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Applications of high-speed diagnostics can help understand the structure and dynamics
of detonation waves in RDCs. Phase averaging can be applied to resolve the circumferential
detonation structure. However, a high level of stochasticity has been observed in RDC
experimental data. As a result of this variability, when several data samples are averaged using
the conventional arithmetic mean, data features can be distorted or overlooked. This can easily
lead to an erroneous characterization of the wave structure and flow field inside an RDC. In
order to obtain a more accurate representation of the underlying data, this work investigates
the application of three different averaging techniques: the Euclidean distance based arithmetic
mean, the DTW Barycenter Averaging (DBA) and soft-DTW barycenter. Results show that the
Euclidean barycenter does not capture well the sharpness of the detonation front while the DTW
Barycenter Averaging absorbs the idiosyncrasies of the data resulting in a discontinuous average
that is not characteristic of any of the time series. Soft-DTW based averaging overcomes these
limitations through the introduction of a smoothing parameter and yields a more representative
average of RDC time series data. In addition, soft-DTW based averaging is less sensitive to
small perturbations in the data and can construct a representative average of the data from
fewer data samples.

I. Introduction

Rotating detonation combustors (RDC) are a promising candidate in pressure gain combustion (PGC) research,
utilizing one or more continuously spinning detonation waves to achieve an increase in stagnation pressure. In an RDC,
a detonation wave rotates around the annular combustion chamber at frequencies on the order of 5-6 kHz. Current
experimental RDC research mainly depends on the acquisition and processing of high-frequency pressure measurements,
high-speed imaging and high-repetition rate laser diagnostics [1H5]]. High-speed measurements allow for approximations
of the average wave frequency to be made and can shed light on the structure and dynamics of detonation waves inside
the combustion chamber. It is often desirable to apply phase averaging of the measured signals over individual wave
laps to resolve the circumferential detonation wave structure.

Taking an arithmetic mean of the wave laps is the conventional way to obtain the average distribution of measurable
parameters around the combustor annulus. Bohon et al. [1]] used the arithmetic mean to average dynamic pressure data
from a steady run with a single detonation wave propagating around the annulus. However, the computed average data
exhibited significant smoothing of the underlying data, especially for sharp features such as the steep-fronted detonation
wave. This is due to lap-to-lap fluctuations observed in high-speed measurements that occur even for cases where stable
mode propagation has been successfully established in the RDC. Complex underlying mechanisms may partly account
for small variations of the measured properties between individual wave passage. The stochasticity in the measured
RDC data is also likely caused by measurement uncertainty, the sensor installation, and sensor noise. In addition, the
response time of high-speed diagnostics like piezoresistive pressure sensors has a characteristic response time to the
pressure change at the detonation front. This may introduce stochastic artifices in the measurements such as overshoots
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and dead time. Furthermore, the sampling rate will affect the stochasticity of the signal when a discrete measurement is
used to reconstruct a continuous time stochastic process. To recover a representative average of the measured properties,
an effective method must be found to deal with the stochastic RDC data.

Therefore, we pose the following question: How can we best average the high-speed experimental RDC data to
resolve the circumferential structure and dynamics of the detonation wave? The arithmetic mean, based on the Euclidean
distance, does not always perform well with time series such as time-resolved RDC data because it is not robust to
distortions on the time axis. Any shifts in the timing between individual RDC laps results in a distortion of the average.
It is therefore preferable to use an averaging approach based on another distance measure that is more robust to time
distortions. One candidate is Dynamic Time Warping (DTW). The DTW measure, which seeks a minimum cost
alignment matrix, has the ability to deal with local variations in the time axis, allowing a better alignment between
the points of time series [6]. In some sense, DTW preserves the human sense of shape-similarity by allowing elastic
transformation of time series in order to detect similar shapes across different phases. There are two approaches to
averaging based on the DTW metric: DTW Barycenter Averaging (DBA) and the soft-DTW barycenter [[7} [8]].

