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Quantum machine learning beyond kernel
methods

Sofiene Jerbi 1 , Lukas J. Fiderer 1, Hendrik Poulsen Nautrup 1,
Jonas M. Kübler2, Hans J. Briegel1 & Vedran Dunjko 3

Machine learning algorithms based on parametrized quantum circuits are
prime candidates for near-term applications on noisy quantum computers. In
this direction, various types of quantum machine learning models have been
introduced and studied extensively. Yet, our understanding of how these
models compare, both mutually and to classical models, remains limited. In
this work, we identify a constructive framework that captures all standard
models based on parametrized quantum circuits: that of linear quantum
models. In particular, we show using tools from quantum information theory
how data re-uploading circuits, an apparent outlier of this framework, can be
efficiently mapped into the simpler picture of linear models in quantum Hil-
bert spaces. Furthermore, we analyze the experimentally-relevant resource
requirements of these models in terms of qubit number and amount of data
needed to learn. Based on recent results from classical machine learning, we
prove that linear quantummodelsmust utilize exponentiallymore qubits than
data re-uploading models in order to solve certain learning tasks, while kernel
methods additionally require exponentially more data points. Our results
provide a more comprehensive view of quantum machine learning models as
well as insights on the compatibility of differentmodels with NISQ constraints.

In the current noisy intermediate-scale quantum (NISQ) era1, a few
methods have been proposed to construct useful quantum algorithms
that are compatible with mild hardware restrictions2,3. Most of these
methods involve the specification of a quantum circuit Ansatz, opti-
mized in a classical fashion to solve specific computational tasks. Next
to variational quantum eigensolvers in chemistry4 and variants of the
quantum approximate optimization algorithm5, machine learning
approaches based on such parametrized quantum circuits6 stand as
some of the most promising practical applications to yield quantum
advantages.

In essence, a supervised machine learning problem often reduces
to the task of fitting a parametrized function—also referred to as the
machine learningmodel—to a set of previously labeled points, called a
training set. Interestingly,many problems in physics and beyond, from
the classification of phases of matter7 to predicting the folding struc-
tures of proteins8, can be phrased as such machine learning tasks. In

the domain of quantum machine learning9,10, an emerging approach
for this type of problem is to use parametrized quantum circuits to
define a hypothesis class of functions11–16. The hope is for these para-
metrized models to offer representational power beyond what is
possible with classicalmodels, including highly successful deep neural
networks.And indeed,wehave substantial evidenceof such aquantum
learning advantage for artificial problems16–21, but the next frontier is to
show that quantummodels can be advantageous in solving real-world
problemsaswell. Yet, it is still unclearwhichof thesemodelswe should
preferably use in practical applications. To bring quantum machine
learningmodels forward, we first need a deeper understanding of their
learning performance guarantees and the actual resource require-
ments they entail.

Previous works havemade strides in this direction by exploiting a
connection between some quantummodels and kernel methods from
classicalmachine learning22. Many quantummodels indeed operate by
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encoding data in a high-dimensional Hilbert space and using solely
inner products evaluated in this feature space to model the properties
of the data. This is also how kernel methods work. Building on this
similarity, the authors of refs. 23,24 noted that a given quantum encod-
ing can be used to define two types of models (see Fig. 1): (a) explicit
quantummodels, where an encoded data point ismeasured according
to a variational observable that specifies its label, or (b) implicit kernel
models, where weighted inner products of encoded data points are
used to assign labels instead. In the quantum machine learning litera-
ture, much emphasis has been placed on implicit models20,25–31, in part
due to a fundamental result known as the representer theorem22. This
result shows that implicitmodels can always achieve a smaller labeling
error than explicit models, when evaluated on the same training set.
Seemingly, this suggests that implicit models are systematically more
advantageous than their explicit counterparts in solving machine
learning tasks25. This idea also inspired a line of research where, in
order to evaluate the existence of quantum advantages, classical
models were only compared to quantum kernel methods. This
restricted comparison led to the conclusion that classical models
could be competitive with (or outperform) quantum models, even in
tailored quantum problems20.

