remove any selected UE from a network. Upon execution,
the online optimization is automatically paused and the system model is invoked to
identify the UEs whose LoS was previously blocked by the removed UE and is now
reduced by 1 blocking count. This action is performed with respect to all the APs in the
network. The Fig. 2.6 shows this concept in a pictorial where a crossed out UE in red
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color represents the UE that is removed from the network and the red trapezoidal shape
highlights the UEs whose LoS blocking count is effected with respect to the shown AP.
As soon this information is handed over to the online optimizer, it updates the solution in
its working memory and automatically resumes with the continual discovery of feasible
optimal solutions.

Figure 2.6: A UE is removed from the network

Movement of a UE

This trigger event can be executed to emulate the movement of a UE from its current
location to a new location provided by the end user. In a similar manner to addition
and removal event, the online optimizer is automatically paused, the system model is
invoked, which returns two lists of effected UEs namely the ones whose LoS blocking
count is released by the moving ’away’ of this UE and those that are now facing an
additional blocker in their LoS with respect to each AP. This concept is portrayed in the
pictorial shown in Fig. 2.7. Upon updating the current solution in the working mem-
ory of online solver, optimization is automatically resumed which continues to discover
optimal solutions which are feasible as per new change(s).

Figure 2.7: A UE is moved in the network

Change of resource required by a UE

A UE can also require more or less resource than it required in its original state. This
change of resource is implemented as a highly efficient trigger event, which does not
require invocation of the system model. The online optimization nearly instantly takes
into consideration the update of current working solution where the required bandwidth
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property of a single UE is updated, and continues to discover optimal solutions. This
trigger is elaborated in Fig. 2.8 in which a highlighted UE (shown as grey dot) changes
its required bandwidth to a higher value.

Figure 2.8: A UE in the network changes its resource
requirement

Addition of an AP

Another trigger event of interest is to dynamically add an AP in a network. This maybe
necessary to examine a possible scenario where a sudden surge in demand for con-
nectivity or resource builds up at a particular region of the network e.g., in the South
West or Center of the network. Such surges can be addressed with this trigger by
emulating scenarios where an AP or even a drone based AP may be deployed in real
time to satisfy the increase in demand. This trigger is diagrammatically illustrated in
Fig. 2.9, where a new AP is added to the network at location (0,0) and with a given
bandwidth capacity. This trigger requires invocation of the system model because it
creates new assignment (or reassignment) possibilities for potentially many UEs in the
network. Hence, the system model computes the LoS overlaps and the correspond-
ing LoS blocking counts for each UE in the network (highlighted by the red rounded
rectangle covering the entire network), with respect to the newly added AP. No sooner
than these changes are updated in the online optimizer, the updated solutions become
available through the automatic resumption of optimization.

Figure 2.9: An AP is added in the network
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Removal of an AP

Finally, the removal or crash of an AP can be emulated using this AP removal trigger.
The removal or unavailability of an AP is a realistic case due to weather disaster, techni-
cal fault or vandalism. Fig. 2.10 shows that with the removal of an AP highlighted with
a red cross sign, the entire network maybe effected (highlighted by the red rounded
rectangle) because all UEs previously assigned to this AP now need to be associated
to some other AP(s). This trigger can be used to harden the optimization problem as
removal of a large number of APs would reduce the state space of possible assignment
options, while the number of UEs may remain the same or even increase. Thus, this
trigger also serves to study different scenarios together with other triggers. This trigger
does not require invocation of system model because the removal of selected AP entity
can be directly executed in the current best solution present in the working memory of
solver, while nullifying the assignment of all UEs that were previously assigned to the
removed AP. The online optimizations resume automatically and disover the next best
solutions nearly instantly in most cases.

Figure 2.10: An AP is removed from the network

This ends the discussion on dynamic triggers and we now present the work on
training the ML models.

2.2.3 Training Data for Machine Learning

The objective of the online optimization and ML models is to associate UEs to APs.
Fig. 2.11 shows an unassigned network using the U4 dataset that comprises of 662
UEs and 125 APs.
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Figure 2.11: An unassigned dense network

As a result of online optimizations, the whole network is assigned i.e. all UEs are
assigned to optimal APs within a few seconds. This assignment serves as the ground
truth and allows to generate training data with a label attribute for supervised machine
learning. A fully assigned network is shown in the Fig. 2.12, which maximally satisfies
both constraints: i) resource satisfaction (avoids overload of any AP while satisfying the
bandwidth resource required by each UE), and ii) minimizes partial blockers in LoS to
zero for each UE-AP assignment, which is represented by a line that connects the UE
with its associated AP.
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Figure 2.12: An optimally assigned dense network. The lines
connect a UE to an AP. An AP can have multiple lines incident
on it representing all the UEs associated with it. The line also

represents a Line of Sight (LoS) between a UE and its
associated AP.

Scheme to evolve base datasets with a chain of dynamic triggers

The Fig. 2.13 illustrates the scheme used and promoted for any future extension of
this work to generate new (evolved) datasets by applying trigger chain(s) on previous
(base) datasets. Although this work implemented a GUI application to let the end user
interactively invoke triggers to evolve a base dataset, the trigger chains can also be
executed programmatically by reusing the implemented methods by reading external
declarative files, where the sequence of desired triggers is specified. Nevertheless, we
consider this potential feature beyond the scope of this work.
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Figure 2.13: Schematic illustration of network evolution using
dynamic triggers to generate evolved datasets and

corresponding ground truth

We applied the mentioned scheme to interactively generate an evolved dataset
namely U2.1 from U2, and U4.1 from U4 using a common trigger chain consisting
of sequential steps explained as follows:

• Addition of a UE at a random location (3,9) requiring 1.5 MHz of bandwidth.

• Removal of a UE with id 1.

• Move a UE with id 2 from its original location in both datasets to a new location
(-8,5).

• Change the requirement of a UE with id 3 from its previously required bandwidth
to a new value as 3 MHz.

• Remove an AP with id 1 from both datasets.

The above steps were executed using the triggers explained in Section 2.2.2 as
the Late Acceptance metaheuristic algorithm kept solving the problem in online opti-
mization mode. As the optimal solution was found that satisfied both hard and soft
constraints, the ground truth representing UE-AP assignments in the evolved datasets
was available. The datasets (along with their ground truth) were persisted as U2.1 and
U4.1.

Summary of Datasets

A short summary of the used datasets is shown in Table 2.5. These datasets represent
dense networks with hundreds of APs and UEs in a short area. The state space shows
the upper bound of possible combinations that exist in each dataset, where each com-
bination is a unique assignment of all UEs to one or more APs. The value of state
space (represented as power of base 10) is computed as mn, where m is the number
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of APs and n is the number of UEs. The Metaheuristic algorithms must traverse this
large state space to discover better and better feasible solutions, where each solution is
an assigment of UEs to APs that satisfy the constraints of the objective function better
than the last best solution. The table also shows 10% and 20% split sizes using strat-
ified sampling. These show that even a small 10% split represents more than 82000
datapoints at the minimum. These sizes have an impact on the training times.

Table 2.5: Summary of Datasets

Alias UEs APs State Space
Datapoints

Total 10% of Total 20% of Total

U2 741 125 101553 92625 9262.5 18525

U2.1 741 124 101551 91884 9188.4 18376.8

U4 662 125 101388 82750 8275 16550

U4.1 662 124 101385 82088 8208.8 16417.6

2.3 Results and Performance Evaluation

In this section, we present the quality of ML Models in terms of ML metrics and ex-
ecution times for training and applying the models to various datasets. We trained 4
Gradient Boosted Tree (GBT) models as shown in Table 2.6 using the datasets pre-
sented in Table 2.5.

Table 2.6: Performance of different ML models

Model

Name

Dataset Split Size Accuracy (%)

Training Testing Test Error
Training

Error
U2 U2.1 U4 U4.1

GBT1 10% 90% 85.74 83.86 89.92 82.73 87.9 83.82

GBT2 20% 80% 90.22 89.47 93.54 86.98 93.26 87.72

GBT3 10% 90% 97.03 95.48 98.17 97.41 96.93 96.35

GBT4 20% 80% 99.92 99.9 99.89 99.90 100.0 99.94

The main differences between the 4 models are that i) GBT1 and GBT2 are trained
on dataset U2 and U4, while GBT3 and GBT4 are trained on all 4 datasets (U2, U2.1,
U4 and U4.1). ii) The models are trained on different split sizes as shown in Table
2.6. In contrast to traditional convention, where a larger split (usually 80%) is used
for training and the rest for testing, we trained models on different split sizes to find
the minimal training split size, which delivers an acceptably high quality of predictions.
This is helpful in training ML models for dynamic problems because in such problems,
we expect arbitrary many training rounds would be necessary before good and stable
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predictions can be expected from a model that is general enough to be relied for use
in a network that undergoes diverse changes. iii) The models GBT3 and GBT4 are
optimized using Grid Search optimization, while the models GBT1 and GBT2 are not
optimized for their parameters. This results in GBT1 and GBT2 less specialized but
also lesser accurate in overall terms, while GBT3 and GBT4 are more accurate but
also larger in terms of disk size and also require more scoring times when applied on
all 4 datasets as shown in Table 2.7.

The model training and application times (called scoring) are shown in following
table. The scoring times are of interest as 5G and B5G systems target low latency
KPIs in the decision functions that result in associating UEs with APs on a frequent
basis.

Table 2.7: Training and Scoring Times for different ML models

Model
Training

Time (ms)

Scoring

Time on

Testset (ms)

Scoring

Time on

U2 (ms)

Scoring

Time on

U2.1 (ms)

Scoring

Time on

U4 (ms)

Scoring

Time on

U4.1 (ms)

GBT1 163267 224516 64867 61146 57811 53634

GBT2 302016 203292 66345 60584 59429 53645

GBT3 17,158,000 796728 239668 225294 212961 201595

GBT4 20,131,000 511623 172539 167410 152879 150723

The average time to get an association for a single UE would require to divide the
Scoring time for the entire dataset (as reported here in Table 2.7) by the number of APs
in that dataset, which is 125 in U2 and U4, and 124 in U2.1 and U4.1. The average
time to get an association prediction for a single UE in each dataset is shared in Table
2.8 for all 4 ML models.

Table 2.8: Scoring Time for single UE using different ML models

Model

Scoring Time

for Single UE

on U2 dataset

(ms)

Scoring Time

for Single UE

on U2.1 dataset

(ms)

Scoring Time

for Single UE

on U4 dataset

(ms)

Scoring Time

for Single UE

on U4.1 dataset

(ms)

GBT1 87.54 82.52 87.33 81.02

GBT2 89.53 81.76 89.77 81.03

GBT3 323.44 304.04 321.69 304.52

GBT4 232.85 225.92 230.93 227.68

It must be noted however that executions times presented in tables 2.7 and 2.8 are
relative to the hardware of the machine where the models are trained and applied.
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Hence, these must be interpreted accordingly.

2.3.1 Qualitative Aspects of Predicted Solutions

After having explained the quality of various ML models in terms of ML metrics and
non-functional properties, we now take a look at the quality of their predicted solutions.
The solution quality is assessed on following merits:

• The quality of the link between the UE and the AP assigned to it i.e. the number
of blockages that partially obstruct the link.

• The resource satisfaction with respect to overloading of APs and the number of
APs used from total available APs in the network.

• The visual assessment of the assigned network. This simple eye-balling test re-
veals how balanced the resultant network looks, which provides additional clues.

We applied each of the 4 ML models has been applied to each of the 4 dataset
in entirety. However, here we present some of those results to highlight some of the
main distinguishing outcomes. Hence, in the following, we share results obtained by
applying the models GBT1, GBT2, GBT3 and GBT4 on dataset U2.1.

Results from GBT1 model

The results obtained after the application of GBT1 model are summarized in Fig. 2.14
and Fig. 2.15. A visual examination of the network plot in Fig. 2.14 shows that the plot
is skewed in the south-west direction in that a lot of lines (representing connections
from UEs) are incident on a few points that represent APs. This is further confirmed
by the network usage and link quality attributes shown in Fig. 2.15, which shows that
the predicted associations only use 65 out of a total of 124 APs. Although the total
bandwidth required by all UEs is within the total bandwidth available by all the APs in
the network, this solution leads to some APs being overloaded beyond their capacity.
The figure also shows that although a vast majority of UE-AP associations (361) do
not have any partial blocker in the LoS between the UE and its assigned AP, there
are 176 UE-AP associations with 1 LoS blocker, 114 UE-AP associations with 2 LoS
blockers and 89 UE-AP associations having more than 2 blockers. The results are
less than ideal but they do exhibit that the model has extracted and learned to sat-
isfy the two main constraints of the problem, i.e. resource satisfaction and blockage
avoidance/minimization for the majority of cases. These results also confirm the need
for further training since this model (GBT1) has only been trained on 10% of training
data from two datasets as explained in Section 2.3 and its accuracy on the entire U2.1
dataset is 82.73% as shown in Table 2.6.