The objective of this work is therefore to investigate the application on RDC time series data of three different
averaging techniques: the Euclidean distance based arithmetic mean, the DTW Barycenter Averaging and soft-DTW
barycenter. The results of this paper are expected to provide guidelines for averaging RDC time series data that future
studies can apply to study the detonation wave structure and flow field inside a combustor.

II. Methods

A. Experimental Setup

Data for this study is acquired on the non-premixed RDC geometry at TU Berlin [9], as shown in Figure [T[a). The
combustor is composed of an annular chamber with an axial length L of 110 mm, outer diameter D of 90 mm and
annulus gap width A of 7.6 mm. Hydrogen is injected axially through a fuel plate with a ring of 100 0.7 mm holes,
while air is introduced radially through a 1 mm slot and mixes with the fuel in a jet-in-crossflow configuration. A
restriction that reduces the outlet area by 16% is also introduced. There are four levels of ports located axially along the
combustion chamber wall from which different pressure sensors can be installed. A PCB 112A05 piezoelectric pressure
transducer is placed in a flush-mounted configuration on Level 1 to measure the dynamic pressure component as shown
in Figure [T[b). Run time is limited to less than 300 ms to mitigate sensor damage. The data are sampled at 500 kHz. In
this study, the air mass flow rate is set at 500 g - s~! and the global equivalence ratio at stoichiometric conditions.

Fig. 1 Experimental setup: (a) Schematic diagram of TU Berlin’s RDC, highlighting the reactant injection
processes, and (b) pressure sensor in a flush-mounted configuration on Level 1 (detonation region).

B. Averaging Methods
The objective of time series averaging is to construct a single time series x that is located closest to a given set
of time series, Y = {y1, ¥2, ..., YN}, according to a cost-alignment distance. The computed time series X is referred to



as the barycenter of the set Y. Each time series y; represents the pressure signal measured at a point by a pressure
transducer probe over the detonation wave period. There are different approaches used to compute the average of time
series data. Often the average is found by minimizing a cost-alignment problem between time series data using the the
Euclidean distance. However, as we will show, the Euclidean distance is not expected to perform well with time series
data because it is sensitive to shifts on the time axis. It is therefore preferable to use another measure that is more robust
to time distortions. One proposed method is dynamic time warping (DTW). The DTW measure has the ability to deal
with local distortions in the time axis, allowing a better matching between the points of a given time series [7]. The
Euclidean and DTW distance for two time series are displayed in Figure 2}

(a) —e— time-series 1 (b) —e— time-series 1
—— time-series 2 —— time-series 2

Fig.2 Alignment of two example RDC time series data using (a) the Euclidean metric, and (b) the DTW metric.

Suppose that x € R”*¢ and Vj € R are two d-dimensional time series of lengths m and n. The cost or distance
matrix, A(X,yj) € R, can be defined as the squared Euclidean distance between the two time series. A € 0, 1" is
an alignment matrix between the elements of x and yj, where a value of 1 is aligned and O is given otherwise. A(X, y;)
denotes the number of admissible paths or alignments (coined Delannoy number) between the two time series. Given
the cost matrix A(x,y) and the alignment matrix A, the inner product ( A, A(x,y;j) ) is the sum of the costs along the
alignment. DTW can then be defined as the minimum cost among all alignments in Equation (I):

dt i) := mi A A i 1
wo(X, ¥j) AEH}%?,,”( AKX )) ) 1

In soft-DTW the minimum is replaced by a soft minimum described in Equation ). Soft-DTW introduces a
smoothing parameter, y, which controls a trade-off between smoothness and accuracy.
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As such, soft-DTW as defined in Equation (3)), considers all possible alignments weighted by their probability under
the Gibbs distribution P,,. When v is set to 0, the original DTW distance is recovered, and when vy tends to infinity,
soft-DTW converges to the sum of all costs [10]. The expected or average alignment matrix E, = 3 pc 4, ,, PyA informs
for each pair of elements in x and y; how much they will be taken into account in the alignment and is shown in FigureEl

dtw, (x,y) := Afgj&l( A,A(X,y) ) (3)

DTW Barycenter Averaging (DBA) and soft-DTW are two approaches to averaging in the DTW-based space. The
average (barycenter) of a set Y = {y1,y2, ..., yN} can be found by solving Equation (@). In DBA, an initial series is
iteratively refined, in order to minimize the alignment cost matrix with the set of time series considered.