In recent times, there has also been progress in so-called data re-
uploading models32 which have demonstrated their importance in
designing expressive models, both analytically33 and empirically15,16,32,
and proving that (even single-qubit) parametrized quantum circuits
are universal function approximators34,35. Through their alternation of
data-encoding and variational unitaries, data re-uploading models can
be seen as a generalization of explicit models. However, this general-
ization also breaks the correspondence to implicit models, as a given
data point x no longer corresponds to a fixed encoded point ρ(x).
Hence, these observations suggest that data re-uploading models are
strictly more general than explicit models and that they are incom-
patible with the kernel-model paradigm. Until now, it remained an
open question whether some advantage could be gained from data re-
uploading models, in light of the guarantees of kernel methods.

In this work, we introduce a unifying framework for explicit,
implicit and data re-uploading quantum models (see Fig. 2). We
show that all function families stemming from these can be for-
mulated as linear models in suitably defined quantum feature
spaces. This allows us to systematically compare explicit and data
re-uploading models to their kernel formulations. We find that,
while kernel models are guaranteed to achieve a lower training
error, this improvement can come at the cost of a poor general-
ization performance outside the training set. Our results indicate
that the advantages of quantum machine learning may lie beyond
kernel methods, more specifically in explicit and data re-uploading
models. To corroborate this theory, we quantify the resource
requirements of these different quantum models in terms of the
number of qubits and data points needed to learn. We show the
existence of a regression task with exponential separations between
each pair of quantum models, demonstrating the practical advan-
tages of explicit models over implicit models, and of data re-
uploading models over explicit models. From an experimental
perspective, these separations shed light on the resource efficiency
of different quantum models, which is of crucial importance for
near-term applications in quantum machine learning.

Results
A unifying framework for quantum learning models
Westart by reviewing the notion of linear quantummodels and explain
how explicit and implicit models are by definition linear models in
quantum feature spaces. We then present data re-uploading models
and show how, despite being defined as a generalization of explicit
models, they can also be realized by linear models in larger Hilbert
spaces.

Linear quantum models
Let us first understand how explicit and implicit quantum models can
both be described as linear quantum models25,36. To define both of
thesemodels, we first consider a feature encoding unitaryUϕ : X ! F
that maps input vectors x 2 X , e.g., images inRd , to n-qubit quantum
states ρðxÞ=UϕðxÞ∣0i 0h ∣Uy

ϕðxÞ in the Hilbert space F of 2n × 2n Her-
mitian operators.

A linear function in the quantum feature spaceF is defined by the
expectation values

f ðxÞ= Tr ½ρðxÞO�, ð1Þ

for someHermitian observableO 2 F . Indeed, one can see from Eq. (1)
that f(x) is the Hilbert–Schmidt inner product between the Hermitian
matrices ρ(x) andO, which is by definition a linear function of the form
hϕðxÞ,wiF , for ϕ(x) = ρ(x) and w =O. In a regression task, these real-
valued expectation values are used directly to define a labeling
function, while in a classification task, they are post-processed to
produce discrete labels (using, for instance, a sign function).

Explicit and implicit models differ in the way they define the
family of observables {O} they each consider.

An explicit quantummodel23,24 using the feature encodingUϕ(x) is
defined by a variational family of unitaries V(θ) and a fixed observable
O, such that

f θðxÞ= Tr ½ρðxÞOθ�, ð2Þ

for Oθ =V(θ)†OV(θ), specify its labeling function. Restricting the family
of variational observables fOθgθ is equivalent to restricting the vectors
w accessible to the linear quantum model f ðxÞ = hϕðxÞ,wiF ,w 2 F ,
associated with the encoding ρ(x).

Implicit quantum models23,24 are constructed from the quantum
feature states ρ(x) in a different way. Their definition depends directly
on the data points {x(1),…, x(M)} in a given training setD, as they take the
form of a linear combination

f α,DðxÞ=
XM
m= 1

αmkðx,xðmÞÞ, ð3Þ

Fig. 1 | Thequantummachine learningmodels studied in thiswork. aAnexplicit
quantum model, where the label of a data point x is specified by the expectation
value of a variational measurement on its associated quantum feature state ρ(x).
b The quantum kernel associated with these quantum feature states. The expec-
tation value of the projectionP0 = ∣0i 0h ∣ corresponds to the inner product between
ρ(x) and ρðx0Þ. An implicit quantum model is defined by a linear combination of
such inner products, for x an input point and x0 training data points. c A data re-
uploading model, interlaying data-encoding and variational unitaries before a final
measurement.
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for kðx,xðmÞÞ= hϕðxÞ,ϕðxðmÞÞiF = Tr ½ρðxÞρðxðmÞÞ� the kernel function
associated with the feature encoding Uϕ(x). By linearity of the trace,
however, we can express any such implicit model as a linear model in
F , defined by the observable:

Oα,D =
XM
m= 1

αmρðxðmÞÞ: ð4Þ

Therefore, both explicit and implicit quantum models belong to the
general family of linear models in the quantum feature space F .