Security: Public Page 40



H2020-2019-2023, ICT – ARIADNE
D4.4: Intelligent D-band networks designs

Figure 2.14: Network plot showing UE-
AP associations predicted by GBT1
model

Figure 2.15: Network usage and blockages in
predictions by GBT1 model

Results from GBT2 model

The results obtained after the application of GBT2 model are summarized in Fig. 2.16
and Fig. 2.17. The visual examination of the Fig. 2.16 reveals a much more ’balanced’
network plot in terms of UEs being connected to APs in all locations and much less
skewed towards any particular direction unlike Fig. 2.14. This balance is also reflected
in the network usage, where 78 APs are used as shown in Fig. 2.17 instead of only 65
used by GBT1. This improvement in solution quality is also reflected in terms of link
quality. The figure also shows that GBT2 model delivers even more UE-AP associations
- 384 to be precise, that do not have any blocker in the LoS between the UE and
its assigned AP. Also the GBT2 model improves the UE-AP associations which have
blockers in their LoS. There are 189 UE-AP associations with just 1 LoS blocker, while
also drastically reducing the UE-AP associations that have 2 blockers to 88 and those
having more than 2 blockers to 80. This improvement of GBT2 over GBT1 is confirmed
by the fact that it is trained on 20% of training data unlike 10% for GBT1 as shown in
Table 2.6. The table also shows that the accuracy of GBT2 is 86.98% when applied on
the entire U2.1 dataset, which is better than that of GBT1. The number of APs that are
overloaded is also reduced as well the level of overload. Hence, we see that training
on more data improves the pattern recognition property of the model.
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Figure 2.16: Network plot showing UE-
AP associations predicted by GBT2
model

Figure 2.17: Network usage and blockages in
predictions by GBT2 model

Results from GBT3 model

The results obtained after the application of GBT3 model are summarized in Fig. 2.18
and Fig. 2.19. The visual examination of the Fig. 2.18 reveals an even more ’balanced’
network plot than seen in Fig. 2.16. Not only do we see that UEs are connected to
APs in all locations but also that lesser APs are overloaded - visible as lines incident of
an AP dot. This balance is also confirmed in terms of network usage and link quality
properties shown in Fig. 2.19. We see that the GBT3 (which is trained on 4 datasets
unlike GBT1 or GBT2) has resorted to use 96 APs instead of 78 used by GBT2. A
major improvement in the GBT3 model is seen in the quality of links in the predicted
UE-AP associations. We see that nearly 86% of the associations have 0 LoS blocker
unlike 52% predicted by GBT2. In absolute numbers, GBT3 predicted 636 UE-AP
associations with 0 LoS blockers instead of 384 predicted by GBT2. Similarly, GBT3
predicts far lesser UE-AP associations with 1 or more LoS blockers. There are 66
associations with 1 LoS blocker, 21 with 2 LoS blockers, and 18 with more than 2 LoS
blockers.

As shown in Table 2.6, the accuracy of GBT3 is 97.41% when applied on the entire
U2.1 dataset, which is far superior than that of GBT2 at 86.98%. This is because
the GBT3 model is not just trained on 4 datasets (2 more than GBT2 and GBT1) but
it is also optimized using Grid Search optimization to find the best parameters. The
number of APs that are overloaded in this solution are further reduced as is the level
of overload. This further underscores that for the presented problem, training on more
data as well optimizing the training process improves the pattern recognition property
of the model, despite the model being trained on merely 10% of the training data.
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Figure 2.18: Network plot showing UE-
AP associations predicted by GBT3
model

Figure 2.19: Network usage and blockages in
predictions by GBT3 model

Results from GBT4 model

The results obtained after the application of GBT4 model are summarized in Fig. 2.20
and Fig. 2.21. The visual examination of the Fig. 2.20 also reveals a ’balanced’
network plot similar to the one seen in Fig. 2.18. The main difference between GBT4
and GBT3 is that GBT4 has been optimally trained on 20% of the training data, while
GBT3 is trained on 10% of training data. The accuracy of the GBT4 model is 99.9%
which is slightly better than GBT3 at 97.41% when applied on U2.1 dataset. Upon
examining the link blockage quality predicted by GBT4 as shown in Fig. 2.21, we see
that GBT4 has resorted to use 95 APs (1 less than GBT3) and has also improved 6
more UE-AP associations with 0 LoS blocker compared to that of GBT3. The total
number of UE-AP associations with 0 LoS blocker is 642, 56 with 1 LoS blocker, 26
with 2 LoS blockers and only 17 with more than 2 LoS blockers. Overall, the GBT4
predicts slightly better UE-AP associations than GBT3.

This completes our analysis and discussion on the application of ML models for the
presented UE-AP dynamic association problem.
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Figure 2.20: Network plot showing UE-
AP associations predicted by GBT4
model

Figure 2.21: Network usage and blockages in
predictions by GBT4 model

2.4 Conclusion

In this chapter, we presented our work that effectively addressed but also extended
the notion of dynamicity as envisioned in the task T4.2 (as well in T4.1) in dense and
evolving 5G and B5G networks. This work has investigated the application of AI and ML
methods to UE-AP association problem, which is considered to become more pertinent
in future networks as these get dense and current analysis tools do not sufficiently
address the modeling of dense and evolving networks using AI/ML methods for the
mentioned class of problem(s). To achieve presented results, we extended the past
work on Hybrid Metaheuristic-Machine Learning framework to dynamic scenarios. For
instance, handling mobility in UE-AP association problem is considered an important
pertinent requirement in WP4 tasks. With the design and implementation of a general
purpose concept of trigger events, we not just tackle mobility but also other realistic
changes that are expected to take place in future networks.

Another noteworthy observation maybe that the use of online solver delivers a best
solution which can be extracted at any point in time for initiating handovers pro-actively
so that the end users (UEs) continue to experience stable connectivity and continu-
ous bandwidth. In this manner, this part of our hybrid solution can serve as a primary
deployable solution in the network (at APs or any central computation node that main-
tains a good approximation of the network’s current topology, resource availability and
requirements), while the ground truth for diverse changes experienced by the network
can be regularly persisted to generate more training data for ML models. As proven
by the results from ML model training and examining the quality of their predictions,
the performance of ML models improves when retrained on more training data which
holds diverse and realistic snapshots of the network. Our experiments also show that a
good trade-off between arbitrary many training rounds and training time can be reached
by splitting the training data to the minimal size, where the model is already reaching
maximum accuracy. To deal with bias, we used stratified sampling and also inspected
the recall and precision of all classes, which was exceptionally good in all the models
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that were presented for the UE-AP association problem in this chapter. In conclusion,
this work made contributions in terms of synthesizing various concepts and realizing
AI-driven autonomous network management layer for future 5G, B5G or 6G networks
while considering the UE-AP association as a concrete reference problem.
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Chapter 3

Machine Learning (ML) model for
environment- specific LOS
connectivity at the physical layer

3.1 Introduction

Artificial intelligence (AI) has emerged into the wireless communications industry as
a necessary component. The wireless network is expanding quickly as a result of
customers’ growing needs and demands. People and businesses are now looking for
more ways to stay connected around-the-clock, so the technology and communication
sectors need to adopt novel techniques of machine learning to provide the necessary
support, minimize latency problems, and enable the provision of better and enhanced
services at reasonable prices [32], [33] Hence, to establish reliable connectivity us-
ing AI and ML techniques, we are focusing on one of the main problem landscape in
ARIADNE which includes connectivity scenarios including outdoors and indoors env-
iornments, where LOS and NLOS links need to be established. Such scenarios can be
addressed at different levels. In this Chapter, we focus at the physical layer, expand-
ing the work presented in Deliverable 4.1. The relationship between the propagation
environment and the properties of the channel is a very difficult problem and is an ac-
tive area of research. The main challenge is to understand the feasibility of predicting
various properties of the wave (e.g., Line of Sight (LOS) and path-loss) at the physical
layer to initiate a timely pro-active handover. Therefore, it may be of interest to predict-
ing signal strength, directionality and existence of LOS connectivity of the multi-path
channels based on the propagation environment. Both experimental and numerical
approaches of channel modeling suffer from inherent complexity originating from the
multi-dimensionality. A question therefore emerges as to possibility of simplifying them
if there is relation or dependency between different dimensions of radio channel prop-
erties and with environmental and geometrical conditions of links [34].

The layout of this chapter is as follows. Firstly, we present an initial analysis of the
challenges and opportunities for machine learning in the channel modeling domain for
both line of sight (LOS) and non-line of sight (NLOS) scenarios. The objective here is to
understand the feasibility of predicting LOS connectivity at the physical layer. Secondly,
extended version of channel modeling prediction and to analyze statistical relation be-
tween condensed parameters of multi-dimensional mobile channels and geometrical
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and environment link condition to analyze the inter-(in)dependence of the dataset re-
ceived from our partner Aalto university. Thirdly, we will share analysis and results on
the application of Machine Learning (ML) Algorithms to predict LOS connectivity for de-
veloping and deploying various KPI’s focusing accuracy, fading statistics, correlations,
complexity, and versatility which can find the hidden non-linear relationships among dif-
ferent features and can indeed improve the feasibility and viability of the model. Finally,
we will summarize our work.

3.2 ML model for environment-specific LOS connectiv-
ity

This section of the chapter focuses on predicting the existence of Line of Sight (LS) in
specific environments, which can be indoors or outdoors for which data is provided by
the University of Aalto in the joint work. This work is placed on the physical layer of
the network where ne of the main challenges is to predict the properties of the chan-
nel on the receiver side. Our approach relies on investigating the existence of pattern
within the available features as well as bringing geographic location to include envi-
ronmental features to examine the density according to the user mobility for predicting
LOS connectivity. The main objective in this work is to train machine learning models
to decide whether to maintain a connection with an existing AP (if LOS is detectable
and reliable) or request a non LOS connection from NLOS component if LOS cannot
be detected anymore. Another objective of this work is to assist the engineer or ana-
lyst to understand which wave propagation attributes influence the presence of LOS at
different steps of a given route where a user (UE) moves within the environment.

3.2.1 Dataset Origination and Parameters

To extend our previous study stated in deliverable D4.1 and D4.3 the data was extracted
from Helsinki-Vantaa airport Terminal 2 ray-tracing based on expert knowledge that
allows to generate a specific network scenarios for environment aware connectivity.
Dataset includes 2 BS locations simulation. For each BS location, 100 MS routes are
generated. They vary slightly in number of data points total length, but on average
there are 150 rows of data, corresponding to approx. 150 steps taken by the MS, for
a total length of approx. 150 meters. For each route, a separate uniform distribution
of pedestrians is generated on the airport floor. Pedestrians are approx. 0.4 wide and
1.75 tall. Pedestrians are stationary. The summary and structure of data is provided
in 200 separate .xlsx files (2x BS with 100 routes each) which is shown in Table 3.1
shows the parameters/features/attributes of the multi-dimensional channel model and
geometrical conditions we aim at relating in this paper: link pathloss, delay spread,
angular spread at the BS and MS, relative coordinates of BS and MS and finally the
LOS probability.
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Table 3.1: Dataset extracted from Helsinki-Vantaa airport Terminal 2 ray-tracing

3.2.2 Sampling

Data is full of potential biases when we train a model, maybe as a result of human
factors during the data collection, sampling, or labeling processes. Sometimes, a small
sample of a data collection might disclose the most crucial details. In other cases,
using a bigger sample can enhance the possibility that the data are accurately repre-
sented as a whole, even though the greater sample size may make it more difficult to
manipulate and interpret the data [35]. Understanding various sampling techniques is
crucial because it firstly enables us to prevent data biases, and it also helps us to in-
crease the effectiveness of our training data. The sampled subsets from data sampling
should accurately reflect the real-world data to minimize selection biases in order to
develop reliable models. Thankfully, probabilistic data sampling techniques can assist
us in understanding this [36]. The sample operator in Rapidminer studio is concerned
with the amount of examples and class distribution in the final sample. Also, the sam-
ples are created at random. Depending on how the sample parameter is configured,
the number of examples in the sample might be specified on an absolute, relative, or
probabilistic basis. For various label attribute values, you can define a different sample
size for each class. Here, in the Figure 3.1, you can observe how the original distri-
bution of the label LOS vs NLOS looks like. It is highly imbalanced with LOS having
frequency of only 15 percent of the entire dataset. In order to enforce the dataset to be
down sampled NLOS to 75 percent and down sampled LOS to 25 percent, we set the
sample parameter to ”Probability,” as shown in the Figure 3.2 and Table 3.2
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Figure 3.1: Distribution of LOS vs NLOS before sampling

Figure 3.2: Sampling Conditions

Table 3.2: Sampling Distributions

Class Probability

LOS 0.75

NLOS 0.25

However,after we used downsampling to reduce the number of samples/examples
needed for model training because accuracy on unbalanced datasets can be deceiving.
The distribution of LOS vs NLOS can be seen in Figure 3.3.
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Figure 3.3: Distribution of LOS vs NLOS before sampling

3.2.3 Modeling Approach

The basic proposed pipeline for steps and decision involved in this approach will in-
cludes given set of data from Aalto univeristy which was further split into training and
testing dataset. Feature selection and parameter tuning for training set was performed
followed by investigating the implementation of various machine learning algorithms to
examine which models were performing better compared to others. In general, Ma-
chine learning algorithm helps to extract significant features from the data to deliver
insightful predictions. Various ML models were built and validated using test dataset to
empower predictions strengths without knowing the specifics of data. A variety of Ma-
chine Learning models including Generalized Linear Model(GLM), Decision Trees and
Gradient Boosted Trees(GBT) for classifying LOS vs NLOS identification were trained
by preprocessing training data and were Compared to evaluate the performance. The
performance of Gradient Boosted Trees (shortly GBT) was noticeably better than its
competitors. The training workflow/pipeline created in RapidMiner is shown in Figure
3.4.