N
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However, DBA is not differentiable everywhere and can lead to bad local optima when used for averaging [8]].
Introducing smoothing can help to avoid bad local optima, as such the soft-DTW barycenter can be defined in Equation 5}
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Fig. 3 Expected alignment matrix E, for different values of y.
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The similarity between a set of time series and the calculated barycenter for each method can be quantified using the
DTW loss defined in Equation (T)) [8]. This measure can be interpreted as the cumulative cost of alignment and will be
used as one of the metrics to compare the goodness of fit of the calculated barycenters.

C. Data Pre-Processing

A data pre-processing algorithm is applied on the measured dynamic pressure data shown in Figure fa) to obtain N
time series over which the averaging methods can be applied. The test case considered in this study is a single rotating
detonation wave. From the FFT frequency distribution shown in Figure [f{b), it can be noted this is a fairly stable case
with low levels of stochasticity. Pressure data during a stable portion of the run was chosen. Transient behavior between
consecutive wave passages from the baseline drift introduced by the PCB sensor was low-pass filtered at 150 Hz.

The pressure traces are then subdivided and aligned into individual time series, with each time series representing a
detonation wave passage. There are different ways to align the data set. Two different methods are considered in this
paper: one where the mean FFT measured frequency is used to define a window length, from which sequential windows
can be taken. Another, where the time-series are aligned according to the pressure peak in an average equal window
length. It should be noted that, from prior experience, identifying and aligning individual passages of the detonation
wave is not always a trivial process, especially when the data is not as clean as that shown in this dataset. Therefore,
the current case in many ways represents a “‘best case’” alignment that may not be achievable in all cases. The N time
series are set to have an equal length m based on the average wave period obtained by FFT analysis. This will enable a
direct comparison with the Euclidean barycenter, while also minimizing the DTW loss of the DTW and soft-DTW
barycenters [7].

The start of the time series is defined to be at 25% of the average period before the maximum pressure rise. This
region is chosen as the start because there is relatively little change in pressure per time step. This minimizes the
sensitivity of the averaging methods to the input data as DTW and soft-DTW always match the initial and final data
points between time series (which is the case for all data points in Euclidean averaging). Calculating the barycenters
based on a start point defined in a portion with a high pressure gradient would therefore make the algorithm more
sensitive to the subdivision of the time series.

The time series are normalized according to Equation (6). The resulting time series for both alignments are shown
in Figures fc) and (d). Normalization is not a prerequisite to apply the averaging methods. However, by normalizing
the data between [-1 1], similar values of y can be used in the soft-DTW algorithm for comparable test cases. Although
z-normalization is typically used in soft-DTW applications, it normalizes each individual time series and is therefore
not suitable for averaging data sets where the amplitude of data is important [6].
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Fig. 4 Data pre-processing procedure: (a) Portion of the dynamic pressure trace considered, (b) FFT analysis of
the test case, (¢) FFT mean frequency aligned and normalized time series, and (d) peak aligned and normalized
time series.

I11. Results
The objective of this work is to investigate the averaging of time-dependent measurable parameters inside the RDC
such as the pressure in the detonation region. These results will be discussed in two sections. The first section will
compare and evaluate the sensitivity of different averaging techniques to demonstrate the practicality of the soft-DTW
approach for RDC data averaging. The second section will focus on the soft-DTW averaging method and the effect of
soft-DTW parameters will be investigated and recommendations for RDC data application provided.