Linear realizations of data re-uploading models
Data re-uploading models32 on the other hand do not naturally fit this
formulation. These models generalize explicit models by increasing
the number of encoding layers Uℓ(x), 1 ≤ ℓ ≤ L (which can be all dis-
tinct), and interlaying themwith variational unitaries Vℓ(θ). This results
in expectation-value functions of the form:

f θðxÞ= Tr ½ρθðxÞOθ�, ð5Þ

for a variational encoding ρθðxÞ = Uðx,θÞ∣0i 0h ∣Uyðx,θÞ, where
Uðx,θÞ=ULðxÞ

QL�1
‘= 1 V ‘ðθÞU‘ðxÞ, and a variational observable

Oθ = VL(θ)†OVL(θ). Given that the unitaries Uℓ(x) and V ‘0 ðθÞ do not
commute in general, one cannot straightforwardly gather all trainable
gates in a final variational observable O0

θ 2 F as to obtain a linear
model ~f θðxÞ= hϕðxÞ,O0

θiF with a fixed quantum feature encoding ϕ(x).
Our first contribution is to show that, by augmenting the dimension of
the Hilbert space F (i.e., considering circuits that act on a larger
number of qubits), one can construct such explicit linear realizations
~f θ of data re-uploading models. That is, given a family of data re-
uploading models f f θð�Þ=Tr½ρθð�ÞOθ�gθ, we can construct an equiva-
lent family of explicit models f ~f θð�Þ =Tr½ρ0ð�ÞO0

θ�gθ that represents all
functions in the original family, along with an efficient procedure to
map the former models to the latter.

Before getting to the main result of this section (Theorem 1), we
first present an illustrative construction to convey intuition on how
mappings from data re-uploading to explicit models can be realized.
This construction, depicted in Fig. 3, leads to approximate mappings,
meaning that these only guarantee ∣ ~f θðxÞ � f θðxÞ∣≤ δ,∀ x, θ for some
(adjustable) error of approximation δ. More precisely, we have:

Proposition 1 Given an arbitrary data re-uploading model
fθ(x) = Tr[ρθ(x)Oθ] as specified by Eq. (5), and an approximation error
δ > 0, there exists a mapping that produces an explicit model
~f θðxÞ= Tr ½ρ0ðxÞO0

θ� as specified by Eq. (2), such that:

∣Tr ½ρ0ðxÞO0
θ� � Tr ½ρθðxÞOθ�∣≤ δ,8x,θ: ð6Þ

D the number of encoding gates used by the data re-uploading model
and ∣O∣1 the spectral norm of its observable, the explicit model uses
OðD logðD∣O∣1δ�1ÞÞ additional qubits and gates.

The general idea behind this construction is to encode the input
data x in ancilla qubits, to finite precision, which can then be used
repeatedly to approximate data-encoding gates using data-
independent unitaries. More precisely, all data components xi 2 R
of an input vector x = (x1,…, xd) are encoded as bit-strings
∣exi

�
= ∣b0b1 . . .bp�1i 2 f0,1gp, to some precision ε = 2−p (e.g., using

Rx(bj) rotations on ∣0i states). Now, using p fixed rotations, e.g., of the
form Rz(2

−j), controlled by the bits ∣bji and acting on n “working”
qubits, one can encode every xi in arbitrary (multi-qubit) rotations
e�ixiH , e.g., Rz(xi), arbitrarily many times. Given that all these fixed
rotations are data-independent, the feature encoding of any such cir-
cuit hence reduces to the encoding of the classical bit-strings exi, prior
to all variational operations. By preserving the variational unitaries
appearing in a data re-uploading circuit and replacing its encoding
gates with such controlled rotations, we can then approximate any
data re-uploading model of the form of Eq. (5). The approximation
error δ of this mapping originates from the finite precision ε of
encoding x, which results in an imperfect implementation of the
encoding gates in the original circuit. But as ε→0, we also have δ→0,
and the scaling of ε (or the number of ancillas dp) as a function of δ is
detailed in Supplementary Section 2.