As seen in Figure 3.4, the workflow reads the dataset, performs some preprocessing
including feature selection, removing unused data, transforming unstructured data into
structured data and then splits the training data into two partitions. For example, the
larger partition containing 70% data is used to train the model using the standard 10-
fold cross validation pattern. The smaller 30% data partition is held out (kept unseen by
the model training process) for validation testing. Validation testing measures model’s
performance on this unseen data. Data is split using stratified sampling to preserve
the distribution of classes in both partitions, so that a fair evaluation on the prediction of
classes could be achieved, while also preserving the categorial structure of the problem
in validation test set. Furthermore, each of the models was also trained on reduced
training datasize, while increasing the size of validation data in order to evaluate the
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Figure 3.4: RapidMiner workflow to train and store a Machine
Learning Model and its performance

impact on accuracy and gain knowledge about how much data is required for each
machine learning model to learn the patterns from the training data. The performance
evaluation with different Training and testing dataset are shown in Table 3.3

3.2.4 Performance Evaluation and Results

In this section, individual model’s performance in terms of ML metrics, execution time
and quality of solution is assessed against the (unseen) validation subset of the training
data, which was used to fit the model as seen in Table 3.3. Here model was trained
using training data. Due to the fact that there were enough datapoints in the datasets,
it helped the model to detect pattern and identify these cases with a good degree of
reliability along with good precision and recall values. Each of these models was trained
on progressively reduced training data size, while increasing the size of validation data
to observe the effect on accuracy. These results are shown in Table 3.3.
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Table 3.3: Performance of different ML models

Model

Dataset

Split Size
Accuracy AUC

Training Testing
Test

Error

Training

Error

Recall

LOS

Precision

LOS

Recall

NLOS

Precision

NLOS

Decision Tree

0.2 0.8 94.44 92.52 88.45 77.75 95.51 97.90 0.937

0.4 0.6 93.5 91.7 90.90 72.77 93.96 98.31 0.953

0.7 0.3 84.92 86.51 0.00 0.00 100 84.92 0.50

GBT

0.2 0.8 95.63 92.06 93.20 80.76 96.06 98.76 0.985

0.4 0.6 95.69 95.87 92.49 81.45 96.26 81.45 0.988

0.7 0.3 97.57 96.89 95.85 88.88 97.87 99.25 0.992

GLM

0.2 0.8 94.57 94.64 87.65 78.75 95.80 97.76 0.977

0.4 0.6 94.70 94.42 88.19 79.06 95.85 97.86 0.978

0.7 0.3 94.92 94.51 88.01 80.23 96.15 97.83 0.979

One of the main findings as seen from the results in Table 3.3 is the effect that even
when the Decision Tree model is fit by training on 5 % of the datasets, an accuracy of
over 89% was already achieved and is improved to even above 94 % with just 20 %
of data used for training. However, it seems with more training dataset say 70 % the
model drops its recall and precision with respect to accuracy down to 84 % as it has
already seen enough patterns to learn from. Although it’s not the same with GLM and
GBT. Both GBT and GLM have increased accuracy, recall and precision values with the
increasing data size of training data. the observed effect is very positive and it leads
to the assumption that not only the devised approach holds the expected promise to
deliver efficient LOS connectivity but may be further improved with minimal inclusion of
more training data. The obtained results reveal that accuracy based on different split
size of training and testing with Decision tree is ranging between 83 % to 88 %,while
the GBT corresponding value ranges between 91 % to 97 % compared to that of GLM
which ranges between 93 % to 96 %. The identification for each specific class for De-
cision Tree, GLM and GBT is evaluated using AreaUnder the Curve(AUC)scores.The
Generalized linear model(GLM) algorithm has the highest class-average AUC score at
0.992,compared to Decision Tree with values of 0.95 and Gradient Boosted Tree (GBT)
of 0.988 respectively.

Moreover, the computational time and performance of different ML models are eval-
uated based on a classification technique. The following Table 3.4 displays the model
training and application timeframes (sometimes referred to as scoring). The scoring
periods are important because they forecast LOS connectivity for various KPIs that
focus on correlations, complexity, and adaptability, which might uncover hidden non-
linear interactions between various features and actually increase the model’s viability
and practicality. The Decision Tree is the fastest algorithm among others,having the
lowest classification time at 0.009s, compared to GBT and GLM with values ranging
from 0.93 to 216 and ranging from 0.011 to 122.0 for different split size of training and
testing dataset respectively. However, when the overall scoring time of the Machine
learnign models are evaluated , GBT tends to take more time i.e 1300 (ms) to clas-

Security: Public Page 52



H2020-2019-2023, ICT – ARIADNE
D4.4: Intelligent D-band networks designs

sify the entire dataset compared to Decison Tree and GLM which takes 91(ms) and
131(ms) respectively.

Table 3.4: Scoring Times of different ML models

Model
Dataset Split Size Scoring on

Testset (ms)

Scoring on

full dataset (ms)Training Testing

Decision Tree

0.2 0.8 12.0

1310.4 0.6 10.0

0.7 0.3 9.0

GBT

0.2 0.8 191

13000.4 0.6 154

0.7 0.3 93

GLM

0.2 0.8 11

910.4 0.6 26

0.7 0.3 122

3.3 Conclusion

The approach employs Machine Learning algorithms to establish reliable connectivity.
In general, we aim to deliver more dynamic settings that changes over user mobility
and can be incorporated in form of real time simulations. In particular, real world sce-
narios have moving users towards certain directions resulting in loss of connectivity
approaching an object or wall. So the data generated will be used by AI based tech-
niques to access the efficacy of LOS connectivity. Gradually this process will trigger
a pro-active handover process in order to identify the patterns depending on user mo-
bility on different routes under outdoor/indoor environment. Furthermore, by providing
the predictive and interactive GUI framework, it will allow us to map out many options
such as risks, objectives, profits and finally evaluate which course of action has the
best chance of success while avoiding unnecessary risks or unpleasant outcomes.
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Chapter 4

Complex Event Forecasting for
Access Point Overloading Avoidance
in Telecommunication Networks

Dynamic resource allocation in wireless telecommunication networks involves the task
of on-the-fly assigning signal-providing Access Points (APs) to mobile users that are
served by these APs. Such assignments need to be continuously updated, in order
to minimize disruption of service incidents, due to the mobility of the users, their con-
stantly changing distance from the serving APs and the existence of obstacles, mobile
or otherwise, that cause non line-of-sight effects. In order to avoid AP overloading
incidents that are due to exceeding the APs’ capacity, sophisticated optimization al-
gorithms are used to compute such assignments. However, such algorithms typically
operate on static snapshots of the domain, generating assignments that are (near) op-
timal w.r.t. a given current input state, without taking into account the possible future
evolution of this state. As a result, the generated assignments are useful for a short
period of time, but soon they need to be updated again, due to unforeseen changes,
resulting in increased assignment computation overhead, in addition to unnecessary
and costly hand-over incidents in the network. To address this issue we explore an ap-
proach based on Complex Event Forecasting, which allows to compute more informed
user-to-AP assignments, by learning to anticipate imminent future changes in the cur-
rent input state, based on historical data that the forecasting model has been trained
on. This additional information on highly probable future states of affairs may be taken
into account during the optimization process that generates user-to-AP assignments,
yielding assignments that are valid for prolonged periods of time, thus eventually re-
ducing unnecessary hand-over incidents and improving the provided quality of service.
We empirically evaluate our approach on realistic simulation data, demonstrating its
efficacy in practice.

4.1 Wayeb: a framework for Complex Event Recogni-
tion and Forecasting

In this section, we present a brief overview of the framework and the engine we use.
As our engine of choice, we have opted for Wayeb. Wayeb is an open-source Complex
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Event Recognition and Forecasting engine 1. It is based on automata for recognition
and on Markov models for forecasting. User-provided patterns are compiled into sym-
bolic automata and these automata are subsequently given a probabilistic description
by using variable-order Markov models. For more details, please see [37–39]. This
section is based on the summary of Wayeb, presented in [40].

Wayeb functions by accepting as input a set of pattern definitions for the complex
events that a user is interested in. The definition for each complex event must be
expressed in the form of a symbolic regular expression. Symbolic regular expressions
are similar to classical regular expressions, the main difference being that their terminal
“symbols” are not actually symbols from a finite alphabet, but logical predicates. Thus,
symbolic regular expressions, instead of checking whether a new character is equal to
a terminal symbol, check whether a new “character” (in our case, characters are tuples)
satisfies a given terminal predicate.

4.2 Event Recognition with Wayeb

Wayeb uses the standard operators of classical regular expressions: concatenation,
disjunction and Kleene-star. Symbolic regular expressions are defined as follows:

Definition 1 (Symbolic regular expression). A Wayeb symbolic regular expression
(SRE) is recursively defined as follows:

• If ψ is a predicate, then R := ψ is a symbolic regular expression and the language
of ψ, L(ψ), is the subset of all possible tuples for which ψ evaluates to TRUE;

• Disjunction / Union: If R1 and R2 are symbolic regular expressions, then R :=
R1 +R2 is also a symbolic regular expression, with L(R) = L(R1) ∪ L(R2);

• Concatenation / Sequence: If R1 and R2 are symbolic regular expressions, then
R := R1 · R2 is also a symbolic regular expression, with L(R) = L(R1) · L(R2),
where · denotes concatenation. L(R) is then the set of all strings constructed
from concatenating each element of L(R1) with each element of L(R2);

• Iteration / Kleene-star: If R is a symbolic regular expression, then R′ := R∗ is a
symbolic regular expression, with L(R∗) = (L(R))∗, where L∗ =

⋃
i≥0

Li and Li is

the concatenation of L with itself i times.

• Negation / complement: If R is a symbolic regular expression, then R′ := !R is a
symbolic regular expression, with L(R′) = (L(R))c.

Wayeb patterns are compiled into symbolic automata, i.e., automata whose transi-
tions are equipped with predicates instead of symbols [41]. Every symbolic regular ex-
pression can be translated to an equivalent (i.e., with the same language) symbolic au-
tomaton [41]. As an example, consider the following pattern: R := (speed > 5)·(speed >
5). This simple pattern detects two consecutive events where the speed of a moving
object (e.g., a UE) exceeds a given threshold. Figure 4.1 shows the equivalent sym-
bolic automaton produced from this pattern.

1Wayeb source code: https://github.com/ElAlev/Wayeb.
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0start 1 2
speed > 5

>
speed > 5

Figure 4.1: Streaming symbolic automaton created from the expression R := (speed >
5) · (speed > 5). ⊤ is a predicate which always (for every event) evaluates to TRUE.

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.1,0.9)

b,(0.5,0.5)

Figure 4.2: Example of a Prediction Suffix Tree T for Σ = {a, b} and m = 2. Each node
contains the label and the next symbol probability distribution for a and b.

4.3 Event Forecasting with Wayeb

In addition to detecting pattern matches, analysts may also be interested in forecasting
them. For example, an analyst may be interested in knowing whether a UE will move
at a high speed within the next 5 minutes. The goal of a Complex Event Forecasting
engine in this case would be to evaluate whether the automaton of Figure 4.1 (which
moves among its states as it consumes input events) is expected, with high enough
confidence, to reach its final state (and thus produce a match) within the next 5 minutes.

Symbolic automata are sufficient to perform Complex Event Recognition. In order to
perform Complex Event Forecasting, however, these automata must be given a prob-
abilistic description. This is achieved by using variable-order Markov models (VMM).
With VMMs it becomes possible to increase their order m (how many events they can
remember) to higher values compared to fixed-order Markov models. It is thus possible
to capture longer-term dependencies, which can lead to a better accuracy. Specifically,
Prediction Suffix Trees [42] are employed. Prediction Suffix Trees have been proposed
in order to succinctly capture the statistical properties of sequences of symbols. Each
node contains a “context” and a distribution. The distribution lets us know the probabil-
ity of encountering a symbol, conditioned on the context. Figure 4.2 shows an example
of a Prediction Suffix Tree. Note that, in our case, each “symbol” of a Prediction Suffix
Tree corresponds to a predicate of the automaton for which we want to build a proba-
bilistic model. For example, a in Figure 4.2 may correspond to (speed > 5) of Figure
4.1 and b to ¬(speed > 5) (negated literals are usually also included in the tree nodes,
see [37] for details). Given a Prediction Suffix Tree, we can then infer how a symbolic
automaton might behave in the future and when it might reach its final state and thus
detect a complex event. For example, if we know that a UE has exceeded the thresh-
old of 5 for two consecutive events, then, according to Figure 4.2, the probability of this
happening again is 0.75. If, additionally, we are in state 1 of Figure 4.1, then we know
that we will detect a new complex event at the next input event with probability 0.75.

The goal is to learn a tree from a training dataset and then use it to perform online
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Figure 4.3: Deterministic automaton for R = a · b · b · b, Σ = {a, b}.
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Figure 4.4: Waiting-time distributions and shortest interval, i.e. [3, 8], exceeding a con-
fidence threshold θfc = 50% for state 1.

forecasting. A Prediction Suffix Tree is learned incrementally by adding new nodes
only when it is necessary. The learning algorithm [42] starts with a tree having only a
single node, corresponding to the empty string ϵ. Then, it decides whether to add a
new context/node s by checking two conditions [42]:

• First, there must exist a symbol (predicate, in our case) σ such that P̂ (σ | s) > θ1
must hold, i.e., σ must appear “often enough” after the suffix s;

• Second, P̂ (σ|s)
P̂ (σ|suffix(s))

> θ2 (or P̂ (σ|s)
P̂ (σ|suffix(s))

< 1
θ2

) must hold, i.e., it is “meaningful
enough” to expand to s because there is a significant difference in the conditional
probability of σ given s with respect to the same probability given the shorter
context suffix (s), where suffix (s) is the longest suffix of s that is different from s.

Threshold θ1 depends on parameters α and γ, α being an approximation parameter
and γ a smoothing parameter. The algorithm also discards symbols that are too rare
(whose probability P (σ) falls below a threshold pMin).

A Prediction Suffix Tree T can be used to calculate the so-called waiting-time dis-
tribution for every state q of an automaton A. The waiting-time distribution is the dis-
tribution of the index n, given by the waiting-time variable Wq = inf{n : Y0, Y1, ..., Yn},
where Y0 = q, Yi ∈ A.Q\A.Qf for i ̸= n and Yn ∈ A.Qf . Such a distribution lets us know
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the probability of reaching a final state in n transitions from any other given state. It
thus allows us to estimate the probability of detecting a complex event in n transitions,
since reaching a final state is equivalent to recognizing such an event. Figures 4.3 and
4.4 show an example of an automaton and the waiting-time distributions learned from
a training dataset. If the automaton is in state 2, then the probability of reaching the
final state 4 for the first time in 2 transitions is ≈ 50%.