A. Comparison and Sensitivity of the Averaging Methods

1. Effect of Time Series Alignment

The averaging methods are applied to a data set consisting of dynamic pressure data over one wave period measured
by a piezoelectric PCB sensor placed in the detonation region. The data is aligned according to the mean FFT measured
frequency and the peak. For both of alignments, 100 time series can be defined, each consisting of 73 data points
sampled at a frequency of 500 kHz. The Euclidean, DTW and soft-DTW barycenters are computed for the data set
consisting of 20 randomly selected time series and plotted in Figure [/|for both of alignments. Although the results
here are given in terms of dynamic pressure, the remaining results will be reported on a normalized axis to allow for



comparison with a variety of RDC data types.

It can be observed that for the mean FFT measured frequency based alignment method, the barycenters of each
method exhibit different features. The Euclidean barycenter significantly underestimates the peak height and is not
representative of any of the individual underlying time series. As the Euclidean barycenter is a point-by-point average,
it does not capture well abrupt changes in short time spans, resulting in a flatter slope and rounded peak. The DTW
barycenter is able to better capture the peak height, but absorbs the idiosyncracies of the data yielding many small kinks
at points such as 7 = 0.05, 7 = 0.65 and 7 = 0.82, that are not representative of any of the time series in the data set.
These features of the DTW barycenter were observed across the majority of the RDC pressure data in the detonation
zone. Unlike the Euclidean mean, the soft-DTW barycenter is able to capture the sharp change at the detonation front
while still yielding a smoother barycenter than the DTW barycenter and that better matches the time series. It can
be observed that due to the introduction of the smoothing parameter, y, the kinks of the DTW barycenter are absent
however the variation in the signal in the trailing portion of the pressure trace is retained. In this case, the soft-DTW
barycenter better depicts the detonation front and expansion behind the wave.

Unlike for the mean FFT measured frequency based alignment, when using the peak-based alignment, the Euclidean,
DTW and soft-DTW barycenters have very similar shapes, although Euclidean and soft-DTW averaging yield smoother
barycenters than for DBA. All barycenters are characterized by comparable pressure gradients and peaks at the detonation
front, and pressure expansions. It is important to again recall, that this is a particularly well-behaved dataset that lends
itself well to this alignment method. Such good alignment is not always achievable, and therefore one could reasonably
expect a greater amount of temporal uncertainty and distortion that would prevent an effective use of the Euclidean
barycenter. Since all averaging techniques give similar results, the soft-DTW barycenter from the peak-based alignment
method is defined as the "true average" of the time series and will be used as a reference to compare against other
averages.

8 . . - 8 . .8 . . . 8
: Mean frequency alignment ; —— Euclidean
1 17
i ——DBA
P | [ ——soft-DTW ~+ = 0.01
time series
5 5 5
5 4 4 4
[aa]
=y 3 3 3
2 2 2
1 1 1
0 0 0 |
-1 -1 -1
0.15 0.2 025 02 022 024 026 028 03 0.35 0.4 045 05
8 8 8 8 . -
Peak alignment —— Euclidean
T 1 7
o ——DBA
6 6 6l soft-DTW ~ = 0.01
| time series
5 5 . k
‘ = 4 4
225 65
a3 3
2 2 6
1 1
55
01 0
Al ]
0 0.2 0.4 0.6 0.8 1 -01.15 0.2 0.25 %2 022 024 0268 0.28

g 7 [ T [

Fig. 5 Barycenters obtained from Euclidean, DBA and soft-DTW for the time series aligned according to the
mean FFT measured frequency and peak.