We now move to our main construction, resulting in exact map-
pings between data re-uploading and explicit models, i.e., that achieve
δ = 0 with finite resources. We rely here on a similar idea to our pre-
vious construction, inwhichweencode the input data on ancilla qubits
and later use data-independent operations to implement the encoding
gates on the working qubits. The difference here is that we use gate-
teleportation techniques, a form of measurement-based quantum
computation37, to directly implement the encoding gates on ancillary

Fig. 2 | The model families in quantum machine learning. a While data re-
uploading models are by definition a generalization of linear quantummodels, our
exactmappings demonstrate that any polynomial-size data re-uploadingmodel can
be realized by a polynomial-size explicit linear model. b Kernelizing an explicit
model corresponds to turning its observable into a linear combination of feature
states ρ(x), for x in a dataset D. The representer theorem guarantees that, for any

dataset D, the implicit model f *α,D minimizing the training loss associated with D
outperforms any explicit minimizer f *θ from the same Reproducing Kernel Hilbert
Space (RKHS) with respect to this same training loss. However, depending on the
feature encoding ρ(⋅) and the data distribution, a restricted datasetDmay cause the
implicit minimizer f *α,D to severely overfit on the dataset and have dramatically
worse generalization performance than f *θ.

⟩|0

⟩|0
( ) ( )

Fig. 3 | An illustrative explicit model approximating a data re-uploading cir-
cuit. The circuit acts n working qubits and dp encoding qubits. Pauli-X rotations
encode bit-string descriptions exi 2 f0,1gp of the d input components xi 2 R, which
constitutes the feature encoding of the explicitmodel. Fixed and data-independent
controlled rotations, interlaid with arbitrary variational unitaries, and a final mea-
surement of the working qubits can result in a good approximation of any para-
metrized quantum circuit acting on n qubits.
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qubits and teleport them back (via entangledmeasurements) onto the
working qubits when needed (see Fig. 4).

Theorem 1 Given an arbitrary data re-uploading model
fθ(x) = Tr[ρθ(x)Oθ] as specified by Eq. (5), there exists a mapping that
produces an equivalent explicitmodel ~f θðxÞ= Tr ½ρ0ðxÞO0

θ� as specified by
Eq. (2), such that:

Tr ½ρ0ðxÞO0
θ�= Tr ½ρθðxÞOθ�,8x,θ: ð7Þ

and ∣O0
θ∣

2
1 ≤ ð1� δ0Þ�1∣Oθ∣

2
1, for an arbitrary re-normalization para-

meter δ0 >0. For D the number of encoding gates used by the data re-
uploading model, the equivalent explicit model uses OðD logðD=δ0ÞÞ
additional qubits and gates.

As we detail in Supplementary Section 2, gate teleportation can-
not succeed with unit probability without gate-dependent (and hence
data-dependent) corrections conditioned on the measurement out-
comes of the ancilla. But since we only care about equality in expec-
tation values (Tr[ρθ(x)Oθ] and Tr ½ρ0ðxÞO0

θ�), we can simply discard
thesemeasurement outcomes in the observableO0

θ (i.e., project on the
correction-free measurement outcomes). In general, this leads to an
observable with a spectral norm ∣O0

θ∣
2
1 = 2D∣Oθ∣

2
1 exponentially larger

than originally, and hence a model that is exponentially harder to
evaluate to the same precision. Using a nested gate-teleportation
scheme (see Supplementary Section 2) with repeated applications of
the encoding gates, we can however efficiently make this norm over-
head arbitrarily small.

As our findings indicate, mappings from data re-uploading to
explicit models are not unique, and seem to always incur the use of
additional qubits. When discussing our learning separation results
(see Corollary 1 below), we prove that this is indeed the case, and
that any mapping from an arbitrary data re-uploading model with D
encoding gates to an equivalent explicit model must use Ω(D)
additional qubits in general. This makes our gate-teleportation
mapping essentially optimal (i.e., up to logarithmic factors) in this
extra cost.