The waiting-time distributions can then be used to produce various kinds of fore-
casts. In this paper, we are interested in a type of forecasting called CLASSIFICATION-
NEXTW. As the name suggests, the goal is to be able to answer queries of the following
form: given that an automaton is in a given state, will it reach a final state within the
next w transitions (or, equivalently, input events)? Such queries can be answered sim-
ply by summing the probabilities of the first w points of a distribution and if this sum
exceeds a given confidence threshold θfc a “positive” forecast is emitted (meaning that
a CE is indeed expected to occur); otherwise a “negative” (no CE is expected) forecast
is emitted. It is important to note that positive and negative forecasts are constructed
only once, as a result of the training process. When running the CEF system against
a new, unknown (test) stream, the forecasts are stored in a look-up table (one for each
automaton state). Whenever the automaton reaches a state, a forecast is simply re-
trieved from the table, without requiring any elaborate computations. The throughput of
the system is thus not affected by the model complexity. On the contrary, training time
can be significantly affected by the choice of the values for the parameters.

4.4 Using Wayeb for predicting AP loads

Within the context of ARIADNE, Wayeb has been adjusted in order to be able to fore-
cast the load of Access Points in a given setting. The goal is to forecast the “load” of
each Access Point at each timeslot. These forecasts are fed back to an assignment
algorithm (max flow), which can then take advantage of this knowledge about the future
state of the Access Points in order to perform an optimized assignment of users to APs
and thus minimize handover incidents. For our purposes, Wayeb has been modified so
as to produce a load score for each AP. Specifically, for each AP, Wayeb constructs a
probabilistic model (as described above) which is able to forecast whether the AP will
have a low (score of 1), medium (score of 2) or high load (score of 3). The model takes
into account the current load of the AP, past values of the load as well as the trend of
the load (the slope of the load curve). Based on these forecasts, it estimates a score
for the AP, as a weighted sum of the individual scores for low, medium or high load.
This allows us to rank all the Access Points according to their overall score.

The forecasting and allocation algorithms are implemented as two separate mod-
ules. Wayeb is written in Scala whereas the allocation module is written in Matlab.
After every simulation timestep, the allocation module sends the current allocation to
the forecasting module (M values). The forecasting module consumes the current allo-
cation, produces a load score for each access point (M values) and sends them back.
The allocation module takes the forecasts into account to produce a new allocation. In
order to connect the two modules, we employed the Kafka message passing system
(see Fig. 4.5). As a result, the system as a whole works in an online fashion, producing
new forecasts and allocation decisions after every simulation timestep.
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Figure 4.5: Connecting the forecasting and allocation modules.

4.5 Conclusions

In this section, we presented Wayeb, a system which has the ability to forecast when
a complex event might occur in the future. We showed that Wayeb may be adapted in
order to forecast the load of APs in a given setting. Wayeb can construct a probabilistic
model for the evolution of AP loads and provide relative forecasts. We also showed how
Wayeb may communicate with a radio resource allocation module so that its forecasts
may be taken into account by this module in an online fashion.
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Chapter 5

System Level Simulation Model for
UE-AP Association and Efficient
Resource Management in D-Band
Networks

5.1 Introduction

In this chapter, we provide an update on the system-level simulation model, presented
in ARIADNE deliverable D4.3. Traditionally, UE-AP association technique allocates a
UE to the AP that provides the highest level of signal strength. However, we need to
consider that each AP has a finite available bandwidth that is shared among UEs. If the
bandwidth is fully utilized, any new service request from a UE will be rejected, resulting
in unserved UEs. Therefore, we propose the use of the Fulkerson-Ford algorithm (FFA)
for UE-AP association and bandwidth allocation in order to optimize bandwidth utiliza-
tion and maximize the number of served UEs in a given network. FFA is a well-known
algorithm that determines the maximum flow between two given nodes of a graph, i.e.,
a flow network, where the capacity of each edge of the graph is finite. However, this
solution may increase the number of handover incidents in the network. In order to
manage resource consuming handovers, AI predictions tool described in Chapter 4 will
be used during simulation sessions.

5.2 UE - AP Association in mmWave cellular Networks

5.2.1 System Model

We consider a mmWave cellular network with N UEs and M APs, N,M ∈ N∗, within a
two-dimensional geographical area. It is assumed that all APs transmit the same power
level P , have the same carrier frequency f and available bandwidth W . The bandwidth
W is divided into a predefined number n of equal bandwidth slices (i.e. each slice has
W
n

bandwidth). Moreover, we assume that an AP allocates one bandwidth slice to an
associated UE. In this work, we do not take interference into consideration. Especially
in modern mmWave cellular networks, the above assumption can be realistic due to the
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high attenuation of propagating signals (known as path losses) at this frequency band
and the need for high directional links for example by using appropriate beamforming
techniques [43,44].

A common criterion for determining in which AP a UE will be allocated, is the level of
the power that UE receives from each AP of the network. Specifically, a UE is allocated
to the AP that provides the highest level of received power [45]. However, an AP can
only serve a maximum number of UEs, due to bandwidth limitations. Thus, if an AP is
overloaded, (i.e. it has already allocate its entire available bandwidth), any new request
for service from other UEs will be rejected, leading to a number of non served UEs (the
so called conventional allocation (CA) method, in this Chapter).

5.2.2 Fulkerson-Ford Algorithm - A brief description

The optimization problem that needs to be solved, is the maximization of the number of
served UEs in a given network. For this purpose, the FFA is deployed for the allocation
of UEs to APs.

The FFA is a method to discover the maximum flow in a flow network. The algo-
rithm starts with an initial flow of zero throughout the network. It repeatedly looks for
an augmenting path from the source to the sink in the residual graph, which represents
the remaining capacity in the network. An augmenting path is a path from the source
to the sink that can accommodate additional flow. Once an augmenting path is found,
the algorithm determines the maximum amount of flow that can be pushed along the
path, known as the bottleneck capacity. It increases the flow along the augmenting
path by the bottleneck capacity and updates the residual capacities of the edges ac-
cordingly. The process of finding augmenting paths and updating the flow continues
until no more augmenting paths can be found. At that point, the algorithm reaches the
maximum flow configuration in the network. The maximum flow value is equal to the
sum of the flows leaving the source vertex. The FFA can be implemented using var-
ious path-finding techniques, such as depth-first search (DFS) or breadth-first search
(BFS), to find augmenting paths efficiently. Additionally, the choice of residual graph
representation and the method used to update the residual capacities can impact the
algorithm’s performance. Finally, we have to mention that the capacities of the edges
of a flow network have to be integers [46].

An example of achieving the maximum flow of a given flow network using FFA, is
depicted in Fig.5.1 [47].

5.2.3 Exploiting FFA for UE-AP association

The UE-AP allocation procedure is organized as follows.
During the initialization phase, the conventional allocation technique is applied and

a portion of the N UEs will be associated with the APs of the network, while the rest
of them will be not served. Let be N ′ ≤ N the number of non served UEs and M the
number of APs.

In the next step, FFA is applied to an appropriate network graph, in order to maximize
the number of served UEs1. Such a graph is depicted in Fig. 5.2 for a flow network that
consists of a Source node, N ′ nodes corresponding to the non served UEs, M nodes

1Note that FFA can be efficiently performed using software packages such as MATLAB or PYTHON.
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Figure 5.1: Step-by-step deployment of Fulkerson-Ford algorithm (FFA) for determina-
tion of maximum flow between nodes s and t of the given flow network. In this case,
the maximum flow is equal to 5.

corresponding to APs and a Sink node. Source node is connected to each non served
UE node. Every non served UE node is connected with every AP node, while each
AP node is connected to the Sink node. The capacity of the edges between Source
node and each non served UE node is equal to 1 (i.e. the number of bandwidth slices
that a UE requests). The capacity of the edges between the i-th non served UE node
and the j-th AP node, where i = 1, 2, ..., N ′ and j = 1, 2, ..., M , is equal to 1 if the
power of the i-th UE received from the j-th AP is over a predefined threshold, Pthr,
and 0 otherwise. The capacity of the edges between the node of the j-th AP and the
Sink node is equal to n− l(j), where n is the total number of available bandwidth slices
at each AP, respectively and l(j) the number of exploited bandwidth slices of the j-th
AP. Namely, the capacity of these edges is equal to the number of available bandwidth
slices of each AP, respectively.

The maximum flow between Source node and the Sink corresponds to the maximum
number of initially non served UEs that the network can finally serve. The path that the
flow follows to get maximized, corresponds to the allocation of each UE to a specific
AP. We have to mention that the use of FFA does not affect the association of the UEs
that are already served by APs.

Actually, the use of FFA for UE - AP association in a mmWave cellular network
requires a centralized network management in contrast to the conventional allocation
technique.

5.3 Simulation Campaign for UE-AP Association Using
FFA

In this section, an extensive simulation campaign demonstrating the allocation of UEs
to APs in a mmWave cellular network will be presented. Both conventional technique
and the proposed one using FFA will be applied and compared.

To this end, we consider a geographical area, which is assumed to be a square with
dimensions 50 m × 50 m. Furthermore, 4 obstacles are placed within this area, which
are modelled as rectangular parallelepipeds with dimensions 10 m × 10 m × 5 m. They
are located uniformly and symmetrically in the simulated area. We assume three differ-

Security: Public Page 62



H2020-2019-2023, ICT – ARIADNE
D4.4: Intelligent D-band networks designs

Figure 5.2: Network’s graph for the application of max-flow algorithm (FFA) towards
UEs allocation to APs.

Table 5.1: APs Coordinates and number of allocated UEs per AP

AP 1 AP 2 AP 3 AP 4 AP 5 Served UEs

x (m) 0 -23 0 0 23

y (m) 0 0 -23 23 0

Service Requests (50 UEs) 20 11 4 7 8

Allocated UEs (CA method - 50 UEs) 14 11 4 7 8 44/50

Allocated UEs (FFA algorithm - 50 UEs) 14 14 7 7 8 50/50

Service Requests (70 UEs) 20 19 15 10 6

Allocated UEs (CA method - 70 UEs) 14 14 14 10 6 58/70

Allocated UEs (FFA algorithm - 70 UEs) 14 14 14 14 14 70/70

Service Requests (90 UEs) 30 20 9 14 17

Allocated UEs (CA method - 90 UEs) 14 14 9 14 14 65/90

Allocated UEs (FFA algorithm - 90 UEs) 14 14 14 14 14 70/90
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Figure 5.3: Simulated network’s area with 50 UEs.

Figure 5.4: Simulated network’s area with 70 UEs.

Figure 5.5: Simulated network’s area with 90 UEs.
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ent test cases with 50 UEs, 70 UEs or 90 UEs respectively, which are demonstrated by
blue dots in Fig. 5.3 to Fig. 5.5. Moreover, there are 5 APs (magenta dots), which are
fixed in predefined coordinates (see Table 5.1). They are placed at height of 2 m from
the ground. It is noted that UEs are on purpose denser around the AP at the centre of
the simulated area (with coordinates (0,0)) in all cases. Specifically, there are at least
20 UEs close to the central AP, in all of the test cases, which should be connected
to the specific AP according to CA method by applying the criterion of the maximum
received power. However, in our simulation scenarios, the maximum capacity of the
APs is less than 20 users, as explained below, and thus a number of users will not be
served when CA technique is applied.

The wireless link between a UE and an AP is considered as Line of Sight (LOS) if
the line sector between UE and AP is free of obstacles, while it is assumed to be totally
blocked, if the line sector intersects with an obstacle. In order to determine the received
power of a UE from every AP, we make use of Friis’s equation [48]:

PR = PT +GT +GR + 20log
λ

4π × d0
− 10β log

d

d0
− χσ (5.1)

where PR is the received power (in dBm), PT is the transmitted power (in dBm), GT

and GR are the gains of the APs’ (Tx) and UEs’ (Rx) antennas, respectively (in dBi),
λ is the free space wavelength (in m), β is the Path Loss Exponent (PLE), d0 is the
reference distance (in m), d is the distance between Tx and Rx (in m) and χσ is the
large-scale fading (a zero mean Gaussian random variable with a standard deviation
σ in dB). For the examined case, it is assumed that carrier frequency is f = 142 GHz,
PT = -5 dBm, GT = 14 dBi, GR = 7 dBi and d0 = 1 m [49]. The PLE values and the
respective standard deviation of large-scale fading for LOS links in an urban micro-cell
or a small-cell environment for carrier frequency f = 142 GHz, are considered to be β
= 2.1 and σ = 2.84 dB, respectively [50]. The required threshold of the received power
of a UE so that it can be served from an AP, is set as Pthr = -90 dBm. The received
power of a UE from a totally blocked AP is equal to the default noise level, which is
considered to be -128 dBm. Finally, each AP has 7 GHz available bandwidth, which is
divided into 14 slices of 500 MHz [51].

As it can be observed from the entries of Table 5.1, if the conventional allocation
method is deployed, not all UEs are served from the network in all test cases. Specif-
ically, in the test case with 50 UEs in total, 44 of them are finally served; in the case
with 70 UEs, 58 are served, while in the case with 90 UEs, 65 are served. On the other
hand, all the UEs are served when FFA is deployed in the test cases of 50 UEs and 70
UEs in total. In the case of 90 UEs, 70 are finally served when FFA is deployed, as the
number of served UEs cannot exceed the total number of available bandwidth slices of
the whole network. Therefore, we can conclude that the main advantage of using FFA
for UE - AP association is the maximization of the number of served UEs in a network
by utilizing the available bandwidth in an optimum manner.

Note that in the examined cases, the events where an AP does not serve the request
of a UE are caused by the lack of available bandwidth and not by the low level of the
provided received power.
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5.4 AI predictions tools for handover reduction

Although the use of FFA leads to the maximum number of served UEs in a given
network, an arising issue we have to deal with is the increase of handover events
in time evolving scenarios. In fact, FFA prioritizes the APs according to their serial
number, from lower to higher as depicted in Fig. 5.2, which in general can be random.
Specifically, if a initially non served UE is finally served, it can be associated with an
AP that has at least one available bandwidth slice and the magnitude of the received
signal strength higher than the predefined threshold. If more than one APs satisfy the
aforementioned criteria, then the UE will be associated with the one that has the lower
serial number.

