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1. Step-by-step procedure for dynamic analysis in Elmer 

1.1 Modeling and analysis of natural frequency of beam using Elmer 

The steps involved to find the natural frequency of the nonlinear undamped beam are described with 
figures. 
 
a) At first, ‘FreeCAD’ model is meshed in ‘Gmsh’ using 32 tetrahedron elements and saved as 

‘beam.msh’.  To perform meshing the following general steps are followed: 
Open Gmsh> File > Open model > Expand ‘Mesh’ > Expand ‘define’> Expand ‘Transfinite’ > select 
Curve > select edges of the model to be discritised with required number of elements > ‘Recombine’ 
with ‘3D’. After generating the 3D mesh the model with mesh is exported and saved with ‘.msh’ 
extension. The whole process is shown in Fig. 1. 
 

b) The ‘beam.msh’ is opened up directly in the graphical user interface (GUI) of ‘Elmer’ as shown in Fig. 
2. 
 

c) The material property, load, and output requests can be assigned to the member in two ways. The new 
properties are added directly from the ‘Model’ section of graphical user interface as shown in Fig.1. 
Another way is to define those properties in the environment of ‘.sif’. The ‘sif’ (solver input file) tab 
can be accessed with the ‘Edit’ option (Fig. 3). 
 

 
Fig. 1. Flow of work to mesh a model using Gmsh 
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Fig. 2. Graphical user interface of Elmer 
 

d) The nonlinear undamped beam is modeled with the property of aluminium which are Young’s 
modulus=70 GPa, mass density=2778 kg/m3, and Poisson’s ratio=0.3. In case of damped analysis, Rayleigh 
coefficients are added as shown in (Fig. 4). In the .sif file, the assigned properties are checked and saved. 

 
e) In a cantilever beam, all degrees of freedom of the end boundary are restricted to zero. It is modeled 

by assigning the displacement value of the first node of element 1 to zero (Fig. 5). 

                 
 

Fig. 3. Tab to enter .sif environment 
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                 Fig. 4. Material section in .sif environment for both damped (green) and undamped member (red) 
                               

            
Fig. 5. Physical description of a model of undamaged cantilever beam 

 
f) In the .sif file, the boundary of the model is identified by the ‘Target boundaries’ number as in Fig. 6 

of graphical interface of ‘Elmer’. The associated number with ‘Displacement’ in Fig. 4 and 6 denotes 
the corresponding direction of the axis where ‘1’, ‘2’ and ‘3’ represents ‘x’, ‘y’ and ‘z’ axis 
respectively. To modify the value of boundary condition, default values can be directly edited in the 
coding. The ‘Target Boundaries’ in Fig. 6 indicates the boundary number to be operated on. 
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Fig. 6: Boundary condition in .sif environment 
 

g) The axes direction for the corresponding model is obtained from the ‘compass’ which opens up with 
‘view’ when right clicked on the GUI as shown in Fig. 7. 
 

h) To find the natural frequency, ‘Stress solver’ with ‘Linear Elasticity’ (Fig. 8) equation is used and 
required number of modal values is set in ‘Eigen System Values’. For nonlinear analysis, ‘Linear 
Elasticity’ in ‘equation’ is replaced by ‘Nonlinear elasticity’. 
 
 

              
 

      Fig. 7. Description of axes directions of the model 
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              Fig. 8. Solver section in ‘.sif’ environment 

 
i) The simulation is performed under ‘steady-state’ solver in case of any dynamic analysis. It is also 

required to define the input file name so that whenever the file is referred to after saving last modified 
coding, will appear in ‘.sif’ file for the corresponding member. The output file name can also be 
modified and will be saved in ‘.vtu’ format for post-processing of result. The solver will ask for the 
intervals that need to be stored in the output format as per the requirement (Fig. 9). 

 

            
            Fig. 9. Section to define simulation type in ‘.sif’ environment 

 
j) After modifications, the file is run for the analysis, and output is stored in ‘.vtu’ file. The natural 

frequency is obtained from the square root of the eigenvalues. 
 
2. Forced vibration analysis of beam using Elmer 
The same .sif file can be used for the dynamic analysis of the member with some modifications in the simulation 
method. The geometric stiffness of the member is considered automatically by the software package during the 
dynamic analysis when the elastic solver is applied. On the other hand, linear analysis is performed by renaming 
it to ‘StressSolver’. The following changes are also made for the damped vibration of beam subjected to external 
harmonic loading of frequency 41.88 rad/s. 
 

a) To add damping in the beam, the Rayleigh damping coefficient is defined in the material section of 
‘.sif’ file as shown in Fig. 10(a). The loading environment is modified with harmonic loading and 
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target boundaries are fixed by respective boundary numbers as per modeling shown in Fig.10(b). Here 
‘MATC’ refers to the library of solutions for time-varying excitation function. 
 

         
(a)            (b) 

Fig. 10. Sections to define (a) damping parameter and (b) excitation force in the .sif file 
 

b) The analysis is intended to perform for 10s with 0.005s intervals. Accordingly, the time step interval 
with total array size of 10/0.005=2000 is added in the simulation part. Any dynamic analysis in 
‘ELMER’ is performed by ‘Transient’ type of simulation instead of ‘Steady state’ used in case of 
natural frequency determination (Fig. 11). 