To summarize, in this section, we demonstrated that linear
quantum models can describe not only explicit and implicit models,
but also data re-uploading circuits. More specifically, we showed that
any hypothesis class of data re-uploadingmodels can bemapped to an
equivalent class of explicit models, that is, linear models with a
restricted family of observables. In Supplementary Section 3, we
extend this result and show that explicit models can also approximate
any computable (classical or quantum) hypothesis class.

Outperforming kernel methods with explicit and data
re-uploading models
From the standpoint of relating quantum models to each other, we
have shown that the framework of linear quantummodels allows us to
unify all standard models based on parametrized quantum circuits.
While these findings are interesting from a theoretical perspective,
they donot reveal how thesemodels compare in practice. Inparticular,
we would like to understand the advantages of using a certain model

rather than the other in order to solve a given learning task. In this
section, we address this question from several perspectives. First, we
revisit the comparisonbetween explicit and implicitmodels and clarify
the implications of the representer theorem on the performance
guarantees of thesemodels. Then, we derive lower bounds for all three
quantum models studied in this work in terms of their resource
requirements, and show the existence of exponential separations
between each pair of models. Finally, we discuss the implications of
these results on the search for a quantum advantage in machine
learning.

Classical background and the representer theorem
Interestingly, a piece of functional analysis from learning theory gives
us a way of characterizing any family of linear quantum models25.
Namely, the so-called reproducing kernel Hilbert space, or RKHS22, is
the Hilbert space H spanned by all functions of the form
f ðxÞ= hϕðxÞ,wiF , for all w 2 F . It includes any explicit and implicit
models defined by the quantum feature states ϕ(x) = ρ(x). From this
point of view, a relaxation of any learning task using implicit or explicit
models as a hypothesis family consists in finding the function in the
RKHS H that has optimal learning performance. For the supervised
learning task of modeling a target function g(x) using a training set
f xð1Þ�

,gðxð1ÞÞ, . . . , xðMÞ,gðxðMÞÞ� g, this learning performance is usually
measured in terms of a training loss of the form, e.g.,

bLð f Þ= 1
M

XM
m= 1

f ðxðmÞÞ � gðxðmÞÞ� �2
: ð8Þ

The true figure of merit of this problem, however, is in minimizing the
expected lossLðf Þ, defined similarly as a probability-weighted average
over the entire data spaceX . For this reason, a so-called regularization
term λ ∣f ∣2H = λ∣O∣2F is often added to the training lossbLλðf Þ= bLðf Þ+ λ∣O∣2F to incentivize the model not to overfit on the
training data. Here, λ ≥0 is a hyperparameter that controls the
strength of this regularization.

Learning theory also allows us to characterize the linearmodels in
H that are optimal with respect to the regularized training loss bLλðf Þ,
for any λ ≥0. Specifically, the representer theorem22 states that the
model f opt 2 H minimizing bLλðf Þ is always a kernel model of the form
of Eq. (3) (see Supplementary Section 1 for a formal statement). A
direct corollary of this result is that implicit quantum models are
guaranteed to achieve a lower (or equal) regularized training loss than
any explicit quantum model using the same feature encoding25.
Moreover, the optimal weights αm of this model can be computed
efficiently using OðM2Þ evaluations of inner products on a quantum
computer (that is, by estimating the expectation value in Fig. 1b for all
pairs of training points) and with classical post-processing in time
OðM3Þ using, e.g., ridge regression or support vector machines22. For
this work, we ignore the required precision for the estimations of the
quantumkernel.Wenote however that these can require exponentially
many measurements in the number of qubits, both for explicit38 and
implicit27 models.

This result may be construed to suggest that, in our study of
quantum machine learning models, we only need to worry about
implicit models, where the only real question to ask is what feature
encoding circuit we use to compute a kernel function, and all machine
learning is otherwise classical. In the next subsections, we show how-
ever the value of explicit and data re-uploading approaches in terms of
generalization performance and resource requirements.