Figure [ compares the barycenters of each method for each alignment against the "true average" to evaluate their
sensitivity to the alignment of the time series. As the Euclidean barycenter is a point-by-point average, it is expected



that any small variation in the alignment of the time series will significantly affect the shape of the barycenter. The
peak-based Euclidean barycenter closely matches the "true average" only because the time series aligned on the peak are
not very stochastic. When the time series are aligned on the mean frequency, the resulting time series are not as neatly
arranged. In this case, the Euclidean barycenter significantly minimizes the extremas and is unable to capture the shape
of the "true average" even if the data considered exhibits a relatively low level of stochasticity as shown by the FFT
analysis in Figure[d]

——"True average”
——Mean frequency aligned
— — —Peak aligned
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Fig. 6 Comparison of the true average with mean frequency and peak aligned (a) Euclidean barycenters, (b)
DBA, and (c) soft-DTW barycenters for y = 0.01.

By contrast, the DBA and soft-DTW barycenters are able to better recover the shape of the "true average" even when
the underlying time series are more stochastic as in the case of the mean frequency based alignment. However, the DBA
falls shorts as it absorbs the idiosyncracies of the underlying time series resulting in different locations of the kinks
and a flatter detonation front. The mean frequency aligned soft-DTW barycenter recovers the majority of the shape of
the "true average" highlighting the advantage of soft-DTW averaging with stochastic data. For the remaining results,
the mean FFT frequency alignment will be used because aligning according to a feature such as the peak forces an
assumption on the feature. In particular, this assumption might break down for RDC data sets characterized by higher
degrees of stochasticity.

2. Effect of Time Series Sample Size

The effect of the number of the time series on the barycenter calculation is investigated. The Euclidean, DTW and
soft-DTW barycenters are computed for the normalized data set consisting of 20, 50, 100 randomly selected time series
and plotted Figure[7] It can be observed that the barycenters calculated for 20 time series show similar trends to the ones
for 50 and 100 time series. The barycenters for 20, 50 and 100 time series for each methods are compared against the
"true average" in Figure[§] For the Euclidean barycenter, the peak height and detonation front slope decrease as the
number of time series increases. This behavior is expected as the overall stochasticity of the time series considered in
the calculation of the Euclidean barycenter increases with the number of times series.

For the DTW, the barycenter tends to take on a different distribution as the number of time series with which it is
calculated changes. With the smoothing parameter vy, the soft-DTW is able to overcome the limitation of the DBA,
giving a barycenter that does vary significantly with the number of time series and capture the "true average". It is
therefore not necessary to use the entirety of the data to find a representative average. Since the soft-DTW averaging
gets comparable results with fewer data sets, an average with a finer temporal resolution could be obtained.
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Fig.7 Barycenters obtained from Euclidean, DBA and soft-DTW for 20, 50 and 100 iterations.
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Fig.8 Comparison of the true average with the (a) Euclidean barycenters, (b) DBA, and (c¢) soft-DTW barycenters
for 20, 50 and 100 iterations.



B. Evaluation of the Soft-DTW Smoothing Parameter y

In the soft-DTW barycenter algorithm, there are different parameters that can be set such as the smoothing parameter
v, type of initialization, number of time series, weights of the time series A and type of initialization. In this section,
the effects of the smoothing parameter on the soft-DTW barycenter are investigated and recommendations for RDC
data applications provided. For the calculations of the barycenter presented in this section, the weight of a time
series yj is w; = % since all N time series have an equal length m. In addition, the barycenter is initialized from the
soft-DTW initialization, itself initialized from a Euclidean mean. Such an initialization scheme yields lower DTW loss
in accordance with the results presented in the literature [[7,[10]. For each method, the maximum number of iterations is
set to 100. To minimize the proposed soft-DTW barycenter objective, the L-BFGS optimization procedure is used.

In soft-DTW, y is a parameter that controls the trade-off between accuracy and smoothness [8|[10]. Figure [9]shows
the variation of the soft-DTW barycenter with y. For very low values of the smoothing parameter (such as y = 0.001),
there are jagged features in the barycenter, which are not representative of the underlying data similarly to DBA. In
particular, when v is set to 0, the original DTW distance is recovered. For higher values such as y = 1 local minima or
maxima are attenuated. In order to select a vy that best represents the main features of the data and smooths out the
idiosyncrasies of the data, the main features of the data for different values of y were evaluated.
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soft-DTW ~ = 1 08

0.6

0.4

0.2

0z oz 02 022 024 026 028 03 035 04 045 05
7 [ T[] 7 [

Fig. 9 Comparison of the soft-DTW barycenter for different values of .