 

 
 

Fig. 11. Section to define analysis time-interval 
 

The post-processing of the output result is performed in ‘Paraview’ instead of its own environment for the 
detailed response history of the member with better graphical interface. 
Same process is applied for the analysis of the axial bar where harmonic load is applied along the longitudinal 
direction of the member at the free end. The output history of displacement is finally extracted for both beam 
and axial members to review the performance of different damage indicators. 
 

3. Application of Elmer 

3.1 Development of Poincaré map 

3.1.1 Theoretical Background of Poincaré map 

The efficiency of any damage indicator is dependent on the appropriate timeframe associated with the motion 
if time-history response is used as fault signature. Poincaré map is one of the solutions to this time-dependent 
variation of state of the system. A Poincaré section is a lower-dimensional subspace of a continuous dynamic 
system, where a periodic orbit intersects the section. When the motion is purely periodic in nature and the 
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system behaves linearly as well, it creates a single dot on Poincaré section after each returning period. The 
reason behind this is explained through Fig. 12. The flow of a continuous dynamic system is presented here by 
the trajectory of xn. The advantage of a Poincaré map is that it converts a continuous dynamic system into 
discrete-time system by the mapping of the flow. The discrete form of the flow preserves the information about 
the periodicity of the orbit along with the information about the stability of the system. At time t, the trajectory 
of ‘xn’ is located on the space ‘Ʃ’. After one sampling period, if a cross-section is placed transversely to the 
flow and the process is continued for a number of time periods it will create a series of dots  

                                    
          (a)                                                                                         (b) 
 

Fig. 12. (a) Trajectory of an orbit in state space, and (b) Poincaré section transverse to the flow  
 

on the cross-section. Thus, if any periodic orbit is sampled at a fixed time period and intersection points are 
mapped on a suitable cross-section transverse to the flow, the series of dots will generate Poincaré map of the 
dynamic system. The sparse dispersion of dots in phase space or Poincaré section holds the periodic, 
quasiperiodic, or aperiodic information of the system. To mitigate the effect of time-dependent function on the 
indicator performances, Poincaré map is hence utilized in some work to detect the discrepancy in the signal 
between the damaged state and the reference state of the signal. The Poincaré map considered in the study of 
time-domain based damage detection technique is constructed  
 

 
Fig. 13. Mapping of trajectory to Poincaré section 

 
by phase-space projection of the state variables at a fixed time interval. As the Poincaré section captures each 
returning point of the trajectory at a fixed time period, a nearly periodic orbit generates a set of closely spaced 
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dots. For any change in the property of the material, the phase space plot of the same member changes from its 
reference state. This compact form of time-series response and graphical description of the state of the member 
leads to the development of some indicators for the detection of damage in the member. The Poincaré map can 
also be described as the map of Ʃ to Ʃ as shown in Fig.13. It describes the stability as well as periodicity of the 
dynamic system. Mathematically this mapping is explained as f: Ʃ→Ʃ. In the Fig. 13, P(xk) is the Poincaré 
projection of the trajectory xk. The converging behavior of the points on Poincaré section explains the stability 
of the limit cycle. In case if P(xi) diverges, it is considered as unstable system. Also in the figure mapping of 
the point xk on the Poincaré section is P(xk) and xk=P(xk). The point 𝑥௞ is hence called the fixed point and the 
flow is called limit cycle of the flow. The stability of xk+1 or xk-1 is analyzed by the limit cycle or fixed point. A 
stable fixed point or limit cycle attracts the surrounding trajectory towards itself. The trajectory of the flow 
diverges in case of an unstable fixed point of the Poincaré map. Thus the Poincaré of P(xk+h) of a point on 
Poincaré section close to fixed point xk can be defined with respect to xk  as, 
 

P(xk+h)=xk+ h.DP(xk)+Ɵ(||h||2)  (1) 
 
Eq. (1); where D is the first differentiative operator of the fixed point and Ɵ is the truncated error with the square 
of small perturbation h. The magnitude value of DP(xk) determines the stability of the dynamic system.  
In this article, the performance of any Poincaré map-based damage indicator is evaluated from the time-history 
response taken at each time period and plotted for nonlinear structures. The displacement and velocity co-
ordinate of Poincaré map are then used to derive different indices. For a damaged beam element, the reduction 
in local stiffness value affects the global stiffness of the system. Consequentially, the trajectory of state variables 
changes from that of the healthy state of the member. This change even on a small scale can be captured from 
the compact form of the Poincaré map. In case of damped vibration, the steady-state displacement and velocity 
are generally considered instead of total response to eliminate the transient part of the motion. For an unknown 
system of motion at first, the period of motion is calculated from the response signal. The response signal in 
time-domain is transformed into the frequency domain to extract the frequency and thus the natural period or 
fundamental motion of the system. The state variables considered for the Poincaré map are then plotted after 
each period of time. The coordinate of each intersection point on the Poincaré section defines the behavior of 
the system. The development of Poincaré map using Elmer based analysis result of a nonlinear damped beam 
is explained with figures in the next section. 
 
 
3.1.2 Poincaré Map from Elmer result 

It is developed with integrated MATLAB code ‘ElmerMAT.m’. The developed code can be directly used for 
the nonlinear system identification and extended to the purpose of structural health monitoring. 