Explicit can outperform implicit models
We turn our attention back to the explicit models resulting from our
approximate mappings (see Fig. 3). Note that the kernel function
associated with their bit-string encodings ∣ψðxÞ�= ∣0i�n∣~x

�
,

Fig. 4 | An exact mapping from a data re-uploading model to an equivalent
explicitmodel, usinggate teleportation.Thedetails of thismapping, aswell as its
more elaborate form (using nested gate teleportation), can be found in Supple-
mentary Section 2.
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ρðxÞ= ∣ψðxÞ� ψðxÞ�
∣, is trivially

kðx,x0Þ=
Yd
i = 1

∣hexi∣ex0
ii∣

2
= δex,ex0 , ð9Þ

that is, the Kronecker delta function of the bit-strings ex and ex0. Let us
emphasize that, for an appropriate precision ε of encoding input
vectors x, the family of explicit models resulting from our construction
includes good approximations of virtually any parametrized quantum
circuit model acting on n qubits. Yet, all of these result in the same
kernel function of Eq. (9). This is a rather surprising result, for two
reasons. First, this kernel is classically computable, which, in light of the
representer theorem, seems to suggest that a simple classical model of
the form of Eq. (3) can outperform any explicit quantum model
stemming fromour construction, and hence any quantummodel in the
limit ε→0. Second, this implicit model always takes the form

f α,DðxÞ=
XM
m= 1

αmδex,exðmÞ , ð10Þ

which is amodel that overfits the training data and fails to generalize to
unseen data points, as, for ε→0 and any choice ofα, f α,DðxÞ=0 for any
x outside the training set. As we detail in Supplementary Section 2,
similar observations can be made for the kernels resulting from our
gate-teleportation construction.

These last remarks force us to rethink our interpretation of the
representer theorem. When restricting our attention to the regularized
training loss, implicit models do indeed lead to better training perfor-
mance due to their increased expressivity. For example, on a classifi-
cation task with labels g(x) = ±1, the kernel model of Eq. (10) is optimal
with respect to any regularized training loss for αm = g(x(m))∀m such
that bLð f Þ=0 and ∣f ∣2H =M. But, as our construction shows, this
expressivity can dramatically harm the generalization performance of
the learning model, despite the use of regularization during training.
Hence, restricting the set of observables accessible to a linear quantum
model (or, equivalently, restricting the accessiblemanifoldof theRKHS)
can potentially provide a substantial learning advantage.

Rigorous learning separations between all quantum models
Motivated by the previous illustrative example, we analyze more rig-
orously the advantages of explicit and data re-uploading models over
implicit models. For this, we take a similar approach to recent works in
classical machine learning which showed that neural networks can
efficiently solve some learning tasks that linear or kernel methods
cannot39,40. In our case, we quantify the efficiency of a quantummodel
in solving a learning task by the number of qubits and the size of the
training set it requires to achieve a non-trivial expected loss. To obtain
scaling separations, we consider a learning task specified by an arbi-
trary input dimensiond 2 N and express the resource requirements of
the different quantum models as a function of d.

Similarly to ref. 39, the learning task we focus on is that of learning
parity functions (see Fig. 5). These functions take as input a d-dimen-
sional binary inputx∈ {−1, 1}d and return theparity (i.e., theproduct) of
a certain subset A⊂ {1,…, d} of the components of x. The interesting
property of these functions is that, for any two choices of A, the
resulting parity functions are orthogonal in the Hilbert space H of
functions from {−1, 1}d to R. Hence, since the number of possible
choices forAgrowcombinatoriallywithd, the subspaceofH that these
functions span also grows combinatorially with d (can be made into a
2d scaling by restricting the choices of A). On the other hand, a linear
model (explicit or implicit) also covers a restricted subspace (or
manifold) of H. The dimension of this subspace is upper bounded by
22n for a quantum linear model acting on n qubits, and by M for an
implicit model usingM training samples (see Supplementary Section 7
for detailed explanations). Hence, by essentially comparing these

dimensions (2d versus 22n andM)40, we can derive our lower bounds for
explicit and implicit models. As for data re-uploading models, they do
not suffer from these dimensionality arguments. The different com-
ponents of x can be processed sequentially by the model, such that a
single-qubit data re-uploading quantum circuit can represent (and
learn) any parity function.

We summarize our results in the following theorem, and refer to
Supplementary Section 7 for a more detailed exposition.