The peak height, full width half maximum (FWHM) and slope of the soft-DTW barycenters are compared against
the corresponding average values of all the time series as shown in Figure[T0] The DBA and Euclidean barycenters are
plotted for reference. It can be observed that for insufficient smoothing at y = 0.001, the slope of the barycenter is
underpredicted as the barycenter absorbs the idiosyncracis of the underlying data similarly to DBA. For over smoothing,
the peak and the slope are underpredicted due to the attenuation of extrema similarly to the Euclidean barycenter. For
v = 0.01 the average peak, FWHM slope of the time series are well captured by the soft-DTW barycenter. While the
FWHM is slightly underpredicted for the soft-barycenter with y = 0.01, this can be neglected as it is most likely due to
the temporal resolution on the order of 7 = 0.02, set by the sampling rate. A soft-DTW barycenter with a smoothing
parameter such that y = 0.1 seems to be an appropriate candidate for representing the chosen time series as the main
features of the time series are preserved.

The DTW loss parameter can provide further confirmation for an appropriate choice of the smoothing parameter.
The DTW loss parameter is calculated according to the procedure presented by Cuturi et al. [8]]: The barycenter is
computed for 20 randomly selected time series and from Equation (T]), the DTW loss is calculated between barycenter
and all the time series. This procedure is repeated 10 times and the averaged results are reported in Table[I] It can
be observed that on average the lowest DTW loss is achieved for y = 0.01. For DBA or soft-DTW with too low y
parameters, the DTW loss increases as the obtained barycenters get stuck in local minima resulting in kinks, which are
not present in any of the underlying time series. For barycenters with higher values at y and the Euclidean barycenter,
the local extrema such as the peak pressure are smoothed out which contributes to a higher DTW loss. For this data and
other similar data sets, a soft-DTW barycenter with a value of y = 0.01 is a good candidate for the representation of
the average time series as it preserves the main features of the underlying data and yields a low DTW loss. That said,
users may need to fine tune the value of  in order to preserve specific features of the underlying dataset or suppress
numerical artifacts.
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Fig. 10 Comparison of (a) the peak, (b) full width half maximum, and (c) slope obtained from Euclidean, DBA,
and soft-dtw averaging.

Method Euclidean DBA  Soft-DTWy = 0.001 Soft-DTWy = 0.01 Soft-DTWy =0.1 Soft-DTWy =1
DTW loss 1.43 0.79 0.78 0.72 0.86 1.03

Table 1 Mean DTW loss calculated from Equation (I)) for the different averaging methods.

IV. Conclusion

The study investigated the application on RDC time series data of three different averaging techniques: the Euclidean
distance based arithmetic mean, the DTW Barycenter Averaging and soft-DTW barycenter. Results show that the
Euclidean barycenter is very sensitive to the quality of the alignment and repeatability of the underlying dataset, and for
noisy data does not capture well the sharpness of detonation front. Meanwhile, the DTW barycenter Averaging absorbs
the idiosyncracies of the data resulting in a jagged average that is not characteristic of any of the time series. Soft-DTW
based averaging overcomes these limitations through the introduction of a smoothing parameter without distorting the
rapid pressure rise in the detonation front and yields a more representative average of RDC time series data. In addition,
soft-DTW based averaging is less sensitive to small perturbations in the data and can construct a representative average
of the data from few data samples. The results of this paper are expected to provide guidelines for averaging RDC time
series data that future studies can apply to study the detonation wave structure and flow field inside a combustor and
could provide reliable characteristic parameters for CFD simulations. Future work will focus on linking parameters of
soft-DTW averaging to experimental variables and different wave modes.
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