However, in time evolving scenarios where UEs are moving according to a specific
mobility model, it is quite common phenomenon that a UE is associated with an AP
and after few time slots it can no longer be served by the specific AP. In that case, the
UE will have to be associated with another AP, leading to a handover event. On the
other hand, if we know a-priori the expected percentage of UEs’ requests for associa-
tion, distributed among the APs, for the upcoming time slots, then we could exploit this
information in order to reduce handover events which demand significant resources of
the network. Towards that direction, we are exploiting the capabilities of the AI predic-
tion tool (i.e., Wayeb) described in Chapter 4. Specifically, in scenarios involving time
evolution, APs could be ordered in a descending manner according to the load score
that Wayeb forecasting engine provides for each of them. The main goal of deploying
this method is the association of a UE to an AP at a specific time instant, which will
also be able to provide service in future time slots with high probability. Essentially, the
main idea is the following: the higher the percentage of UEs’ requests to a given AP in
the future (i.e., the load score of the AP), the higher the probability that a random UE
will request connection to the specific AP.

5.5 Numerical Results

In order to demonstrate the performance of the aforementioned techniques, we assume
the geographical area described in Section 6.3 where 4 rectangular obstacles and 5
APs have been placed within. Moreover, the presence of 45 mobile UEs is considered.
Their initial place is randomly determined within the periphery of the geographical area,
as it is depicted in Fig.5.6. In order to involve time evolution, a simulation session has
duration T , divided in a number of successive time slots. Each of them has duration
dt. The velocity V of a user is constant during a specific time slot and its value is a
random variable, which is uniformly distributed over the interval [0, Vmax]. Vmax is the
maximum allowable value of user’s velocity. In our case, Vmax = 1 m/sec. Then, each
UE follows a trajectory according to the Pursue Mobility Model and Obstacle Mobility
Model, described in detail in Deliverable 4.2. Specifically, for the first 1000 time slots of
a simulation session, if y-coordinate of a UE belongs in the interval [-25, 10], then UE
has destination AP1, AP3 or AP4 with probability equal to 1

3
. On the other hand, if y-

coordinate of a UE belongs in the interval (10, 25], then UE has destination AP1 or AP4
with probability equal to 1

2
. For the next 1000 time slots of the simulation session, the

destination of a UE is set randomly within the simulated area. If a simulation session
lasts more than 2000 time slots, then UEs’ destinations change every 1000 time slots
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according to the above described pattern. As an example test case, we consider a
simulation session of duration T = 5000 sec and duration of each time slot dt = 0.5 sec
(i.e., 10000 time slots)

The UE-AP association technique is the one described in Section 6.2.2 with the
following assumptions. Firstly, during the first time slot, the order of APs in FFA graph
is determined according to their serial number described in Table 5.1 (i.e., it is an
arbitrary order). For each of the following time slots, if the received power of the UE
from the AP where it is already allocated, remains over the predefined threshold (i.e.,
-90 dBm), the UE remains allocated to this AP, even if another one provides higher
received power. Then, two test cases are considered:

• No predictions are exploited and APs are ordered arbitrary in FFA graph accord-
ing to their serial number

• AI predictions are exploited to order APs in FFA graph in descend way according
to the load score returned by the forecasting tool

Fig.5.7 and Fig.5.8 depict the number of UEs’ requests for service to each AP for
every time slot of the simulation session, according to the level of the received power
from them, i.e., each UE requests for service to the AP that provides the highest level
of received power which has to be greater than the predefined threshold of -90 dBm
or a request is recorded to the AP that was allocated in the previous time slot and
still provides power over Pthr. Specifically, Fig.5.7 corresponds to the case where AI
predictions have not been used, while Fig.5.8 corresponds to the case where they are
exploited. Furthermore, Fig.5.9 and Fig.5.10 depict the number of UEs that each AP
serves for every time slot of the simulation session. Similarly, Fig.5.9 corresponds to
the case where AI predictions have not been used, while Fig.5.10 corresponds to the
case where they are exploited. In both cases, we can observe that the number of UEs
that have been allocated to a given AP is equal to or less than 14 (i.e., the maximum
capacity of each AP), although in specific time slots the number of service requests
is over 14 in both Fig.5.7 and Fig.5.8, verifying the performance of FFA algorithm.
Moreover, the most important observation that must be mentioned is the fact that the
total number of handovers during the simulation session without using AI predictions
is 16051 while the number of handovers when AI predictions are exploited decreases
to 11215. This finding can be visually concluded as well by observing the differences
between Fig.5.9 and 5.10. Specifically, the number of served UEs of AP 1 and AP
3, respectively, in Fig.5.10 has significantly less fluctuations in comparison to Fig.5.9,
leading finally to a decreased number of handovers.

A dedicated simulation campaign consisting of 5 simulation sessions has been con-
ducted in order to verify the benefits of using AI predictions for UE-AP association.
Specifically, 3 sessions have duration T = 1000 sec, while the other 2 have duration T
= 5000 sec. From the entries of Table 5.2, we can observe that in all cases, when AI
predictions are exploited there is reduction of handover events between 15.94% and
30.67% (Session 5 corresponds to the case examined previously). Thus, it is veri-
fied that the use of AI predictions tools for UE-AP association improves the resource
management of the network, i.e., decreases the number of handover incidents.
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Figure 5.6: UEs initial placement in the simulated area.

Table 5.2: Handover incidents per simulation session with and without AI predictions

Session 1 2 3 4 5

T (sec) 1000 1000 1000 5000 5000

dt (sec) 0.5 0.5 0.5 0.5 0.5

Handover incidents (without AI predictions) 3117 2573 2305 14369 16051

Handover incidents (with AI predictions) 2620 1784 1795 11318 11215

Percentage reduction (%) 15.94 30.67 22.13 21.23 30.13
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Figure 5.7: UE requests per AP vs time (without AI predictions)
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Figure 5.8: UE requests per AP vs time (with AI predictions)
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Figure 5.9: Served UEs per AP vs time (without AI predictions)
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Figure 5.10: Served UEs per AP vs time (with AI predictions)
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5.6 Conclusions

In this chapter, FFA has been proposed for UE-AP association purposes in mmWave
cellular networks. To this end, a graph corresponding to a given network’s character-
istics was defined. The main advantage of using FFA compared to the conventional
allocation technique is the maximization of the number of served UEs by improving
the utilization of bandwidth resources. Moreover, AI predictions were exploited in time
evolving scenarios, specifically by forecasting the APs that will receive the largest load
of requests for connection during the upcoming time slots. System level simulations
were synchronized with the forecasting engine presented in Chapter 4 and FFA was
applied by ordering appropriately the APs (according to the provided predictions of the
load scores) in the FFA graph in each time slot of the simulation session. Simulation
campaign demonstrated reduction of the number of handover incidents roughly from
16% up to 30% which is considered quite important for efficient management of net-
work resources.
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Chapter 6

Beam Prediction applying Proximal
Policy Optimization based Distributed
Deep Reinforcement Learning

6.1 Introduction

Future wireless networks 5G and beyond 5G (B5G) are expected to meet the massive
demand for data rates especially for the extended reality (XR), augmented reality (AR)
and mixed reality (MR). In order to meet various requirements, the future new radio not
only considers the sub-6 GHz but also takes millimeter-wave (mmWave) band and tera-
hertz (THz) band into implementation. Downlink beamforming technique has attracted
attention from both industry and academic. In most of the actual wireless communica-
tion scenarios, it is impossible to keep users (UEs) from moving. Therefore, the base
stations (BSs) need to have effective mechanism to allocate proper beamforming vec-
tor to the moving UEs. This leads to our motivation to address this research direction in
order to make the UEs’ real time interaction with the environment easy by using deep
reinforcement learning (DRL).

In general, the system capacity of wireless communications is represented by the
weighted sum rate when the UEs have different priority and require different capacity.
The summation of the achievable rate of all UEs can be also the overall throughput rep-
resentation of the network. We consider single beam/multi beam selection for downlink
multi-UE MISO scenario.

6.1.1 Contributions

• Our work is the first work which proposes a dynamic beamforming optimization
with beam selection from the predefined codebook beam set and beam tilt selec-
tion using DRL.

• We use proximal policy optimization (PPO) based actor-critic algorithm for dis-
tributed DRL to implement our work. This is the first work to use PPO based
distributed DRL in beamforming optimization multi-UE multi-input-single-output
(MISO) concept.
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6.2 Beamforming Prediction for Downlink Multi-UE MISO

Deep reinforcement learning (DRL) is method for creating software agents that can
learn to interact with environments in an unsupervised manner. Instead of learning
from a labeled dataset, DRL receives feedback in the form of a reward. By changing
its behavior to maximize the cumulative reward over multiple steps, the agent improves
its performance [52]. At each step, the agent receives a representation of the environ-
ment’s state and it predicts an optimal action to take given this state. The action is in
turn used to update the state and to compute a reward value. This process continues
until the agent reaches some signified end state or until some other stopping criterion
(e.g., a maximum number of iterations) is met [52].

6.2.1 Channel Model

We consider 28 GHz mmWave channel in our proposed model for comparison with
the 3.5 GHz low frequency band with Rayleigh fading channel. Assuming that Hbk is
mmWave channel, where the line-of-sight (LoS) is the dominant path as the LoS is
highly required as to maintain a stable mmWave link. Let Lbk be the paths for channel
Hbk between BS-b and UE-k, we can write Hbk as [53],

Hbk =

√
Nt

Lbk

(
g1bkaULA(θ

1
bk) +

Lbk∑
n=2

gnbkaULA(θ
n
bk)
)

(6.1)

where θ1bk and θnbk denote the AoD for LoS and NLoS path. Note that the AoD for
each non-LoS (NLoS) path n is assumed to be uniformly distributed θbk ∈ [0, 2π]. The
transmit array steering of ULA is aULA(θ) ∈ CNt×1. We can write g1bk = vbkd

−η
bk , where vbk

is random complex gain with zero mean and unit variance, dbk is a distance between
the BS-b and UE-k, the pathloss exponent for LoS is η and for NLoS.

6.2.2 A Multi-Antenna Base Station Serving Moving UEs

Considering the system where each BS/gNB employs a uniform linear array (ULA) of
Nt antennas. Let K denote the set of UEs, each UE-k ∈ K has single antenna.

In Fig. 6.1, we consider a downlink transmission where a BS/gNB transmits signal
to UEs using 28 GHz mmWave band. Each UE moves to random directions with the
same or different velocity. With the deployment of PPO based DRL for beam selection,
where the BS/gNB is an agent and select the action (beam from predefined codebook
beam), the serving BS/gNB can predict one or more than one beam at each time step
to serve multiple UEs.

Note that, we consider BS/gNB collaboration for beam prediction based multi-agent
DRL in deliverable D 5.2, where there are more than one agent in the environment.
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Figure 6.1: MISO downlink beam prediction based moving UEs

The received signal at each UE-k from the BS-b can be expressed as,

ybk = Hbkwbkxbk +
K∑

k′=1,k′ ̸=k

Hbk′wbk′xbk′ + nbk (6.2)

where Hbk ∈ C1×Nt is the channel vector from the BS-b to UE-k, wbk ∈ CNt×1 and
xbk are the beamforming vector and the transmit data symbol from the BS-b to UE-k,
respectively, and nbk ∼ CN (0, σ2

bk) is the additive Gaussian noise with variance σ2
bk. The

second term in (6.2) represents intracell interference.
We can write the SINR of the UE-k served as,

γbk =
|Hbkwbk|2∑K

k′=1,k′ ̸=k |Hbk′wbk′|2 + σ2
bk

. (6.3)

Then, we use the SINR in (6.3) to compute the weighted sum rate of all K UEs as,

C(w) =
K∑
k=1

ωkRk, (6.4)

where Rk is the data rate of the k-th UE, given by Rk = log2(1 + γk). ωk represents
the weight of the signal transmission to each UE. This can be applied when the UEs
have different priority, i.e., some UEs need higher bandwidth and some need lower
bandwidth. Note that when weight ωk = 1 the weighted sum rate equation in (6.4)
becomes sum rate.

Our objective is to predict/select the optimal beam(s) to maximize the weighted sum
rate problem as C(w) in (6.4), where the reliability constraint is satisfied. The reliability
is defined as the quality of the end-to-end (SINR) is higher than a specific threshold. We
solve the weighted sum rate maximization problem using deep reinforcement learning.

6.3 Deep Reinforcement Learning Method and Imple-
mentation

The MISO beam-UE pairing selection can be modeled using deep reinforcement learn-
ing. In reinforcement learning, all problems can be framed as markov decision process
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(MDP).

6.3.1 Bellman Equations

In this part, we discuss about Bellman equations since the Bellman equations are ab-
solute necessary for trying to solve reinforcement learning problem. In RL, the envi-
ronments are assumed to be stationary and can be framed as MDP. A fundamental
property of all MDPs is that the future states depend on the current state. This is be-
cause the current state is supposed to have all the information about the past and the
present. Hence, the future depends only on the current state.

The MDP involves four sets of components: state (s), actions (a), transition probabil-
ities P (s′|s, a), and reward r(s, a). Solutions of MDP are policies. A policy is a strategy
and a rule specifying what action to execute in every possible state, denoted as π(s).
In order to solve the MDPs, the policies need to be searched to maximize the rewards
obtained by the agents [52]. The sum of rewards, from the state s, is the utility of the
policy Uπ(s).