Theorem 2 There exists a regression task specified by an input
dimension d 2 N, a function family fgA : f�1,1gd ! f�1,1ggA, and
associated input distributions DA, such that, to achieve an average
mean-squared error

EA inf
f

∣f � gA∣
2
L2ðDAÞ

� �
= ε< 1=2

(i) any linear quantum model needs to act on

n ≥ Ωðd + logð1� 2εÞÞ

qubits,
(ii) any implicit quantum model additionally requires

M ≥ Ωð2dð1� 2εÞÞ

data samples, while
(iii) a data re-uploading model acting on a single qubit and using d

encoding gates can be trained to achieve a perfect expected error
with probability 1 − δ, using M =OðlogðdδÞÞ data samples.

A direct corollary of this result is a lower bound on the number of
additional qubits that a universal mapping from any data re-uploading
model to equivalent explicit models must use:

Corollary 1 Any universalmapping that takes as input an arbitrary
data re-uploading model fθ with D encoding gates and maps it to an
equivalent explicit model ef θ must produce models acting on Ω(D)
additional qubits for worst-case inputs.

Comparing this lower bound to the scaling of our gate-
teleportation mapping (Theorem 1), we find that it is optimal up to
logarithmic factors.

Quantum advantage beyond kernel methods
A major challenge in quantum machine learning is showing that the
quantum methods discussed in this work can achieve a learning

Fig. 5 | Learning separations. We describe a learning task based on parity func-
tions acting on d-bit input vectors x∈ {−1, 1}d, for d 2 N. This task allows us to
separate all three quantum models studied in this work in terms of their resource
requirements, as a function of d (see Theorem 2).
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advantage over (standard) classical methods. While some approaches
to this problem focus on constructing learning tasks with separations
based on complexity-theoretic assumptions17,19, other works try to
assess empirically the type of learning problems where quantum
models show an advantage over standard classical models11,20. In this
line of research, Huang et al.20 propose looking into learning tasks
where the target functions are themselves generated by (explicit)
quantummodels. Following similar observations to thosemade above
about the learning performance guarantees of kernel methods, the
authors also choose to assess the presence of quantum advantages by
comparing the learning performance of standard classicalmodels only
to that of implicit quantummodels (from the same family as the target
explicitmodels). This restricted comparison led to the conclusion that,
with the help of training data, classical machine learningmodels could
be as powerful as quantum machine learning models, even in these
tailored learning tasks.

Having discussed the limitations of kernel methods in the pre-
vious subsections,we revisit this typeof numerical experiments,where
we additionally evaluate the performance of explicit models on these
types of tasks.

Similarly toHuang et al.20, we consider a regression taskwith input
data from the fashion-MNIST dataset41, composed of 28 × 28-pixel
images of clothing items. Using principal component analysis, we first
reduce the dimensionof these images toobtainn-dimensional vectors,
for 2 ≤ n ≤ 12. We then label the images using an explicit model acting
on n qubits. For this, we use the feature encoding proposed by Havlí-
ček et al.23, which is conjectured to lead to classically intractable ker-
nels, followed by a hardware-efficient variational unitary4. The
expectation value of a Pauli Z observable on the first qubit then pro-
duces the data labels. Note that we additionally normalize the labels as
to obtain a standard deviation of 1 for all system sizes. On this newly
defined learning task, we test the performance of explicitmodels from
the same function family as the explicit models generating the (train-
ing and test) data, and compare it to that of implicit models using the
same feature encoding (hence from the sameextended family of linear
models), as well as a list of standard classical machine learning algo-
rithms that are hyperparametrized for the task (see Supplementary
Section 5). The results of this experiment are presented in Fig. 6.

The training losses we observe are consistent with our previous
findings: the implicit models systematically achieve a lower training
loss than their explicit counterparts. For an unregularized loss notably,
the implicit models achieve a training loss of 0, and as noted in Sup-
plementary Section 6, the additionof regularization to the training loss
of the implicit model does not impact the separation we observe here.
With respect to the testing loss on the other hand, which is repre-
sentative of the expected loss, we see a clear separation starting from
n = 7 qubits, where the classical models start having a competitive
performancewith the implicitmodels,while the explicitmodels clearly
outperform them both. This goes to show that the existence of a
quantum advantage should not be assessed only by comparing clas-
sical models to quantum kernel methods, as explicit (or data re-
uploading) models can also conceal a substantially better learning
performance.