Uπ(s) =
∞∑
t=0

γtr(st, at), (6.5)

where γ(0 < γ < 1) is a discounted factor. The expected utility following the policy π
from the state s is the state value function Vπ(s) of the policy, which is not random:

Vπ(s) = E[
∞∑
t=0

γtr(st, at)] (6.6)

State-action value function Qπ(s, a), also called Q-value of the policy is the expected
utility of taking action a from state s, then following policy π:

Qπ(s, a) =
∑
s′

P (s′|s, a)[r(s, a, s′) + γVπ(s
′)] (6.7)

When it is not in the end state, the value is equal to the Q-value of the policy. This
yields the Bellman equation:

Vπ(s) =
∑
s′

P (s′|s, a)[r(s, a, s′) + γVπ(s
′)] (6.8)

Bellman equation is a recursive equation, as shown. Therefore, to find the optimal
policy, the vale iteration of policy iteration can be utilized. The value iteration is to
get directly at the maximum expected utility. Vopt(s) is assigned as the optimal value
attained by any policy, and Qopt(s) is the optimal Q−value of any policy. At the Bellman
optimality equation, the optimal policy can be written as,

V t
opt(s) = maxa∈Actions

∑
s′

P (s′|s, a)[r(s, a, s′) + γV
(t−1)

opt (s′)] (6.9)

Policy iteration randomly initializes the policy π and then solves the Bellman equation
to get Vπ(s). Then update the policy according to the greedy policy until it converges.
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6.3.2 Policy Based Algorithms

By solving the Bellman equation in (6.8) to get the optimal policy in (6.9), it is called
on-policy. Policy-based methods directly search for the optimal policy by maximizing
the agents’expected long-term reward Vπ(s) in (6.6). The policy is parameterized by
a function approximator π(a, s). The policy gradient methods are used to performing
gradient ascent on the objective Vπ(s) in (6.6).

For each gradient update, the agent needs to interact with the environment and
collect trajectories. When computing the gradients for policy updates, the value function
can be used together with the sampled rewards to improve the quality of the updates.
The combination of policy and value functions into one RL agent is called an actor-critic
architecture, where the “critic” estimates the value function and the “actor” updates the
policy distribution in the direction suggested by the critic (such as with policy gradients)
[54]. Both critic and actor functions are parameterized with neural networks.

Due to the lag between when actions are generated by the actors and when the
learner estimates the gradient, we need to decouple actor-learner architecture. In the
on-policy case, PPO framework [55] can reduce to the on-policy n-steps Bellman up-
date and this property allows one to use the same algorithm for off- and on-policy data.

6.4 Implementation of DRL for Beamforming Optimiza-
tion

In our case, an agent corresponds to the BS and the actions correspond to codebook
selection. In fig 6.2, the base station predict one ore more beams from the predefined
codebook beam set to serve moving UEs.

Figure 6.2: Single-agent DRL and beam codebook prediction

By learning how to take actions, the AP can select the codebook beam from the
predefined codebook beamset, while serving the UEs at the same time. The objective
is to maximize the cumulative reward, which is defined as the sum of the UEs data
rates. The environment (observation space) is modelled by information related to the
signal-to-interference-plus-noise-ratio (SINR) of the UEs and the UEs’ positions over
time. Environmental states generated over time by the agent’s interaction with the en-
vironment, as outlined above, are input to an long short-term memory (LSTM) network.
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This particular type of network is capable of encoding in its weights long-range tempo-
ral relations between states. The LSTM network learns to sequentially predict actions
guided by the sequence of received rewards over a training session. The overall ap-
proach and information flow is illustrated in Fig. 6.3.

Figure 6.3: Illustration of single-agent DRL for beam prediction
with the association of observation space, environment, and

action space

Given the system’s current state, the neural network learns to predict either a distri-
bution over actions or the action expected reward. We show the proposed DRL imple-
mentation with association of state space, environment and action space in Fig. 6.3.
The observation space or called as state space are fed from the environment to the
long-short-term-memory (LSTM) layers in order to help the neural network to have
memory. We adopt the state-of-the-art PPO framework [55] for implement our DRL
approach. In policy gradient methods, a neural network is used to represent a policy
function, which maps an environment state directly into an action. The network pa-
rameters are then updated during training to maximize the expected cumulative reward
produced by the selected actions. When computing the gradients for policy updates,
the value function can be used together with the sampled rewards to improve the quality
of the updates. The combination of policy and value functions into one RL agent
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Figure 6.4: Workflow of single-agent DRL implementation for
beam prediction

The BS can perform codebook selection per step, then the environment perform the
action operation. The rewards function can be written as weighted sum rate in (6.4) or
the sum of multi-UE data rate when ωk1 = 1 in (6.4).

At each time transmission time interval (TTI), the BS selects the best beam to allo-
cate to each UE from the predefined beams. In our case, we generate codebook beams
as the predefined beam set at the BS. However, our implementation can be applied to
any predefined beam set, i.e., discrete Fourier transform (DFT) based beamforming
and etc.

6.5 Simulation Results

6.5.1 Single agent PPO based DRL for muti-UE MISO beam pre-
diction

In this section, we consider that the UE moves with 3km/hr and the BS/gNB pre-
dict/select the one beam per time steps to serve 5 or 10 UEs. We show the reward, the
policy loss function and the cumulative distribution function (CDF) of maximum reward
(throughput).

Figure 6.5 and Figure 6.6 illustrate the maximum reward versus and the policy loss
function versus number of episodes. We consider two main scenarios which are (i)
when the agent (BS/gNB) selects different codebook beam to serve each UE and (ii)
when the BS/gNB allows more than one UE to use the same beam. The AP allocates
codebook beam to serve 5 UEs and 10 UEs at the same time. We assume that the AP
deploys 8 antennas with 16 predefined beams, and in the other setup, the AP deploys
16 antennas with 32 predefined beams. The UEs are randomly located near by the AP,
i.e., within 100m, UEs are close to each other, and the UEs move to the same direction
with 3km/h speed. We see that when some UEs can be served by the same beam, the
reward is higher than when the AP allocates different beam to each UE. The reason
is UEs locate close to each other want to use the same beam; therefore, this leads
to higher reward. We can recheck the convergence of the algorithm by checking the
policy loss function, the policy loss should keep decreasing and converge after some
episodes
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Figure 6.5: Reward (bits/sec/Hz) versus number of episodes

Figure 6.6: Policy loss versus number of episodes

Figure 6.7 shows the CDF of maximum reward, i.e. the throughput. From this figure,
we observe that the throughput is increased when allocate the agent set the criteria to
allocate beam for the UEs properly. In this case, we assume that the UEs are located
close to each other. Therefore when the agent allows some UEs to utilize the same
beam, the throughput is higher, as we described in Fig. 6.3. Also, from the CDF it
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becomes evident that when some UEs are allowed to the same beams, i.e., when the
agent selects the same beams out of 32 beams to allocate to 5 UEs, 80% of the UEs
can get more than 500 bits/sec/Hz, while when the agent selects different beams out of
32 beams to allocate to 5 UEs, 80% of the UEs can only 390 bits/sec/Hz.

Figure 6.7: CDF of system throughput

6.6 Conclusion

In our work, we consider that the BS/gNB serves multiple moving UEs, where our work
is the first work that implements PPO based DRL to predict the optimal beams from
the predefined beam set to multiple moving UEs. The RLlib is used to implement the
PPO based DRL approach, this yields distributed DRL implementation that give more
benefits than other methods, which are based on centralized implementations. Our
algorithm can ensure the reliability constraint at each UE, where the signal-to-noise-
ratio (SINR) can be gauranteed to be higher than a specific threshold. When UEs
move, the BS/gNB will need to update the environment with respect to with SINR,
UEs positions then select the action and compute the reward which is throughput,
respectively. With using DRL based beam prediction, the BS/gNB can select the beam
real-time by interact with the environment, thus it is guaranteed that the BS/gNB can
select the optimal beam which maximize the throughput for all the steps.

Remark: The multi-agent DRL will be considered and results will be reported in
future deliverables.

Security: Public Page 80



H2020-2019-2023, ICT – ARIADNE
D4.4: Intelligent D-band networks designs

Chapter 7

Learning-Based Prediction and
Transmission for RIS-Assisted D-Band
Networks

7.1 Introduction

The quality of experience (QoE) requirements of future wireless applications can only
be satisfied with high data rate, high reliability, and low interaction latency. This high
data rate over short transmission distances may be achieved via the abundant band-
width in the D-band. However, D-band waves experience severe signal attenuation,
which may be compensated by the reconfigurable intelligent surface (RIS) technol-
ogy with programmable reflecting elements. Meanwhile, low-interaction latency can be
achieved with the mobile edge computing (MEC) network architecture due to its compu-
tation capabilities. Motivated by these considerations, we propose a MEC-enabled and
RIS-assisted D-band network in an indoor scenario, by taking into account the uplink
viewpoint prediction and position transmission, the MEC rendering, and the downlink
transmission. We propose two methods, which are referred to as centralized online
gated recurrent unit (GRU) and distributed federated averaging (FedAvg), to predict
the viewpoints of the users. In the uplink, an algorithm that integrates online long-short
term memory (LSTM) and convolutional neural networks (CNN) is deployed to predict
the locations and the line-of-sight and non-line-of-sight status of the VR users over
time. In the downlink, we develop a constrained deep reinforcement learning algorithm
to select the optimal phase shifts of the RIS under latency constraints. Simulation re-
sults show that our proposed learning architecture achieves near-optimal QoE as that
of the genie-aided benchmark algorithm, and about two times improvement in QoE
compared to the random phase shift selection scheme.

7.2 System Model and Problem Formulation

We consider an indoor scenario, where an RIS that comprises N reflecting elements is
deployed to assist the uplink and downlink transmission between an MEC and KVRVR
users, as shown in Fig. 7.1. The MEC operating in the D-band frequency is equipped
with M antennas and each VR user is equipped with a single antenna, which has
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Figure 7.1: Wireless VR system in a D-band network

already been verified in [56], [57], and [58]. The indoor scenario is assumed to
be a square whose sides have length W . The RIS is connected to a smart controller
that communicates with the MEC via a wired link for cooperative transmission and
information exchange, such as channel state information (CSI), and phase shifts control
of all reflecting elements [59]. Due to the substantial path loss in the D-band band, we
only consider the signals reflected by the RIS for the first time and ignore the signals
that are reflected for twice or more times [60].

7.2.1 VR User Mobility

We present a mobility model based on the VR user movements, which is called virtual
reality mobility model (VRMM) [61]. The VRMM includes the following parameters:
start location, destination location, speed, and moving direction. We assume that there
are four directions to be selected by the VR user, namely, up, down, left, and right. We
split the indoor area into W ×W grids. When the VR user is at the start location, it sets
its destination location, speed, and moving direction, and transmits its current location
at each time slot to the MEC server through the uplink transmission. Note that the
location of the VR user for the next time slot is determined by the location of the current
time slot rather than the locations in the previous time slots, so that the mobility model
of the VR user fulfills the Markov property. When the VR user arrives at the destination
location, it sets a new destination location and moves forward to it with a given speed.

7.2.2 Indoor Blockage

Due to the severe signal attenuation at D-band frequencies, the signal transmission is
very sensitive to the presence of obstacles. When the VR users move in an indoor
scenario, the link between the MEC and the k th VR user can be blocked by obstacles
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Figure 7.2: Illustration of a D-band network in the presence of obstacles

or by other VR users with higher heights according to [62]. For simplicity, we map the
3D indoor scenario into a 2D image. In Fig. 7.2, when the VR users are behind the
obstacles, they are directly blocked by them. As shown in Fig. 7.3, we assume that
the height of the MEC is hA, the height of the VR user 2 is hB (hB < hA), the height of
the VR user 1 is hU (hU < hB), the distance between the VR user 2 with height hB and
the MEC is l, and the distance between the VR user 1 with height hU and the MEC is
x.
Definition 1: When the MEC server, the VR user 2, and the VR user 1 are located on
the same line in the 2D plane, and the VR user 2 is between the MEC and the VR user
1, the VR user 1 is blocked by the VR user 2 if the distance between these two VR
users in the 2D plane is less than (hA−hU )l

hA−hB
.

Due to the blockage caused by obstacles, such as pillars, walls, or other VR users, the
D-band transmission between the MEC server and the VR users can be enhanced by
an RIS, whose passive reflecting elements change the phase of the D-band wave [56].
In our model, we define the MEC-VR user link as a line-of-sight (LoS) link, and the
MEC-RIS-VR user link as a non-LoS (NLoS) link. It is important to note that through
obtaining the current and historical locations and LoS/NLoS statuses of the VR users,
the MEC server can predict the LoS/NLoS statuses of the VR users at each time slot.