Discussion
In this work, we present a unifying framework for quantum machine
learning models by expressing them as linear models in quantum
feature spaces. In particular, we show how data re-uploading circuits
can be represented exactly by explicit linear models in larger feature
spaces. While this unifying formulation as linear models may suggest
that all quantummachine learning models should be treated as kernel
methods,we illustrate the advantages of variational quantummethods
for machine learning. Going beyond the advantages in training per-
formance guaranteed by the representer theorem, we first show how a
systematic “kernelization" of linear quantummodels can be harmful in

terms of their generalization performance. Furthermore, we analyze
the resource requirements (number of qubits and data samples used
by) of these models, and show the existence of exponential separa-
tions betweendata re-uploading, linear, andkernel quantummodels to
solve certain learning tasks.

One takeawaymessage from our results is that training loss, even
when regularized, is a misleading figure of merit. Generalization per-
formance, which is measured on seen as well as unseen data, is in fact
the important quantity to care about in (quantum) machine learning.
These two sentences written outside of context will seem obvious to
individuals well-versed in learning theory. However, it is crucial to
recall this fact when evaluating the consequences of the representer
theorem. This theorem only discusses regularized training loss, and
thus despite its guarantees on the training loss of quantum kernel
methods, it allows explicit models to have an exponential learning
advantage in the number of data samples they use to achieve a good
generalization performance.

From the limitations of quantum kernel methods highlighted by
these results, we revisit a discussion on the power of quantum learning
models relative to classical models in machine learning tasks with
quantum-generated data. In a similar learning task to that of Huang
et al.20, we show that, while standard classical models can be compe-
titive with quantum kernel methods even in these “quantum-tailored”
problems, variational quantum models can exhibit a significant learn-
ing advantage. These results give us amore comprehensive view of the
quantummachine learning landscape and broaden our perspective on
the type of models to use in order to achieve a practical learning
advantage in the NISQ regime.

In this paper, we focus on the theoretical foundations of
quantum machine learning models and how expressivity impacts
generalization performance. But a major practical consideration is
also that of trainability of these models. In fact, we know of obsta-
cles in trainability for both explicit and implicit models. Explicit
models can suffer from barren plateaus in their loss landscapes38,42,
which manifest in exponentially vanishing gradients in the number
of qubits used, while implicit models can suffer from exponentially
vanishing kernel values27,43. While these phenomena can happen
under different conditions, they both mean that an exponential
number of circuit evaluations can be needed to train and make use
of these models. Therefore, aside from the considerations made in
this work, emphasis should also be placed on avoiding these
obstacles tomake good use of quantummachine learningmodels in
practice.

Fig. 6 | Regression performance of explicit, implicit and classical models on a
“quantum-tailored” learning task. For all system sizes, eachmodel has access to a
training set of M = 1000 pre-processed and re-labeled fashion-MNIST images.
Testing loss is computed on a test set of size 100. Shaded regions indicate the
standard deviation over 10 labeling functions. The training errors of implicit
models are close to 0 for all system sizes.
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The learning task we consider to show the existence of expo-
nential learning separations between the different quantummodels
is based on parity functions, which is not a concept class of practical
interest inmachine learning.We note however that our lower bound
results can also be extended to other learning tasks with concept
classes of large dimensions (i.e., composed of many orthogonal
functions). Quantum kernel methods will necessarily need a num-
ber of data points that scale linearly with this dimension, while, as
we showcased in our results, the flexibility of data re-uploading
circuits, as well as the restricted expressivity of explicit models can
lead to substantial savings in resources. It remains an interesting
research direction to explore how and when can these models be
tailored to amachine learning task at hand, e.g., through the form of
useful inductive biases (i.e., assumptions on the nature of the target
functions) in their design.

Data availability
The data that support the plots within this paper are available at
https://github.com/sjerbi/QML-beyond-kernel44. Source Data are pro-
vided with this paper.

Code availability
The code used to run the numerical simulations, implemented using
TensorFlow Quantum45, is available at https://github.com/sjerbi/QML-
beyond-kernel44.
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