7.2.3 D-band Uplink Transmission

At the start of each time slot, the VR user transmits its actual viewpoint and location to
the MEC via the uplink transmission. Because of their mobility, a VR user may enter an
LoS or NLoS area. To guarantee the reliability of the uplink transmission, we consider
a two-ray uplink transmission. One ray is the LoS link, and the other is the NLoS link.
For the VR user in the LoS area, the received signals are those from LoS and NLoS
links. For the VR user in the NLoS area, on the other hand, the received signal is only
NLoS link. For the k th VR user, the transmitted two-ray signals through the uplink
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Figure 7.3: Illustration of a single D-band transmission link in the presence of locking
objects (VR users with a higher height)

transmission at the t th time slot are denoted as

yup
k (t) =uH

k (t)h
up
k (t)xupk (t)

+ uH
k (t)G

up(t)Θup(t)gup
k (t)xupk (t)

+
KvR∑

i=1,i ̸=k

uH
k (t)h

up
i (t)xupi (t)

+
KvR∑

i=1,i ̸=k

uH
k (t)G

up(t)Θup(t)gup
i (t)xupi (t) + nup

k (t)

(7.1)

where uH
k (t) ∈ C1×M is the beamforming vector of the k th VR user at the t th time slot,

which is equal to hup
k (t)+Gup(t)Θup(t)gup

k (t)

∥hup
k (t)+Gup(t)Θup(t)gup

k (t)∥ . In ( 7.1), hup(t) ∈ CM×1 is the channel vector

between the MEC and the k th VR user at the t th time slot, xupk (t) is the transmitted
data symbol of the k th VR user, which is a discrete random variable with zero mean
and unit variance, gup

k (t) ∈ CN×1 is the channel matrix between the k th VR user and
the RIS, Gup(t) ∈ CM×N is the channel matrix between the RIS and the MEC, and
nup
k (t) is the additive white Gaussian noise of the k th VR user with zero mean and σ̂2

k

variance. Also,
∑KvR

i=1,i ̸=k u
H
k (t)h

up
i (t)xupi (t) and

∑KvR

i=1,i ̸=k u
H
k (t)G

up(t)Θup(t)gup
i (t)xupi (t)

are the interferences from the LoS and NLoS links of other VR users, respectively. Let
θ = [θ1, . . . , θN ] denote the selected phase shifts of N reflection elements, where θn ∈
[0, 2π] denotes the phase shift of the nth reflecting element of the RIS. The reflection
coefficients matrix Θup(t) is defined as

Θup(t) = diag
(
ejθ

up
1 (t), . . . , ejθ

up
N (t)

)
For practical implementation, we assume that the phase shift of each element of the
RIS only takes a finite number of discrete values. We denote b with the number of bits
used to indicate the number of phase shift levels L̂, where L̂ = 2b. For simplicity, we
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assume that the discrete phase shifts are obtained by uniformly quantizing the interval
[0, 2π). Thus, the set of discrete phase shifts of each element is given by

F = {0,△θ, . . . , (L̂− 1)△θ}

where ∆θ = 2π/L̂ [60]. The uplink transmission rate of the k th VR user at the t th
time slot is calculated as

Rup
k (t) = log2

∣∣∣∣∣∣∣∣I+
∣∣∣uH

k (t)
(
hup
k (t) +Gup(t)Θup(t)gup

k (t)
)∣∣∣2

Iupk (t) + σ̂2
kIM

∣∣∣∣∣∣∣∣ (7.2)

where IM is the identity matrix, and

Iupk (t) =
KvR∑

i=1,i ̸=k

∣∣∣uH
k (t)

(
hup
i (t) +Gup(t)Θup(t)gup

i (t)
)∣∣∣2

According to ( 7.2), the uplink transmission rate of the VR user in the LoS area is
determined by both the LoS and NLoS links. The uplink transmission rate of the k th
VR user in the NLoS area is only affected by the NLoS link, and uH

k (t)h
up
k (t) = 0.

7.2.4 VR Viewpoint Prediction

When a VR user watches VR video frames, the viewpoint has three degrees of free-
dom (pitch, yaw, and roll) and is determined by the rotation angles in the X, Y , and Z
axes. Thus, predicting the viewpoint of the VR user is equal to predicting the X, Y , and
Z angles. We consider a sliding window to predict the viewpoints of each VR user in
continuous time slots. The future viewpoints of each VR user are predicted according
to current and past rotation statuses. At the (t − 1) th time slot, the MEC or the VR
device predicts the viewpoint V̂ k

t of the k th VR user for the t th time slot. Then, the k
th VR user transmits its actual viewpoint V k

t to the MEC via the uplink transmission.
To quantify the prediction accuracy, we use Mean Square Error (MSE) as a cost func-
tion, which is calculated as

MSEk
t =

1

KVR

KVR∑
k=1

(
V̂ k
t − V k

t

)2
(7.3)

where V̂ k
t =

(
X̂k

t , Ŷ
k
t , Ẑ

k
t

)
and V k

t =
(
Xk

t , Y
k
t , Z

k
t

)
are predicted and actual viewpoints

of the k th VR user at the t th time slot, respectively.

7.2.5 MEC Rendering

When VR users enjoy VR video frames, corresponding FoVs of predicted viewpoints
are rendered at the MEC. Through equirectangular projection (ERP) mapping, a stitched
2D image in RGB color model is rendered into the required FoV. We assume that the
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resolution of the FoV is Np × Nv, and the size of each pixel is 8 bits. The size of the
FoV in RGB model is calculated as

C = 3× 8×Np ×Nv × V

where 3 represents the red, green, and blue colors in RGB model, and V = 2 is the
number of viewpoints for two eyes. We assume that the execution ability of the GPU
of the MEC is FMEC, and the number of cycles required for processing one bit of input
data in the MEC is fMEC. The MEC rendering latency is calculated as

Trender =
fMECC

FMEC

(7.4)

From ( 7.4), we can obtain that the rendering latency for all VR users is the same.

7.2.6 D-band Downlink Transmission

In the D-band downlink transmission, it is possible that VR users can be blocked by
obstacles or by other VR users with higher heights, as shown in Fig. 7.2 and Fig. 7.3.
For VR users that are not blocked by obstacles and other VR users, the MEC directly
performs transmission in LoS channels, otherwise, they are served by NLoS channels
aided by the RIS.
We consider a multi-input single-output (MISO) D-band channel. We use sets VLoS and
VNLoS to denote the LoS and NLoS VR user groups, respectively. For the k th VR user
in the LoS group, the received signal from the MEC at the t th time slot is denoted as

yLoS
k (t) =hH

k (t)v
LoS
k (t)xLoSk (t)

+
∑

i ̸=k,i∈VLoS

hH
k (t)v

LoS
i (t)xLoSi (t)

+
∑

j∈VNLoS

hH
k (t)v

NLoS
j (t)xNLoS

j (t) + nk(t)

where hk(t) ∈ CM×1 is the channel vector between the MEC and the k th VR user,
vLoS
k (t) ∈ CM×1 and vNLoS

j (t) ∈ CM×1 are beamforming vectors of the k th VR user in
the LoS group, and the j th VR user in the NLoS group, respectively. vLoS

k (t) is equal to
hk(t)

∥hk(t)∥ , and xLoSk (t) and xNLoS
j (t) indicate transmitted data symbols for the k th VR user

in the LoS group and the j th VR user in the NLoS group, respectively, and are defined
as discrete random variables with zero mean and unit variance. We assume that xLoSk (t)
and xNLoS

j (t) are independent from each other. Also,
∑

i ̸=k,i∈VLoS
hH
k (t)v

LoS
i (t)xLoSi (t) and∑

j∈VNLoS
hH
k (t)v

NLoS
j (t)xNLoS

j (t) are interferences from the MEC. In addition, nk(t) ∼
CN

(
0, σ2

kIM
)

is the additive white Gaussian noise at the k th VR user in the LoS group.
The transmission rate between the MEC and the k th VR user in the LoS group at the t
th time slot is expressed as

RLoS
k (t) = log2

1 +

∣∣hH
k (t)v

LoS
k (t)

∣∣2
ILoSk (t) + σ2

k

 (7.5)
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where
ILoSk (t) =

∑
i∈VLos,i ̸=k

∣∣∣hH
k (t)v

LoS
i (t)

∣∣∣2
+

∑
j∈VNLoS

∣∣∣hH
k (t)v

NLoS
j (t)

∣∣∣2
For the VR users in the NLoS group, the signal between the MEC and the b th VR user
at the t th time slot is presented as

yNLoS
b (t) = gH

b (t)Θ
down(t)Gdown (t)vNLoS

b (t)xNLoS
b (t)

+
∑

j ̸=b,j∈VNLos

gH
b (t)Θ

down(t)Gdown(t)vNLoS
j (t)xNLoS

j (t)

+ nb(t)

where Gdown (t) ∈ CN×M is the channel matrix between the MEC and the RIS, gb(t) ∈
CN×1 is the channel matrix between the RIS and the b th VR user, vNLoS

b (t) ∈ CM×1

is the precoding matrix for the b th VR user in the NLoS group, which is equal to
Gdown (t)HΘdown (t)gk(t)

∥Gdown (t)HΘdown (t)gk(t)∥ , x
NLoS
b (t) is the transmitted data for the b th VR user, Θdown (t) is

the reflection coefficients matrix of the RIS. Note that Θdown (t) is written as

Θdown (t) = diag
(
ejθ

down
1 (t), . . . , ejθ

down
N (t)

)
and nb(t) is the additive white Gaussian noise of the b th VR user with zero mean and
σ2
k variance.

∑
j ̸=b,j∈VNLoS

gH
b (t)Θ

down (t)Gdown (t)vNLoS
j (t)xNLoS

j (t) is the interference from
the RIS. Then, the downlink transmission rate of the bth VR user in the NLoS group is
written as

RNLoS
b (t) = log2

1 +

∣∣gH
b (t)Θ

down (t)Gdown (t)vNLoS
b (t)

∣∣2
INLoS
b (t) + σ2

b

 (7.6)

where
INLoS
b (t) =

∑
j ̸=b,j∈VNLoS

∣∣∣gH
b (t)Θ

down (t)Gdown (t)vNLoS
j (t)

∣∣∣2

7.2.7 D-band Channel Model

The D-band channel model in the presence of obstacles is shown in Fig. 7.4. In the
D-band communication, the power of scattering components are generally much lower
than that of LoS components. Thus, we ignore scattering components, and the LoS
channel is expressed as

h̃k(t) = hLoSf,dk
(t)aLoS

k,ϕk
(t) (7.7)

where h̃k(t) =
{
hup
k (t),hk(t)

}
, the LoS channel function hLoS (f, dk) consists of a

spreading loss function and a molecular absorption loss function, which is presented
as

hLoSf,dk
(t) =

c

4πfdk
e−

τ(f)dk
2 e−j2πfδLoS,k(t)
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Figure 7.4: Illustration of D-band channel model in the presence of obstacles

where c is the speed of light. Assuming that the RIS is installed on the wall with height
H, the location of the reflecting unit is presented as LRIS = [XRIS, YRIS, HRIS]. The
location of the MEC is denoted as LMEC = [XMEC, YMEC, HMEC]. The location of the k
th VR user is written as Lk = [Xk, Yk, Hk]. The distance between the MEC and the k th
VR user is denoted as dk, which is calculated as

dk =

√
(XMEC −Xk)

2 + (YMEC − Yk)
2 + (HMEC −Hk)

2

f is the carrier frequency, and δLoS,k(t) = dk
c

is the time-ofarrival of the LoS propagation
of the k th VR user. τ(f) is the frequency-dependent medium absorption coefficient
that depends on the molecular composition of the transmission medium, namely, the
type and concentration of molecules found in the channel as defined in [63]. In addition,
aLoS
k,ϕk

(t) is the normalized antenna array response vector at the MEC with M antennas,
which is written as

aLoS
k,ϕk

(t) =
1√
M

[
1, ej

2π
λ

sin(ϕk), . . . , ej
2π
λ
(M−1) sin(ϕk)

]H
where λ is the wavelength, and ϕk denotes angles of departure/arrival (AoD/AoA).
For the NLoS transmission, the D-band channels between the MEC and the RIS are
denoted as

GuP(t) = ηGNLoS
f,dM−I

(t)aNLoS
ϕMEC

(t)aNLoS
ϕRIS

(t)H (7.8)

and
Gdown (t) = ηGNLoS

f,dM−I
(t)aNLoS

ϕRIS
(t)aNLoS

ϕMEC
(t)H (7.9)

where η is the path-loss compensation factor written as

η =
2
√
πfGRISN

c
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N is the number of elements on the RIS, and GRIS is the RIS element gain. The
channel function GNLoS

f,dM−I
(t) is written as

GNLoS
f,dM−I

(t) =
c

4πfdM−I

e−
τ(f)dM−I

2 e−j2πfδNLOS,M−I(t),

where dM−I is the distance between the MEC and the RIS, δNLoS,M−I(t) = dM−I

c
is the

time-of-arrival of the NLoS propagation between the MEC and the RIS. The normalized
antenna array response vectors aNLoS

ϕRIS
(t) of the RIS and aNLoS

ϕMEC
(t) of the MEC are written

as
aNLoS
ϕRIS

(t) =
1√
N

[
1, ej

2π
λ

sin(ϕRIS), . . . , ej
2π
λ
(N−1) sin(ϕRIS)

]H
and

aNLoS
k,ϕMEC

(t)

=
1√
M

[
1, ej

2π
λ

sin(ϕMEC), . . . , ej
2π
λ
(M−1) sin(ϕMEC)

]H
respectively. ϕRIS and ϕMEC are the AoD or AoA, respectively. The D-band channel
between the RIS and the b th VR user is given by

g̃b(t) = gNLOS
f,db

(t)aNLoS
ϕb

(t) (7.10)

where g̃b(t) =
{
guP
b (t),gb(t)

}
, the channel function gNLoS

f,db
(t) is written as

gNLoS
f,db

(t) =
c

4πfdb
e−

τ(f)db
2 e−j2πfδNLoS,b(t)

db is the distance between the RIS and the b th VR user, and aNLoS
ϕb

(t) is written as

aNLoS
ϕb

(t) =
1√
N

[
1, ej

2π
λ

sin(ϕb), . . . , ej
2π
λ
(N−1) sin(ϕb)

]H
7.2.8 Quality of Experience Model

The QoE of the wireless VR video frame streaming is influenced by several factors,
including the video quality, the VR interaction latency, and the smoothness of VR video
frames. The success of the uplink transmission further affects the prediction of the
viewpoint and LoS or NLoS status of each VR user. We use unit-impulse function δ̂k(t)
to denote the success of the viewpoint prediction, which is expressed as

δ̂k(t) =

{
1, if V̂ k

t = V k
t ;

0, otherwise.

where V̂ k
t =

(
X̂k

t , Ŷ
k
t , Ẑ

k
t

)
and V k

t =
(
Xk

t , Y
k
t , Z

k
t

)
are the predicted and actual view-

points of the k th VR user at the t th time slot, respectively. If V̂ k
t = V k

t , δ̂k(t) = 1,
otherwise, δ̂k(t) = 0. According to [64] and [65], the QoE of the k th VR user at the t th
time slot is denoted as

QoEk(t) = δ̂k(t)

(
q
(
Rk(t)

)
−
∣∣∣q (Rk(t)

)
− q

(
Rk(t− 1)

)∣∣∣) (7.11)
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where q
(
Rk(t)

)
is VR video transmission quality metrics. Here, due to [65], q

(
Rk(t)

)
is

presented as

q
(
Rk(t)

)
= log

(
Rdown

k (t)

Rdown
th

)

where Rdown
th is the downlink transmission threshold, and

∣∣∣q (Rk(t)
)
− q

(
Rk(t− 1)

)∣∣∣ is
the transmission quality variation, which indicates changes of the transmission quality
from the (t − 1) th time slot to the t th time slot. Note that the QoE model in (7.11)
guarantees the seamless, continuous, smoothness and uninterrupted experience of
each VR user.

7.2.9 Optimization Problem

To ensure the requested FoV is rendered and transmitted within the VR interaction
latency, we aim at optimizing the long-term QoE of the RIS-aided D-band transmission
system over the phase shifts of the RIS under VR interaction latency constraints. At
the t th time slot, the VR interaction latency TVR consists of Tuplink , Trender, , and Tdownlink ,
which is written as

TVR(t) = Tuplink (t) + Trender (t) + Tdownlink (t),

where Tuplink (t) is the uplink transmission latency, and Trender (t) is the MEC rendering
latency. It is important to know that the size of the uplink data is small, and the uplink
transmission latency is negligible. Also, the size of the FoV does not change for differ-
ent viewpoints, thus, the rendering latency is a constant. Therefore, the VR interaction
constraint conditions are converted to a downlink transmission latency constraint. The
proposed D-band VR system aims at maximizing the long-term total QoE under the
downlink transmission latency constraint in continuous time slots with respect to a pol-
icy π that maps the current state information St to the probabilities of actions in At. We
formulate the optimization problem as

max
π(At|St)

∞∑
i=t

K∑
k=1

γi−tQoEk(i)

s.t. T k
downlink (i) ≤ T downlink

th

where γ ∈ [0, 1) is the discount factor which determines the weight of the future QoE,
and γ = 0 means that the agent only considers the immediate reward. T k

downlink (t) is
the downlink transmission latency of the k th VR user at the t th time slot, and T downlink

th

is the downlink transmission latency constraint. Note that the constraint guarantees
the VR interaction latency at each time slot under the VR interaction latency constraint.
Due to the fact that the mobility of the VR user is markovian in continuous time slots, the
dynamics of the D-band VR system is a partially observable markov decision process
(POMDP) problem, which is generally intractable. Here, the partial observation refers
to that the MEC server only knows the previous viewpoints and locations of the VR
users in the environment, while it is unable to know all information of the environment,
including, but not limited to, the channel conditions, and viewpoints in the current time
slot. Meanwhile, the selected policy also needs to satisfy the VR interaction latency
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Figure 7.5: Learning strategy for MEC-enabled and RIS-assisted D-band VR networks

constraint. Thus, the problem is a constrained MDP (C-MDP) problem and can be
transformed into the following form

min
ω≥0,µ≥0

max
π

∞∑
i=t

K∑
k=1

γi−tQoEk(i)− ω
(
T downlink
th − T k

downlink (i)
)

(7.12)

where ω is the lagrangian multiplier, and π is the policy. Due to the fact that the number
of combinations of the phase shifts increases exponentially with the number of phase
shift levels of the RIS, the problem in (7.12) has high computation complexity. To ad-
dress this issue, we deploy constrained deep reinforcement learning (C-DRL) to solve
this problem.

7.3 Learning Algorithms for D-band VR System

Deep neural network is one of the most popular non-linear approximation functions, and
the C-DRL can effectively solve the C-MDP problem. To solve the optimization problem
in (7.12), we propose a novel learning architecture based on online GRU, online LSTM,
CNN, and C-DRL, as shown in Fig. 7.5. In particular, the online GRU and online LSTM
are integrated with CNN to predict the viewpoint preference and LoS or NLoS status of
each VR user in continuous time slots, respectively. Using this information as inputs,
the C-DRL is deployed to select an optimal reflection coefficient matrix for the D-band
downlink transmission.
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7.3.1 Viewpoint Prediction

We use a centralized online GRU and a distributed FedAvg to predict the viewpoints of
the VR users over time, and the FedAvg is able to guarantee the data privacy of each
VR user and GRU models are constantly improved using data of each VR user without
need to aggregate data for continual learning. The input of the learning model is the
actual viewpoints of the previous time slots, and the output is the predicted viewpoint
of each VR user for the next time slot.

7.3.2 LoS and NLoS Prediction

To predict the LoS or NLoS statuses of each VR user in continuous time slots, we first
employ an RNN model based on LSTM to predict the positions of the VR users. Then,
we map the indoor scenario into a 2D image, label positions of the MEC, VR users, and
obstacles with different colors, and deploy the CNN to predict the LoS or NLoS status
of each VR user.

7.3.3 Downlink RIS Configuration

The main purpose of the reinforcement learning (RL) is to select proper reflection co-
efficient matrix Θ of the RIS for the VR users in NLoS areas. As for the uplink trans-
mission at the (t + 1) th time slot, the RIS directly uses the selected Θ at the t th time
slot. This is because the downlink transmission requires a high data rate for the FoV
with high resolution, whereas the uplink transmission only transmits the actual position
and viewpoint or the learning model of each VR user (e.g., the size of the uplink data is
much smaller than that of the FoV, and the D-band uplink transmission can guarantee
low latency). Through a series of action strategies, the MEC is able to transmit the
selected Θ to the RIS via a wired connection, interact with the environment, and obtain
rewards based on its action, which helps improve the action strategy. With enough
number of iterations, the MEC is able to learn the optimal policy that maximizes the
long-term reward.
The immediate reward Rt is designed as

Rt (St, At) =

KVR∑
k=1

QoEk
t

The performance of the selected action is determined by the position and LoS/NLoS
status of each VR user, which can further influence the long-term QoE of the D-band
VR system. Therefore, we use the observed position, the LoS/NLoS status, and the
QoE of each VR user as observations, and use the average QoE as a reward. Accord-
ing to the observed environmental state St at the t th time slot, the MEC selects specific
action At from the set A and obtains reward Rt. Then, the discounted accumulation of
the long-term reward is denoted as

Q(S, π) =
∞∑
i=t

(γ)i−tRi (Si, Ai)

where γ ∈ [0, 1) is the discount factor.
Our detailed C-DRL algorithm is presented in Algorithm 1.
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Figure 7.6: (a) Average QoE of the MEC-enabled and RIS-assisted D-band VR net-
work via C-DRL with viewpoint and LoS/NLoS prediction with increasing number of VR
users. (b) Average VR interaction latency of the MEC-enabled and RIS-assisted D-
band VR network via C-DRL with viewpoint and LoS/NLoS prediction with increasing
number of VR users, where the VR interaction latency constraint is 20 ms

7.4 Simulation Results

For the downlink D-band transmission, we deploy a C-DRL to select proper phase shifts
of the RIS to reflect D-band signals for VR users in the NLoS area. For simplicity, we
use “w/Pred” to present “with prediction”. In the genie-aided scheme, online learning
algorithms are directly trained with the actual viewpoint and position of each VR user
at each time slot, which is the upper bound of the online learning algorithm and can
hardly be achieved in practical wireless VR systems. To compare with the proposed
learning architecture, an exhaustive algorithm is deployed to select the optimal phase
shifts of the RIS in the downlink transmission at each time slot.
Fig. 7.6 plots the average QoE and VR interaction latency of the MEC-enabled and
RIS-assisted D-band VR network via the C-DRL with viewpoint and LoS/NLoS predic-
tion versus the number of VR users compared to that via the exhaustive algorithm,
respectively. With the increasing number of VR users, the average QoE of VR users
decreases as shown in Fig. 7.6 (a), whereas the average VR interaction latency in-
creases as shown in Fig. 7.6 (b). This is due to the fact that with increasing number
of VR users, the interference among the D-band transmission increases. When the
number of VR users is larger than 15, the gap between the C-DRL and the exhaustive
algorithm becomes larger, and the VR interaction latency constraints are violated with
increasing number of VR users. This is because the LoS/NLoS prediction accuracy via
CNN decreases, which further affects the action selected by the C-DRL.

Fig. 7.7 plots the average QoE and VR interaction latency of the MEC-enabled
and RIS-assisted D-band VR network via the C-DRL with viewpoint and LoS/NLoS
prediction versus the number of reflecting elements of the RIS compared to that via the
exhaustive algorithm, respectively. With increasing number of reflecting elements of
the RIS, the average QoE of VR users increases as shown in Fig. 7.7 (a), whereas the
average VR interaction latency decreases as shown in Fig. 7.7 (b). This is because as
the number of reflecting elements increases, the D-band channel gain reflected by the
RIS increases, which further increases the D-band transmission rate for the VR users
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Figure 7.7: (a) Average QoE of the MEC-enabled and RIS-assisted D-band VR network
via C-DRL with viewpoint and LoS/NLoS prediction with increasing number of reflecting
elements of the RIS. (b) Average VR interaction latency of the MEC-enabled and RIS-
assisted D-band VR network via C-DRL with viewpoint and LoS/NLoS prediction with
increasing number of reflecting elements of the RIS, where the VR interaction latency
constraint is 20 ms

in NLoS areas. In addition, the VR interaction latency of the non-learning schemes is
not influenced by the predicted LoS/NLoS status via the CNN.

7.5 Conclusion

In this work, an MEC-enabled and RIS-assisted D-band VR network was developed to
maximize the long-term QoE of real-time interactive VR video streaming in an indoor
scenario under VR interaction latency constraints. Specifically, in the uplink, a cen-
tralized online GRU algorithm and a distributed FedAvg were used to predict the view-
points of the VR users over time, to determine the corresponding FoVs to be rendered
at the MEC. An algorithm that integrates online LSTM and CNN was also designed
to predict the locations of the VR users and determine the LoS or NLoS statuses in
advance. Then, a C-DRL algorithm was developed to select the optimal phase shifts of
reflecting elements of the RIS to compensate for the NLoS loss in the D-band transmis-
sion. Simulation results have shown that our proposed ensemble learning architecture
with online GRU, online LSTM, CNN, and C-DRL algorithms substantially improved the
long-term QoE, while satisfying the VR interaction latency constraints, and the QoE
performance of our proposed learning architecture was near-optimal compared to the
exhaustive algorithm.
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Summary of Conclusions

To summarize, Chapter 1 introduces Monte Carlo simulations to confirm the suggested
concept’s viability and to measure its effectiveness. According to the findings, the ML
with RL-based training outperform both the ML with traditional training and the baseline
for high constellation order. The requirement for SNR when using ML is always lower or
equal to the requirement when using baseline techniques which was also emphasized,
for a fixed BER requirement. This suggests that clever transceivers can considerably
contribute towards greener THz wireless systems.

Chapter 2 extends the UE-AP association problem to dynamic scenarios where
the networks are dense and dynamically changing. This is achieved by extending the
previously presented Hybrid Metaheuristic-Machine Learning framework to dynamic
problems, which are much more complex and realistic. This work also implemented
a GUI application to let the domain experts interactively engage with the UE-AP as-
sociation scenario and evolve the problem in real-time using the implemented trigger
events, while the system delivers near-instant UE-AP association solutions. The results
are promising in that AI/ML methods show improvement in pattern recognition despite
resorting to a carefully determined minimal training data size. The quality of machine
learning predictions is shown to improve significantly with further training while reducing
training time. Results also show that millisecond-level scoring/inference is achievable
to predict an association of a single UE to an optimal AP, by using relatively intricate
Gradient Boosted Tree (GBT) models. This contribution enables continuous high band-
width connectivity by enabling pro-active handovers whenever deemed necessary by
the AI/ML algorithms, which results in good utilization of available network resources
while also delivering the end user with desired QoS by meeting resource requirement
with LoS blockage minimization in an evolving network.

Chapter 3 contributes to the scope of establishing dependable connectivity through
the use of machine learning techniques. In general, the goal is to provide more dy-
namic environments that adapt to human movement and can be included as real-time
simulations. Moreover, in order to access the effectiveness of LOS connectivity, AI-
based approaches will exploit the data generated and a proactive handover process
would be gradually triggered by this process in order to determine the patterns based
on user mobility across various routes in an outdoor or indoor setting. Additionally, by
offering a predictive and interactive GUI framework, it enables us to map out a variety
of possibilities, including risks, objectives, and profits before deciding which course to
take.

Chapter 4 demonstrates the effectiveness of the complex event forecasting method
in practice by empirically evaluating it using data from realistic simulations. Wayeb
forecasting engine is used to predict the evolution of APs load. Moreover, a suitable
interface is developed in order to provide on-line predictions to an individual tool that
handles radio resource allocation of the D-band newtwork. Chapter 5 shows that in-
creasing the number of served UEs by better utilizing bandwidth resources is the key
benefit of employing FFA instead of the traditional allocation technique. Additionally,
by suitably ordering the APs in the FFA graph in each time slot of the simulation ses-
sion, AI predictions were used in time evolving scenarios to decrease the frequency of
handover occurrences during a simulation session.

Chapter 6 introduces deep reinforcement learning (DRL) for beam prediction for
multi-user multi-input-single-output (MISO) downlink transmission, where the reliability
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constraint is satisfied. In this study, we consider that the agent (base station) can
predict one or more beams at a given time to serve multi-UE simultaneously. The UE
moves at 3 km/hr (users walking) and the PPO based DRL shows that BS can improve
the system throughput. Multi-agent DRL being part of ongoing work with results to be
reported in future deliverables.

Finally, Chapter 7 presents the simulation results on the proposed ensemble learn-
ing architecture with online GRU, online LSTM, CNN, and C-DRL algorithms which
substantially improve the long-term QoE, while satisfying the VR interaction latency
constraints in a D-band network assisted by RISs. The QoE performance of our pro-
posed learning architecture is near-optimal compared to the exhaustive algorithm.
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